WO2021129761A9 - 量子点薄膜,量子点发光二极管及其制备方法 - Google Patents

量子点薄膜,量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2021129761A9
WO2021129761A9 PCT/CN2020/139114 CN2020139114W WO2021129761A9 WO 2021129761 A9 WO2021129761 A9 WO 2021129761A9 CN 2020139114 W CN2020139114 W CN 2020139114W WO 2021129761 A9 WO2021129761 A9 WO 2021129761A9
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
ligand
grafted
dot light
bromide
Prior art date
Application number
PCT/CN2020/139114
Other languages
English (en)
French (fr)
Other versions
WO2021129761A1 (zh
Inventor
聂志文
刘文勇
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2021129761A1 publication Critical patent/WO2021129761A1/zh
Publication of WO2021129761A9 publication Critical patent/WO2021129761A9/zh
Priority to US17/846,827 priority Critical patent/US20220340812A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • This application relates to the technical field of light-emitting diodes, in particular to a quantum dot film, a quantum dot light-emitting diode and a preparation method thereof.
  • the most common way is to add an electron blocking layer PMMA (polymethyl methacrylate) between the quantum dot light-emitting layer and the electron transport layer.
  • PMMA polymethyl methacrylate
  • the presence of PMMA can resist the injection of a large number of electrons and facilitate the recombination of electrons and holes in the quantum dot light-emitting layer, thereby improving the luminous efficiency and service life
  • the biggest drawback of this method is the polymethylation of the electron blocking layer.
  • the control of the thickness of the methyl acrylate insulating material requires precision, and too thin or too thick is not conducive to the recombination of electrons and holes.
  • a quantum dot film is provided, one surface of the quantum dot film is grafted with a first ammonium halide ligand, and the quantum dot film is opposite to the surface grafted with the first ammonium halide ligand The other surface of is grafted with a second ammonium halide ligand;
  • n 1 ⁇ 12, n 2 ⁇ 12,12 ⁇ n 3 ⁇ 17,12 ⁇ n 4 are the natural numbers;
  • the Y 1 and Y 2 are independently selected from: benzene ring or hydrogen;
  • X is halogen.
  • a quantum dot light-emitting diode in a second aspect, includes an anode and a cathode disposed oppositely, and a quantum dot light-emitting layer disposed between the anode and the cathode; the quantum dot light-emitting layer A first ammonium halide ligand is grafted on one surface close to the anode, and a second ammonium halide ligand is grafted on the other surface of the quantum dot light-emitting layer close to the cathode;
  • n 1 ⁇ 12, n 2 ⁇ 12,12 ⁇ n 3 ⁇ 17,12 ⁇ n 4 are the natural numbers;
  • the Y 1 and Y 2 are independently selected from: benzene ring or hydrogen;
  • X is halogen.
  • a method for manufacturing a quantum dot light-emitting diode which includes the steps:
  • a quantum dot light-emitting layer is deposited on the side of the first electrode away from the substrate.
  • the quantum dot light-emitting layer includes quantum dots grafted on the surface of the quantum dot, wherein the quantum dot light-emitting layer is close to the first
  • One side surface of the electrode includes quantum dots grafted with a first ligand, and the other side surface of the quantum dot light-emitting layer includes quantum dots grafted with a second ligand,
  • the first ligand and the second ligand are each selected from one of the following different general structural formulas: And the first ligand and the second ligand have different general structural formulas;
  • n 1 ⁇ 12, n 2 ⁇ 12,12 ⁇ n 3 ⁇ 17,12 ⁇ n 4 are the natural numbers;
  • the Y 1 and Y 2 are independently selected from: benzene ring or hydrogen;
  • X is halogen.
  • the beneficial effect of the quantum dot film is that the quantum dot film has two opposite surfaces, wherein one surface is grafted with a first ammonium halide ligand, and the quantum dot film is grafted with a first ammonium halide ligand.
  • the other surface of the ammonium halide ligand opposite to the surface is grafted with a second ammonium halide ligand.
  • the halide ions in the two types of ammonium halide ligands can bind to the cation defect state on the surface of the quantum dot, and the ammonium cation can bind to the anion defect state on the surface of the quantum dot.
  • the branched chain movement activity of this type of ligand Lower can significantly increase the binding energy between the branch and the quantum dot material, and realize the perfect coating of the ammonium halide ligand on the surface of the quantum dot. Therefore, the two types of ammonium halide ligands are grafted firmly on the surface of the quantum dot and are not easy to fall off. , Improve the dispersion and stability of quantum dots, and at the same time improve the fluorescence efficiency of quantum dots.
  • the two shorter branches of the first ammonium halide ligand can reduce the hole transport distance and significantly increase the carrier injection rate.
  • the short branch contains a benzene ring, because the benzene ring has a highly conjugated ⁇ bond, the hole transmission rate can be significantly increased; the other side surface of the grafted second ammonium halide ligand, the second The existence of two long branches in the ammonium halide ligand can increase the electron transmission distance, thereby slowing down the electron transmission to a certain extent.
  • the quantum dot film provided by the present application can improve the injection efficiency of the hole and electron vector quantum point light-emitting layer by grafting different types of ammonium halide ligands on both sides of the surface, and make the hole and electron vector point light-emitting layer
  • the injection balance improves the recombination efficiency of holes and electrons in the quantum dot light-emitting layer. Without affecting the optical performance of quantum dots, it not only significantly improves the stability and dispersion of quantum dots, but also improves the recombination probability of carriers in the quantum dot light-emitting layer.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a quantum dot light-emitting diode provided by an embodiment of the present application.
  • Some embodiments of the present application provide a quantum dot film.
  • One surface of the quantum dot film is grafted with a first ammonium halide ligand, and the other surface of the quantum dot film is opposite to the surface grafted with the first ammonium halide ligand.
  • the surface is grafted with a second ammonium halide ligand;
  • the general structural formula of the first ammonium halide ligand is:
  • n 1 ⁇ 12, n 2 ⁇ 12, 12 ⁇ n 3 ⁇ 17, 12 ⁇ n 4 ⁇ 17, n 1 , n 2 , n 3 and n 4 are all natural numbers; Y 1 and Y 2 are independently selected From: benzene ring or hydrogen; X is halogen.
  • the quantum dot film provided by the embodiment of the present application has two opposite surfaces, wherein one surface is grafted with a first ammonium halide ligand, and the quantum dot film is opposite to the surface grafted with the first ammonium halide ligand. A surface is grafted with a second ammonium halide ligand.
  • the halide ions in the two types of ammonium halide ligands can bind to the cation defect state on the surface of the quantum dot, and the ammonium cation can bind to the anion defect state on the surface of the quantum dot.
  • the branched chain movement activity of this type of ligand Lower can significantly increase the binding energy between the branch and the quantum dot material, and realize the perfect coating of the ammonium halide ligand on the surface of the quantum dot. Therefore, the two types of ammonium halide ligands are grafted firmly on the surface of the quantum dot and are not easy to fall off. , Improve the dispersion and stability of quantum dots, and at the same time improve the fluorescence efficiency of quantum dots.
  • the two shorter branches of the first ammonium halide ligand can reduce the hole transport distance and significantly increase the carrier injection rate.
  • the quantum dot film provided by the embodiments of the present application can improve the injection efficiency of the hole and electron vector quantum dot light-emitting layer by grafting different types of ammonium halide ligands on both sides of the surface, and make the hole and electron vector quantum dots.
  • the light-emitting layer is injected and balanced, and the recombination efficiency of holes and electrons in the quantum dot light-emitting layer is improved. Without affecting the optical performance of quantum dots, it not only significantly improves the stability and dispersion of quantum dots, but also improves the recombination probability of carriers in the quantum dot light-emitting layer.
  • the ligands grafted to quantum dots in the examples of the present application are all ammonium halide ligands.
  • this type of ammonium halide ligand not only halide anions can effectively bind to the cationic defect states on the surface of quantum dots; at the same time, ammonium cations can be combined with The anion defect states on the surface of the quantum dots are combined to achieve perfect coating on the surface of the quantum dots, which greatly improves the fluorescence efficiency of the quantum dots.
  • the branch chain movement activity of this kind of ligand is low, which can significantly increase the binding energy between the branch chain and the quantum dot material, so that this kind of ligand is not easy to fall off from the surface of the quantum dot, and the stability and dispersion of the quantum dot are improved. Therefore, the stability and luminous efficiency of the quantum dot film are improved, and the photoelectric performance of the quantum dot light-emitting diode is improved.
  • the structural formula of the first ammonium halide ligand grafted on the side surface of the quantum dot film of the embodiment of the present application is: Wherein, n 1 ⁇ 12, n 2 ⁇ 12, n 1 and n 2 are natural numbers; Y 1 and Y 2 are independently selected from: benzene ring or hydrogen; X is halogen.
  • the two branches in the first ammonium halide ligand in the examples of the present application are relatively short, which can reduce the hole transport distance and significantly increase the carrier injection rate. When Y 1 and Y 2 are all hydrogen, the short-chain ligand can reduce the hole transport distance and significantly increase the carrier injection rate.
  • the benzene ring When the short branch contains a benzene ring, the benzene ring has a highly conjugated ⁇ bond, which can significantly increase the hole transmission rate.
  • the structural formula of the second ammonium halide ligand grafted close to the other side surface of the quantum dot film in the embodiment of the present application is: Wherein, 12 ⁇ n 3 ⁇ 17,12 ⁇ n 4 ⁇ 17, n 3 and n 4 are natural numbers; X is a halogen.
  • the two branches of the second ammonium halide ligand are longer, which can increase the electron transmission distance, thereby slowing down the electron transmission to a certain extent.
  • the first ammonium halide ligand grafted on one side of the quantum dot film improves the hole transport rate
  • the second ammonium halide ligand grafted on the other side of the quantum dot film improves the electron transport.
  • the slowing down of the rate increases the probability of carrier recombination in the quantum dot light-emitting layer, reduces the driving voltage, and improves the efficiency and overall service life of the QLED device.
  • the first ammonium halide ligand is grafted on the surface of the quantum dot film near the anode side
  • the second ammonium halide ligand is grafted on the surface near the cathode side.
  • the first ammonium halide ligand can reduce the hole transport distance and significantly improve the carrier injection Rate; the other side surface of the quantum dot film grafted with the second ammonium halide ligand is placed on the side close to the cathode.
