WO2021129599A1 - 电机冷却结构、驱动组件及车辆 - Google Patents

电机冷却结构、驱动组件及车辆 Download PDF

Info

Publication number
WO2021129599A1
WO2021129599A1 PCT/CN2020/138252 CN2020138252W WO2021129599A1 WO 2021129599 A1 WO2021129599 A1 WO 2021129599A1 CN 2020138252 W CN2020138252 W CN 2020138252W WO 2021129599 A1 WO2021129599 A1 WO 2021129599A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
flow channel
end cover
branch
cooling structure
Prior art date
Application number
PCT/CN2020/138252
Other languages
English (en)
French (fr)
Inventor
骆平原
熊亮
王亚东
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to JP2022520296A priority Critical patent/JP7381734B2/ja
Priority to US17/765,584 priority patent/US20230006486A1/en
Priority to EP20905810.6A priority patent/EP4024679B1/en
Priority to KR1020227010684A priority patent/KR102654034B1/ko
Publication of WO2021129599A1 publication Critical patent/WO2021129599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure generally relates to the field of automobile technology, and in particular to a motor cooling structure, a drive assembly, and a vehicle.
  • the stator, coil and rotor of the motor will generate a lot of heat, and the power limit capability of the motor is often limited by the temperature rise limit of the motor. Therefore, improving the cooling and heat dissipation capacity of the motor can significantly increase the power density of the motor.
  • the cooling methods of on-board motors mainly include water cooling and oil cooling.
  • the water cooling method is to design a water channel on the motor casing, and the heat inside the motor is transferred to the water channel through layers of media, and then the heat is taken away by the coolant.
  • the advantage of the water cooling method is low cost and can basically meet the heat dissipation requirements of the motor, but the disadvantage is that the indirect cooling method has poor heat dissipation efficiency.
  • the oil cooling method due to the non-conductive and non-magnetic properties of the oil, can directly cool the stator and windings of the motor, which can meet the cooling needs of high-performance motors, but the oil cooling method is spray oil cooling, which increases the cost of the motor .
  • the present disclosure aims to provide a motor cooling structure, a drive assembly and a vehicle.
  • the motor cooling structure realizes immersion cooling and has a good cooling effect.
  • An embodiment of the present disclosure provides a motor cooling structure, including: branch flow channels, a plurality of the branch flow channels are circumferentially arranged on the stator of the motor around the axis of the motor; the housing flow channel includes a liquid inlet flow channel, The housing has a long flow channel and an outlet flow channel, the inlet flow channel, the multiple housing long flow channels and the liquid outlet flow channel are circumferentially arranged on the reducer housing around the axis of the motor; the end cover flow channel , Including the end cover long flow passage, a plurality of the end cover long flow passages are circumferentially arranged on the motor end cover around the axis of the motor; the casing flow passage, a plurality of branch flow passages and the end cover flow passage are formed A continuous main flow path; a liquid inlet, which is arranged on the reducer housing and communicates with the liquid inlet channel; a liquid outlet, which is arranged on the reducer housing and is connected to the liquid outlet channel Connected.
  • the branch flow channel extends along the axis of the motor.
  • a first resin glue is provided on the outer side of one end of the motor coil close to the reducer housing, and the first resin glue is located in the circumference formed by the flow channel of the housing, and the liquid outlet An opening is provided on the inner wall of the flow channel, and the opening of the liquid outlet flow channel and the liquid outlet are respectively arranged on both sides of the first resin glue.
  • a second resin glue is provided on the outside of one end of the motor coil close to the motor end cover, and the second resin glue is located in the circumference formed by the end cover runner; the end cover flow
  • the channel also includes an end cover short flow channel, two of the end cover short flow channels and a plurality of the end cover long flow channels are circumferentially arranged on the motor end cover around the axis of the motor, and the two end covers are short
  • the inner wall of the flow channel is provided with openings.
  • the two short end caps are respectively arranged on both sides of the second resin glue.
  • the long flow channel of the housing communicates with a branch flow channel adjacent to one side of the branch flow channel.
  • the long flow channel of the end cap communicates with the branch flow channel adjacent to the other side of the branch flow channel.
  • the liquid outlet is connected to the oil inlet of the speed reducer.
  • An embodiment of the present disclosure provides a drive assembly including a motor and a reducer, and also includes the motor cooling structure described above.
  • An embodiment of the present disclosure provides a vehicle including the drive assembly as described above.
  • the branch runners penetrate the stator of the motor, and the casing runner, the multiple branch runners and the end cover runners form a continuous total runner, which realizes the immersion cooling of the motor and has a good cooling effect.
  • the flow direction of the cooling oil in the previous branch flow channel is opposite to that in the next branch flow channel, and the cooling oil can circulate axially in multiple branch flow channels to improve the cooling effect.
  • the motor cooling structure can also cool the resin glue at both ends of the coil, so as to cool the ends of the coil.
  • Fig. 1 is a schematic diagram of a motor connected to a reducer according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of the flow of cooling oil according to an embodiment of the disclosure.
  • Fig. 3 is a schematic diagram of a stator according to an embodiment of the disclosure.
