WO2021129896A2 - 水性插层电池及其制作方法 - Google Patents

水性插层电池及其制作方法 Download PDF

Info

Publication number
WO2021129896A2
WO2021129896A2 PCT/CN2021/077512 CN2021077512W WO2021129896A2 WO 2021129896 A2 WO2021129896 A2 WO 2021129896A2 CN 2021077512 W CN2021077512 W CN 2021077512W WO 2021129896 A2 WO2021129896 A2 WO 2021129896A2
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
active material
battery
battery electrode
main surface
Prior art date
Application number
PCT/CN2021/077512
Other languages
English (en)
French (fr)
Other versions
WO2021129896A3 (zh
Inventor
贺健
曾诗蒙
刘宇
Original Assignee
贲安能源科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贲安能源科技(上海)有限公司 filed Critical 贲安能源科技(上海)有限公司
Publication of WO2021129896A2 publication Critical patent/WO2021129896A2/zh
Publication of WO2021129896A3 publication Critical patent/WO2021129896A3/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the following disclosure relates generally to aqueous intercalation batteries, and more specifically to architectures for aqueous intercalation batteries, including electrode structures.
  • LIB lithium-ion battery
  • This type of battery includes a wide selection of anode and cathode materials to obtain different performance, but there is usually a trade-off between cost, safety, energy density, and cycle life.
  • LIB technology which can use economies of scale for electric vehicle (EV) manufacturing, is not suitable for the low-cost, long-life energy storage system requirements of renewable energy.
  • LIB cannot maintain a high cycle life in high-temperature applications in principle.
  • the risk of thermal runaway also requires LIB to maintain accurate temperature control and battery voltage monitoring and current control.
  • SLA battery technology has also matured, and its main advantages are very low installation costs and long-term retention of charge. This has resulted in sealed lead-acid batteries being used in many backup power sources, as well as in starting, lighting, and ignition (SLI) applications.
  • SLA batteries The main disadvantage of SLA batteries is the trade-off between cycle life and battery DOD. This means that in order to continuously cycle the SLA battery thousands of times, the battery capacity must be greatly exceeded to limit the system DOD. This offsets the low installation cost.
  • the high temperature tolerance of SLA batteries is generally worse than that of LIB, which also requires the installation of air conditioners in hot climate applications.
  • the widespread use of SLA batteries in SLI and backup power sources has created a huge market base.
  • Aqueous intercalation battery is an emerging battery technology that involves the use of ceramic-based active materials with ion exchange functions, similar to ordinary LIB cathodes and lithium titanate (LTO) anodes.
  • the crystal structure of these materials contains transition metal ions.
  • the valence of transition metals changes reversibly along with the entry and exit of movable cations to balance the charge.
  • LIB lithium titanate
  • AIB materials are safer and operate in lower cost aqueous electrolytes.
  • the use of aqueous electrolytes requires the use of lower voltage electrochemical couples, and these systems are generally limited to a battery voltage greater than 2.0V per battery between the top of charge (TOC) and the bottom of discharge (BOD). This limits the energy density of the battery. Therefore, although active materials are low in cost, basically durable and temperature resistant, low energy density is an obstacle to obtaining cost-effective batteries.
  • the custom design used in the currently deployed AIB requires customized manufacturing fixed resources for production.
  • FIG. 1 shows this example, in which a single battery 100 includes a cathode sheet 101 and an anode sheet 102 electrically connected via a unipolar current collector 103 (for example, four independent sheet electrodes 102 are arranged as shown to form an anode layer and The cathode layer, and the opposite sides of the battery 100 are in contact with the unipolar current collector 103).
  • a single battery 100 includes a cathode sheet 101 and an anode sheet 102 electrically connected via a unipolar current collector 103 (for example, four independent sheet electrodes 102 are arranged as shown to form an anode layer and The cathode layer, and the opposite sides of the battery 100 are in contact with the unipolar current collector 103).
  • the current collector 103 is usually composed of a sub-assembly of a graphite sheet (to reduce contact resistance) and a thin metal layer with tabs that form a common bus when multiple layers are welded. Also as shown in FIG. 1, the spacer 104 is located between the cathode sheet 101 and the anode sheet 102.
  • the multiple batteries 100 are then stacked together and connected in parallel via the current collector 103 to form a stack 104 having a parallel arrangement in each battery.
  • a plurality of stacks 104 can then be placed in the cavity 105 of the box 106 to form a battery box 107, where the stacks 104 are internally connected in series.
  • a plurality of battery boxes 107 may be connected in series to form a battery pack 108.
  • the horizontal arrangement of the electrode layers makes it difficult to ensure that all electrode materials are wetted by the electrolyte.
  • the electrolyte filled in the box will penetrate into the electrode, resulting in a drop in the liquid level, which will cause multiple upper layers not to be wetted by the electrolyte, and the performance between the unwetted layer and the wet layer is inconsistent.
  • Further inter-layer inconsistencies are shown in Figure 2. It can be seen that, compared with the lower layer, the shorter current path of the upper layer results in a higher average current during charging and discharging.
  • the traditional AIB design also has several shortcomings that affect performance and cycle life: First, the above-mentioned unequal current paths between the parallel layers lead to inconsistent charging and discharging of the parallel electrodes; second, extremely high pressure and flexible graphite are required The sheet material reduces the high contact resistance between the current collector and the electrode sheet. These increase the cost and complexity of the stack design; finally, excess electrolyte can improve the performance of AIB and reduce the risk of salt precipitation by increasing the utilization of intercalation ions, but the size of the battery box that meets the loading requirements limits the addition The amount of excess electrolyte.
  • Integrating SLA battery architecture into AIB is a possible choice to solve some of the problems faced by AIB technology.
  • due to the fundamental difference between SLA battery materials and AIB battery materials there are some problems in successfully applying AIB materials to the SLA battery architecture.
  • it is difficult to directly attach the AIB material to the current collector topology used in the SLA battery architecture and it is necessary to comprehensively consider the current SLA battery or the current AIB structure and formulate different strategies.
  • the design of the SLA battery is to uniformly coat the electrode material of the special formula on the grid current collector. When cured, a chemical bond is formed between the electrode material and the grid current collector, and the contact resistance is extremely low. Especially for these reasons, it becomes difficult to apply AIB materials to the SLA battery architecture.
  • Fig. 1 is a diagram of an AIB structure known in the prior art.
  • Fig. 2 is a graphical representation of the current inconsistency exhibited in the AIB results shown in Fig. 1.
  • FIG. 3 is an illustration of an AIB electrode configuration and an AIB electrode stack configuration according to various examples described herein.
  • Figure 4 is an illustration of a current collector suitable for use in an AIB electrode according to various examples described herein.
  • Figure 5 is an illustration of various AIB box configurations according to various examples described herein.
  • Figure 6 is an illustration of an AIB box configuration according to various examples described herein.
  • Figure 7 shows a flowchart of a method for manufacturing an AIB according to various examples described herein.
  • FIG. 8 shows a flowchart of a method of preparing a current collector according to various examples described herein.