  • the second ammonium halide ligand can increase the transmission distance of electrons, slow down the transmission of electrons, and make empty Holes and electrons are injected into the quantum dot light-emitting layer in a balanced manner, and the recombination efficiency of holes and electrons in the quantum dot light-emitting layer is improved.
  • the first ammonium halide ligand is selected from: tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, nonyltrimethylammonium bromide, bisoctyldimethylammonium bromide Dimethyl ammonium chloride, Dioctyl Dimethyl Ammonium Bromide, Didecyl Dimethyl Ammonium Chloride, Didecyl Dimethyl Ammonium Bromide, Dodecyl Dimethyl Ammonium Chloride, Dodecyl Dimethyl ammonium bromide, benzalkonium bromide, benzalkonium chloride, dodecyl dimethyl benzyl ammonium bromide, dodecyl dimethyl benzyl ammonium chloride, phenyl trimethyl chloride At least among ammonium, phenyltrimethylammonium bromide, phenyltriethylammonium
  • any one or more of the above-mentioned first ammonium halide ligands grafted on one side surface of the quantum dot film in the embodiments of the present application can improve the stability and dispersibility of the quantum dots, and increase the fluorescence efficiency of the quantum dots. Reduce the hole transport distance.
  • the short branch contains benzene ring ligands. Because the benzene ring has a highly conjugated ⁇ bond, it can further increase the hole transport rate and significantly increase the carrier injection rate.
  • the second ammonium halide ligand is selected from: dioctadecyl dimethyl ammonium bromide, dioctadecyl dimethyl ammonium chloride, dihexadecyl dimethyl ammonium bromide , Double hexadecyl dimethyl ammonium chloride, Double tetradecyl dimethyl ammonium bromide, Double tetradecyl dimethyl ammonium chloride, Double dodecyl dimethyl ammonium bromide At least one of dodecyl dimethyl ammonium chloride.
  • the above-mentioned second ammonium halide ligand grafted on the other side of the quantum dot film of the embodiment of the present application has two longer branches, which can increase the transmission distance of electrons, thereby slowing down the transmission of electrons.
  • the embodiments of the present application also provide a quantum dot light-emitting diode.
  • the quantum dot light-emitting diode includes an anode and a cathode disposed oppositely, and a quantum dot light-emitting layer disposed between the anode and the cathode; a quantum dot light-emitting layer close to the anode
  • a first ammonium halide ligand is grafted on the side surface, and a second ammonium halide ligand is grafted on the other side of the quantum dot light-emitting layer close to the cathode;
  • the general structural formula of the first ammonium halide ligand is:
  • n 1 ⁇ 12, n 2 ⁇ 12, 12 ⁇ n 3 ⁇ 17, 12 ⁇ n 4 ⁇ 17, n 1 , n 2 , n 3 and n 4 are all natural numbers; Y 1 and Y 2 are independently selected From: benzene ring or hydrogen; X is halogen.
  • the quantum dot light-emitting diode provided by the embodiment of the present application includes an anode and a cathode disposed oppositely, and a quantum dot light-emitting layer disposed between the anode and the cathode; the first ammonium halide ligand is grafted on the surface of the quantum dot light-emitting layer close to the anode , The second ammonium halide ligand is grafted on the other side surface of the quantum dot light-emitting layer close to the cathode.
  • the two shorter branches of the first ammonium halide ligand grafted on the surface of the quantum dot light-emitting layer close to the anode side can reduce the hole transport distance and significantly increase the carrier injection rate;
  • the benzene ring has a highly conjugated ⁇ bond, which can significantly increase the hole transmission rate.
  • the presence of two long branches of the second ammonium halide ligand grafted on the surface of the cathode side of the quantum dot light-emitting layer can increase the electron transmission distance, thereby slowing down the electron transmission to a certain extent.
  • the recombination efficiency of holes and electrons in the quantum dot light-emitting layer is high, and the driving voltage is reduced, thereby improving the efficiency and overall service life of the QLED device.
  • the quantum dot light-emitting layer of the quantum dot light-emitting diode in the embodiments of the present application is made of the above-mentioned quantum dot film.
  • the surface of the quantum dot light-emitting layer near the anode of the quantum dot light-emitting diode is grafted with: tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, nonyltrimethyl Dimethyl ammonium bromide, Dioctyl Dimethyl Ammonium Chloride, Dioctyl Dimethyl Ammonium Bromide, Didecyl Dimethyl Ammonium Chloride, Didecyl Dimethyl Ammonium Bromide, Dodecyl Dimethyl Ammonium Bromide Methyl ammonium chloride, dodecyl dimethyl ammonium bromide, benzalkonium bromide, benzalkonium chloride, dodecyl dimethyl benzyl ammonium bromide, dodecyl dimethyl benzyl chloride Ammonium chloride, phenyltrimethylammonium chloride,
  • the surface of the quantum dot light-emitting layer near the cathode of the quantum dot light-emitting diode is grafted with: dioctadecyl dimethyl ammonium bromide, dioctadecyl dimethyl ammonium chloride, double Cetyl Dimethyl Ammonium Bromide, Dihexadecyl Dimethyl Ammonium Chloride, Ditetradecyl Dimethyl Ammonium Bromide, Ditetradecyl Dimethyl Ammonium Chloride, Di 12 At least one second ammonium halide ligand among alkyl dimethyl ammonium bromide and didodecyl dimethyl ammonium chloride.
  • the quantum dot light-emitting diodes in the embodiments of the present application are divided into a positive type structure and an inverted type structure.
  • the positive structure is a substrate/anode/quantum dot light-emitting layer/electron transport layer/cathode, and optionally arranged between the anode and the quantum dot light-emitting layer such as a hole injection layer, a hole transport layer, and an electron blocking layer.
  • the hole function layer such as the layer, the electron injection layer arbitrarily disposed between the electron transport layer and the cathode, and so on.
  • the inverted structure is the opposite of the positive structure.
  • the substrate may be a rigid or flexible substrate.
  • the anode can be ITO, FTO or ZTO, with a thickness of 30-150 nm.
  • the hole injection layer can be PEODT: PSS, WoO 3 , MoO 3 , NiO, V 2 O 5 , HATCN, HATCN or CuS, etc., with a thickness of 30-150 nm.
  • the hole transport layer can be TFB, PVK, TCTA, TAPC, Poly-TBP, Poly-TPD, NPB, CBP, MoO 3 , WoO 3 , NiO, CuO, V 2 O 5 or CuS, etc., with a thickness of 30 ⁇ 180nm.
  • the first ammonium halide ligand is grafted on one surface of the quantum dot light-emitting layer close to the anode, and the second ammonium halide ligand is grafted on the other surface close to the cathode;
  • the quantum dot light-emitting layer includes IIB group and VIA group At least one of quantum dots composed of elements, quantum dots composed of IIIA and VA elements, and quantum dots composed of IVA and VIA elements.
  • the quantum dot light-emitting layer may be CdS, AlAs, or SnS.
  • the electron transport layer can be one or more of ZnO, ZnMgO, ZnMgLiO, ZnInO, ZrO, TiO 2 , Alq 3 , TAZ, TPBI, PBD, BCP, and Bphen, with a thickness of 10-120 nm.
  • the cathode can be Al, Ag, Au, Cu, Mo, or their alloys, with a thickness of 80-120 nm.
  • the quantum dot light-emitting diode provided in the embodiments of the present application can be prepared by the following method.
  • an embodiment of the present application also provides a method for manufacturing a quantum dot light-emitting diode, including the steps:
  • the quantum dot light-emitting layer includes quantum dots grafted on the surface, wherein the surface of the quantum dot light-emitting layer close to the first electrode includes grafting.
  • the quantum dot with the first ligand, the other side surface of the quantum dot light-emitting layer includes the quantum dot grafted with the second ligand,
  • the first ligand and the second ligand are each selected from one of the following different general structural formulas: And the first ligand and the second ligand have different general structural formulas; where n 1 ⁇ 12, n 2 ⁇ 12, 12 ⁇ n 3 ⁇ 17, 12 ⁇ n 4 ⁇ 17, n 1 , n 2 , n 3 And n 4 are natural numbers; Y 1 and Y 2 are independently selected from: benzene ring or hydrogen; X is halogen.
  • a quantum dot light-emitting layer is deposited on the side of the first electrode away from the substrate.
  • the quantum dot light-emitting layer includes a surface grafted with a configuration.
  • the surface of the quantum dot light-emitting layer near the first electrode includes quantum dots grafted with a first ligand, and the other surface of the quantum dot light-emitting layer includes quantum dots grafted with a second ligand. point.
  • the first ligand and the second ligand are selected from one of different general structural formulas, and the first ligand and the second ligand have different structural general formulas.
  • first ligand is The second ligand
  • first ligand is The second ligand
  • One side surface of the light-emitting layer in the quantum dot light-emitting diode prepared by the method of the embodiment of the application is grafted Ligand, containing two shorter branches can reduce the hole transport distance, significantly increase the injection rate of carriers, and when the short branch contains a benzene ring, because the benzene ring has a highly conjugated ⁇ bond, it is more Can significantly increase the hole transmission rate; the other side of the surface grafted Ligands containing two longer branches can increase the electron transmission distance, thereby slowing down the electron transmission to a certain extent.
  • the electron and hole transport efficiency can be adjusted by the different ligands grafted on both sides of the quantum dot light-emitting layer, which can increase the probability of carrier recombination in the quantum dot light-emitting layer, reduce the driving voltage, and improve the efficiency and overall quality of the QLED device. Service life.
  • the preparation method of the quantum dot light-emitting diode provided by the embodiments of the present application has simple operation, wide adaptability, and is easy to realize industrial production and application.
  • the first electrode is an anode
  • the first ligand is The second ligand is
  • the surface of the quantum dot light-emitting layer on which the first ligand is grafted can be directly deposited on the surface of the anode, or a hole injection layer, a hole transport layer, and an electron blocking layer can be arranged between the anode and the quantum dot light-emitting layer.
  • the hole function layer such as a layer, the surface of the quantum dot light-emitting layer on which the first ligand is grafted is deposited on the surface of the hole function layer.
