WO2024041534A1 - 电机转子、电机和车辆 - Google Patents

电机转子、电机和车辆 Download PDF

Info

Publication number
WO2024041534A1
WO2024041534A1 PCT/CN2023/114259 CN2023114259W WO2024041534A1 WO 2024041534 A1 WO2024041534 A1 WO 2024041534A1 CN 2023114259 W CN2023114259 W CN 2023114259W WO 2024041534 A1 WO2024041534 A1 WO 2024041534A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotor
channel
axial
motor rotor
Prior art date
Application number
PCT/CN2023/114259
Other languages
English (en)
French (fr)
Inventor
胡凯明
吕春
陈庆峰
江青松
应人龙
王生建
Original Assignee
法雷奥新能源汽车(常熟)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法雷奥新能源汽车(常熟)有限公司 filed Critical 法雷奥新能源汽车(常熟)有限公司
Publication of WO2024041534A1 publication Critical patent/WO2024041534A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a motor rotor.
  • the invention also relates to an electric machine and a vehicle including such an electric machine rotor.
  • the motors used to drive electric vehicles have large powers and generate a large amount of heat during continuous operation. If the heat dissipation is insufficient, the heat generated will accumulate inside the motor, causing the motor temperature to rise and affecting the reliability and performance of the motor. Therefore, a special cooling mechanism needs to be installed on the motor to enhance the heat dissipation of the motor.
  • Common motor cooling mechanisms can use air cooling, water cooling, oil cooling, etc. Due to volume limitations, the amount of cooling that air cooling can produce is limited. Water cooling does not allow direct contact between the cooling medium and the internal components of the motor, and the cooling effect is also greatly reduced. Therefore, oil-cooled motors, which bring the cooling medium (cooling oil) into direct contact with the internal components of the motor, are increasingly used in the field of electric vehicles.
  • Oil-cooled motors usually pass cooling oil through the rotor shaft located at the axis center of the motor, and the centrifugal force generated when the motor rotates causes the cooling oil to flow toward the radially outer stator.
  • a large amount of cooling oil flows directly to the motor's stator driven by centrifugal force without contacting the rotor, so the rotor cannot be effectively cooled.
  • the present invention proposes a new type of motor rotor, motor and vehicle, which solves the above problems and brings other technical effects by adopting the following technical features.
  • the motor rotor includes: a rotor shaft that rotates around a rotation axis; a core that is rotationally fixed to the rotor shaft; end plates that are provided at both axial ends of the core; and an oil cooling system.
  • the oil cooling system includes an inlet provided on the rotor shaft, an outlet provided on the end plate, and an outlet provided on the end plate. A closed passage between the inlet and the outlet.
  • One object of the present invention is to provide a motor rotor in which cooling oil can fully contact the motor rotor to provide effective cooling.
  • the oil cooling system of the motor rotor according to the invention includes a closed channel between the inlet on the rotor shaft and the outlet on the end plate. A direct radial flow path of the cooling oil from this inlet to the motor stator due to centrifugal action is thereby blocked. The cooling oil can only flow along this closed channel to the outlet, so that the motor rotor can be fully cooled.
  • the electric machine rotor according to the invention may also have one or more of the following features alone or in combination.
  • the closed channel includes a first channel located between the rotor shaft and the core through which cooling oil flows sequentially, an intermediate channel located on one of the end plates, a second channel located within the core, and Egress channel located on the other end plate.
  • the cooling oil flows from the rotor shaft to one end plate, flows from the core to the opposite end plate, and then flows out from the outlet. Therefore, the cooling oil flows in various parts of the motor rotor, thereby taking away the heat generated by the motor rotor and fully cooling the rotor.
  • the middle channel includes a first groove provided inside the corresponding end plate, the first groove includes a first main body part and a first communication part connected with the first channel.
  • the first passage includes a central hole disposed at the center of the rotor shaft and communicating with the inlet, a central hole disposed on an outer surface of the rotor shaft and communicating with the first There are axial grooves that communicate with each other, and radial holes that communicate with the central hole and the axial groove.
  • the first passage includes a central hole disposed at the center of the rotor shaft and communicating with the inlet, and is disposed on an inner surface of the core and communicating with the first and a radial hole connecting the central hole and the axial groove.
  • the cooling oil entering from the inlet first flows in the central hole of the rotor shaft, and then flows through the radial hole to the axial groove at the outer surface of the rotor shaft or the axial groove at the inner surface of the core. That is, the cooling oil flows from the center of the rotor shaft to the outer surface of the rotor shaft or the inner surface of the core through the first channel.
  • the second passage includes an axial through hole penetrating the core part and communicating with the first body part, and the axial through hole is disposed close to the magnet of the motor rotor.
  • the cooling oil from the axial groove enters the first communication portion of the first groove, and then enters the axial through hole penetrating the core portion through the first main body portion of the first groove.
  • the cooling oil flows from the rotor shaft through the end plate to the axial through hole in the core of the electric machine rotor. Since the axial through hole is located close to the electrical The magnets of the machine rotor can be fully cooled by the cooling oil flowing in the axial through hole to avoid the deterioration of the magnet performance caused by the heat accumulated during the operation of the motor.