  • FIG. 9 is an example diagram and a flowchart of a method of manufacturing an AIB electrode according to various examples described herein.
  • FIG. 10 is an example diagram and a flowchart of a method of manufacturing an AIB electrode according to various examples described herein.
  • FIG. 11 is an example diagram and a flowchart of a method of manufacturing an AIB electrode according to various examples described herein.
  • Figures 12A-12C are the charge rate capability, discharge rate capability graph, and capacity vs. cycle number graphs of the examples described herein.
  • This article describes various examples of AIB architectures that utilize SLA battery design while also solving some or all of the AIB's problems previously discussed in the background art section.
  • the use of large busbars at the parallel joints based on the SLA design will significantly alleviate the impedance difference in the multiple parallel electrode layers.
  • high contact resistance can be alleviated and excessive pressure applied on the electrode stack can be avoided.
  • the use of an SLA-based battery case can provide a sufficient excess of electrolyte and meet the requirements of stacking parallel electrode layers in the vertical direction.
  • the AIB electrode 300 generally includes a current collector 301 embedded in the AIB electrode material 302 to form a substantially elongated shape, wherein one end of the current collector 301 is embedded in the electrode material 302, and the current collector 301 is opposite to each other.
  • the tip of the end portion protrudes from the electrode material 302.
  • the electrode material 302 may be an anode active material or a cathode active material, depending on whether the electrode 300 is an anode or a cathode.
  • the electrode material 302 includes an active material (cathode or anode) as well as carbon and binder materials.
  • the anode active material is sodium titanium phosphate (STP), and the cathode active material is lithium manganese oxide (LMO).
  • STP sodium titanium phosphate
  • LMO lithium manganese oxide
  • the ion intercalation and de-intercalation potentials of these active materials are located within the stability window of the aqueous electrolyte.
  • AIB materials used as negative electrode active material and positive electrode active material on the anode and cathode respectively, there are the following options:
  • the negative electrode active material in addition to STP, other suitable intercalation ceramics and ion conductive materials can also be used.
  • any Common LIB cathode intercalation materials including those conventional lithium-containing oxide compositions: nickel-manganese-cobalt lithium-containing oxide composition (NMC), nickel-cobalt-aluminum lithium-containing oxide composition (NCA) , Phosphate-iron (LFP), cobalt (LCO), or a combination thereof.
  • sodium ion-conducting cathodes can also be used, including but not limited to metal cyano complexes such as Prussian blue, sodium manganese titanium phosphate (NMTPO), or various combinations of sodium manganese oxide (NMO) compounds Things.
  • metal cyano complexes such as Prussian blue, sodium manganese titanium phosphate (NMTPO), or various combinations of sodium manganese oxide (NMO) compounds Things.
  • the latter variants include, but are not limited to, NaMnO 2 (birnassite phase), Na 2 Mn 3 O 7 , Na 2 FePO 4 F, Na 0.44 MnO 2 , Na 4 M 9 O 18 , and Li x Mn 2-z Al z O 4 , where 1 ⁇ X ⁇ 1.1 and 0 ⁇ z ⁇ 0.1, where the latter Li is replaced by Na+ by cycling in the electrolyte containing Na+.
  • the current collector 301 may be a stainless steel sheet (or other suitable materials used as a current collector), where the stainless steel sheet includes surface modification 401, such as perforations, wrinkles, or other physical changes, which are formed on the current collector plate On the main surface.
  • the electrode material 302 (not shown in FIG. 4) can be effectively adhered to the current collector 301.
  • the current collector 301 does not contain any active material, that is, the material of the current collector 301 does not have the active material embedded or incorporated in the current collector 301.
  • the active material will contact the current collector 301 on the outer surface of the current collector, including the outer surface of the hole that passes through the current collector when the surface modification 401 is in the form of perforations, but does not exist in the body of the current collector 301 (ie, with the current collector Material mix).
  • the current collector 301 effectively provides a structure for the electrode material to be formed thereon, and a conductive surface for injecting and extracting electrons.
  • Non-limiting examples of materials for the current collector 301 include common stainless steel formulations, such as 304 and 316, and other corrosion-resistant variants, such as Carpenter 20 and Hastelloy C. In some examples, these materials can be modified with a certain amount of titanium, or the current collector can be made entirely of titanium. Also, different current collector materials can be used according to whether the current collector is used for the cathode or the anode, because the former generally operates in an oxidizing environment and requires higher corrosion resistance.
  • two or more electrodes 300 are stacked together to form a plurality of electrode stacks 310.
  • the stack 310 includes alternating anode and cathode electrodes 300, and a spacer 311 is located between each adjacent electrode 300. Since the electrode 300 is coated on both sides with the active material 302, parallel batteries will be formed on both sides. An exception is the end cell in the stack, which can be coated on only one side to save active material, or to simplify production and be coated on both sides as in the rest of the stack.
  • the stack 310 is fixed by using a pressure loading plate 312 and a belt 313.
  • the band 313 may be wrapped around the stack 310 and joined together by welding or crimping, or the band 313 may be pre-formed into a loop, and the stack 310 may be compressed and inserted therein.
  • the fixed stack 310 may also include thick current collector bus plates welded at either end of the stack to facilitate the parallel connection between the anode and cathode layers.
  • one or more stacks 310 are provided in the battery box 500.
  • a single electrode stack 310 is loaded into a single cassette 500.
  • a box contains a parallel arrangement of individual cells, and the collector bus plates at both ends of the anode and cathode are welded to the external tabs. These tabs facilitate the connection between multiple boxes to establish the actual applied voltage.
  • a single box 500 contains multiple stacks 310 connected internally to establish a voltage.
  • a complete battery box 600 that houses the AIB configuration described herein is shown.
  • the box 600 contains eight stacks and therefore eight internal cavities.
  • Each stack contains 100Ah of usable electrode material. In the range of 1.125-1.875V/battery, it can provide about 1.2kWh of energy under 7A/-7A charge and discharge conditions. Thanks to this battery design, the measured energy conversion efficiency is greater than 85%, which exceeds the possible energy conversion efficiency of the existing AIB architecture.
  • step 710 a granulation operation is performed on the AIB anode and cathode active materials to produce active materials, carbon, water, and binder materials.
  • the material generated in step 710 may be in the form of, for example, paste, powder, or slurry.
  • step 720 the material is then fed to a continuous process that compresses the active material material into the current collector to form a current collector coated/embedded in the active material material.
  • the parameters of the coating process can be adjusted to achieve the preset total coating mass, coating thickness, and coverage area of the current collector.
  • step 730 the coated current collector is thermally cured to ensure sufficient adhesion of the living material to the current collector. At this time, an electrode (cathode or anode) is formed.
  • the electrodes are stacked, spacers are placed between adjacent layers, and the multiple stacks are placed in the battery box cavity. If a cavity contains more than one stack, the anode current collector is welded to the inside of the battery, and then the cathode current collector is welded to the end of the battery. These ends can be designed to be connected before or after the lid is sealed, depending on the design. If the latter, place the cover and adhere it to the battery box. So far, it has been assembled into a dry rechargeable battery.