  • the first electrode is a cathode
  • the first ligand is The second ligand is
  • the surface of the quantum dot light-emitting layer on which the first ligand is grafted can be directly deposited on the surface of the cathode, or an electron injection layer, electron transport layer, and hole blocking layer can be arranged between the cathode and the quantum dot light-emitting layer Isoelectronic functional layer, the surface of the quantum dot light-emitting layer grafted with the first ligand is deposited on the surface of the electronic functional layer.
  • the step of depositing and forming a quantum dot light-emitting layer on the side of the first electrode away from the substrate includes:
  • the step of depositing and forming a quantum dot light-emitting layer on the side of the first electrode away from the substrate includes: first, forming a first quantum dot layer on the side of the first electrode; The surface of the dot layer away from the first electrode is subjected to ultraviolet treatment, and the first ligand grafted on the quantum dot side surface of the surface is desorbed by the energy of a specific ultraviolet wavelength, and then the shed ligand is washed and removed.
  • the precursor solution of the second ligand is added to the surface of the first quantum dot layer after the ultraviolet treatment to react, so that the surface of the quantum dot layer after the ultraviolet treatment is grafted with the second ligand to obtain the quantum dot light-emitting layer.
  • the side surface of the quantum dot close to the anode in the quantum dot light-emitting layer is grafted with Ligand
  • the side surface of the quantum dot near the cathode is grafted with Ligand
  • the step of performing ultraviolet treatment on the surface of the first quantum dot layer away from the first electrode includes: placing the surface of the first quantum dot layer away from the first electrode under ultraviolet conditions with a wavelength of 260-370 nm.
  • the next treatment is 1 second to 60 minutes.
  • the temperature condition for adding the precursor solution of the second ligand to the surface of the first quantum dot layer after UV treatment is 40-120°C.
  • the examples of this application adopt ultraviolet conditions with a wavelength of 260 to 370 nm under an inert gas atmosphere for at least 1 second, preferably 1 second to 60 minutes, and desorption of the ligands grafted on the surface of the quantum dots by the ultraviolet energy of the specific wavelength . Then use solvents such as alcohols, ethers, ketones and nitrile solvents to wash and remove the desorbed ammonium halide monomer, so that a large number of uncoordinated dangling bonds appear on the surface of the quantum dots. These dangling bonds are more sensitive and the inert gas atmosphere is effectively avoided. The oxidation and destruction of these dangling bonds by air, water and oxygen.
  • solvents such as alcohols, ethers, ketones and nitrile solvents
  • ligands are added to the treated surface by dripping, spin coating, spraying or dipping, etc., and the ligands are combined with the coordination vacancies on the quantum dot surface at a temperature of 40-120°C. Adsorbed on the surface of the quantum dots, the quantum dots on the treated surface are grafted with a large number of new ligands. In this way, different ligand types can be grafted on the side of the quantum dot light-emitting layer close to the different device layers, and the stability and dispersion of the quantum dots are improved without affecting the optical performance of the quantum dots, and at the same time, the carrier is improved.
  • the recombination probability in the quantum dot light-emitting layer reduces the driving voltage and improves the efficiency and overall service life of the QLED device.
  • the step of depositing and forming a quantum dot light-emitting layer on the side of the first electrode away from the substrate includes:
  • the step of depositing a quantum dot light-emitting layer on the surface of the first electrode away from the surface includes depositing a quantum dot grafted with a first ligand on the surface of the first electrode to form a first quantum dot layer, and grafting the surface
  • the quantum dot with the second ligand is deposited on the other surface of the first quantum dot layer away from the first electrode, so that the surface of the quantum dot light-emitting layer close to the first electrode is grafted with the first ligand, and the opposite surface
  • the second ligand is grafted to graft different ligands on the surface of the light-emitting layer of the prepared quantum dot light-emitting diode close to different electrodes, so as to improve the stability and dispersion of the quantum dots without affecting the optical properties of the quantum dots
  • it improves the recombination probability of carriers in the quantum dot light-emitting layer, reduces the driving voltage, and improves the efficiency and
  • the embodiment of the application does not specifically limit the deposition thickness of the quantum dot grafted with the first ligand and the deposition thickness of the quantum dot grafted with the second ligand in the quantum dot light-emitting layer, as long as the application can improve the carrier in the light-emitting layer.
  • the recombination probability in the quantum dot light-emitting layer can reduce the driving voltage and improve the efficiency and overall service life of the QLED device.
  • the deposition thickness of the quantum dot grafted with the first ligand and the deposition thickness of the quantum dot grafted with the second ligand may each account for one-half of the thickness of the quantum dot light-emitting layer.
  • the quantum dot light-emitting layer may also be a quantum dot layer grafted with a first ligand and a quantum dot layer grafted with a second ligand with a certain thickness on both sides, and the middle is grafted with different ligands.
  • the mixed layer of the body may also be a quantum dot layer grafted with a first ligand and a quantum dot layer grafted with a second ligand with a certain thickness on both sides, and the middle is grafted with different ligands.
  • the preparation steps of quantum dots grafted with ligands on the surface include:
  • the method for obtaining quantum dots grafted with ligand on the surface of the examples of this application is by mixing the quantum dot solution, the precursor solution of the ligand, and the non-coordinating solvent, and reacting in an inert gas atmosphere at 80-250°C, preferably After 1 to 24 hours of reaction, the oil-soluble linear long-chain ligands originally grafted on the surface of the quantum dots are easy to fall off under the influence of environmental temperature, leaving a large number of cationic defect states on the surface of the quantum dots, and the halide ions in the ligands can be effective Combines with these cation defect states on the surface of quantum dots, and at the same time, the ammonium cations in the ligand can combine with the anion defect states on the surface of quantum dots, so that a large number of ligands can be grafted on the surface of quantum dots, and the surface can be obtained by separation.
  • Ligand quantum dots is by mixing the quantum dot solution, the precursor solution of the ligand, and the non-
  • Both the quantum dots with the first ligand grafted on the surface and the quantum dots with the second ligand grafted on the surface of the examples of the present application can be prepared by the above-mentioned method.
  • the step of obtaining the quantum dot solution includes: dissolving the quantum dots in chloroform, dichloroethane, dichloromethane, n-hexane, n-octane, chlorobenzene, acetonitrile, cyclohexane, toluene , Benzene, xylene, tetrahydrofuran, etc., in at least one solvent to obtain a quantum dot solution.
  • solvents all have good solubility for quantum dots and can dissolve the quantum dots into a solution, which is beneficial to the rapid and sufficient contact reaction between the raw material components in the graft reaction system of the ligand and the quantum dot.
  • the concentration of the quantum dot solution is 1-150 mg/ml.
  • the quantum dots are formulated into a solution with a concentration of 1 to 150 mg/ml, and then added to the reaction system to perform the reaction between the quantum dots and the ligand.
  • the quantum dot solution with this concentration is beneficial to the interaction between the raw materials in the reaction system. Contact reaction. If the concentration of the quantum dot solution is too low or elevated, it is not conducive to the exchange of ligands on the quantum dot surface in the reaction system, thereby affecting the modification effect of the quantum dot surface.
  • the solvent in the quantum dot solution is selected from: chloroform, dichloroethane, dichloromethane, n-hexane, n-octane, chlorobenzene, acetonitrile, cyclohexane, toluene, benzene, xylene, tetrahydrofuran At least one of the solutions; the concentration of the quantum dot solution is 1 to 150 mg/ml.
  • the step of obtaining the precursor solution of the first ligand or 2 includes: dissolving the ligand in at least one solvent such as chloroform, dichloroethane, and dichloromethane.
  • the ligand is dissolved in at least one solvent such as chloroform, dichloroethane, dichloromethane and the like under the condition of heating and refluxing at a certain temperature, and the dissolution of the ligand is added.
  • the ligand is pre-dissolved and prepared into a solution, and then added to the reaction system. The fully dissolved and dispersed ligand can quickly contact and react with the quantum dots in the reaction system, which improves the reaction effect and is more beneficial to the quantum dots. Replacement of surface ligands.
  • a non-coordinating solvent is obtained, and after the quantum dot solution, the precursor solution of the ligand, and the non-coordinating solvent are mixed, the reaction is carried out for 1 to 24 hours under an inert gas atmosphere at 80 to 250°C, The quantum dots with the first ligand or 2 grafted on the surface are obtained by separation.
  • the reaction is carried out under an inert gas atmosphere at 80-250°C, preferably for 1-24 hours, to obtain a surface grafted Ligand quantum dots, this temperature environment can promote the desorption of the original ligands on the surface of the quantum dots, thereby facilitating the adsorption of the ligands to the surface of the quantum dots.
  • the inert gas atmosphere protects the metal elements in the quantum dots from being destroyed by oxidation. The reaction time It is ensured that the surface ligand replacement is fully completed.
  • the mass ratio of the ligand to the quantum dot is (0.1-10):1.
  • the mass ratio of the ligand to the quantum dot is (0.1-10):1, which effectively ensures
  • the material basis for the replacement of the oil-soluble ligand originally grafted on the surface of the quantum dot by the ligand in the reaction system can realize the maximum exchange of the ligand to the oil-soluble ligand on the surface of the quantum dot.
  • the mass ratio of the ligand to the quantum dot in the reaction system is too low, the ligand cannot fully modify the surface of the quantum dot.
  • the mass ratio may be 0.5:1, 1:1, 2:1, 5:1, 8:1, or 10:1.
  • the ratio of the total volume of the quantum dot solution and the precursor solution of the ligand to the volume of the non-coordinating solvent is 1: (1-50).
  • the non-polar solvent in the quantum dot solution and the precursor solution of the ligand in the reaction system of the embodiment of the application has a low boiling point, and is heated and volatilized during high-temperature reaction.
  • the solvent environment in the reaction system is mainly provided by a non-coordinating solvent.
  • the ratio of the total volume of the quantum dot solution and the ligand precursor solution to the volume of the non-coordinating solvent is 1: (1 ⁇ 50), which not only ensures the solvent environment in the reaction system, but also makes the quantum dots and ligands suitable Reaction concentration.
  • the volume ratio may be 1:10, 1:20, 1:30, 1:40, or 1:50.
  • the non-coordinating solvent is selected from at least one of olefins, alkanes, ether hydrocarbons, and aromatic compounds.
  • the examples of this application use at least one of olefins, alkanes, ether hydrocarbons, and aromatic compounds as non-coordinating solvents, all of which can provide a good solvent environment for the ligands to replace the oil-soluble ligands on the surface of the quantum dots, which is beneficial to the quantum dots Dynamic desorption and adsorption of surface ligands.
