WO2021129485A1 - 制冰机和具有制冰机的冰箱 - Google Patents

制冰机和具有制冰机的冰箱 Download PDF

Info

Publication number
WO2021129485A1
WO2021129485A1 PCT/CN2020/136817 CN2020136817W WO2021129485A1 WO 2021129485 A1 WO2021129485 A1 WO 2021129485A1 CN 2020136817 W CN2020136817 W CN 2020136817W WO 2021129485 A1 WO2021129485 A1 WO 2021129485A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid container
ice
rod
shaped member
Prior art date
Application number
PCT/CN2020/136817
Other languages
English (en)
French (fr)
Inventor
仓谷利治
设乐真辅
片桐贤宏
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Aqua 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, Aqua 株式会社 filed Critical 青岛海尔电冰箱有限公司
Priority to CN202080086050.XA priority Critical patent/CN114787567B/zh
Priority to US17/788,292 priority patent/US20230026532A1/en
Priority to EP20908248.6A priority patent/EP4083543A4/en
Publication of WO2021129485A1 publication Critical patent/WO2021129485A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/08Producing ice by immersing freezing chambers, cylindrical bodies or plates into water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means

Definitions

  • the present invention relates to an ice maker that freezes liquid to produce ice and a refrigerator having the ice maker.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-150785
  • the object of the present invention is to provide an ice maker with high cooling efficiency and capable of making ice in a short time, and a refrigerator with the ice maker.
  • the present invention provides an ice maker, which includes a cooling part with a heat dissipation device and metal parts, a liquid container capable of storing liquid, a liquid supply part for supplying liquid to the liquid container, and The moving mechanism and control unit for rotating and moving the liquid container.
  • the heat dissipating device has a flow path for refrigerant to flow, and the metal piece is installed so that a metal rod-shaped member extends downward from a base end to a tip part, and the rod-shaped member is cooled by the heat dissipating device .
  • the control unit controls the temperature of the rod-shaped member, the operation of the liquid supply unit, and the operation of the moving mechanism.
  • the ice process is repeated multiple times under the control of the control unit, and the following steps are performed during the ice making process:
  • a liquid supply step in which the liquid supply unit supplies liquid to the liquid container that opens upward when it is at the ice making position
  • An ice-making process which reaches an ice-making temperature after a predetermined time elapses after the liquid supply process and becomes a state in which a predetermined range from the tip portion of the rod-shaped member at the ice-making temperature is immersed in the liquid container In the liquid,
  • An avoidance process in which after the ice making process, when the remaining liquid is still stored in the liquid container, the moving mechanism rotates the liquid container from the ice making position to the liquid container Not at a retreat position on the lower side of the rod-shaped member, the liquid container has a structure capable of accommodating a predetermined amount of liquid in the retreat position,
  • a deicing process which, after the avoiding process, brings the rod-shaped member to a deicing temperature so that ice generated around the rod-shaped member falls from the rod-shaped member, and
  • a restoration process in which after the deicing process, when the remaining liquid is still stored in the liquid container, the moving mechanism rotationally moves the liquid container from the retreat position to the ice making position .
  • the ice maker further includes a liquid removal part for removing the liquid remaining in the liquid container.
  • the liquid removing step is followed by the avoiding step.
  • the liquid removing section removes a part of the liquid remaining in the liquid container so that the amount of liquid remaining in the liquid container is reduced to Below the predetermined amount.
  • the liquid container can be reliably rotated and moved to the retreat position while the remaining liquid is still stored in the liquid container.
  • the residual liquid freezing process in which the residual liquid remaining in the liquid container at the ice making position or the avoiding position is placed in a freezing environment to freeze it, and
  • the residual liquid deicing process which is after the residual liquid freezing process, wherein the moving mechanism further rotates and moves the liquid container in a state where a part of the elastic liquid container is restrained to make the liquid container The liquid container is twisted so that the frozen residual liquid falls from the liquid container.
  • the ice maker further includes a semiconductor refrigeration fin, which is arranged between the heat dissipation device and the metal piece, one side of which is in contact with the surface of the heat dissipation device, and the other The surface on one side is in contact with the surface of the metal piece on the opposite side to the surface on which the rod-shaped member is installed;