  • step 750 the battery may be immersed in the electrolyte at the same manufacturing location where the dry-type rechargeable battery is assembled. Then insert the battery, connect it to the test bench, and activate multiple cycles while the quality assurance checks the measured capacity. Then, they are ready to ship the goods for the customers.
  • step 760 the second strategy
  • the advantages of the latter include reduced transportation costs and reduced risk of calendar life degradation if the inventory is stored for a long time.
  • the disadvantage is that customers need to maintain resources for electrolyte preparation, wetting, and electrochemical testing. However, such resources can be easily designated as independent units. And, it is possible to maintain the exclusive details of the electrolyte formulation by shipping a premix of raw material salt and an operation guide on adding water and mixing for on-site preparation to the customer.
  • the method of manufacturing a single AIB electrode may include a step of optimizing the current collector to promote the adhesion of the active material to the current collector and reduce the contact resistance. Improved adhesion prevents loss of contact during the curing process of the electrode material, resulting in a significant change in volume.
  • the electrode material may be in the form of, for example, paste, powder, or slurry. As a result, the battery can be assembled with a lower pressure to achieve and maintain an acceptable low contact resistance.
  • the conditioning step involves coating the current collector with a conductive carbon layer. Referring to FIG. 8, the conditioning process 800 may begin with the step 810 of ball milling the mixture of carbon, binder, and solvent to produce a fine suspension.
  • the current collector is coated with the mixture by any of a variety of different coating methods (for example, by dip coating).
  • the coated current collector is dried to remove the carrier solvent and leave a uniform carbon coating with a small amount of binder on the current collector.
  • the materials and proportions of the coating scheme include 5-30wt% of various carbon types (e.g. graphite, carbon black), 1-10wt% of binders (e.g. polyvinyl butyral ( polyvinyl butyral)), and 60-94wt% carrier solvent (e.g. ethanol, water).
  • the first method 900 involves coating an electrode material on a current collector to form electrodes using a tablet press.
  • the electrode material may be in the form of, for example, paste, powder, or slurry.
  • the mold 911 of the tablet press 910 is filled with the first batch of electrode materials 912, and then in step 902, the current collector 913 is placed on the first batch of electrode materials in the mold 911.
  • the second batch of electrode material 914 is deposited on the current collector 913 in the mold 911, followed by the step 904 of pressing the material in the mold through the pressing plate 915.
  • the curing of the material 912/914 can take place in situ.
  • curing may be performed in a subsequent process in which the current collector 913 coated with the electrode material is fed to the conveyor to be fed to an open, static oven.
  • the amount of electrode material used for two loadings, and the size of the closed mold, will determine the amount of electrode material, its volume, and porosity.
  • FIG. 10 shows a method 1000 of forming an electrode using a roll coater 1010 (also referred to as calendering).
  • the current collector 1011 is loaded into the automatic feeder of the roll coater.
  • the electrode material 1012 is loaded into the hopper of the roller coater.
  • the electrode material 1012 may be in the form of, for example, paste, powder, or slurry.
  • the roller coater is started. At this time, the electrode slurry 1012 is fed onto the roller shaft on both sides of the current collector 1011, and the roller shaft pulls both the current collector 1011 and the electrode material 1012 at the same time. The compression of the roller shaft will affect the adhesion of the material 1012 to the current collector 1011.
  • the size and structure of the electrode are controlled by the speed, size, pressure, and temperature (if heated) of the roller.
  • the curing operation may be performed in the second continuous operation.
  • two-stage curing can be performed.
  • FIG. 11 shows a method 1100 of forming an electrode using a paste coater.
  • an automatic current collector feeder is provided in the first step 1101.
  • the continuous feeding of the current collector sheet 1110 is pulled through the slurry 1111.
  • the material may be in the form of, for example, a paste, powder, or slurry.
  • the modified current collector 1110 is then fed to the curing furnace 1112, where the carrier solvent is removed. There may be more than one oven for longer curing or curing at different temperatures. In addition, there may be optional calendering process steps between the two furnaces.
  • FIGS. 9-11 show an exemplary method of forming an electrode by coating a current collector with an active material material, other methods may also be used. It is also possible to use a method that combines one or more elements of the methods shown in Figures 9-11.
  • the technology described herein has many advantages and benefits.
  • the amount of excess electrolyte available for the AIB electrode stack described herein can be easily adjusted by the volume of the cartridge.
  • the pressure delivered to the electrode stack and the amount of subsequent loading can be easily adjusted by the loading conditions and the selection of loading belt and plate materials.
  • the current collector busbar can be designed to have very low impedance and maximize the consistency of the current delivered to each parallel layer.
  • SLA-based design There are other benefits to using SLA-based design.
  • similar or identical components such as battery casings, can be derived from substrates provided by existing suppliers that have been modified for AIB.
  • SLA battery manufacturing can utilize existing manufacturing resources, such as paste and grid coating operations.
  • similar architectures when similar architectures are available, it is easier to replace fixed SLA resources with AIB.
  • the similarity of battery voltage and energy density between the two technologies also means that AIB battery packs of similar size can replace SLA battery packs and serve the same field.
  • SLA batteries occupies an important position in backup power applications, there are still many application special cases that can be replaced by other battery technologies.
  • SLA batteries used for backup power in float applications have some disadvantages, including increased self-discharge rate at higher temperatures and life-limiting that occurs at a higher rate when a lower state of charge (SOC) is reached. Sulfation.
  • pure backup power applications prefer the low initial cost of SLA batteries and can tolerate their low cycle life, there is a growing trend to combine backup power services with solar storage.
  • AIB technology described in this article is well suited to address some or all of these limitations and can be used as a substitute for SLA batteries. Due to the similar overall energy density and voltage-per-cell, AIBs of similar capacity and voltage can be deployed in similar packaging to minimize the impact on the design of the backup power system. In addition, due to the longer cycle life of AIB, the battery can be integrated with solar panels to reduce operating costs, without the need for initial replacement of AIB or frequent replacement due to cycle capacity degradation. Although AIB produces some hydrogen, the rate is much lower than SLA, thus reducing air handling requirements. Finally, the inherently safe active materials used in AIB mean that these batteries can be directly landfilled without causing adverse environmental impacts. However, the recycling design and procedures for AIB are under development.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本文描述了水性插层电池,其中使用的电极,以及它们的制造方法。水性插层电池通常包括其上涂覆有阳极或阴极活性材料的集电器片。集电器内部没有活性材料。水性插层电池包括电极堆栈,该电极堆栈包括交替的阳极电极和阴极电极及其之间的隔件层,该电极堆栈放置于与密封铅酸电池类似的电池盒中。汇流板可设置于电池盒中相邻的堆栈之间。可以使用多种方法将活性材料涂覆在集电器上,包括但不限于以下技术:模塑技术、辊涂技术和浸涂技术。