  • Fig. 4 is a schematic diagram of a branch flow channel of an embodiment of the disclosure.
  • Fig. 5 is a schematic diagram of a reducer housing of an embodiment of the disclosure.
  • Fig. 6 is a schematic diagram of a casing flow channel according to an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the motor end cover of the embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of an end cap flow channel of an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the flow of cooling oil in the first resin glue cooling flow channel according to an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the flow of cooling oil in the second resin glue cooling channel according to an embodiment of the disclosure.
  • 300 end cap flow path 311 first end cap long flow path; 32 second end cap long flow path; 313 third end cap long flow path; 314 fourth end cap long flow path; 315 fifth end cap long flow path 321 first end cap short runner; 322 second end cap short runner; 300a opening; 300b opening;
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, they can be fixed or detachable.
  • Connected or integrally connected It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components relationship.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components relationship.
  • the "on” or “under” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above”, and “above” of the first feature on the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • stator 1 of the motor is located in the motor housing 7, and a coil 6 is wound on the stator 1. Both ends of the coil 6 extend out of the ends of the stator 1 respectively.
  • the reducer housing 2 is located on one side of the stator 1 and is connected to the motor housing 7.
  • a motor end cover 3 is provided on the other side of the stator 1.
  • a continuous flow channel is provided on the stator 1, the reducer housing 2 and the motor end cover 3.
  • the cooling oil can cool the stator 1 by immersion type through the flow channel, and can also cool the coil 6 with good cooling effect.
  • the motor cooling structure includes a branch flow channel 100, a shell flow channel 200, an end cover flow channel 300, a liquid inlet 201 and a liquid outlet 202.
  • the stator 1 of the motor is provided with a plurality of through branch flow channels 100.
  • the branch flow channels 100 are not connected to each other.
  • a plurality of branch runners 100 are arranged circumferentially around the axis of the motor.
  • the number of branch runners 100 is twelve. It is not difficult for those skilled in the art to understand that the number of branch runners 100 can be appropriately increased or decreased according to requirements.
  • the branch flow channel 100 extends along the axis of the motor.
  • the side wall of the reducer housing 2 close to the stator 1 is provided with a housing flow channel 200.
  • the shell flow channel 200 includes an inlet flow channel 211, a plurality of shell long flow channels and a liquid outlet flow channel 212.
  • the number of long flow passages in the casing is five.
  • the liquid inlet flow passage 211, the multiple casing long flow passages and the liquid outlet flow passage 212 are circumferentially arranged on the reducer casing 1 around the axis of the motor.
  • the casing flow channel 200 corresponds to the branch flow channel 100.
  • the liquid inlet flow channel 211 corresponds to a branch flow channel.
  • the liquid inlet flow channel 211 communicates with the first branch flow channel 101.
  • the outlet flow channel 212 corresponds to a branch flow channel.
  • the outlet flow channel 212 is in communication with the twelfth branch flow channel 112.
  • a long flow channel in the shell can correspond to multiple branch flow channels.
  • one long flow channel of the housing corresponds to two branch flow channels, so that one branch flow channel communicates with an end of the branch flow channel adjacent to one side close to the reducer housing 2.
  • the long flow passage 221 of the first housing corresponding to the second branch flow passage 102 and the third branch flow passage 103 is connected to the end of the second branch flow passage 102 close to the reducer housing 2 and the third branch flow passage 103 is close to the reducer housing One end of body 2.
  • the side wall of the motor end cover 3 close to the stator 1 is provided with an end cover flow channel 300.
  • the end cap flow channel 300 includes an end cap long flow channel.
  • a plurality of end cover long flow passages are circumferentially arranged on the motor end cover 3 around the axis of the motor.
  • the end cap flow channel 300 corresponds to the branch flow channel 100.
  • One end cap long flow channel can correspond to multiple branch flow channels.
  • one end cap long flow channel corresponds to two branch flow channels, so that the above one branch flow channel communicates with an end of the adjacent branch flow channel on the other side close to the motor terminal 3.
  • the second branch flow passage 102 as an example, the end of the second branch flow passage 102 and the third branch flow passage 103 close to the reducer housing 2 are communicated through the first housing long flow passage 221.
  • the second branch flow channel 102 and the end of the first branch flow channel 101 close to the motor terminal 3 are communicated with the first end cap long flow channel 311.
  • the casing flow channel 200, the multiple branch flow channels 100 and the end cap flow channel 300 form a continuous total flow channel.
  • the reducer housing 1 is provided with a liquid inlet 201 and a liquid outlet 202.
  • the liquid inlet 201 is in communication with the liquid inlet channel 211.
  • the liquid outlet 202 is in communication with the liquid flow channel 212.
  • the cooling oil enters the main flow channel through the liquid inlet 201 and is discharged through the liquid outlet 202.
  • the main flow channel is continuous, after the cooling oil enters the main flow channel, it passes through a plurality of branch flow channels 100 in sequence to perform immersion cooling on the stator 1 with a good cooling effect.
  • the stator 1 can be cooled more uniformly.