  • the outlet channel includes a second groove disposed inside the corresponding end plate, the second groove includes a second body portion communicated with the axial through hole and a second body portion communicated with the outlet.
  • the second connected department includes a second groove disposed inside the corresponding end plate, the second groove includes a second body portion communicated with the axial through hole and a second body portion communicated with the outlet.
  • the cooling oil from the axial through hole of the core flows out from the outlet through the second main body part and the second communication part of the second groove successively.
  • the first grooves and the second grooves are alternately arranged around the rotation axis on the same end plate. That is, the first groove and the second groove are arranged at different angular positions on the same end plate.
  • the motor rotor further includes a sealing cover, which is arranged on an end of the rotor shaft opposite to the inlet for sealing the closed channel.
  • the end plate of the motor rotor cannot completely seal the end of the axial groove.
  • the sealing cover can achieve complete sealing of the axial groove and prevent cooling oil from escaping the closed channel from the end of the axial groove.
  • the invention also relates to a motor, which includes a motor rotor as described above.
  • the invention also relates to a vehicle comprising an electric machine as described above.
  • Figure 1 shows an exploded view of a motor rotor according to the invention
  • Figure 2 shows a cross-sectional view of an example of a motor rotor according to the invention
  • Figure 3 shows a perspective view of a motor rotor according to the present invention, in which the core of the motor rotor is omitted;
  • Figure 4 shows a cross-sectional view of another example of a motor rotor according to the invention.
  • Figure 5 shows a front view of the end plate of the motor rotor
  • Figure 6 shows a transparent view of the end plates and core of the motor rotor.
  • Figure 1 shows an electric machine rotor 100 according to an exemplary embodiment of the present invention.
  • the motor rotor 100 includes a rotor shaft 10 located at an axis center that rotates about a rotation axis X.
  • the core 20 is rotationally fixed to the rotor shaft 10 , that is, the core 20 and the rotor shaft 10 rotate together without relative rotation therebetween.
  • the magnets of the electric machine rotor 100 are arranged within this core 20 .
  • the end plates 30 are provided at both axial ends of the core 20 .
  • the motor rotor 100 also includes a sealing cover 40 provided at one end of the core 20 .
  • the motor rotor 100 also includes an oil cooling system to cool various parts of the motor rotor 100 through cooling oil, especially the magnets arranged in the core 20 .
  • the oil cooling system includes an inlet 1 provided on the rotor shaft 10 , an outlet 2 provided on the end plate 30 , and a closed channel 3 arranged between the inlet 1 and the outlet 2 . Due to the sealing nature of the closed channel 3, after entering from the inlet 1, the cooling oil can only flow along the closed channel 3 to the outlet 2 and flow out, and then it can be used to cool other parts of the motor, such as the stator, etc. In other words, before flowing to the outlet 2, the cooling oil will not escape from the oil cooling system of the motor rotor, but can only flow along the path defined by the closed channel 3, so that the motor rotor can be fully cooled.
  • the path defined by the closed channel 3 is distributed on each main component of the motor rotor 100, so that the cooling oil flows through each main component of the motor rotor 100 in sequence.
  • the closed channel 3 includes cold The oil sequentially flows through the first channel 4 between the rotor shaft 10 and the core 20 , the middle channel 5 on one of the end plates 30 , the second channel 6 in the core 20 and the other end plate 30 Exit passage 7.
  • the middle channel 5 and the outlet channel 7 are located on different end plates, and the second channel 6 penetrates the core 20 to connect the middle channel 5 and the outlet channel 7 .
  • the first passage 4 includes a central hole 11 disposed at the center of the rotor shaft 10 and communicating with the inlet 1 , and is disposed outside the rotor shaft 10 .
  • the axial groove 13 on the surface and the radial hole 12 connecting the central hole 11 and the axial groove 13.
  • the cooling oil enters the central hole 11 of the rotor shaft 10 from the inlet 1, then flows to the axial groove 13 through the radial hole 12, and flows axially to the corresponding end plate 30 under the guidance of the axial groove 13.
  • a plurality of axial grooves 13 may be provided on the rotor shaft 10 , and each axial groove 13 may be connected to the central hole 11 via a plurality of radial holes 12 .
  • the plurality of axial grooves 13 may be symmetrical about the rotation axis X, and the flow direction of the cooling oil in two adjacent axial grooves 13 may be opposite to flow to the end plates 30 on both sides of the core 20 respectively. .
  • the cooling oil flows in two adjacent axial grooves 13 to the end plates 30 on both sides of the core 20 along the upward and upward directions shown by arrows respectively.
  • the first channel 4 includes a central hole 11 disposed at the center of the rotor shaft 10 and communicating with the inlet 1 , and is disposed on the inner surface of the core 20
  • the axial groove 13 on the body and the radial hole 12 connecting the central hole 11 and the axial groove 13.
  • Providing the axial grooves 13 on the inner surface of the core 20 is less expensive to process than providing the axial grooves 13 on the outer surface of the rotor shaft 10 .
  • the cooling oil enters the central hole 11 of the rotor shaft 10 from the inlet 1, then flows to the axial groove 13 through the radial hole 12, and flows axially to the corresponding end plate 30 under the guidance of the axial groove 13.
  • a plurality of axial grooves 13 can be provided on the inner surface of the core 20 , the radial hole 12 is located at the middle position of the axial groove 13 in the axial direction, and each axial groove 13 can be connected to the center via one radial hole 12 Hole 11.