Description

水性插层电池及其制作方法 技术领域
以下公开内容总体上涉及水性插层电池,更具体地涉及用于水性插层电池的架构,包括电极结构。
背景技术
随着社会经济的不断发展,电力需求市场越来越大,对电能供应的可靠性和电能质量的要求也越来越高,同时环境污染、气候异常、能源危机等问题日益突出,推广清洁、可再生能源的国际呼声不断加大。太阳能或风能等可再生能源的利用,需要具有安全、高效、成本效益好以及持久电能存储等特点的储能技术的支持。在这些应用中对电池的要求是非常严格的。电池的安装成本需要低于~$100/kWh,并且在日循环的放电深度(DOD)大于85%时具有大于20年的使用寿命。而且,他们必须对周围环境展示出普遍的低敏感性,例如在炎热气候应用中没有循环寿命的损失。尽管有多种电池技术能够满足这些功能,但是大批量生产时会存在一些关键缺陷。
到目前为止,这些应用最常采用的技术是锂离子电池(LIB)技术。这类电池包含对阳极和阴极材料的广泛选择以获得不同的性能,但是通常存在在成本,安全性,能量密度,和循环寿命之间的权衡。可以利用规模经济进行电动汽车(EV)制造的LIB技术不适合可再生能源对低成本,长寿命储能系统的要求。而且,LIB原理上不能在高温应用中维持高循环寿命。此外,热失控的风险还要求LIB保持精确的温度控制以及电池电压监控和电流控制。这些限制要求LIB在炎热气候中使用要包含空调系统,这 会增加系统的复杂性,成本,和运行费用。由于多经济的太阳能发电普遍存在于炎热气候的区域,因此LIB设施的高安装和运行成本限制了太阳能在这些市场中的渗透。
密封铅酸(SLA)电池技术也已经成熟,其主要优点是安装成本非常低,并且可以长时间保持电荷。这导致密封铅酸电池被用于许多备用电源,以及启动,照明,和点火(SLI)应用中。SLA电池的主要缺点是循环寿命与电池DOD之间的权衡。这意味着为了连续地循环SLA电池数千次,电池容量必须大幅度超额以限制系统DOD。这抵消了低安装成本。同样,SLA电池的高温耐受性通常比LIB差,这也需要在炎热气候应用中安装空调。但是,SLA电池在SLI和备用电源中的广泛使用产生了庞大的市场基础。
水性插层电池(AIB)是一种新兴的电池技术,其涉及使用具有离子交换功能的陶瓷基活性材料,与普通的LIB阴极和钛酸锂(LTO)阳极相似。这些材料晶体结构中含有过渡金属离子。过渡金属的化合价伴随着可移动阳离子的进出进行可逆变化,以平衡电荷。但是,不同于LIB,AIB材料在更安全,并在成本更低的水性电解质中运行。但是水性电解质的使用要求使用较低电压的电化电偶,并且通常将这些系统限制为在充电顶部(TOC)和放电底部(BOD)之间的每个电池的电池电压大于2.0V。这限制了电池的能量密度。因此,尽管活性材料成本低,基本上耐用且耐温,但是低能量密度是获得成本效益好的电池的障碍。此外,用于当前部署的AIB中的定制设计需要用于生产的定制化的制造固定资源。
AIB技术先前的商业示例使用单极集电器机制来建立并联容量。由此,意味着对于单个电池中的阳极和阴极通过不锈钢集电器总线的方式将独立式电极片以并联的方式连接起来。图1示出了该示例,其中单个电池100包括经由单极集电器103电连接的阴极片101和阳极片102(例如,如图所示布置四个独立式片状电极102以形成阳极层和阴极层,以及电池100的相对两侧与单极集电器103接触)。集电器103通常由石墨片(以减小 接触电阻)和带有凸舌的金属薄层的子组件组成,所述凸舌在焊接多层时形成公共总线。同样如图1所示,隔件104位于阴极片101和阳极片102之间。然后将多个电池100堆叠在一起,并经由集电器103并联连接,以形成在每个电池中具有平行布置的堆栈104。然后可以将多个堆栈104放置在盒106的腔室105中以形成电池盒107,其中堆栈104内部串联。最后,多个电池盒107可以串联连接以形成电池组108。
尽管这种设计易于制造,但是电极与集电器组件之间化学键的缺失要求高的加载压力。所要求的加载需要一种耐用的结构在堆栈的整个生命周期内传递并保持,并且还需要其他组件,例如电池盒来承受这些加载。这些加载增加了组件的成本,此外,如果存在缺陷,可能会在组件中形成裂纹。
而且,电极层的水平布置难以确保所有电极材料都被电解质润湿。电解液注入后,充满该盒的电解质将渗入电极,导致液位下降,这会导致多个上层没有被电解质润湿,未润湿层和润湿层之间的性能不一致。进一步的层间不一致性如图2所示,可以看出,与下层相比,上层较短的电流路径导致在充电和放电过程中具有较高的平均电流。
传统的AIB设计还具有影响性能和循环寿命的几个缺点:首先,平行层之间的上述不相等的电流路径导致平行电极的不一致的充电和放电;第二,需要极高的压力和柔性石墨片材降低集电器和电极片之间的高接触电阻。这些增加了堆栈设计的成本和复杂性;最后,过量的电解液能通过增加插层离子的利用率来改善AIB的性能并降低盐沉淀的风险,但是满足加载需求的电池盒尺寸限制了可添加的过量电解质的量。
将SLA电池架构整合到AIB中是一种解决AIB技术面临的一些问题的可能选择。但是,由于SLA电池材料和AIB电池材料之间的根本差异,成功将AIB材料应用到SLA电池架构中存在一些问题。例如,将AIB材料直接附加到用于SLA电池架构中的集电器拓扑结构是困难的,并且需要对当前SLA电池或当前AIB结构进行综合考虑并制定不同的策略。同样,当将 SLA电池架构与AIB材料结合时,在所需的数千个周期内保持较低的接触电阻可能会遇到困难,因为在集电器中会产生少量的表面腐蚀。最后,SLA电池的设计是将特殊配方的电极材料物料均匀涂在栅网集电器上。当固化后,电极材料和栅网集电器之间形成化学结合,接触电阻极低。尤其是这些原因,使得将AIB材料应用到SLA电池架构中变得困难。
附图说明
图1是现有技术中已知的AIB结构的图示。
图2是在图1示出的AIB结果中表现出的电流不一致性的图示。
图3是根据本文所述的多种示例的AIB电极配置和AIB电极堆栈配置的图示。
图4是根据本文所述的多种示例的适合于在AIB电极中使用的集电器的图示。
图5是根据本文所述的多种示例的多种AIB盒配置的图示。
图6是根据本文所述的多种示例的一AIB盒配置的图示。
图7示出了根据本文所述的多种示例的用于制造AIB的方法的流程图。
图8示出了根据本文所述的多种示例的制备集电器的方法的流程图。
图9是根据本文所述的多种示例的制造AIB电极的方法的示例图和流程图。
图10是根据本文所述的多种示例的制造AIB电极的方法的示例图和流程图。
图11是根据本文所述的多种示例的制造AIB电极的方法的示例图和流程图。
图12A-12C是本文所述的示例的充电倍率能力,放电倍率能力图表,和容量比循环次数的曲线图。
具体实施例