  • the mass ratio of the ligand to the quantum dot is (0.1-10):1; the quantum dot solution and The ratio of the total volume of the precursor solution of the ligand to the volume of the non-coordinating solvent is 1: (1-50); the non-coordinating solvent is selected from at least one of olefins, alkanes, ether hydrocarbons, and aromatic compounds.
  • a quantum dot light-emitting diode in which the first ligand of benzyltrimethylammonium bromide is grafted on the side surface of the quantum dot near the hole transport layer in the quantum dot light-emitting layer;
  • the side surface of the quantum dot of the electron transport layer is grafted with the second ligand of dioctadecyldimethylammonium bromide, which includes the following preparation steps:
  • the quantum dots grafted with benzyltrimethylammonium bromide 1 are deposited on the hole transport layer to form a quantum dot light-emitting layer.
  • the quantum dot light-emitting layer is away from the surface of the hole transport layer. Place it under 365nm UV for 10 minutes, and then use isopropanol to remove the first ligand of benzyltrimethylammonium bromide desorbed on the surface of the quantum dot. Then continue to add the second ligand solution of dioctadecyldimethylammonium bromide to the surface of the quantum dot light-emitting layer for ultraviolet desorption treatment under an argon atmosphere at 100°C.
  • Ethanol was used to rinse off the residual dioctadecyl dimethyl ammonium bromide second ligand to obtain a second ligand of dioctadecyl dimethyl ammonium bromide grafted on the surface away from the hole transport layer Quantum dot light-emitting layer.
  • a bottom electrode, a hole injection layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer and a top electrode are sequentially prepared on the substrate to obtain a quantum dot light emitting diode.
  • the substrate is a glass substrate;
  • the bottom electrode is ITO with a thickness of 100nm;
  • the hole injection layer is PEDOT:PSS with a thickness of 40nm;
  • the hole transport layer is TFB with a thickness of 100nm;
  • the quantum dot light-emitting layer is made as described above Quantum dot light-emitting layer, the side surface of the quantum dot light-emitting layer grafted with the first ligand of benzyltrimethylammonium bromide is close to the hole transport layer;
  • the quantum dot light-emitting layer is grafted with dioctadecyl dimethyl
  • the side surface of the second ammonium bromide ligand is close to the electron transport layer with a thickness of 100 n
  • a quantum dot light-emitting diode (QLED), the preparation process of which corresponds to the preparation process of embodiment 1 one-to-one, and the difference from embodiment 1 is that the side surface of the quantum dot close to the hole transport layer in the quantum dot light-emitting layer is grafted There is the first ligand of nonyltrimethylammonium bromide; the side surface of the quantum dot near the electron transport layer in the quantum dot light-emitting layer is grafted with the second ligand of dioctadecyldimethylammonium bromide.
  • a quantum dot light-emitting diode (QLED), the preparation process of which corresponds to the preparation process of embodiment 1 one-to-one, and the difference from embodiment 1 is that the side surface of the quantum dot close to the hole transport layer in the quantum dot light-emitting layer is grafted There is a nonyl trimethyl ammonium bromide first ligand; the side surface of the quantum dot near the electron transport layer in the quantum dot light-emitting layer is grafted with a second hexadecyl dimethyl ammonium bromide ligand.
  • a quantum dot light-emitting diode (QLED), the preparation process of which corresponds to the preparation process of embodiment 1 one-to-one, and the difference from embodiment 1 is that the side surface of the quantum dot close to the hole transport layer in the quantum dot light-emitting layer is grafted There is a first ligand of benzyltrimethylammonium bromide; the side surface of the quantum dot near the electron transport layer in the quantum dot light-emitting layer is grafted with a second ligand of hexadecyldimethylammonium bromide.
  • Comparative Example 1 corresponds to the preparation process of Example 1 one-to-one. The only difference is that the quantum dot light-emitting layer of Comparative Example 1 only contains the first ligand and does not undergo the second ligand improvement treatment in step 4.
  • Comparative Example 2 corresponds one-to-one with the preparation process of Example 2. The only difference is that the quantum dot light-emitting layer of Comparative Example 2 only contains the first ligand and does not undergo the second ligand improvement treatment in step 4.
  • Comparative Example 3 corresponds to the preparation process of Example 3 one-to-one. The only difference is that the quantum dot light-emitting layer of Comparative Example 3 only contains the first ligand and does not undergo the second ligand improvement treatment in step 4.
  • Comparative Example 4 corresponds to the preparation process of Example 4 one-to-one. The only difference is that the quantum dot light-emitting layer of Comparative Example 4 only contains the first ligand and does not undergo the second ligand improvement treatment in step 4.