  • the radial hole 12 is disposed in the middle position of the axial groove 13 in the axial direction, so that the cooling liquid can be distributed evenly, thereby maintaining the stability, heat dissipation and dynamic balance of the rotor.
  • the radial hole 12 is provided at the middle position in the axial direction of the axial groove 13 is just an example.
  • the radial hole may also be provided as shown in FIG. 2 , and this disclosure is not limiting.
  • the plurality of axial grooves 13 may be symmetrical about the rotation axis X, and the flow direction of the cooling oil in two adjacent axial grooves 13 may be opposite to flow to the end plates 30 on both sides of the core 20 respectively. .
  • the middle channel 5 includes a first groove 31 disposed inside the corresponding end plate 30 (ie, on the side facing the core 20 ).
  • the first groove 31 includes a first main body portion 31a and The first communication part 31b.
  • the first communication portion 31b communicates with the axial groove 13 and extends to the first main body portion 31a in a direction having at least a radially outward component.
  • the first body portion 31a is further outward in the radial direction and closer to the magnets in this core radial position within 20.
  • the second passage 6 includes an axial through hole 21 penetrating the core 20 , the axial through hole 21 communicating with the first body part 31 a and being disposed close to the motor rotor. magnet. Therefore, the cooling oil flowing in the axial through hole 21 can fully cool the magnet.
  • the flow direction of the cooling oil in the axial through hole 21 is opposite to the flow direction in the axial groove 13 , and therefore flows to the end plates 30 on both sides of the core 20 respectively.
  • a plurality of axial through holes 21 symmetrical about the rotation axis
  • each first body portion 31 a corresponds to two axial through holes 21 . It is conceivable that it may also be configured such that each first body portion 31 a corresponds to one or other number of axial through holes 21 .
  • the outlet channel 7 includes a second groove 32 provided on the inside of the corresponding end plate 30 (ie on the side facing the core 20).
  • the second groove 32 includes a second main body part 32a and a second communication part 32b.
  • the second main body part 32a communicates with the axial through hole 21, and the second communication part 32b extends from the second main body part 32a to the outlet 2.
  • the cooling oil flows from the second main body part 32a to the outlet 2 through the second communication part 32b, and flows out of the motor rotor 100 from the outlet 2.
  • each second body portion 32 a corresponds to two axial through holes 21 . It is conceivable that it may also be configured such that each second body portion 32 a corresponds to one or other number of axial through holes 21 .
  • the end plate 30 is provided with both a first groove 31 and a second groove 32 .
  • the first grooves 31 and the second grooves 32 are alternately arranged around the rotation axis X on the same end plate 30 .
  • the two end plates 30 at both ends of the core 20 are arranged to rotate at a certain angle about the rotation axis X, so that the first groove 31 of one end plate 30 is aligned with the second groove 32 of the other end plate 30 are in the same angular position, thereby corresponding to each other, and are connected through the axial through hole 21 .
  • the rotor shaft 10 is provided with a flange 14 at one end close to the inlet 1 .
  • the flange 14 abuts against the end plate 30 to constrain the axial position of the rotor shaft 10 .
  • the axial groove 13 terminates at this flange 14 .
  • the flange 14 and the end plate 30 can thus seal the axial groove 13 .
  • the motor rotor 100 is also provided with a sealing cover 40 at the end opposite to the inlet 1 for sealing the axial groove 13 and thereby sealing the passage 3 .
  • the end plate 30 can seal the axial groove 13 , so there is no need to provide an additional sealing cover to seal the shaft.
  • the flow path of the cooling oil in the motor rotor 100 is as follows: inlet 1 ⁇ central hole 11 ⁇ radial hole 12 ⁇ axial groove 13 ⁇ first communication part 31b ⁇ first main body part 31a ⁇ axial through hole 21 ⁇ Second main body part 32a ⁇ Second communication part 32b ⁇ Exit 2. Since the rotor shaft 10 or the core 20 has a plurality of axial grooves 13 , the end plate 30 has a plurality of first grooves 31 and second grooves 32 , and the core 20 has a plurality of axial through holes 21 , the motor rotor 100
  • the oil cooling system can define multiple flow paths. In the embodiment shown in FIG.
  • the oil cooling system defines four flow paths, corresponding to four outlets 2 provided on each end plate 30 . These four flow paths are symmetrical around the rotation axis X, and the axial flow directions of the cooling oil in the two adjacent flow paths are opposite. That is, if the outlet 2 of one flow path is located on the left end plate 30, the outlet 2 of the adjacent flow path is located on the right end plate 30. It should be noted that the four flow paths are just an example, and the present disclosure does not limit the number of flow paths. As a result, the cooling oil can flow out from the opposite end plates 30 of the electric machine rotor 100 . This arrangement facilitates the cooling oil reaching different axial parts of the motor when subsequently cooling other components of the motor, such as the stator.
  • the present invention also proposes a motor, including the motor rotor 100 as mentioned above.
  • the present invention also provides a vehicle, including the motor as mentioned above.
  • the vehicle is, for example, a pure electric vehicle (BEV, Battery Electric Vehicle), a hybrid electric vehicle (HEV, Hybrid Electric Vehicle), a plug-in hybrid electric vehicle (PHEV, Plug-in Hybrid Electric Vehicle), or an extended-range electric vehicle (Range). extended EV), fuel cell vehicle (FCEV, Fuel Cell Electric Vehicle), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明涉及一种电机转子(100),其包括转子轴(10)、芯部(20)和端板(30)。转子轴(10)绕旋转轴线(X)旋转,芯部(20)旋转固定至该转子轴(10),并且端板(30)设置在所述芯部(20)的轴向两端。所述电机转子(100)还包括油冷系统,该油冷系统包括设置在所述转子轴(10)上的入口(1)、设置在所述端板(30)上的出口(2)和设置在所述入口(1)和出口(2)之间的封闭通道(3)。本发明还涉及一种包括所述电机转子(100)的电机和包括所述电机的车辆。