本文描述了利用SLA电池设计,同时还解决了背景技术部分先前讨论的AIB的一些或全部问题的AIB架构的多种示例。基于SLA设计的平行接合处使用大的汇流板将显著缓和多个平行电极层中的阻抗差异。而且,通过将AIB材料适当地附着到集电网格,可以缓和高接触电阻并且可以避免在电极堆栈上施加的过大压力。最后,使用基于SLA的电池盒可提供充足的过量的电解质,并满足平行电极层在垂直方向上的堆叠。
AIB和AIB电极结构
参考图3,示出了根据本文描述的多种示例的AIB电极和AIB电极的堆栈。AIB电极300通常包括包埋入AIB电极材料302中的集电器301,形成大体上细长的形状,其中,集电器301的一个端部末端包埋入电极材料302内,并且集电器301的相对的端部末端从电极材料302突出。电极材料302可以是阳极活性材料或阴极活性材料,这取决于电极300是阳极还是阴极。在一些示例中,电极材料302包括活性材料(阴极或阳极)以及碳和粘合剂材料。
在一些示例中,阳极活性材料是磷酸钠钛(STP),而阴极活性材料是锂锰氧化物(LMO)。这些活性材料的离子嵌入和脱嵌(de-intercalation)电位位于水性电解质的稳定性窗口内。对于在阳极和阴极上分别作为负极活性材料和正极活性材料的AIB材料的类型,存在以下几种选择:对于负极活性材料,除了STP之外,还可以使用其他合适的插层陶瓷,离子导电材料,例如一般化学计量的TixPyOz,钛酸锂(LTO),普鲁士蓝(Prussian-biue)一类的金属氰基络合物(metal-cyano complexes),或其混合物;对于正极活性材料,可以使用任何常见的LIB阴极插层材料,包括那些常规的含锂氧化物组合物:镍-锰-钴的含锂氧化物组合物(NMC),镍-钴-铝的含锂氧化物组合物(NCA),磷酸-铁(LFP),钴(LCO),或其组合。同样,也可以使用钠离子传导的阴极,包括但不限于普鲁士蓝一类的金属氰基络合物,钠锰钛磷酸盐(NMTPO),或钠锰氧化物(NMO)类化合物的多种组合物。后者的变 体包括但不限于NaMnO 2(水钠锰矿相(birnassite phase)),Na 2Mn 3O 7,Na 2FePO 4F,Na 0.44MnO 2,Na 4M 9O 18,和Li xMn 2-zAl zO 4,其中1<X<1.1和0<z<0.1,其中后一个Li通过在含Na+的电解质中循环而被Na+取代。
参考图4,集电器301可以是不锈钢片(或用作集电器的其他合适的材料),其中,不锈钢片包括表面改性401,例如穿孔,褶皱,或其他物理改变,其形成在集电板的主表面上。结果是可以有效地将电极材料302(图4中未示出)粘附到集电器301上。在一些示例中,集电器301不含任何活性材料,即,集电器301的材料不具有包埋入或结合到集电器301中的活性材料。活性材料将在集电器的外表面上接触集电器301,包括当表面改性401为穿孔形式时穿过集电器的孔的外表面,但不存在于集电器301的体内(即,与集电器的材料混合)。集电器301有效地提供了用于电极材料形成在其上的结构,以及用于注入和提取电子的传导表面。用于集电器301的材料的非限制性的例子包括常见的不锈钢配方,例如304和316,以及其他耐腐蚀变体,例如卡彭特20(Carpenter 20)和哈氏合金C(Hastelloy C)。在一些示例中,可以对这些材料用一定量的钛进行改性,或者可以完全由钛制成集电器。而且,可以根据集电器是用于阴极还是阳极使用不同的集电器材料,因为前者通常在氧化环境中运行并且需要更高的耐腐蚀性。
再次参考图3,两个或更多个电极300堆叠在一起以形成多个电极堆栈310。堆栈310包括交替的阳极电极和阴极电极300,并且隔件311位于每个相邻电极300之间。由于电极300被涂覆在具有活性材料302的两侧,将在两侧上形成平行的电池。在堆栈中的端部电池是一个例外,其可以仅在一侧进行涂覆以节省活性材料,或者为简化生产而像在堆栈的其余部分中一样在两侧进行涂覆。
为了制备将堆栈310装载到电池盒中,堆栈310通过使用压力装载板312和带313来固定。带313可以包裹环绕在堆栈310上并通过焊接或压 接而结合在一起,或者带313可以被预制成环,并且堆栈310被压缩并插入其中。尽管未示出,但是固定的堆栈310还可包括焊接在堆栈的任一端处的厚的集电汇流板,以促进阳极和阴极层之间的并联连接。
参考图5,一个或多个堆栈310设置在电池盒500中。在一些示例中,单个电极堆栈310被装载到单个盒500中。在这种配置中,一个盒包含单个电池的平行布置,阳极和阴极两端的集电汇流板都被焊接到外部凸舌上。这些凸舌方便了多个盒之间的连接,以建立实际应用的电压。在替代示例中,单个盒500包含内部连接的多个堆栈310以建立电压。
参考图6,示出了容纳本文所述的AIB配置的完整的电池盒600。盒600包含八个堆栈,因此包括八个内部腔体。每个堆栈包含100Ah的可用电极材料。在1.125-1.875V/电池的范围内,在7A/-7A充放电条件下可提供约1.2kWh的能量。得益于此电池设计,测得的能量转换效率大于85%,超过了现有AIB架构可能的能量转换效率。
制造方法
参考图7,示出了用于制造AIB电池的方法700的示例。在步骤710中,对AIB阳极和阴极活性材料进行造粒操作以产生活性材料,碳,水,和粘合剂的物料。在步骤710中产生的物料可以是例如糊料,粉末,或浆料的形式。在步骤720中,将物料而后送料到连续过程,该连续过程将活性材料物料压缩到集电器中以形成涂覆/包埋入活性材料物料中的集电器。可以调节涂覆工艺的参数以实现预设的涂覆总质量,涂覆厚度,以及覆盖集电器的面积。在步骤730中,对涂覆的集电器进行热固化,以确保活I生材料对集电器的充分粘附。此时,电极(阴极或阳极)形成。
在步骤740中,将电极堆叠,并将隔件置于相邻层之间,并将该多个堆栈置于电池盒腔体中。如果一个腔体包含不止一个堆栈,则阳极集电器焊接连接到电池内部,接下来阴极集电器焊接连接到电池端部。这些端部可以设计成在盖密封之前或之后进行连接,取决于该设计。如果是后者,则放置盖并将其粘附到电池盒上。至此,已组装成干充电池。
一旦干充电池已经被组装好,可以采用两种不同的策略。在步骤750(第一策略)中,可以在组装干式充电电池的相同制造位置处将电池浸入电解质。然后插入电池,将其连接到测试台,并在质量保证检查测量容量的同时激活多个循环。然后,他们准备好为客户发货。可替代地,在步骤760(第二策略)中,可能期望在客户现场执行电解质润湿步骤,随后在客户现场执行激活和鉴定测试。后者的优点包括降低运输成本以及若库存存储时间长会降低日历寿命衰减的风险。缺点是客户需要维持用于电解质制备,润湿,和电化学测试的资源。但是,可以很容易地将这样的资源指定为独立单元。并且,可以通过向客户运送原材料盐的预混合物和关于加水混合以现场制备的操作指南,来保持电解质配方的独家细节。