  • a first resin glue 4 is provided on the outer side of one end of the motor coil 6 close to the reducer housing 1.
  • the first resin glue 4 plays a role of sealing the corresponding end of the coil 6.
  • the first resin glue 4 is located in the circumference formed by the casing flow channel 200.
  • a closed space is formed between the first resin glue 4 and the reducer housing 1, which is a cooling channel of the first resin glue 4.
  • the inner wall of the liquid outlet channel 212 is provided with an opening 200 a, and the cooling oil enters the cooling channel of the first resin glue 4 through the opening 200 a, and then flows out from the liquid outlet 202.
  • the opening 200 a of the liquid outlet channel and the liquid outlet 202 are respectively arranged on both sides of the first resin glue 4.
  • the cooling oil flows out from the opening 200a, it flows to the liquid outlet 202 along the cooling channels of the first resin glue 4 on both sides to cool the first resin glue 4.
  • the temperature of the first resin glue 4 is lowered, and the end of the coil 6 close to the reducer housing 2 can be cooled.
  • a second resin glue 5 is provided on the outer side of one end of the motor coil 6 close to the motor end cover 3.
  • the second resin glue 5 plays a role of sealing the corresponding end of the coil 6.
  • the second resin glue 5 is located in the circumference formed by the end cap flow channel 300.
  • a closed space is formed between the second resin glue 5 and the motor end cover 3 and serves as a cooling channel for the second resin glue 5.
  • the end cap flow channel 300 also includes an end cap short flow channel.
  • the number of end cap short flow channels is two, which are the first end cap short flow channel 321 and the second end cap short flow channel 322 respectively.
  • the first end cap short flow channel 321 and the second end cap short flow channel 322 respectively correspond to a branch flow channel 100.
  • Two end cover short flow passages and multiple end cover long flow passages are circumferentially arranged on the motor end cover 3 around the axis of the motor.
  • An opening 300a is provided on the inner wall of the first end cap short flow channel 321, and an opening 300b is provided on the inner wall of the second end cap short flow channel 322.
  • the cooling oil in the short flow passage 321 of the first end cover enters the cooling flow passage of the second resin glue 5 through the opening 300a, and then enters the short flow passage 322 of the second end cover through the opening 300b.
  • the cooling oil enters the cooling flow channel of the second resin glue 5 to cool the second resin glue 5.
  • the temperature of the second resin glue 5 is lowered, and the end of the coil 6 close to the motor end cover 3 can be cooled.
  • the coil 6 is further cooled, and the cooling effect on the motor is improved.
  • the two short end caps are arranged on both sides of the second resin glue 5 respectively. That is, the opening 300a and the opening 300b are respectively located on both sides of the second resin glue 5, which improves the cooling effect of the second resin glue 5.
  • the cooling oil enters from the liquid inlet 201 and flows into the liquid inlet channel 211;
  • the cooling oil enters the first branch flow channel 101 from the liquid inlet flow channel 211;
  • the cooling oil passes through the first end cover long runner 311, the second branch runner 102, the first housing long runner 221, the third branch runner 103, the second end cover long runner 312, and the fourth branch in turn.
  • the branch runner 104, the second housing long runner 222, the fifth branch runner 105, and the first end cover short runner 321 cool the stator 1;
  • the cooling oil enters the second resin glue cooling channel through the opening 300a to cool the second resin glue
  • the cooling oil enters the second end cover short flow passage 322 through the opening 300b, and sequentially passes through the sixth branch flow passage 106, the third housing long flow passage 223, the seventh branch flow passage 107, and the third end cover long flow passage 313.
  • the eleven branch runners 111, the fifth end cap long runner 315, the twelfth branch runner 112, and the liquid outlet runner 212 cool the stator;
  • the cooling oil enters the first resin glue cooling channel through the opening 200a to cool the first resin glue 4;
  • the cooling oil is discharged through the liquid outlet 202.
  • the liquid outlet 202 is connected to the oil inlet of the reducer.
  • the cooling oil of the motor enters the cavity of the reducer through the oil inlet of the reducer, and is used as lubricating oil to lubricate and cool the gears in the reducer.
  • the lubricated lubricating oil is collected at the bottom of the reducer, filtered by the filter, and enters the liquid inlet 201 through the oil pump to cool the motor, so as to realize the circulating use of the cooling oil.
  • the embodiment of the present disclosure provides a drive assembly including a motor and a reducer, and also includes the motor cooling structure as described above.
  • An embodiment of the present disclosure provides a vehicle including the above driving assembly.
  • the branch runners penetrate the stator of the motor, and the casing runner, the multiple branch runners and the end cover runners form a continuous total runner, which realizes the immersion cooling of the motor and has a good cooling effect.
  • the flow direction of the cooling oil in the previous branch flow channel is opposite to that in the next branch flow channel, and the cooling oil can circulate axially in multiple branch flow channels to improve the cooling effect.
  • the motor cooling structure can also cool the resin glue at both ends of the coil, so as to cool the ends of the coil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种电机冷却结构、驱动组件及车辆,电机冷却结构包括:分支流道(100),多条分支流道(100)在电机的定子(1)上绕电机的轴线周向布置;壳体流道(200),包括进液流道(211)、壳体长流道和出液流道(212),进液流道(211)、多条壳体长流道和出液流道(212)在减速器壳体(2)上绕电机的轴线周向布置;端盖流道(300),包括端盖长流道,多条端盖长流道在电机端盖(3)上绕电机的轴线周向布置;壳体流道(200)、多条分支流道(100)和端盖流道(300)形成连续的总流道;进液口(201),设置于减速器壳体(2)上,与进液流道(211)连通;出液口(202),设置于减速器壳体(2)上,与出液流道连通(212)。该电机的冷却结构,实现对电机的浸润式冷却,提高电机的冷却效率。