Description

电机转子、电机和车辆 技术领域
本发明涉及一种电机转子。本发明还涉及包括这种电机转子的电机和车辆。
背景技术
用于驱动电动车辆的电机具有较大的功率,在持续运行时会产生大量的热。如果散热不足,则所产生的热会累积在电机内部,造成电机温度上升,影响电机的可靠性和性能。因此,需要在电机上设置专门的冷却机构,以增强电机的散热。常见的电机冷却机构可采用风冷、水冷和油冷等。由于体积的限制,风冷所能产生的冷量是有限的。水冷则不能使冷却介质与电机内部部件直接接触,冷却效果也大打折扣。因此,将冷却介质(冷却油)与电机的内部部件直接接触的油冷电机在电动车辆领域得到了越来越广泛的应用。油冷电机通常在位于电机的轴心处的转子轴处通入冷却油,并通过电机转动时产生的离心力使冷却油朝向在径向外部的定子流动。在现有的油冷电机的结构中,大量冷却油在离心力的驱动下直接流到电机的定子,而不与转子接触,转子无法得到有效的冷却。
因此,需要一种电机转子,其能够使得冷却油与电机转子充分接触的冷却结构,以对电机转子提供有效冷却。
发明内容
针对上文提到的问题和需求,本发明提出了一种新型的电机转子、电机和车辆,其由于采取了如下技术特征而解决了上述问题,并带来其他技术效果。
根据本发明的电机转子包括:转子轴,其绕旋转轴线旋转;芯部,旋转固定至所述转子轴;端板,设置在所述芯部的轴向两端;以及油冷系统。该油冷系统包括设置在所述转子轴上的入口,设置在所述端板上的出口,和设 置在所述入口和出口之间的封闭通道。
本发明的目的之一在于提供一种电机转子,其中冷却油可与电机转子充分接触以提供有效的冷却。根据本发明的电机转子的油冷系统包括在转子轴上的入口与在端板上的出口之间的封闭通道。由此,从该入口由于离心作用直接径向流动到电机定子的冷却油流动路径被禁止。冷却油只能沿该封闭通道流到出口,从而可以充分地冷却电机转子。
根据本发明的电机转子还可以单独或组合地具有以下特征中的一个或多个。
根据本发明的一个实施例,所述封闭通道包括冷却油依次流动通过的位于转子轴和芯部之间的第一通道、位于其中一个端板上的中间通道,位于芯部内的第二通道和位于另一端板上的出口通道。
根据以上特征,冷却油从转子轴流动到一个端板,从芯部内流动到相对的另一端板,然后从出口流出。因此,冷却油在电机转子的各部分流动,从而可以将电机转子产生的热量带走,充分冷却转子。
根据本发明的一个实施例,所述中间通道包括设置在相应端板内侧的第一凹槽,该第一凹槽包括第一主体部和与所述第一通道连通的第一连通部。
根据本发明的一个实施例,所述第一通道包括设置在所述转子轴的中心处并与所述入口连通的中心孔、设置在所述转子轴的外表面上并且与所述第一连通部连通的轴向槽以及连通所述中心孔和轴向槽的径向孔。
根据本发明的一个实施例,所述第一通道包括设置在所述转子轴的中心处并与所述入口连通的中心孔、设置在所述芯部的内表面上并且与所述第一连通部连通的轴向槽以及连通所述中心孔和所述轴向槽的径向孔。
根据以上特征,从入口进入的冷却油先在转子轴的中心孔内流动,然后经径向孔流动到转子轴的外表面处的轴向槽或芯部的内表面处的轴向槽。也就是说,冷却油经过第一通道从转子轴的中心流动到转子轴的外表面或芯部的内表面。
根据本发明的一个实施例,所述第二通道包括贯穿所述芯部并且与所述第一主体部连通的轴向通孔,该轴向通孔靠近所述电机转子的磁体设置。
根据以上特征,来自轴向槽的冷却油进入第一凹槽的第一连通部,然后通过第一凹槽的第一主体部进入贯穿芯部的轴向通孔。由此,冷却油从转子轴经端板流动到电机转子的芯部内的轴向通孔。由于轴向通孔的位置靠近电 机转子的磁体,所述磁体可以被在轴向通孔内流动的冷却油充分冷却,避免电机工作期间积累的热量造成的磁体性能劣化。
根据本发明的一个实施例,所述出口通道包括设置在相应端板内侧的第二凹槽,该第二凹槽包括与所述轴向通孔连通的第二主体部和与所述出口连通的第二连通部。
根据以上特征,来自芯部的轴向通孔的冷却油先后经过第二凹槽的第二主体部和第二连通部而从出口流出。
根据本发明的一个实施例,所述第一凹槽和第二凹槽在同一端板上围绕所述旋转轴线交替布置。也就是说,第一凹槽和第二凹槽在同一端板上布置在不同的角度位置。
根据本发明的一个实施例,所述电机转子还包括密封盖,其布置在所述转子轴的与所述入口相对的一端,用于密封所述封闭通道。电机转子的端板不能完全密封轴向槽的端部。密封盖可以实现对轴向槽的完全密封,防止冷却油从轴向槽的端部逸出所述封闭通道。
本发明还涉及一种电机,其包括如上所述的电机转子。
本发明还涉及一种车辆,其包括如上所述的电机。
附图说明
本发明的上述和其他特征以及优点将通过下面的结合附图的示例性实施例的详细描述变得更加明显,并且该描述和附图仅用于示例性目的而不是以任何方式来限制本发明的范围。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本发明的主旨。