尽管图7未提及,但是制造单个AIB电极的方法可包括优化集电器以促进活性材料对集电器的粘附并降低接触电阻的步骤。改进的粘附可防止在电极物料固化过程中失去接触而导致体积发生显著变化。所述电极物料可以是例如糊料,粉末,或浆料的形式。由此,可以以较低的压力组装电池,以实现并维持可接受的低接触电阻。在一些示例中,调节步骤涉及用传导碳层涂覆集电器。参考图8,调节过程800可以从对碳,粘合剂,和溶剂的混合物进行球磨以产生细悬浮物的步骤810开始。在步骤820中,通过多种不同的涂覆方法(例如通过浸涂)的任何一种,用混合物涂覆集电器。最后,在步骤830中,将被涂覆的集电器进行干燥以除去载体溶剂,并在集电器上留下带有少量粘合剂的均匀的碳涂层。示例性但非限制性的,涂覆方案的材料和比例包括5-30wt%的多种碳类型(例如石墨,炭黑),1-10wt%的粘合剂(例如聚乙烯醇缩丁醛(polyvinyl butyral)),和60-94wt%的载体溶剂(例如乙醇,水)。
参考图9-11,示出了几种用于制造AIB电极的方法。从图9开始,第一方法900涉及在集电器上涂覆电极物料以使用压片机形成电极。所述电极物料可以是例如糊料,粉末,或浆料的形式。在步骤901中,在压片机910的模具911中填充第一批电极物料912,然后进行步骤902,在模具 911中在第一批电极物料的上面放置集电器913。在步骤903中,在模具911中将第二批电极物料914沉积在集电器913的上面,随后是通过压板915在模具中按压材料的步骤904。如果压机910的压板915被加热,则物料912/914的固化可就地发生。可替代地,可以在后续过程中进行固化,在该后续过程中,将涂覆有电极物料的集电器913供给到输送器送料至开放的,静态烘箱。使用两次装料的电极物料的量,以及闭合的模具的尺寸,将决定电极材料的数量,它的体积,和孔隙率。
图10示出了使用辊涂机1010(也称为压延)形成电极的方法1000。在步骤1001中,将集电器1011装载到辊涂机的自动进料器中。在步骤1002中,将电极物料1012装载入辊涂机的料斗中。所述电极物料1012可以是例如糊料,粉末,或浆料的形式。在步骤1003中,启动辊涂机,此时,在集电器1011的两侧将电极浆料1012送料至辊轴上,同时辊轴拉入集电器1011和电极物料1012两者。辊轴的压缩作用将影响物料1012对集电器1011的粘附。电极的尺寸和结构由辊轴的速率,尺寸,压力,和温度(如果被加热的话)控制。与关于图9的描述的先前过程一样,固化操作可以在第二连续操作中进行。或者,结合加热辊涂和随后的连续固化操作,可以进行两阶段固化。
图11示出了使用浆涂机形成电极的方法1100。在第一步骤1101中,提供了集电器自动进料器。在步骤1102中,将集电器片1110的连续送料拉过浆料1111。送料速率和浆料特性,加上使用可选的刮刀,来控制粘附到集电器1110上的物料1111的量和尺寸。所述物料可以是例如糊料,粉末,或浆料的形式。在步骤1103中,然后将改性的集电器1110送料至固化炉1112,在此处除去载体溶剂。可能存在不止一个炉,以进行更长的固化或在不同温度下固化。另外,两个炉之间可能存在可选的压延过程步骤。
尽管图9-11示出了通过用活性材料物料涂覆集电器来形成电极的示例性方法,但是也可以使用其他方法。也可以使用结合了图9-11中所示方法的一个或多个要素的方法。
实验数据
在本文描述的技术的例子中,在单个盒子中制造了本文所述的活性AIB材料的大约20Ah的三个电池,然后将其密封,润湿,激活,和循环。图12示出了在0.1-0.4C之间进行充电和放电的倍率能力测试结果以及在早期循环的倍率能力测试以外的本设计的持续稳定循环的倍率能力测试结果。
优点/益处
本文描述的技术具有多种优点和益处。在一个例子中,可通过盒体积容易地调节本文所述的AIB电极堆栈可用的过量电解质的量。而且,通过加载条件以及加载带和板材料的选择,可以容易地调节传递到电极堆栈的压力和后续的加载的量。此外,可以将集电汇流板设计成具有非常低的阻抗,并最大化传递到每个平行层的电流一致性。
利用基于SLA的设计还有其他益处。首先,类似或相同的组件,例如电池壳体,可以来源于具有为AIB而改性的现有供应商提供的基材。其次,SLA电池制造可利用现有的制造资源,例如用于浆糊和网格涂覆操作。第三,在类似架构可用的情况下,用AIB替换固定的SLA资源更容易实现。两种技术之间的电池电压和能量密度的相似性也意味着大小相似的AIB电池组可以替代SLA电池组而服务于相同的领域。
本文描述的技术也非常适合在备用电源应用市场中替代SLA电池的使用。尽管SLA电池在备用电源应用中占有重要地位,但仍有许多应用特例可以被其他电池技术替代。浮动应用(float applications)中用于备用电源的SLA电池存在一些缺点,包括在较高温度下增加的自放电率以及在达到较低充电状态(SOC)时以较高的速率发生的限制寿命的硫酸盐化作用。而且,虽然纯备用电源应用偏爱SLA电池的低初始成本并且可以忍受其低 循环寿命,但将备用电源服务与太阳能存储相结合的趋势却越来越大。由于光伏(PV)面板的低且不断降低的成本,通过使用与光伏面板与储能电池系统的日常用电成本变得越来越经济。由于使用分开的电池装置来提供备用电源和日常循环并不划算,因此同一电池系统将要同时进行这两种工作。这些电池的大小通常会被设定成可以在其较高的SOC范围内循环,以用于日常存储和输送来自光伏面板的电力(或在使用时间短的情况下提供廉价的网格电源),而另外在较低的SOC范围内始终可以在断电情况下进行放电。SLA电池的低循环寿命限制了它们在这些循环和备用应用中的有效使用。
此外,其他因素例如氢析出,世界某些地区没有铅回收,以及铅价格波动,是威胁备用应用中SLA电池持续普及的其他关键因素。尽管不是决定性的限制因素,但这些因素仍然会通过增加成本来侵蚀价值主张。相对较高的氢析出速度要求进行空气处理,以防止形成可燃混合物。此外,一些没有或者有限的铅回收基础设施的发展中国家可能希望通过替换电池化学物质来避免垃圾掩埋处理的成本和下游环境危害。
本文描述的AIB技术非常适合解决这些限制中的部分或全部,并可用作SLA电池的替代品。由于相似的总体能量密度和每电池电压(voltage-per-cell),相似容量和电压的AIB可以部署在相似的包装中,以最小化对备用电源系统的设计产生的影响。此外,由于AIB的循环寿命更长,因此可以将电池与太阳能面板集成在一起以降低运行成本,而无需将AIB进行初始更换或因循环容量衰减而进行频繁的更换。尽管AIB会产生一些氢气,但速率远低于SLA,因此降低了空气处理要求。最后,用于AIB的固有安全活性材料意味着可以直接填埋这些电池,而不会造成不利的环境影响。但是,针对AIB的回收设计和程序正在开发中。
根据前述内容,可以理解的是,出于说明性目的已经在本文中描述了本发明的特定示例,但是在不脱离本发明的范围的情况下可以进行多种变化。相应地,除了所附权利要求本发明不受限制。