  • the external quantum efficiency (EQE max ) of the quantum dot light-emitting diodes prepared in Examples 1 to 4 of this application is significantly higher than the external quantum efficiency of the quantum dot light-emitting diodes of Comparative Examples 1 to 4, indicating the implementation of this application
  • the different types of ammonium halide ligands grafted on both sides of the surface effectively improve the injection efficiency of the hole and electron vector point emitting layer, balance the injection of holes and electrons into the point emitting layer, and increase holes and electrons. Recombination efficiency in quantum dot light-emitting layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

属于发光二极管技术领域,具体涉及一种量子点薄膜,所述量子点薄膜的一表面接枝有第一卤化铵配体,所述量子点薄膜中与接枝有第一卤化铵配体的表面背对的另一表面接枝有第二卤化铵配体。提供的量子点薄膜,可通过两侧表面接枝的不同类型的卤化铵配体,改善空穴和电子向量子点发光层的注入效率,使空穴和电子向量子点发光层注入平衡,提高空穴和电子在量子点发光层中的复合效率。在不影响量子点的光学性能的前提下,不但显著提高量子点的稳定性和分散性,同时提高载流子在量子点发光层中的复合几率。

Description

量子点薄膜,量子点发光二极管及其制备方法
本申请要求于2019年12月25日提交的中国专利申请No.201911353286.0的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及发光二极管技术领域,具体涉及一种量子点薄膜,量子点发光二极管及其制备方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。目前,制约QLED器件发展最根本的原因在于空穴和电子向量子点发光层注入未得到平衡,电子和空穴没有在量子点发光层中得到有效复合。导致在量子点发光层和与量子点发光层相邻的电荷转移层(如空穴传输或电子传输层)之间的界面处发生复合从而发光,最后使得QLED器件的发光效率大大降低,尤其对具有较深HOMO能级的蓝色QLED器件更甚如此。此外,为了驱动QLED发光,必须施加高电压,而高电压非常容易引起量子点发光衰减,甚至击穿量子点发光层。
为平衡量子点激子在量子点发光层中的复合,最常用的方式是在量子点发光层和电子传输层之间加入电子阻挡层PMMA(聚甲基丙烯酸甲酯)。虽然PMMA的存在可以抵挡大量的电子的注入,有利于电子和空穴在量子点发光层中发生复合,从而提高发光效率和使用寿命,但是该种方法最大的弊端在于对电子阻挡层聚甲基丙烯酸甲酯绝缘材料厚度的控制要求精确,过薄或过厚均不利于电子和空穴的复合。
发明内容
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种量子点薄膜,所述量子点薄膜的一表面接枝有第一卤化铵配 体,所述量子点薄膜中与接枝有第一卤化铵配体的表面背对的另一表面接枝有第二卤化铵配体;
其中,所述第一卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000001
所述第二卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000002
其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,所述n 1、所述n 2、所述n 3和所述n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
第二方面,提供了一种量子点发光二极管,所述量子点发光二极管包括相对设置的阳极和阴极,设置在所述阳极和所述阴极之间的量子点发光层;所述量子点发光层靠近所述阳极的一侧表面接枝有第一卤化铵配体,所述量子点发光层靠近所述阴极的另一侧表面接枝有第二卤化铵配体;
其中,所述第一卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000003
所述第二卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000004
其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,所述n 1、所述n 2、所述n 3和所述n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
第三方面,提供了一种量子点发光二极管的制备方法,包括步骤:
提供含第一电极的基板;
在所述第一电极远离所述基板的一侧沉积形成量子点发光层,所述量子点发光层包括表面接枝有配体的量子点,其中,所述量子点发光层靠近所述第一电极的一侧表面包括接枝有第一配体的量子点,所述量子点发光层的另一侧表面包括接枝有第二配体的量子点,
所述第一配体和所述第二配体分别选自下述不同结构通式中的一种:
Figure PCTCN2020139114-appb-000005
且所述第一配体和所述第二配体为不同结构通式;
其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,所述n 1、所述n 2、所述n 3和所述n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
有益效果
本申请实施例提供的量子点薄膜的有益效果在于:量子点薄膜具有两个相对的表面,其中,一表面接枝有第一卤化铵配体,所述量子点薄膜中与接枝有第一卤化铵配体的表面背对的另一表面接枝有第二卤化铵配体。首先,这两种类型的卤化铵配体中的卤负离子可以与量子点表面的阳离子缺陷态结合,铵正离子可以与量子点表面的阴离子缺陷态结合,同时这类配体的支链运动活性较低,可以显著提高支链与量子点材料之间的束缚能,实现卤化铵配体对量子点表面的完美包覆,因而两种类型的卤化铵配体在量子点表面接枝牢固不易脱落,提高了量子点的分散性和稳定性,同时提高了量子点的荧光效率。另外,量子点薄膜中,接枝有第一卤化铵配体的一侧表面,其第一卤化铵配体两个较短的支链可以减少空穴传输距离,显著提高载流子的注入速率;且当短支链中含有苯环时,由于苯环具有高度共轭的π键,更加可以显著提高空穴的传输速率;接枝有第二卤化铵配体的另一侧表面,第二卤化铵配体中两个长支链的存在可以增加电子的传输距离,从而一定程度上减慢电子的传输。因此,本申请提供的量子点薄膜,可通过两侧表面接枝的不同类型的卤化铵配体,改善空穴和电子向量子点发光层的注入效率,使空穴和电子向量子点发光层注入平衡,提高空穴和电子在量子点发光层中的复合效率。在不影响量子点的光学性能的前提下,不但显著提高量子点的稳定性和分散性,同时提高载流子在量子点发光层中的复合几率。
附图说明
图1是本申请实施例提供的量子点发光二极管的制备方法的流程示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
本申请的一些实施例提供一种量子点薄膜,量子点薄膜的一表面接枝有第一卤化铵配体,量子点薄膜中与接枝有第一卤化铵配体的表面背对的另一表面接枝有第二卤化铵配体;
其中,第一卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000006
第二卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000007
其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,n 1、n 2、n 3和n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
本申请实施例提供的量子点薄膜具有两个相对的表面,其中,一表面接枝有第一卤化铵配体,量子点薄膜中与接枝有第一卤化铵配体的表面背对的另一表面接枝有第二卤化铵配体。首先,这两种类型的卤化铵配体中的卤负离子可以与量子点表面的阳离子缺陷态结合,铵正离子可以与量子点表面的阴离子缺陷态结合,同时这类配体的支链运动活性较低,可以显著提高支链与量子点材料之间的束缚能,实现卤化铵配体对量子点表面的完美包覆,因而两种类型的卤化铵配体在量子点表面接枝牢固不易脱落,提高了量子点的分散性和稳定性,同时提高了量子点的荧光效率。另外,量子点薄膜中,接枝有第一卤化铵配体的一侧表面,其第一卤化铵配体两个较短的支链可以减少空穴传输距离,显著提高载流子的注入速率;且当短支链中含有苯环时,由于苯环具有高度共轭的π键,更加可以显著提高空穴的传输速率;接枝有第二卤化铵配体的另一侧表面,第二 卤化铵配体中两个长支链的存在可以增加电子的传输距离,从而一定程度上减慢电子的传输。因此,本申请实施例提供的量子点薄膜,可通过两侧表面接枝的不同类型的卤化铵配体,改善空穴和电子向量子点发光层的注入效率,使空穴和电子向量子点发光层注入平衡,提高空穴和电子在量子点发光层中的复合效率。在不影响量子点的光学性能的前提下,不但显著提高量子点的稳定性和分散性,同时提高载流子在量子点发光层中的复合几率。
具体地,本申请实施例量子点接枝的配体均为卤化铵配,这类卤化铵配体中,不仅卤负离子可以有效地与量子点表面的阳离子缺陷态结合;同时铵正离子可以与量子点表面的阴离子缺陷态结合,进而实现量子点表面的完美包覆,大大提高量子点荧光效率。并且该类配体支链运动活性较低,可以显著提高支链与量子点材料之间的束缚能,使得该类配体不容易从量子点表面发生脱落,提高了量子点的稳定性和分散性,从而提高了量子点薄膜的稳定性和发光效率,进而有利于提高量子点发光二极管的光电性能。
具体地,本申请实施例量子点薄膜的以侧表面接枝的第一卤化铵配体的结构式为:
Figure PCTCN2020139114-appb-000008
其中,n 1≤12,n 2≤12,n 1和n 2为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。本申请实施例第一卤化铵配体中两个支链相对较短,可以减少空穴传输距离,显著提高载流子的注入速率。当Y 1和Y 2全部为氢时,短链的配体可以减少空穴传输距离,显著提高载流子的注入速率。当短支链中含有苯环时,由于苯环具有高度共轭的π键,更加可以显著提高空穴的传输速率。本申请实施例靠近量子点薄膜的另一侧表面接枝的第二卤化铵配体的结构式为:
Figure PCTCN2020139114-appb-000009
其中,12≤n 3≤17,12≤n 4≤17,n 3和n 4均为自然数;X为卤素。第二卤化铵配体中两个支链较长,可以增加电子的传输距离,从而一定程度上减慢电子的传输。因此,本申请实施例通过量子点薄膜一侧表面接枝的第一卤化铵配体对空穴传输速率的提高,以及量子点薄膜另一侧表面 接枝的第二卤化铵配体对电子传输速率的减缓,提高了载流子在量子点发光层中的复合几率,降低驱动电压,提升QLED器件效率和整体使用寿命。
在一些优选实施例中,量子点薄膜中靠近阳极一侧的表面接枝有第一卤化铵配体,靠近阴极一侧的表面接枝有第二卤化铵配体。本申请实施例通过将量子点薄膜中接枝有第一卤化铵配体的一侧表面设置靠近阳极的一侧,第一卤化铵配体可以减少空穴传输距离,显著提高载流子的注入速率;将量子点薄膜中接枝有第二卤化铵配体的另一侧表面设置靠近阴极的一侧,第二卤化铵配体可以增加电子的传输距离,减慢电子的传输,从而使空穴和电子向量子点发光层注入平衡,提高空穴和电子在量子点发光层中的复合效率。