Description

电机冷却结构、驱动组件及车辆
相关申请的交叉引用
本申请要求2019年12月24日提交的中国专利申请201911351106.5的权益,该申请的内容通过引用被合并于本文。
技术领域
本公开大致涉及汽车技术领域,具体涉及一种电机冷却结构、驱动组件及车辆。
背景技术
电机在运行过程中,电机的定子、线圈和转子会产生大量的热量,电机的功率极限能力往往受电机的温升极限限制。因此提高电机冷却散热能力能显著提高电机的功率密度。
目前车载电机的冷却方式主要有水冷和油冷两种形式。水冷方式是在电机机壳上设计水道,电机内部的热量通过层层介质传递到水道,再由冷却液将热量带走。水冷方式的优点是成本低,基本能满足电机的散热要求,缺点是间接冷却方式,散热效率较差。油冷方式,由于油液不导电不导磁的性能,可直接对电机定子及绕组进行直接冷却,可满足高性能电机的冷却需求,但油冷方式为喷淋式油冷,增加电机的成本。
发明内容
本公开旨在提出一种电机冷却结构、驱动组件及车辆,电机冷却结构实现浸润式冷却,冷却效果好。
本公开的一个实施例提供一种电机冷却结构,包括:分支流道,多条所述分支流道在电机的定子上绕电机的轴线周向布置;壳体流道,包括进液流道、壳体长流道和出液流道,所述进液流道、多条壳体长流道和出液流道在减速器壳体上绕所述电机的轴线周向布置;端盖流道,包括端盖长流道,多条所述端盖长流道在电机端盖上绕所述电机的轴线周向布置;所述壳体流道、多条分支流道和端盖流道形成连续的总流道;进液口,设置于所述减速器壳体上,与所述进液流道连通;出液口,设置于所述减速器壳体上,与所述出液流道连通。
根据本公开的一些实施例,所述分支流道沿所述电机的轴线延伸。
根据本公开的一些实施例,电机线圈靠近所述减速器壳体的一端的外侧设有第一树脂胶,所述第一树脂胶位于所述壳体流道形成的圆周内,所述出液流道的内壁上设有开口,所述出液流道的开口与所述出液口分别设置于所述第一树脂胶的两侧。
根据本公开的一些实施例,电机线圈靠近所述电机端盖的一端的外侧设有第二树脂胶,所述第二树脂胶位于所述端盖流道形成的圆周内;所述端盖流道还包括端盖短流道,两条所述端盖短流道与多条所述端盖长流道在电机端盖上绕所述电机的轴线周向布置,两条所述端盖短流道的内壁上均设有开口。
根据本公开的一些实施例,两条所述端盖短流道分别设置于所述 第二树脂胶的两侧。
根据本公开的一些实施例,所述壳体长流道连通一条分支流道与一侧相邻的分支流道。
根据本公开的一些实施例,所述端盖长流道连通所述一条分支流道与另一侧相邻的分支流道。
根据本公开的一些实施例,所述出液口连接减速器的进油口。
本公开的一个实施例提供一种驱动组件,包括电机和减速器,还包括如何所述的电机冷却结构。
本公开的一个实施例提供一种车辆,包括如上所述的驱动组件。
本公开的电机冷却结构,分支流道贯穿电机的定子,壳体流道、多条分支流道和端盖流道形成连续的总流道,实现对电机的浸润式冷却,冷却效果好。上一分支流道与下一分支流道中冷却油的流向相反,冷却油可在多个分支流道中轴向循环流动,提高冷却效果。电机冷却结构还可对线圈两端的树脂胶进行冷却,实现对线圈端部的冷却。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例的电机连接减速器的示意图;
图2为本公开实施例的冷却油的流向示意图;
图3为本公开实施例的定子的示意图;
图4为本公开实施例的分支流道的示意图;
图5为本公开实施例的减速器壳体的示意图;
图6为本公开实施例的壳体流道的示意图;
图7为本公开实施例的电机端盖的示意图;
图8为本公开实施例的端盖流道的示意图;
图9为本公开实施例的第一树脂胶冷却流道的冷却油流向示意图;
图10为本公开实施例的第二树脂胶冷却流道的冷却油流向示意图。
附图标记列表:
1定子;
100分支流道;101第一分支流道;102第二分支流道;103第三分支流道;104第四分支流道;105第五分支流道;106第六分支流道;107第七分支流道;108第八分支流道;109第九分支流道;110第十分支流道;111第十一分支流道;112第十二分支流道;
2减速器壳体;201进液口;202出液口;
200壳体流道;211进液流道;212出液流道;221第一壳体长流道;222第二壳体长流道;223第三壳体长流道;224第四壳体长流道;225第五壳体长流道;200a开口;
3电机端盖;
300端盖流道;311第一端盖长流道;32第二端盖长流道;313第三端盖长流道;314第四端盖长流道;315第五端盖长流道;321 第一端盖短流道;322第二端盖短流道;300a开口;300b开口;
4第一树脂胶;
5第二树脂胶;
6线圈;
7电机壳体。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本公开的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本公开的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本公开的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本公开,并不用于限定本公开。