图1示出了根据本发明的电机转子的分解视图;
图2示出了根据本发明的电机转子的一个示例的剖视图;
图3示出了根据本发明的一种电机转子的透视图,其中省略了电机转子的芯部;
图4示出了根据本发明的电机转子的另一个示例的剖视图;
图5示出了电机转子的端板的正视图;以及
图6示出了电机转子的端板和芯部的透明视图。
具体实施方式
为了使本发明的实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图对本发明的实施例的技术方案进行清楚、完整的描述。
除非另作定义,本文使用的技术术语或者科学术语应当为本发明所属领域内普通技术人员所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同物。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。术语“轴向”、“轴向方向”指的电机转子的旋转轴线X的方向。
为了便于描述,本发明附图相应地简化或省略了本领域常用的部件,例如外部连接线等其他与本发明描述无关的部件。这些省略或简化的部件不影响本领域技术人员理解本发明的内容。
图1示出了根据本发明的一个示例性实施例的电机转子100。
在该实施例中,电机转子100包括位于轴心处的绕旋转轴线X旋转的转子轴10。芯部20旋转固定至该转子轴10,即芯部20与该转子轴10一起旋转,二者之间没有相对转动。电机转子100的磁体布置在该芯部20内。端板30设置在芯部20的轴向两端。电机转子100还包括设置在芯部20的一端处的密封盖40。
电机转子100还包括油冷系统,以通过冷却油对电机转子100的各部分进行冷却,特别是对布置在芯部20内的磁体进行冷却。该油冷系统包括设置在转子轴10上的入口1、设置在端板30上的出口2和布置在入口1与出口2之间的封闭通道3。由于封闭通道3的密封性,在从入口1进入后,冷却油只能沿封闭通道3流动到出口2流出,然后才可用于冷却电机的其他部分,例如定子等。换句话说,在流动到出口2之前,冷却油不会从电机转子的油冷系统中脱离,而只能沿该封闭通道3限定的路径流动,从而可以充分地冷却电机转子。
封闭通道3所限定的路径分布在电机转子100的各主要部件上,使得冷却油依次流动经过电机转子100的各主要部件。具体地,封闭通道3包括冷 却油依次流动通过的位于转子轴10和芯部20之间的第一通道4、位于其中一个端板30上的中间通道5,位于芯部20内的第二通道6和位于另一端板30上的出口通道7。中间通道5和出口通道7位于不同的端板上,第二通道6贯穿芯部20以连通中间通道5和出口通道7。
在一个示例性实施例中,参见图2-3,第一通道4包括设置在所述转子轴10的中心处并与所述入口1连通的中心孔11,设置在所述转子轴10的外表面上的轴向槽13以及连通所述中心孔11和轴向槽13的径向孔12。冷却油从入口1进入转子轴10的中心孔11,然后经径向孔12流动到轴向槽13,并在轴向槽13的引导下沿轴向流动到相应端板30。转子轴10上可设置多个轴向槽13,并且每个轴向槽13可经由多个径向孔12连通至中心孔11。多个轴向槽13可关于旋转轴线X轴对称,并且冷却油在相邻的两个轴向槽13中的流动方向可以是相反的,以分别流动到在芯部20两侧的端板30。例如,参考图3,冷却油在相邻的两个轴向槽13中分别沿箭头示出的向上向和向上方向流动到在芯部20两侧的端板30。
在另一个示例性实施例中,参见图4,第一通道4包括设置在所述转子轴10的中心处并与所述入口1连通的中心孔11,设置在所述芯部20的内表面上的轴向槽13以及连通所述中心孔11和轴向槽13的径向孔12。与在转子轴10的外表面上设置轴向槽13相比,在芯部20的内表面上设置轴向槽13的加工成本更低。冷却油从入口1进入转子轴10的中心孔11,然后经径向孔12流动到轴向槽13,并在轴向槽13的引导下沿轴向流动到相应端板30。芯部20的内表面上可设置多个轴向槽13,径向孔12位于轴向槽13的轴向方向的中间位置,并且每个轴向槽13可经由一个径向孔12连通至中心孔11。径向孔12设置在轴向槽13的轴向方向的中间位置可以使得冷却液的分流分配均匀,从而保持转子稳定、散热和动平衡。需要说明的是,径向孔12设置在轴向槽13的轴向方向的中间位置仅仅是一个示例,也可以如图2所示设置径向孔,本公开对此不作限制。多个轴向槽13可关于旋转轴线X轴对称,并且冷却油在相邻的两个轴向槽13中的流动方向可以是相反的,以分别流动到在芯部20两侧的端板30。