在一些实施例中,第一卤化铵配体选自:四甲基氯化铵、四甲基溴化铵、四甲基碘化铵、壬基三甲基溴化铵、双辛基二甲基氯化铵、双辛基二甲基溴化铵、双癸基二甲基氯化铵、双癸基二甲基溴化铵、十二烷基二甲基氯化铵、十二烷基二甲基溴化铵、苯扎溴铵、苯扎氯铵、十二烷基二甲基苄基溴化铵、十二烷基二甲基苄基氯化铵、苯基三甲基氯化铵、苯基三甲基溴化铵、苯基三乙基氯化铵、苯基三乙基溴化铵、N-十六烷基-N,N-二甲基苄基氯化铵中至少一种。本申请实施例量子点薄膜的一侧表面接枝的上述任意一种或多种第一卤化铵配体,均能够提高了量子点的稳定性和分散性,提高量子点的荧光效率,并且可以减少空穴传输距离,短支链中含有苯环的配体,由于苯环具有高度共轭的π键,能进一步提高空穴的传输速率,显著提高载流子的注入速率。
在一些实施例中,第二卤化铵配体选自:双十八烷基二甲基溴化铵、双十八烷基二甲基氯化铵、双十六烷基二甲基溴化铵、双十六烷基二甲基氯化铵、双十四烷基二甲基溴化铵、双十四烷基二甲基氯化铵、双十二烷基二甲基溴化铵、双十二烷基二甲基氯化铵中至少一种。本申请实施例量子点薄膜的另侧表面接枝的上述第二卤化铵配体,均具有两个较长支链,可以增加电子的传输距离,从而减慢电子的传输。
相应地,本申请实施例还提供了一种量子点发光二极管,量子点发光二极管包括相对设置的阳极和阴极,设置在阳极和阴极之间的量子点发光层;量子点发光层靠近阳极的一侧表面接枝有第一卤化铵配体,量子点发光层靠近阴极的另一侧表面接枝有第二卤化铵配体;
其中,第一卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000010
第二卤化铵配体的结构通式为:
Figure PCTCN2020139114-appb-000011
其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,n 1、n 2、n 3和n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
本申请实施例提供的量子点发光二极管包括相对设置的阳极和阴极,设置在阳极和阴极之间的量子点发光层;量子点发光层靠近阳极的一侧表面接枝有第一卤化铵配体,量子点发光层靠近阴极的另一侧表面接枝有第二卤化铵配体。一方面,量子点发光层中靠近阳极一侧表面接枝的第一卤化铵配体两个较短的支链可以减少空穴传输距离,显著提高载流子的注入速率;且当短支链中含有苯环时,由于苯环具有高度共轭的π键,更加可以显著提高空穴的传输速率。另一方面,量子点发光层中靠近阴极一侧表面接枝的第二卤化铵配体两个长支链的存在可以增加电子的传输距离,从而一定程度上减慢电子的传输。因而,本申请实施例提供的量子点发光二极管中空穴和电子在量子点发光层中的复合效率高,驱动电压降低,从而QLED器件效率和整体使用寿命得到提高。
在一些实施例中,本申请实施例量子点发光二极管中量子点发光层由上述量子点薄膜制成。
在一些实施例中,量子点发光二极管中量子点发光层靠近阳极的一侧表面接枝有:四甲基氯化铵、四甲基溴化铵、四甲基碘化铵、壬基三甲基溴化铵、双辛基二甲基氯化铵、双辛基二甲基溴化铵、双癸基二甲基氯化铵、双癸基二甲基溴化铵、十二烷基二甲 基氯化铵、十二烷基二甲基溴化铵、苯扎溴铵、苯扎氯铵、十二烷基二甲基苄基溴化铵、十二烷基二甲基苄基氯化铵、苯基三甲基氯化铵、苯基三甲基溴化铵、苯基三乙基氯化铵、苯基三乙基溴化铵、N-十六烷基-N,N-二甲基苄基氯化铵中至少一种第一卤化铵配体。
在一些实施例中,量子点发光二极管中量子点发光层靠近阴极的一侧表面接枝有:双十八烷基二甲基溴化铵、双十八烷基二甲基氯化铵、双十六烷基二甲基溴化铵、双十六烷基二甲基氯化铵、双十四烷基二甲基溴化铵、双十四烷基二甲基氯化铵、双十二烷基二甲基溴化铵、双十二烷基二甲基氯化铵中至少一种第二卤化铵配体。
具体的,本申请实施例量子点发光二极管分正型结构和反型结构。其中,正型结构为衬底/阳极/量子点发光层/电子传输层/阴极,以及任选地设置在阳极与量子点发光层之间的诸如空穴注入层、空穴传输层和电子阻挡层等的空穴功能层,任性地设置在电子传输层与阴极之间的电子注入层,等等。反型结构与正型结构相反。
示例性地,衬底可以是钢性或柔性衬底。阳极可以是ITO、FTO或ZTO,厚度为30~150nm。空穴注入层可以是PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、HATCN或CuS等,厚度为30~150nm。空穴传输层既可以是TFB、PVK、TCTA、TAPC、Poly-TBP、Poly-TPD、NPB、CBP、、MoO 3、WoO 3、NiO、CuO、V 2O 5或CuS等,厚度为30~180nm。量子点发光层靠近阳极的一侧表面接枝有上述第一卤化铵配体,靠近阴极的另一侧表面接枝有上述第二卤化铵配体;量子点发光层包括由IIB族和VIA族元素组成的量子点、由IIIA族和VA族元素组成的量子点、由IVA族和VIA族元素组成的量子点中至少一种。例如,量子点发光层可以是CdS、AlAs或SnS。电子传输层可以是ZnO、ZnMgO、ZnMgLiO、ZnInO、ZrO、TiO 2、Alq 3、TAZ、TPBI、PBD、BCP、Bphen的一种或多种,厚度为10~120nm。阴极可以是Al、Ag、Au、Cu、Mo、或它们的合金,厚度为80~120nm。
本申请实施例提供的量子点发光二极管可以通过下述方法制备获得。
如附图1所示,本申请实施例还提供了一种量子点发光二极管的制备方法,包括步骤:
S10.提供含第一电极的基板;
S20.在第一电极远离基板的一侧沉积形成量子点发光层,量子点发光层包括表面接枝有配体的量子点,其中,量子点发光层靠近第一电极的一侧表面包括接枝有第一配体的量子点,量子点发光层的另一侧表面包括接枝有第二配体的量子点,
第一配体和第二配体分别选自下述不同结构通式中的一种:
Figure PCTCN2020139114-appb-000012
Figure PCTCN2020139114-appb-000013
且第一配体和第二配体为不同结构通式;其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,n 1、n 2、n 3和n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
本申请实施例提供的量子点发光二极管的制备方法,通过提供含第一电极的基板后,在第一电极远离基板的一侧沉积形成量子点发光层,量子点发光层包括表面接枝有配体的量子点,其中,量子点发光层靠近第一电极的一侧表面包括接枝有第一配体的量子点,量子点发光层的另一侧表面包括接枝有第二配体的量子点。本申请实施例提供的量子点发光二极管的制备方法中,第一配体和第二配体分别选自不同结构通式中的一种,且第一配体和第二配体为不同结构通式,具体地,当第一配体为
Figure PCTCN2020139114-appb-000014
第二配体为
Figure PCTCN2020139114-appb-000015
当第一配体为
Figure PCTCN2020139114-appb-000016
第二配体为
Figure PCTCN2020139114-appb-000017
本申请实施例方法制得量子点发光二极管中发光层一侧表面接枝的
Figure PCTCN2020139114-appb-000018
配体,含有两个较短的支链可以减少空穴传输距离,显著提高载 流子的注入速率,且当短支链中含有苯环时,由于苯环具有高度共轭的π键,更加可以显著提高空穴的传输速率;另一侧表面接枝的
Figure PCTCN2020139114-appb-000019
配体,含有两个较长的支链可以增加电子的传输距离,从而一定程度上减慢电子的传输。因而通过量子点发光层两侧表面接枝的不同配体对电子和空穴传输效率的调节,可以提高载流子在量子点发光层中的复合几率,降低驱动电压,提升QLED器件效率和整体使用寿命。另外,本申请实施例提供的量子点发光二极管的制备方法,操作简单,适应性广,容易实现工业化生产和应用。
具体地,当第一电极为阳极时,第一配体为
Figure PCTCN2020139114-appb-000020
第二配体为
Figure PCTCN2020139114-appb-000021
此时,量子点发光层中接枝有第一配体的一侧表面可直接沉积在阳极表面,也可以在阳极与量子点发光层之间设置空穴注入层、空穴传输层、电子阻挡层等空穴功能层层,量子点发光层中接枝有第一配体的一侧表面沉积在空穴功能层的表面。
具体地,当第一电极为阴极时,第一配体为
Figure PCTCN2020139114-appb-000022
第二配体为
Figure PCTCN2020139114-appb-000023
此时,量子点发光层中接枝有第一配体的一侧表面可直接沉积在阴极表面,也可以在阴极与量子点发光层之间设置电子注入层、电子传输层、空穴阻挡层等电子功能层,量子点发光层中接枝有第一配体的一侧表面沉积在电子功能层的表面。
在一些实施例中,在第一电极远离基板的一侧沉积形成量子点发光层的步骤包括:
S11.获取表面接枝有第一配体的量子点,将表面接枝有第一配体的量子点沉积在第一电极远离基板的一侧,形成第一量子点层;
S21.获取第二配体的前驱体溶液,在惰性气体氛围下,对第一量子点层远离第一电极的一侧表面进行紫外处理后,冲洗紫外处理后的第一量子点层表面,然后将第二配体的前驱体溶液添加到紫外处理后的第一量子点层表面反应,得到量子点发光层。
本申请实施例在第一电极远离基板的一侧沉积形成量子点发光层的步骤包括:首先,在第一电极一侧形成第一量子点层;然后,在惰性气体氛围下,对第一量子点层远离第一电极的一侧表面进行紫外处理,通过特定紫外波长的能量使该表面的量子点侧表面上接枝的第一配体脱附,然后冲洗去除脱落的配体后,再将第二配体的前驱体溶液添加到紫外处理后的第一量子点层表面反应,使经紫外处理后的量子点层表面接枝有第二配体,得到量子点发光层。通过本申请实施例的制备方法,使量子点发光层中靠近阳极的量子点的侧表面接枝有
Figure PCTCN2020139114-appb-000024
配体,靠近阴极的量子点的侧表面接枝有
Figure PCTCN2020139114-appb-000025
配体。
在一些实施例中,对第一量子点层远离第一电极的一侧表面进行紫外处理的步骤包括:将第一量子点层远离第一电极的一侧表面在波长为260~370nm的紫外条件下处理1秒钟~60分钟。作为另一优选实施例,将第二配体的前驱体溶液添加到紫外处理后的第一量子点层表面反应的温度条件为40~120℃。
本申请实施例在惰性气体氛围下采用波长为260~370nm的紫外条件,处理至少1秒,优选地1秒~60分钟,通过该特定波长的紫外能量使量子点表面接枝的配体脱附。然后采用醇类、醚类、酮类和腈类溶剂等溶剂冲洗去除脱附的卤化铵单体,使量子点表面出现大量未配位的悬挂键,这些悬挂键较敏感,惰性气体氛围有效避免了空气水、氧对这些悬挂键的氧化和破坏。此时再将不同类型的配体采用滴加、旋涂、喷涂或浸渍等方式添加到处理后的表面,在温度为40~120℃的条件下配体与量子点表面的配位空缺结合,吸附在量子点表面,使处理后的表面的量子点接枝大量的新的配体。从而实现量 子点发光层中靠近不同器件层的一侧接枝不同的配体类型,在不影响量子点的光学性能的前提下,提高量子点的稳定性和分散性,同时提高载流子在量子点发光层中的复合几率,降低驱动电压,提升QLED器件效率和整体使用寿命。
在一些实施例中,在第一电极远离基板的一侧沉积形成量子点发光层的步骤包括:
S12.获取表面接枝有第一配体的量子点,获取表面接枝有第二配体的量子点;
S22.将表面接枝有第一配体的量子点沉积在第一电极远离基板的一侧,形成第一量子点层,将表面接枝有第二配体的量子点沉积在第一量子点层远离第一电极的另一侧表面,得到量子点发光层。
本申请实施例在第一电极远离表面沉积形成量子点发光层的步骤包括,将表面接枝有第一配体的量子点沉积在第一电极表面,形成第一量子点层,将表面接枝有第二配体的量子点沉积在第一量子点层远离第一电极的另一侧表面,从而使量子点发光层中靠近第一电极的表面接枝第一配体,相对的另一表面接枝第二配体,使制得的量子点发光二极管中发光层靠近不同电极的表面接枝不同的配体,在不影响量子点的光学性能的前提下,提高量子点的稳定性和分散性,同时提高载流子在量子点发光层中的复合几率,降低驱动电压,提升QLED器件效率和整体使用寿命。