实施例1
如图1所示,电机的定子1位于电机壳体7中,定子1上缠绕有线圈6。线圈6的两端分别延伸出定子1的端部。减速器壳体2位于定子1的一侧,与电机壳体7连接。定子1的另一侧设有电机端盖3。
如图2所示,本实施例在定子1、减速器壳体2和电机端盖3上设置连续的流道。冷却油通过流道可对定子1进行浸润式冷却,还可对线圈6进行冷却,冷却效果好。电机冷却结构包括分支流道100、壳体流道200、端盖流道300、进液口201和出液口202。
如图3和图4所示,电机的定子1上设置有多条贯通的分支流道100。分支流道100之间彼此互不连通。多条分支流道100绕电机的轴线周向布置。本实施例中,分支流道100的数量为12条。本领域技术人员不难理解,分支流道100的数量可根据需求适当增减。可选地,分支流道100沿电机的轴线延伸。
如图5和图6所示,减速器壳体2靠近定子1的侧壁上设有壳体流道200。壳体流道200包括进液流道211、多条壳体长流道和出液流道212。本实施例中,壳体长流道的数量为5条。进液流道211、多条壳体长流道和出液流道212在减速器壳体1上绕电机的轴线周向布置。壳体流道200与分支流道100相对应。
进液流道211对应一条分支流道,本实施例中,进液流道211与 第一分支流道101连通。出液流道212对应一条分支流道,本实施例中,出液流道212与第十二分支流道112连通。一条壳体长流道可对应多条分支流道。可选地,一条壳体长流道对应两条分支流道,使得一条分支流道与一侧相邻的分支流道的靠近减速器壳体2的一端连通。如对应第二分支流道102和第三分支流道103的第一壳体长流道221连通第二分支流道102靠近减速器壳体2的一端和第三分支流道103靠近减速器壳体2的一端。
如图7和图8所示,电机端盖3靠近定子1的侧壁上设有端盖流道300。端盖流道300包括端盖长流道。多条端盖长流道在电机端盖3上绕电机的轴线周向布置。端盖流道300与分支流道100相对应。
一条端盖长流道可对应多条分支流道。可选地,一条端盖长流道对应两条分支流道,使得上述的一条分支流道与另一侧相邻的分支流道的靠近电机端子3的一端连通。以第二分支流道102为例,第二分支流道102和第三分支流道103的靠近减速器壳体2的一端通过第一壳体长流道221连通。第二额分支流道102和第一分支流道101的靠近电机端子3的一端通过第一端盖长流道311连通。
壳体流道200、多条分支流道100和端盖流道300形成连续的总流道。减速器壳体1上设有进液口201和出液口202。进液口201与进液流道211连通。出液口202与出液流道212连通。冷却油通过进液口201进入总流道,通过出液口202排出。
由于总流道是连续的,冷却油进入总流道后,依次通过多条分支流道100,对定子1进行浸润式的冷却,冷却效果好。相邻的分支流 道100中冷却油的流动方向相反时,可对定子1进行更均匀的冷却。
根据本公开一个可选的实施方案,电机的线圈6靠近减速器壳体1的一端的外侧设有第一树脂胶4。第一树脂胶4对线圈6对应的端部起到密封的作用。第一树脂胶4位于壳体流道200形成的圆周内。第一树脂胶4与减速器壳体1之间形成封闭的空间,为第一树脂胶4的冷却流道。出液流道212的内壁上设有开口200a,冷却油由开口200a进入第一树脂胶4的冷却流道,之后由出液口202流出。本实施例中,出液流道的开口200a与出液口202分别设置于第一树脂胶4的两侧。冷却油由开口200a流出后,沿两侧的第一树脂胶4的冷却流道流向出液口202,对第一树脂胶4进行冷却。第一树脂胶4的温度降低,可对线圈6的靠近减速器壳体2的一端冷却。
根据本公开一个可选的实施方案,电机的线圈6靠近电机端盖3的一端的外侧设有第二树脂胶5。第二树脂胶5对线圈6对应的端部起到密封的作用。第二树脂胶5位于端盖流道300形成的圆周内。第二树脂胶5与电机端盖3之间形成封闭的空间,作为第二树脂胶5的冷却流道。
端盖流道300还包括端盖短流道,端盖短流道的数量为两个,分别为第一端盖短流道321和第二端盖短流道322。第一端盖短流道321和第二端盖短流道322分别对应一条分支流道100。两条端盖短流道与多条端盖长流道在电机端盖3上绕电机的轴线周向布置。第一端盖短流道321的内壁上设有开口300a,第二端盖短流道322的内壁上设有开口300b。第一端盖短流道321中的冷却油通过开口300a进入 第二树脂胶5的冷却流道,之后经开口300b进入第二端盖短流道322。冷却油进入第二树脂胶5的冷却流道后对第二树脂胶5进行冷却。第二树脂胶5的温度降低,可对线圈6的靠近的电机端盖3的一端冷却。
通过对第一树脂胶4和第二树脂胶5的冷却,进而实现对线圈6的冷却,提升对电机的冷却效果。
可选地,两条端盖短流道分别设置于第二树脂胶5的两侧。即开口300a和开口300b分别位于第二树脂胶5的两侧,提高对第二树脂胶5的冷却效果。
如图9和图10所示,本实施例的电机冷却结构对电机进行冷却的流程为:
1、冷却油由进液口201进入,流入进液流道211中;
2、冷却油由进液流道211进入第一分支流道101;