Claims (34)

  1. 一种水性插层电池电极,其包括:
    集电器,其包括一个第一主表面和一个与所述第一主表面相反的第二主表面,其中,在所述第一主表面,所述第二主表面,或这两者的至少一部分上形成表面改性;和涂覆于所述第一主表面,所述第二主表面,或这两者的至少一部分上的活性材料。
  2. 如权利要求1所述的水性插层电池电极,其中,集电器包括不锈钢。
  3. 如权利要求1或权利要求2所述的水性插层电池,其中,所述集电器的材料中没有活性材料。
  4. 如前述任一项权利要求所述的水性插层电池电极,其中,所述活性材料进一步与碳,粘合剂,或这两者混合。
  5. 如前述任一项权利要求所述的水性插层电池电极,其中,所述表面改性包括穿孔,褶皱,或这两者。
  6. 如前述任一项权利要求所述的水性插层电池电极,其中,所述活性材料以将所述集电器包埋在所述活性材料中的方式涂覆在所述集电器上。
  7. 如前述任一项权利要求所述的水性插层电池电极,其中,所述集电器包括一个第一末端和一个与所述第一末端相反的第二末端,所述第一末端包埋在活性材料中,且所述第二末端探出至活性材料外。
  8. 如前述任一项权利要求所述的水性插层电池电极,其中,所述电极是阴极,所述活性材料包含锂锰氧化物(LMO)。
  9. 如前述任一项权利要求所述的水性插层电池电极,其中,所述电极是阳极,所述活性材料包含磷酸钛钠(STP)。
  10. 一种水性插层电池电极堆栈,包括:
    一个阴极,其包括:
    一个集电器,其包括一个第一主表面和一个与第一主表面相反的第二主表面,其中,在所述第一主表面,所述第二主表面,或这两者上形成了表面改性;和
    涂覆在所述第一主表面,所述第二主表面,或这两者的至少一部分上的阴极活性材料;
    一个阳极,其包括:
    一个集电器,其包括一个第一主表面和一个与第一主表面相反的第二主表面,其中,在所述第一主表面,所述第二主表面,或这两者上形成了表面改性;和
    涂覆在所述第一主表面,所述第二主表面,或这两者的至少一部分上的阳极活性材料;以及
    设置于所述阴极和所述阳极之间的隔件层。
  11. 如权利要求10所述的水性插层电池电极堆栈,其中,所述阳极 和所述阴极的集电器包含不锈钢。
  12. 如权利要求10或权利要求11所述的水性插层电池电极堆栈,其中,所述阴极的集电器和所述阳极的集电器中没有活性材料。
  13. 如前述任一项权利要求所述的水性插层电池电极堆栈,其中,所述阴极活性材料和所述阳极活性材料进一步与碳,粘合剂,或这两者混合。
  14. 如前述任一项权利要求所述的水性插层电池电极堆栈,其中,所述阳极集电器和所述阴极集电器的表面改性包括穿孔,褶皱,或这两者。
  15. 如前述任一项权利要求所述的水性插层电池电极堆栈,其中,所述阴极活性材料以将集电器包埋在阴极活性材料内的方式涂覆在集电器上,且所述阳极活性材料以将集电器包埋在阳极活性材料内的方式涂覆在集电器上。
  16. 如前述任一项权利要求所述的水性插层电池电极堆栈,其中,所述阳极的集电器包括一个第一末端和一个与第一末端相反的第二末端,所述第一末端包埋在阳极活性材料内,且所述第二末端探出至阳极活性材料外,所述阴极的集电器包括一个第一末端和一个与所述第一末端相反的第二末端,所述第一末端包埋在阴极活性材料内,且第二末端探出至阴极活性材料外。
  17. 如前述任一项权利要求所述的水性插层电池电极堆栈,其中,所述阴极活性材料包括锂锰氧化物(LMO)。
  18. 如前述任一项权利要求所述的水性插层电池电极堆栈,其中,所述阳极活性材料包括磷酸钛钠(STP)。
  19. 如前述任一项权利要求所述的水性插层电池电极堆栈,其中,还包括:
    至少一个环绕电极堆栈的压力带。
  20. 如权利要求19所述的水性插层电池电极堆栈,还包括:
    抵住所述水性插层电池电极堆栈的侧部并被至少一个压力带环绕的至少一个压力保持板。
  21. 一种水性插层电池,包括:
    一个电池盒;和
    设置在所述电池盒内的至少一个权利要求10所述的水性插层电池电极堆栈。
  22. 如权利要求21所述的水性插层电池,其中,两个或更多个权利要求10所述的水性插层电池电极堆栈设置在所述电池盒内。
  23. 如权利要求22所述的水性插层电池,其中,在各个相邻的水性插层电池电极堆栈之间设置一个汇流板。
  24. 一种用于形成水性插层电池电极的方法,包括:
    形成活性材料物料;
    在集电器片上涂覆活性材料物料;以及
    将活性材料物料固化以使活性材料粘附至集电器片。
  25. 如权利要求24所述的方法,其中,形成活性材料物料包括:
    将活性材料,碳,和粘合剂的混合物粒化以形成物料。
  26. 如权利要求24或25所述的方法,其中,在所述集电器片上涂覆活性材料物料包括:
    将第一批活性材料物料添加至模具中;
    在模具中将集电器片放置于第一批活性材料物料的顶部;
    将第二批活性材料物料添加至模具中的集电器片的顶部;以及
    按压第一批活性材料物料,集电器片,和第二批活性材料物料。
  27. 如权利要求26所述的方法,其中,按压包括加热并按压在模具中的第一批活性材料物料,集电器片,和第二批活性材料物料。
  28. 如权利要求24或25所述的方法,其中,在集电器片上涂覆活性材料物料包括:
    将集电器片装载至辊涂机的辊中;
    将活性材料物料送料至在集电器的两侧的辊涂机;以及
    进辊以拉动所述集电器片和所述活性材料物料通过辊。
  29. 如权利要求24或25所述的方法,其中,集电器片上的活性材料物料包括:
    将所述集电器片浸入活性材料物料浴;以及
    在干燥炉中干燥活性材料物料。
  30. 如权利要求24或25所述的方法,其中,该方法还包括:
    在集电器片上涂覆活性材料物料之前,在所述集电器片上涂覆一层碳层;以及
    干燥所述集电器片上的碳层。
  31. 如权利要求30所述的方法,其中,在集电器片上涂覆碳层包括将集电器片浸涂入碳浆浴。
  32. 如权利要求31所述的方法,其中,通过混合碳,粘合剂,和溶剂并对混合物进行球磨来形成碳浆。
  33. 一种制造水性插层电池的方法,包括:
    提供水性插层电池电极堆栈,其中,水性插层电池电极堆栈包括多个权利要求1所述的电极,其中堆栈中的相邻电极在阴极和阳极间交替,并在各个电极之间设置隔件;
    在水性插层电池电极堆栈的其中一侧放置压力板;
    用压力带包裹环绕压力板和水性插层电池电极堆栈;以及
    将水性插层电池电极堆栈设置在电池盒中。
  34. 如权利要求33所述的方法,其中,至少两个水性插层电池电极堆栈设置在电池盒中,且该方法还包括在各个水性插层电池电极堆栈之间设置汇流板。
PCT/CN2021/077512 2019-12-24 2021-02-23 水性插层电池及其制作方法 WO2021129896A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911350182.4 2019-12-24
CN201911350182.4A CN113036067A (zh) 2019-12-24 2019-12-24 水性插层电池及其制作方法