在通过第一通道4的轴向槽13之后,冷却油流动到位于一个端板30上的中间通道5。参考图2-图5,中间通道5包括设置在相应端板30内侧(即朝向芯部20的一侧)的第一凹槽31。该第一凹槽31包括第一主体部31a和 第一连通部31b。第一连通部31b与轴向槽13连通,并沿至少具有径向向外的分量的方向延伸至第一主体部31a。相比于转子轴10的外表面上的轴向槽13或芯部20的内表面上的轴向槽13,第一主体部31a在径向方向上更加靠外,更加接近磁体在该芯部20内的径向位置。
在通过中间通道5的第一主体部31a之后,冷却油流动到位于芯部20内第二通道6。参考图1、图2、图4和图6,第二通道6包括贯穿芯部20的轴向通孔21,该轴向通孔21与第一主体部31a连通,并且设置为靠近电机转子的磁体。因此,在轴向通孔21内流动的冷却油可以对所述磁体进行充分冷却。冷却油在轴向通孔21内的流动方向与其在轴向槽13内的流动方向是相反的,因而分别流向了在芯部20两侧的端板30。芯部20内可设置关于旋转轴线X轴对称的多个轴向通孔21,分别用于冷却电机转子的多个磁体。在图6所示的实施例中,每个第一主体部31a对应于两个轴向通孔21。可以设想的是,也可以构造为每个第一主体部31a对应于一个或其他数量的轴向通孔21。
在通过第二通道6的轴向通孔21之后,冷却油流动到位于另一端板30上的出口通道7。参考图2-图5,出口通道7包括设置在相应端板30内侧(即朝向芯部20的一侧)的第二凹槽32。该第二凹槽32包括第二主体部32a和第二连通部32b。第二主体部32a与轴向通孔21连通,第二连通部32b从该第二主体部32a延伸至出口2。冷却油从第二主体部32a经第二连通部32b流动到出口2,并从该出口2流出电机转子100。在图6所示的实施例中,每个第二主体部32a对应于两个轴向通孔21。可以设想的是,也可以构造为每个第二主体部32a对应于一个或其他数量的轴向通孔21。
参考图5,端板30既设置有第一凹槽31,又设置有第二凹槽32。第一凹槽31和第二凹槽32在同一端板30上围绕所述旋转轴线X交替布置。如图6所示,在芯部20两端的两个端板30布置为绕旋转轴线X旋转一定的角度,使得一个端板30的第一凹槽31与另一端板30的第二凹槽32处于相同的角度位置上,从而彼此对应,并通过轴向通孔21连通。
参考图2,转子轴10在靠近入口1的一端处设置有凸缘14。该凸缘14抵靠在端板30上,以约束转子轴10的轴向位置。轴向槽13在该凸缘14处终止。凸缘14和端板30因而可以密封轴向槽13。在与入口1相对的端部处,出于加工方便上的考虑,设置在转子轴10的外表面上的轴向槽13是贯 通的,端板30无法密封轴向槽13,为此,电机转子100还在与入口1相对的一端处设置了密封盖40,用于密封轴向槽13,进而密封封闭通道3。而在图4所示的另一个示例性实施例中,由于轴向槽13设置在芯部20的内表面上,端板30能够密封轴向槽13,因此无需设置额外的密封盖来密封轴向槽13。
总结来说,冷却油在电机转子100内的流动路径如下:入口1→中心孔11→径向孔12→轴向槽13→第一连通部31b→第一主体部31a→轴向通孔21→第二主体部32a→第二连通部32b→出口2。由于转子轴10或芯部20具有多个轴向槽13、端板30具有多个第一凹槽31和第二凹槽32、且芯部20具有多个轴向通孔21,电机转子100的油冷系统可以限定多条流动路径。在图6所示的实施例中,该油冷系统限定了4条流动路径,对应于在每个端板30上各设置4个出口2。这4条流动路径绕旋转轴线X对称,并且冷却油在相邻的2条流动路径中的轴向流动方向是相反的。即,如果一条流动路径的出口2位于左侧的端板30上,则与其相邻的流动路径的出口2位于右侧的端板30上。需要说明的是,4条流动路径仅仅是一个示例,本公开对流动路径的条数不作限制。由此,冷却油可从电机转子100的相对的端板30流出。在后续冷却电机的其他部件(诸如定子)时,这种布置有利于冷却油到达电机的不同轴向部分。
另一方面,本发明还提出一种电机,包括如前所述的电机转子100。
又一方面,本发明还提出一种车辆,包括如前所述的电机。所述车辆例如为纯电动车(BEV,Battery Electric Vehicle)、混合动力车(HEV,Hybrid Electric Vehicle)、插电式混合动力车(PHEV,Plug-in Hybrid Electric Vehicle)、增程式电动车(Range extended EV)、燃料电池车(FCEV,Fuel Cell Electric Vehicle)等。
上面是对本发明的说明,而不应被认为是对其的限制。尽管描述了本发明的若干示例性实施例,但本领域技术人员将容易地理解,在不背离本发明的新颖教学和优点的前提下可以对示例性实施例进行许多修改。因此,所有这些修改都意图包含在权利要求书所限定的本发明范围内。应当理解,上面是对本发明的说明,而本发明不应被认为是限于所公开的特定实施例,并且对所公开的实施例以及其他实施例的修改意图包含在本发明的范围内。