3、冷却油依次经过第一端盖长流道311、第二分支流道102、第一壳体长流道221、第三分支流道103、第二端盖长流道312、第四分支流道104、第二壳体长流道222、第五分支流道105、第一端盖短流道321对定子1进行冷却;
4、冷却油经开口300a进入第二树脂胶冷却流道对第二树脂胶进行冷却;
5、冷却油由开口300b进入第二端盖短流道322,依次经过第六分支流道106、第三壳体长流道223、第七分支流道107、第三端盖长流道313、第八分支流道108、第四壳体长流道224、第九分支流道109、第四端盖长流道314、第十分支流道110、第五壳体长流道 225、第十一分支流道111、第五端盖长流道315、第十二分支流道112、出液流道212对定子进行冷却;
6、冷却油经开口200a,进入第一树脂胶冷却流道对第一树脂胶4进行冷却;
7、冷却油经由出液口202排出。
根据本公开一个可选的实施方案,出液口202连接减速器的进油口。电机的冷却油由减速器的进油口进入减速器的空腔,作为润滑油对减速器中齿轮进行润滑和冷却。润滑后的润滑油在减速器底部汇聚,经过滤器过滤后,通过油泵进入进液口201对电机进行冷却,实现冷却油循环利用。
实施例2
本公开的实施例提供一种驱动组件,包括电机和减速器,还包括如上所述的电机冷却结构。
实施例3
本公开的实施例提供一种车辆,包括如上的驱动组件。
本公开的电机冷却结构,分支流道贯穿电机的定子,壳体流道、多条分支流道和端盖流道形成连续的总流道,实现对电机的浸润式冷却,冷却效果好。上一分支流道与下一分支流道中冷却油的流向相反,冷却油可在多个分支流道中轴向循环流动,提高冷却效果。电机冷却结构还可对线圈两端的树脂胶进行冷却,实现对线圈端部的冷却。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
最后应说明的是:以上所述仅为本公开的优选实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种电机冷却结构,其特征在于,包括:
    分支流道,多条所述分支流道在电机的定子上绕电机的轴线周向布置;
    壳体流道,包括进液流道、壳体长流道和出液流道,所述进液流道、多条壳体长流道和出液流道在减速器壳体上绕所述电机的轴线周向布置;
    端盖流道,包括端盖长流道,多条所述端盖长流道在电机端盖上绕所述电机的轴线周向布置;
    所述壳体流道、多条分支流道和端盖流道形成连续的总流道;
    进液口,设置于所述减速器壳体上,与所述进液流道连通;
    出液口,设置于所述减速器壳体上,与所述出液流道连通。
  2. 根据权利要求1所述电机冷却结构,其特征在于,所述分支流道沿所述电机的轴线延伸。
  3. 根据权利要求1所述电机冷却结构,其特征在于,电机线圈靠近所述减速器壳体的一端的外侧设有第一树脂胶,所述第一树脂胶位于所述壳体流道形成的圆周内,所述出液流道的内壁上设有开口,所述出液流道的开口与所述出液口分别设置于所述第一树脂胶的两侧。
  4. 根据权利要求1所述电机冷却结构,其特征在于,电机线圈靠近所述电机端盖的一端的外侧设有第二树脂胶,所述第二树脂胶位于所述端盖流道形成的圆周内。
  5. 根据权利要求4所述电机冷却结构,其特征在于,所述端盖流道还包括端盖短流道,两条所述端盖短流道与多条所述端盖长流道在电机端盖上绕所述电机的轴线周向布置,两条所述端盖短流道的内壁上均设有开口。
  6. 根据权利要求5所述电机冷却结构,其特征在于,两条所述端盖短流道分别设置于所述第二树脂胶的两侧。
  7. 根据权利要求1所述电机冷却结构,其特征在于,所述壳体长流道连通一条分支流道与一侧相邻的分支流道。
  8. 根据权利要求7所述电机冷却结构,其特征在于,所述端盖长流道连通所述一条分支流道与另一侧相邻的分支流道。
  9. 根据权利要求1所述电机冷却结构,其特征在于,所述出液口连接减速器的进油口。
  10. 一种驱动组件,包括电机和减速器,其特征在于,包括权利 要求1-9任意一项所述的电机冷却结构。
  11. 一种车辆,其特征在于,包括权利要求10所述的驱动组件。
PCT/CN2020/138252 2019-12-24 2020-12-22 电机冷却结构、驱动组件及车辆 WO2021129599A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022520296A JP7381734B2 (ja) 2019-12-24 2020-12-22 モータ冷却構造、駆動アセンブリ及び車両
US17/765,584 US20230006486A1 (en) 2019-12-24 2020-12-22 Motor cooling structure, drive assembly and vehicle
EP20905810.6A EP4024679B1 (en) 2019-12-24 2020-12-22 Motor cooling structure, drive assembly, and vehicle
KR1020227010684A KR102654034B1 (ko) 2019-12-24 2020-12-22 모터 냉각 구조, 구동 어셈블리 및 차량