Publications (2)

Publication Number Publication Date
WO2021129896A2 true WO2021129896A2 (zh) 2021-07-01
WO2021129896A3 WO2021129896A3 (zh) 2021-08-19

Family

ID=76451983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077512 WO2021129896A2 (zh) 2019-12-24 2021-02-23 水性插层电池及其制作方法

Country Status (2)

Country Link
CN (1) CN113036067A (zh)
WO (1) WO2021129896A2 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945756B2 (en) * 2012-12-12 2015-02-03 Aquion Energy Inc. Composite anode structure for aqueous electrolyte energy storage and device containing same
CN103022577A (zh) * 2012-12-27 2013-04-03 武汉大学 一种水系可充钠离子电池
CN103531815B (zh) * 2013-10-25 2015-12-09 深圳清华大学研究院 集流体用穿孔箔及其制作方法
CN108155387B (zh) * 2016-12-06 2020-08-25 华为技术有限公司 一种弹性集流体及其制备方法、电池电极极片和柔性锂离子电池

Also Published As

Publication number Publication date
WO2021129896A3 (zh) 2021-08-19
CN113036067A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
Amine et al. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions
CN111952663A (zh) 一种界面修饰的固态石榴石型电池及其制备方法
CN104779394A (zh) 一种水系锂(钠)离子电池混合负极材料
CN110931797A (zh) 一种具有复合包覆层的高镍正极材料及其制备方法
CN106654256A (zh) 一种储能铅酸蓄电池铅膏及制备方法
CN108376783A (zh) 一种锂阳极表面保护涂层及其制备方法
US11349151B2 (en) All-solid-state lithium battery and preparation method thereof
EP4258385A1 (en) Lithium ion battery and power vehicle
CN101764263A (zh) 含有活性炭负极的铅碳超级电池及其制备方法
CN110707371A (zh) 一种碱性锌锰充电电池
CN108767226A (zh) 一种金属酞菁化合物包覆的三元正极材料及其制备方法
CN102427123A (zh) 锂离子二次电池及其正极片
CN106207253A (zh) 一种水溶液锂离子二次电池负极、电解液以及电池
CN107452950A (zh) 一种循环稳定的锂离子电池正极材料及方法
CN101399334A (zh) 铅酸蓄电池极群制作工艺
CN108461831A (zh) 一种新型蓄电池制造方法
CN113193179A (zh) 一种液态金属电池及其制备方法
WO2021129896A2 (zh) 水性插层电池及其制作方法
CN115084433B (zh) 一种正极极片和钠离子电池
CN106549152A (zh) 一种钠离子电池三元层状正极材料及其制备方法
CN108539151B (zh) 二次电池用电极材料及二次电池
CN110492173A (zh) 一种反阵列结构的固态锂离子电池及制备方法
CN115207280A (zh) 一种基于金属氧化物或其复合材料负极的双极性电极及双极性锂离子电池
CN108963388A (zh) 一种提高锂空气电池能量密度和输出功率的方法及基于该方法的锂空气电池
JP4487505B2 (ja) 鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21735131

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21735131

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 21735131

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 21735131

Country of ref document: EP

Kind code of ref document: A2