Claims (11)

  1. 一种电机转子(100),包括
    转子轴(10),绕旋转轴线(X)旋转,
    芯部(20),旋转固定至所述转子轴(10),
    端板(30),设置在所述芯部(20)的轴向两端,
    其特征在于,所述电机转子(100)还包括油冷系统,该油冷系统包括
    设置在所述转子轴(10)上的入口(1),
    设置在所述端板(30)上的出口(2),和
    设置在所述入口(1)和出口(2)之间的封闭通道(3)。
  2. 根据权利要求1所述的电机转子(100),其特征在于,
    所述封闭通道(3)包括冷却油依次流动通过的位于转子轴(10)和芯部(20)之间的第一通道(4)、位于其中一个端板(30)上的中间通道(5)、位于芯部(20)内的第二通道(6)和位于另一端板(30)上的出口通道(7)。
  3. 根据权利要求2所述的电机转子(100),其特征在于,
    所述中间通道(5)包括设置在相应端板(30)内侧的第一凹槽(31),该第一凹槽(31)包括第一主体部(31a)和与所述第一通道(4)连通的第一连通部(31b)。
  4. 根据权利要求3所述的电机转子(100),其特征在于,
    所述第一通道(4)包括设置在所述转子轴(10)的中心处并与所述入口(1)连通的中心孔(11)、设置在所述转子轴(10)的外表面上并且与所述第一连通部(31b)连通的轴向槽(13)以及连通所述中心孔(11)和所述轴向槽(13)的径向孔(12)。
  5. 根据权利要求3所述的电机转子(100),其特征在于,
    所述第一通道(4)包括设置在所述转子轴(10)的中心处并与所述入口(1)连通的中心孔(11)、设置在所述芯部(20)的内表面上并且与所述第一连通部(31b)连通的轴向槽(13)以及连通所述中心孔(11)和所述轴向槽(13)的径向孔(12)。
  6. 根据权利要求3所述的电机转子(100),其特征在于,
    所述第二通道(6)包括贯穿所述芯部(20)并且与所述第一主体部(31a) 连通的轴向通孔(21),该轴向通孔(21)靠近所述电机转子(100)的磁体设置。
  7. 根据权利要求6所述的电机转子(100),其特征在于,
    所述出口通道(7)包括设置在相应端板(30)内侧的第二凹槽(32),该第二凹槽(32)包括与所述轴向通孔(21)连通的第二主体部(32a)和与所述出口(2)连通的第二连通部(32b)。
  8. 根据权利要求7所述的电机转子(100),其特征在于,
    所述第一凹槽(31)和第二凹槽(32)在同一端板(30)上围绕所述旋转轴线(X)交替布置。
  9. 根据权利要求4所述的电机转子(100),其特征在于,
    所述电机转子(100)还包括密封盖(40),其布置在所述转子轴(10)的与所述入口(1)相对的一端,用于密封所述封闭通道(3)。
  10. 一种电机,其特征在于,所述电机包括根据权利要求1至9中任一项所述的电机转子(100)。
  11. 一种车辆,其特征在于,所述车辆包括根据权利要求10所述的电机。
PCT/CN2023/114259 2022-08-26 2023-08-22 电机转子、电机和车辆 WO2024041534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222259419.1U CN218124431U (zh) 2022-08-26 2022-08-26 电机转子、电机和车辆
CN202222259419.1 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024041534A1 true WO2024041534A1 (zh) 2024-02-29