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911351106.5 2019-12-24
CN201911351106.5A CN112467940B (zh) 2019-12-24 2019-12-24 电机冷却结构、驱动组件及车辆

Publications (1)

Publication Number Publication Date
WO2021129599A1 true WO2021129599A1 (zh) 2021-07-01

Family

ID=74807663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138252 WO2021129599A1 (zh) 2019-12-24 2020-12-22 电机冷却结构、驱动组件及车辆

Country Status (6)

Country Link
US (1) US20230006486A1 (zh)
EP (1) EP4024679B1 (zh)
JP (1) JP7381734B2 (zh)
KR (1) KR102654034B1 (zh)
CN (1) CN112467940B (zh)
WO (1) WO2021129599A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115384290A (zh) * 2022-08-18 2022-11-25 华为数字能源技术有限公司 动力总成及车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448197B (zh) * 2022-01-27 2023-05-26 安徽维德电源有限公司 一种用于叉车集成动力总成的电机加工方法及动力总成

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005833A (zh) * 2009-07-29 2011-04-06 六逸科技股份有限公司 内部具有导热胶的马达
CN203674894U (zh) * 2013-11-28 2014-06-25 长城汽车股份有限公司 电机冷却系统和电机
CN105264752A (zh) * 2013-05-30 2016-01-20 瑞美技术有限责任公司 具有液体冷却壳体的电机
CN109450171A (zh) * 2018-11-21 2019-03-08 中国科学院电工研究所 一种高效冷却方式的电机
CN209119985U (zh) * 2018-11-16 2019-07-16 苏州汇川技术有限公司 液冷电机
CN110277842A (zh) * 2018-03-15 2019-09-24 蔚来汽车有限公司 带有冷却套件的电机