本申请实施例对量子点发光层中接枝第一配体的量子点的沉积厚度和接枝第二配体的量子点沉积厚度不做具体限定,只要能实现本申请提高了载流子在量子点发光层中的复合几率,降低驱动电压,提升QLED器件效率和整体使用寿命的效果即可。在一些实施例中,接枝第一配体的量子点的沉积厚度和接枝第二配体的量子点沉积厚度,可以各占量子点发光层厚度的二分之一。在一些实施例中,在量子点发光层中也可以是两侧分别为一定厚度的接枝第一配体的量子点层和接枝第二配体的量子点层,中间为接枝不同配体的混合层。
在一些实施例中,表面接枝有配体的量子点的制备步骤包括:
S31.获取量子点溶液和配体的前驱体溶液;
S41.获取非配位溶剂,将量子点溶液、配体的前驱体溶液和非配位溶剂混合,在80~250℃的惰性气体氛围下反应,分离得到表面接枝有配体的量子点。
本申请实施例表面接枝有配体的量子点的获取方法,通过将量子点溶液、配体的前驱体溶液和非配位溶剂混合后,在80~250℃的惰性气体氛围下反应,优选反应1~24小时,量子点表面原本接枝的油溶性直链型长链配体受环境温度的影响容易脱落,使量子点表面留下大量阳离子缺陷态,而配体中的卤负离子可以有效地与量子点表面的这些阳离子缺陷态结合,同时配体中铵正离子可以与量子点表面的阴离子缺陷态结合,进而使量子点表面接枝大量的配体,分离即可得到表面接枝有配体的量子点。
本申请实施例表面接枝有第一配体的量子点和表面接枝有第二配体的量子点都可以采用上述方法制备。
具体地,上述步骤S31中,获取量子点溶液的的步骤包括:将量子点溶解于氯仿、二氯乙烷、二氯甲烷、正己烷、正辛烷、氯苯、乙腈、环己烷、甲苯、苯、二甲苯、四氢呋喃中等至少一种溶剂中,得到量子点溶液。这些溶剂对量子点均具有较好的溶解性,能够将量子点溶解配制成溶液,有利于配体与量子点的接枝反应体系内原料组分之间迅速充分的接触反应。
在一些实施例中,量子点溶液的浓度为1~150mg/ml。本申请实施例将量子点配制成浓度为1~150mg/ml的溶液,再添加到反应体系中进行量子点与配体的反应,该浓度的量子点溶液有利于反应体系内原料物质间的相互接触反应。若量子点溶液的浓度太低或抬高,均不利于反应体系中量子点表面配体的交换,从而影响量子点表面的改性效果。
在一些实施例中,量子点溶液中的溶剂选自:氯仿、二氯乙烷、二氯甲烷、正己烷、正辛烷、氯苯、乙腈、环己烷、甲苯、苯、二甲苯、四氢呋喃中的至少一种;量子点溶液的浓度为1~150mg/ml。
具体地,上述步骤S31中,获取第一配体或2的前驱体溶液的步骤包括:将配体溶解于氯仿、二氯乙烷、二氯甲烷等至少一种溶剂中。在一些优选实施例中,在一定温度加热回流的条件下,将配体溶解于氯仿、二氯乙烷、二氯甲烷等至少一种溶剂中,加入配体的溶解。本申请实施例将配体预先溶解配制成溶液,然后再添加到反应体系中,充分溶解分散的配体能迅速与反应体系中的量子点相互接触反应,提高反应效果,更有利于对量子点表面配体的置换。
具体地,上述步骤S41中,获取非配位溶剂,将量子点溶液、配体的前驱体溶液和非配位溶剂混合后,在80~250℃的惰性气体氛围下,反应1~24小时,分离得到表面接枝有第一配体或2的量子点。本申请实施例将量子点溶液、配体的前驱体溶液和非配位溶剂混合后,在80~250℃的惰性气体氛围下反应,优选反应1~24小时,即可制得表面接枝有配体的量子点,该温度环境能够促进量子点的表面原有配体的脱附,从而有利于配体吸附到量子点表面,惰性气体氛围保护量子点中金属元素不被氧化破坏,反应时间确保了表面配体置换进行充分完全。
在一些实施例中,将量子点溶液、配体的前驱体溶液和非配位溶剂混合后的反应体系中,配体与量子点的质量比为(0.1~10):1。本申请实施例将量子点溶液、配体的前驱体溶液和非配位溶剂混合后的反应体系中,配体与量子点的质量比为(0.1~10):1,该质量比有效确保了反应体系中配体对量子点表面原本接枝的油溶性配体置换的物质基础,能够实现配体对量子点表面油溶性配体最大程度的交换。若反应体系中配体与量子点的质量比太低,则无法实现配体对量子点表面的充分改性。在一些具体实施例中,该质量比可以是0.5:1、1:1、2:1、5:1、8:1或10:1。
在一些实施例中,量子点溶液和配体的前驱体溶液的总体积与非配位溶剂的体积之比为1:(1~50)。本申请实施例反应体系中量子点溶液和配体的前驱体溶液中非极性溶剂沸点较低,在高温反应时受热挥发,反应体系中溶剂环境主要有非配位溶剂提供。 量子点溶液和配体前驱体溶液的总体积与非配位溶剂的体积之比为1:(1~50),既确保了反应体系中溶剂环境,也使各量子点及配体有合适的反应浓度。若体积比太小,则高温反应体系中非配位溶剂太少,不利于量子点表面配体的动态脱附与吸附过程。在一些具体实施例中,该体积之比可以是1:10、1:20、1:30、1:40或者1:50。
在一些实施例中,非配位溶剂选自:烯烃、烷烃、醚烃、芳香族化合物中的至少一种。本申请实施例采用烯烃、烷烃、醚烃、芳香族化合物中的至少一种作为非配位溶剂,均能为配体置换量子点表面的油溶性配体提供良好的溶剂环境,有利于量子点表面配体的动态脱附与吸附。
在一些实施例中,将量子点溶液、配体的前驱体溶液和非配位溶剂混合后的反应体系中,配体与量子点的质量比为(0.1~10):1;量子点溶液和配体的前驱体溶液的总体积与非配位溶剂的体积之比为1:(1~50);非配位溶剂选自:烯烃、烷烃、醚烃、芳香族化合物中的至少一种。
实施例1
一种量子点发光二极管(QLED),其中,量子点发光层中靠近空穴传输层的量子点的侧表面接枝有苄基三甲基溴化铵第一配体;量子点发光层中靠近电子传输层的量子点的侧表面接枝有双十八烷基二甲基溴化铵第二配体,包括如下制备步骤:
(1)表面接枝有苄基三甲基溴化铵第一配体的量子点制备:
①室温下,将50mg苄基三甲基溴化铵与20ml氯仿混合,并置于50℃下回流加热,直至完全溶解,得到苄基三甲基溴化铵第一配体溶液;
②在氩气气体气氛、150℃条件下,向体积为10ml,浓度为30mg/ml的量子点正己烷溶液(CdSe/CdS,表面配体为油酸和三辛基氧膦)中,加入上述①中的苄基三甲基溴化铵第一配体溶液和50ml十八烯,反应10min,分离后采用正己烷和乙醇反复进行溶解、沉淀和离心,得到表面接枝苄基三甲基溴化铵1的量子点。
(2)量子点发光层的制备:
③室温下,将50mg双十八烷基二甲基溴化铵与20ml氯仿混合,并置于50℃下回流加热,直至完全溶解,得到双十八烷基二甲基溴化铵第二配体溶液;
④将表面接枝苄基三甲基溴化铵1的量子点在空穴传输层上沉积成量子点发光层,在氩气气氛下,将量子点发光层远离空穴传输层的一侧表面置于365nm UV下处理10min,随后采用异丙醇去除量子点表面脱附的苄基三甲基溴化铵第一配体。然后继续在氩气气氛、100℃下,将双十八烷基二甲基溴化铵第二配体溶液通过滴加的方式滴加到量子点发光层中进行紫外脱附处理的表面,然后采用乙醇冲洗掉残余的双十八烷基二甲基溴化铵第二配体,得到远离空穴传输层的一侧表面接枝有双十八烷基二甲基溴化铵第二配体的量子点发光层。
(3)QLED器件制备包括如下步骤:
在衬底上依次制备底电极、空穴注入层、空穴传输层、量子点发光层、电子传输层和顶电极,得到量子点发光二极管。其中,衬底为玻璃基底;底电极为ITO,厚度为100nm;空穴注入层为PEDOT:PSS,厚度为40nm;空穴传输层为TFB,厚度为100nm;量子点发光层为上述制得的量子点发光层,量子点发光层中接枝有苄基三甲基溴化铵第一配体的侧表面靠近空穴传输层;量子点发光层中接枝有双十八烷基二甲基溴化铵第二配体的侧表面靠近电子传输层,厚度为100nm;电子传输层为ZnO,厚度为80nm;顶电极为Al,厚度为50nm。
实施例2
一种量子点发光二极管(QLED),其制备过程与实施例1的制备过程一一对应,与实施例1的区别在于:量子点发光层中靠近空穴传输层的量子点的侧表面接枝有壬基三甲基溴化铵第一配体;量子点发光层中靠近电子传输层的量子点的侧表面接枝有双十八烷基二甲基溴化铵第二配体。
实施例3
一种量子点发光二极管(QLED),其制备过程与实施例1的制备过程一一对应,与实施例1的区别在于:量子点发光层中靠近空穴传输层的量子点的侧表面接枝有壬基三甲基溴化铵第一配体;量子点发光层中靠近电子传输层的量子点的侧表面接枝有双十六烷基二甲基溴化铵第二配体。
实施例4
一种量子点发光二极管(QLED),其制备过程与实施例1的制备过程一一对应,与实施例1的区别在于:量子点发光层中靠近空穴传输层的量子点的侧表面接枝有苄基三甲基溴化铵第一配体;量子点发光层中靠近电子传输层的量子点的侧表面接枝有双十六烷基二甲基溴化铵第二配体。
对比例1
对比例1的制备过程与实施例1的制备过程一一对应,唯一区别在于对比例1量子点发光层中仅含有第一配体,不经过步骤④中第二配体改进处理。
对比例2
对比例2的制备过程与实施例2的制备过程一一对应,唯一区别在于对比例2量子点发光层中仅含有第一配体,不经过步骤④中第二配体改进处理。
对比例3
对比例3的制备过程与实施例3的制备过程一一对应,唯一区别在于对比例3量子点发光层中仅含有第一配体,不经过步骤④中第二配体改进处理。
对比例4
对比例4的制备过程与实施例4的制备过程一一对应,唯一区别在于对比例4量子点发光层中仅含有第一配体,不经过步骤④中第二配体改进处理。
为了验证本申请实施例1~4和对比例1~4提供的量子点发光二极管的进步性,本 测试例对各实施例和对比例制备的量子点发光二极管的外量子效率进行了实验测试,测试结果如下表1所示:
表1
Figure PCTCN2020139114-appb-000026
由上述测试结果可知,本申请实施例1~4制得的量子点发光二极管的外量子效率(EQE max)显著高于对比例1~4的量子点发光二极管的外量子效率,说明本申请实施例通过两侧表面接枝的不同类型的卤化铵配体,有效改善了空穴和电子向量子点发光层的注入效率,使空穴和电子向量子点发光层注入平衡,提高空穴和电子在量子点发光层中的复合效率。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种量子点薄膜,其特征在于,所述量子点薄膜的一表面接枝有第一卤化铵配体,所述量子点薄膜中与接枝有第一卤化铵配体的表面背对的另一表面接枝有第二卤化铵配体;
    其中,所述第一卤化铵配体的结构通式为:
    Figure PCTCN2020139114-appb-100001
    所述第二卤化铵配体的结构通式为:
    Figure PCTCN2020139114-appb-100002
    其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,所述n 1、所述n 2、所述n 3和所述n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
  2. 如权利要求1所述的量子点薄膜,其特征在于,所述第一卤化铵配体选自:四甲基氯化铵、四甲基溴化铵、四甲基碘化铵、壬基三甲基溴化铵、双辛基二甲基氯化铵、双辛基二甲基溴化铵、双癸基二甲基氯化铵、双癸基二甲基溴化铵、十二烷基二甲基氯化铵、十二烷基二甲基溴化铵、苯扎溴铵、苯扎氯铵、十二烷基二甲基苄基溴化铵、十二烷基二甲基苄基氯化铵、苯基三甲基氯化铵、苯基三甲基溴化铵、苯基三乙基氯化铵、苯基三乙基溴化铵、N-十六烷基-N,N-二甲基苄基氯化铵中至少一种。
  3. 如权利要求1所述的量子点薄膜,其特征在于,所述第二卤化铵配体选自:双十八烷基二甲基溴化铵、双十八烷基二甲基氯化铵、双十六烷基二甲基溴化铵、双十六烷基二甲基氯化铵、双十四烷基二甲基溴化铵、双十四烷基二甲基氯化铵、双十二烷基二甲基溴化铵、双十二烷基二甲基氯化铵中至少一种。
  4. 一种量子点发光二极管,其特征在于,所述量子点发光二极管包括相对设置的阳极和阴极,设置在所述阳极和所述阴极之间的量子点发光层;所述量子点发光层靠近所述阳极的一侧表面接枝有第一卤化铵配体,所述量子点发光层靠近所述阴极的另一侧表面接枝有第二卤化铵配体;
    其中,所述第一卤化铵配体的结构通式为:
    Figure PCTCN2020139114-appb-100003
    所述第二卤化铵配体的结构通式为:
    Figure PCTCN2020139114-appb-100004
    其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,所述n 1、所述n 2、所述n 3和所述n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