Family

ID=84528145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114259 WO2024041534A1 (zh) 2022-08-26 2023-08-22 电机转子、电机和车辆

Country Status (2)

Country Link
CN (1) CN218124431U (zh)
WO (1) WO2024041534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218124431U (zh) * 2022-08-26 2022-12-23 法雷奥新能源汽车(常熟)有限公司 电机转子、电机和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016240A (ja) * 2010-07-05 2012-01-19 Nippon Soken Inc 回転電機及び回転電機冷却システム
CN216625417U (zh) * 2021-12-14 2022-05-27 重庆金康动力新能源有限公司 转子及油冷电机
CN216851493U (zh) * 2021-12-31 2022-06-28 苏州汇川联合动力系统有限公司 转子冷却结构和电机
CN114759706A (zh) * 2022-03-17 2022-07-15 华为电动技术有限公司 一种转子、电机和电动车
CN218124431U (zh) * 2022-08-26 2022-12-23 法雷奥新能源汽车(常熟)有限公司 电机转子、电机和车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016240A (ja) * 2010-07-05 2012-01-19 Nippon Soken Inc 回転電機及び回転電機冷却システム
CN216625417U (zh) * 2021-12-14 2022-05-27 重庆金康动力新能源有限公司 转子及油冷电机
CN216851493U (zh) * 2021-12-31 2022-06-28 苏州汇川联合动力系统有限公司 转子冷却结构和电机
CN114759706A (zh) * 2022-03-17 2022-07-15 华为电动技术有限公司 一种转子、电机和电动车
CN218124431U (zh) * 2022-08-26 2022-12-23 法雷奥新能源汽车(常熟)有限公司 电机转子、电机和车辆

Also Published As

Publication number Publication date
CN218124431U (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US11303174B2 (en) Rotor for an electric machine
CN104247229B (zh) 电机
WO2024041534A1 (zh) 电机转子、电机和车辆
JP4846073B1 (ja) 全閉外扇形電動機
WO2021232833A1 (zh) 一种转子、电机、动力总成及车辆
JP5445675B2 (ja) 回転機
CN108206610B (zh) 与冷却剂热交换而冷却的驱动电动机及使用其的环保车辆
US20120025642A1 (en) Rotating electric machine
US11005316B2 (en) Electrical drive device for a motor vehicle
CN108886301A (zh) 具有冷却装置的电机
JP2007325436A (ja) 全閉形液冷電動機
WO2020244284A1 (zh) 电机、电机冷却系统和电动车
JP2010196478A (ja) 電動アシスト過給機の冷却構造
CN113519107B (zh) 转子以及设置有该转子的电动机
KR102018231B1 (ko) 전동기
KR102046891B1 (ko) 전동기
JP2009118712A (ja) 回転電機
US10298087B2 (en) Electric machine
KR20200073012A (ko) 워터펌프
JP5710886B2 (ja) 回転電機
WO2023279591A1 (zh) 一种油冷空心转轴结构以及油冷转子结构
WO2021129599A1 (zh) 电机冷却结构、驱动组件及车辆
US11799361B2 (en) End covers configured to direct fluid for thermal management of electric machine for electrified vehicle
US20220123615A1 (en) Rotary electric machine with improved stator cooling
KR20220045317A (ko) 모터의 냉각을 위한 오일 회수 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856623

Country of ref document: EP

Kind code of ref document: A1