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374058U (zh) * 1986-10-29 1988-05-17
US6897581B2 (en) * 2002-10-04 2005-05-24 Honeywell International Inc. High speed generator with the main rotor housed inside the shaft
DE10256189A1 (de) * 2002-12-02 2004-06-17 Cornelius Peter Hydraulisches Aggregat
JP4636824B2 (ja) 2004-07-14 2011-02-23 株式会社牧野フライス製作所 回転軸装置
US8161643B2 (en) * 2007-09-20 2012-04-24 Arvinmeritor Technology, Llc Method for forming a cooling jacket for an electric motor
JP4485566B2 (ja) * 2007-11-13 2010-06-23 本田技研工業株式会社 モータ式動力装置
JP5502421B2 (ja) * 2009-10-08 2014-05-28 株式会社東芝 回転電機
JP5374312B2 (ja) * 2009-10-09 2013-12-25 Ntn株式会社 インホイールモータ駆動装置
JP5734765B2 (ja) * 2011-06-24 2015-06-17 トヨタ自動車株式会社 回転電機の冷却構造
GB2517410A (en) 2013-07-16 2015-02-25 Aim Co Ltd A Stator and a Rotor for an Electric Motor
CN107078597B (zh) * 2014-10-23 2019-05-31 罗伯特·博世有限公司 用于电机的流体冷却的壳体
WO2017041026A1 (en) * 2015-09-02 2017-03-09 Nidec Motor Corporation Motor bearing lubrication arrangement
JP6470676B2 (ja) * 2015-12-24 2019-02-13 株式会社クボタ 液冷モータ
US10135319B2 (en) 2016-03-17 2018-11-20 Ford Global Technologies, Llc Electric machine for vehicle
CN106026530A (zh) * 2016-07-06 2016-10-12 天津市松正电动汽车技术股份有限公司 一种电机散热结构
CN206237254U (zh) * 2016-10-27 2017-06-09 蔚来汽车有限公司 电机液冷结构
KR20180070112A (ko) * 2016-12-16 2018-06-26 현대자동차주식회사 냉각수 열교환 냉각방식 구동모터 및 환경차량
DE102017210778A1 (de) 2017-06-27 2018-12-27 Mahle International Gmbh Elektrische Maschine, insbesondere für ein Fahrzeug
DE102017218828A1 (de) 2017-10-23 2019-04-25 Audi Ag Elektrische Maschine
CN207705998U (zh) * 2018-01-08 2018-08-07 明程电机技术(深圳)有限公司 电机与控制器一体机冷却装置
CN207790311U (zh) * 2018-02-02 2018-08-31 株洲齿轮有限责任公司 汽车电驱动冷却系统及电动汽车
JP2019213258A (ja) 2018-05-31 2019-12-12 国立大学法人横浜国立大学 モータ
RU2687560C1 (ru) * 2018-07-04 2019-05-15 Владимир Андреевич Коровин Электрическая машина с жидкостным охлаждением статора
CN208738934U (zh) 2018-10-17 2019-04-12 珠海格力电器股份有限公司 电机、压缩机及空调
CN208955806U (zh) * 2018-10-25 2019-06-07 广州汽车集团股份有限公司 一种驱动电机及其冷却系统结构
CN208849563U (zh) * 2018-10-31 2019-05-10 珠海格力电器股份有限公司 定子冲片、设有其的定子铁芯、定子及电机
CN110266127B (zh) * 2019-06-04 2021-10-15 华为技术有限公司 电机、电机冷却系统和电动车
CN110492663B (zh) * 2019-07-08 2021-02-23 华为技术有限公司 电机、动力总成和汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005833A (zh) * 2009-07-29 2011-04-06 六逸科技股份有限公司 内部具有导热胶的马达
CN105264752A (zh) * 2013-05-30 2016-01-20 瑞美技术有限责任公司 具有液体冷却壳体的电机
CN203674894U (zh) * 2013-11-28 2014-06-25 长城汽车股份有限公司 电机冷却系统和电机
CN110277842A (zh) * 2018-03-15 2019-09-24 蔚来汽车有限公司 带有冷却套件的电机
CN209119985U (zh) * 2018-11-16 2019-07-16 苏州汇川技术有限公司 液冷电机
CN109450171A (zh) * 2018-11-21 2019-03-08 中国科学院电工研究所 一种高效冷却方式的电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115384290A (zh) * 2022-08-18 2022-11-25 华为数字能源技术有限公司 动力总成及车辆

Also Published As

Publication number Publication date
CN112467940A (zh) 2021-03-09
US20230006486A1 (en) 2023-01-05
CN112467940B (zh) 2022-11-25
KR102654034B1 (ko) 2024-04-03
EP4024679B1 (en) 2024-03-27
EP4024679A1 (en) 2022-07-06
JP2022551076A (ja) 2022-12-07
JP7381734B2 (ja) 2023-11-15
KR20220053656A (ko) 2022-04-29
EP4024679A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US11152827B2 (en) End plate for a rotor assembly of an electrical machine, rotor assembly for an electrical machine, and vehicle
US10532650B2 (en) Drive motor cooled by heat exchange with coolant and eco-friendly vehicle using the same
US12015329B2 (en) Motor unit with oil passage and partition
WO2021042465A1 (zh) 一种油水双冷的电驱动总成和新能源汽车
WO2021129599A1 (zh) 电机冷却结构、驱动组件及车辆
CN106505791B (zh) 电机、电机控制器、减速机构一体化结构
WO2021042466A1 (zh) 一种油水双冷的电驱动总成和新能源汽车
JP2022528250A (ja) ステータコア、ハウジング、電気車両のモーター冷却システム、および電気車両
CN207939353U (zh) 一种电机和车辆
EP3549242B1 (en) Electric machine provided with an enclosed cooling assembly paired to an open cooling assembly
CN108233566A (zh) 用于车辆的直接冷却驱动电动机
WO2017082023A1 (ja) 回転電機
CN110808659A (zh) 一种电驱动总成
CN111835117A (zh) 电机总成及车辆
WO2024041534A1 (zh) 电机转子、电机和车辆
CN115967208B (zh) 一种新能源汽车混合冷却式电机
US20220123615A1 (en) Rotary electric machine with improved stator cooling
CN109980834B (zh) 用于车用电机的冷却结构
RU2776614C1 (ru) Устройство охлаждения двигателя, узел привода и транспортное средство
CN114421694A (zh) 电机、动力总成以及车辆
KR20220045317A (ko) 모터의 냉각을 위한 오일 회수 구조
CN112865395A (zh) 用于高功率密度汽车电机的冷却系统
KR101720204B1 (ko) 전기자동차 모터용 냉각모듈
CN216649422U (zh) 一种油冷电机总成及汽车
CN220401503U (zh) 定子组件、电机和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227010684

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022520296

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020905810

Country of ref document: EP

Effective date: 20220329

NENP Non-entry into the national phase

Ref country code: DE