  5. 如权利要求4所述的量子点发光二极管,其特征在于,所述第一卤化铵配体选自:四甲基氯化铵、四甲基溴化铵、四甲基碘化铵、壬基三甲基溴化铵、双辛基二甲基氯化铵、双辛基二甲基溴化铵、双癸基二甲基氯化铵、双癸基二甲基溴化铵、十二烷基二甲基氯化铵、十二烷基二甲基溴化铵、苯扎溴铵、苯扎氯铵、十二烷基二甲基苄基溴化铵、十二烷基二甲基苄基氯化铵、苯基三甲基氯化铵、苯基三甲基溴化铵、苯基三乙基氯化铵、苯基三乙基溴化铵、N-十六烷基-N,N-二甲基苄基氯化铵中至少一种。
  6. 如权利要求4所述的量子点发光二极管,其特征在于,所述第二卤化铵配体选自:双十八烷基二甲基溴化铵、双十八烷基二甲基氯化铵、双十六烷基二甲基溴化铵、双十六烷基二甲基氯化铵、双十四烷基二甲基溴化铵、双十四烷基二甲基氯化铵、双十二烷基二甲基溴化铵、双十二烷基二甲基氯化铵中至少一种。
  7. 一种量子点发光二极管的制备方法,其特征在于,包括步骤:
    提供含第一电极的基板;
    在所述第一电极远离所述基板的一侧沉积形成量子点发光层,所述量子点发光层包括表面接枝有配体的量子点,其中,所述量子点发光层靠近所述第一电极的一侧表面包括接枝有第一配体的量子点,所述量子点发光层的另一侧表面包括接枝有第二配体的量子点,
    所述第一配体和所述第二配体分别选自下述不同结构通式中的一种:
    Figure PCTCN2020139114-appb-100005
    且所述第一配体和所述第二配体为不同结构通式;
    其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,所述n 1、所述n 2、所述n 3和所述n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
  8. 如权利要求7所述的量子点发光二极管的制备方法,其特征在于,在所述第一电极远离所述基板的一侧沉积形成量子点发光层的步骤包括:
    获取表面接枝有第一配体的量子点,将所述表面接枝有第一配体的量子点沉积在所述第一电极远离所述基板的一侧,形成第一量子点层;
    获取第二配体的前驱体溶液,在惰性气体氛围下,对所述第一量子点层远离所述第一电极的一侧表面进行紫外处理后,冲洗紫外处理后的第一量子点层表面,然后将所述第二配体的前驱体溶液添加到所述紫外处理后的第一量子点层表面反应,得到所述量子点发光层。
  9. 如权利要求8所述的量子点发光二极管的制备方法,其特征在于,对所述第一量子点层远离所述第一电极的一侧表面进行紫外处理的步骤包括:将所述第一量子点层远离所述第一电极的一侧表面在波长为260~370nm的紫外条件下处理1秒钟~60分钟;和/或,
    将所述第二配体的前驱体溶液添加到所述紫外处理后的第一量子点层表面反应的温度条件为40~120℃。
  10. 如权利要求9所述的量子点发光二极管的制备方法,其特征在于,在所述第一电极远离所述基板的一侧沉积形成量子点发光层的步骤包括:
    获取表面接枝有第一配体的量子点,获取表面接枝有第二配体的量子点;
    将所述表面接枝有第一配体的量子点沉积在所述第一电极远离所述基板的一侧,形 成第一量子点层,将所述表面接枝有第二配体的量子点沉积在所述第一量子点层远离所述第一电极的另一侧表面,得到所述量子点发光层。
  11. 如权利要求7所述的量子点发光二极管的制备方法,其特征在于,当第一电极为阳极时,所述第一配体为
    Figure PCTCN2020139114-appb-100006
    所述第二配体为
    Figure PCTCN2020139114-appb-100007
    当第一电极为阴极时,所述第一配体为
    Figure PCTCN2020139114-appb-100008
    所述第二配体为
    Figure PCTCN2020139114-appb-100009
    其中,n 1≤12,n 2≤12,12≤n 3≤17,12≤n 4≤17,所述n 1、所述n 2、所述n 3和所述n 4均为自然数;Y 1和Y 2分别独自的选自:苯环或氢;X为卤素。
  12. 如权利要求7所述的量子点发光二极管的制备方法,其特征在于,所述表面接枝有配体的量子点的制备步骤包括:
    获取量子点溶液和配体的前驱体溶液;
    获取非配位溶剂,将所述量子点溶液、所述配体的前驱体溶液和所述非配位溶剂混合,在80~250℃的惰性气体氛围下反应,分离得到表面接枝有配体的量子点。
  13. 如权利要求12所述的量子点发光二极管的制备方法,其特征在于,将所述量子点溶液、所述配体的前驱体溶液和所述非配位溶剂混合的步骤中,按照配体与量子点的质量比为(0.1~10):1的比例,将所述量子点溶液、所述配体的前驱体溶液和所述非配位溶剂混合;和/或,
    所述量子点溶液和所述配体的前驱体溶液的总体积与所述非配位溶剂的体积之比为1:(1~50)。
  14. 如权利要求13所述的量子点发光二极管的制备方法,其特征在于,所述非配位溶剂选自:烯烃、烷烃、醚烃、芳香族化合物中的至少一种;和/或,
    所述量子点溶液中的溶剂选自:氯仿、二氯乙烷、二氯甲烷、正己烷、正辛烷、氯苯、乙腈、环己烷、甲苯、苯、二甲苯、四氢呋喃中的至少一种;和/或,
    所述配体的前驱体溶液的中的溶剂选自:获取氯仿、二氯乙烷、二氯甲烷中至少一种。
PCT/CN2020/139114 2019-12-25 2020-12-24 量子点薄膜,量子点发光二极管及其制备方法 WO2021129761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/846,827 US20220340812A1 (en) 2019-12-25 2022-06-22 Quantum dot film, quantum dot light-emitting diode and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911353286.0 2019-12-25
CN201911353286.0A CN113025308B (zh) 2019-12-25 2019-12-25 量子点薄膜,量子点发光二极管及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/846,827 Continuation US20220340812A1 (en) 2019-12-25 2022-06-22 Quantum dot film, quantum dot light-emitting diode and preparation method thereof

Publications (2)

Publication Number Publication Date
WO2021129761A1 WO2021129761A1 (zh) 2021-07-01
WO2021129761A9 true WO2021129761A9 (zh) 2021-07-29

Family

ID=76452364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139114 WO2021129761A1 (zh) 2019-12-25 2020-12-24 量子点薄膜,量子点发光二极管及其制备方法

Country Status (3)

Country Link
US (1) US20220340812A1 (zh)
CN (1) CN113025308B (zh)
WO (1) WO2021129761A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058373A (zh) * 2020-07-31 2022-02-18 京东方科技集团股份有限公司 量子点结构、量子点发光器件和制作方法
CN113745440B (zh) * 2021-08-17 2022-07-12 深圳市华星光电半导体显示技术有限公司 一种量子点器件的制作方法
CN114217012B (zh) * 2021-11-10 2023-09-12 中国科学院上海技术物理研究所 一种汞系量子点传统热注入流程中原位修饰的方法
CN114674900B (zh) * 2022-04-02 2023-09-22 湖北大学 基于小分子探针的光电化学微传感器及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653630B2 (en) * 2013-11-06 2017-05-16 Samsung Electronics Co., Ltd. Quantum dot solar cell performance with a metal salt treatment
CN106701060A (zh) * 2016-12-22 2017-05-24 Tcl集团股份有限公司 钝化量子点膜及其制备方法
CN109256495B (zh) * 2017-07-14 2020-05-05 Tcl科技集团股份有限公司 一种卤素钝化钙钛矿量子点及其制备方法和qled器件
CN109935710A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 反型qled器件及其制备方法
CN109935739B (zh) * 2017-12-15 2021-04-09 Tcl科技集团股份有限公司 正型qled器件及其制备方法

Also Published As

Publication number Publication date
CN113025308A (zh) 2021-06-25
US20220340812A1 (en) 2022-10-27
WO2021129761A1 (zh) 2021-07-01
CN113025308B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2021129761A9 (zh) 量子点薄膜,量子点发光二极管及其制备方法
WO2020078099A1 (zh) 电致发光器件及其制作方法、显示装置
CN104681731B (zh) 一种钙钛矿型电致发光器件及其制备方法
CN105206715B (zh) 一种激子限域结构的qled及其制备方法
WO2018192334A1 (zh) 丙烯酸酯共聚物修饰的金属氧化物及制备方法与量子点发光二极管
CN108735905B (zh) 一种qled器件及制备方法
JP2019522367A (ja) 酸化ニッケル薄膜及びその製造方法、機能性材料、薄膜構造体の作製方法およびエレクトロルミネセンス素子
CN105895820A (zh) 有机发光器件及其显示器
US10069096B1 (en) WOLED device
CN110335954B (zh) 一种高效稳定的白光有机电致发光器件及其制备方法
CN206293474U (zh) 等离子体共振增强的蓝光有机发光二极管
WO2020134157A1 (zh) 量子点发光二极管及其制备方法
CN107046101A (zh) 等离子体共振增强的蓝光有机发光二极管及其制备方法
CN105870350B (zh) 有机发光器件
CN109427978A (zh) 一种qled器件及其制备方法
CN108649128B (zh) 一种单组分电致白光器件及其制备方法
CN108529678B (zh) 一种MoSx及制备方法、量子点发光二极管及制备方法
CN111864099B (zh) 氧化镍复合薄膜及其制备方法和led
CN106207014B (zh) 一种有机发光器件的制备方法
CN103545451A (zh) 一种有机电致发光装置及其制造方法
WO2022227661A1 (zh) 量子点薄膜及其制备方法、量子点发光二极管的制备方法
CN109360898B (zh) 一种同步优化有机聚合物激光性质和电致发光器件载流子注入的方法
CN110660922B (zh) 管状双异质结纳米材料及其制备方法和应用
CN113122260B (zh) 一种量子点材料及其制备方法、量子点发光二极管
CN113193134B (zh) 电致发光器件及含其的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907739

Country of ref document: EP

Kind code of ref document: A1