  • the deicing step power is supplied to the peltier fin so that the side of the pelmet in contact with the heat sink becomes the heat-absorbing side, and the side in contact with the metal piece becomes the heat-dissipating side , So that the rod-shaped member becomes the deicing temperature.
  • the peltier fins absorb heat from the side of the metal piece with the rod-shaped member and dissipate heat to the side of the heat sink, in addition to cooling by the radiator having a flow channel for the refrigerant to flow, the passage of the peltier is increased. Cooling is performed, and the temperature of the rod-shaped member of the metal piece may be a lower temperature than the temperature in the case of using only the refrigerant. Thereby, ice can be generated around the rod-shaped member of the metal piece in a short time. Furthermore, by reversing the direction of energization of the peltier, the temperature of the rod-shaped member can be rapidly increased and ice removal can be achieved. Thereby, a short ice making cycle can be reliably realized.
  • the end region of the liquid container is used as the center of rotation, and the liquid container is rotated 70 degrees to 120 degrees from the ice making position to the avoiding position , And the liquid container is provided with ribs that are connected to the side wall constituting the liquid container and partially cover the upper opening, and in the escape position, the predetermined amount of liquid passes through the ribs And was blocked in the liquid container.
  • the present invention also provides a refrigerator having the ice maker, and the refrigerant branched from the cooling system for cooling the inside of the refrigerator is supplied to the heat dissipation device of the ice maker .
  • the refrigerator has high cooling efficiency and can make ice in a short time.
  • Fig. 1A is a perspective view of an ice maker according to an embodiment of the present invention.
  • Fig. 1B is a view from another perspective of the ice maker shown in Fig. 1A.
  • Fig. 2 is a side view taken along the arrow A-A in Fig. 1A.
  • Fig. 3 is a cross-sectional view taken along arrow B-B in Fig. 1A, and is a side cross-sectional view of the ice maker of the present invention.
  • FIG. 4 is the same cross-sectional view as FIG. 3, and is a side cross-sectional view of a modified example of the ice maker of the present invention.
  • Fig. 5 is a diagram of the planar shape of the heat sink of the present invention and the cooling system connected to the heat sink.
  • Fig. 6 is a block diagram of the control structure of the ice maker of the present invention.
  • Fig. 7A is a side cross-sectional view of the liquid supply process implemented in the ice maker of the present invention.
  • Fig. 7B is a side cross-sectional view of the deicing process implemented in the ice maker of the present invention.
  • Fig. 7C is a side cross-sectional view of the liquid removal process implemented in the ice maker of the present invention.
  • Fig. 7D is a side cross-sectional view of the avoidance process implemented in the ice maker of the present invention.
  • Fig. 7E is a side cross-sectional view of the deicing process implemented in the ice maker of the present invention.
  • Fig. 7F is a side cross-sectional view of the restoration process implemented in the ice maker of the present invention.
  • Fig. 7G is a side sectional view of the liquid supply process in the next ice making process implemented in the ice maker of the present invention.
  • Fig. 8A is a side cross-sectional view of the residual liquid freezing process implemented in the ice maker of the present invention.
  • Fig. 8B is a side cross-sectional view when twisting the liquid container in the residual liquid deicing process implemented in the ice maker of the present invention.
  • Fig. 8C is a side cross-sectional view of the frozen residual liquid falling from the liquid container in the residual liquid deicing process implemented in the ice maker of the present invention.
  • Fig. 9 is a side sectional view of the refrigerator of the present invention.
  • Fig. 1A is a perspective view of the ice maker 2 of the present invention.
  • FIG. 1B is a perspective view of the ice maker 2 of the present invention from another perspective.
  • Fig. 2 is a side view taken along the arrow A-A in Fig. 1A.
  • Fig. 3 is a sectional view taken along arrow B-B in Fig. 1A, and is a side sectional view showing the ice maker of the present invention.
  • Fig. 4 is the same cross-sectional view as Fig. 3 and shows a side cross-sectional view of a modified example of the ice maker of the present invention.
  • Fig. 5 is a diagram of the planar shape of the heat sink of the present invention and the cooling system connected to the heat sink.
  • Fig. 1A is a perspective view of the ice maker 2 of the present invention.
  • FIG. 1B is a perspective view of the ice maker 2 of the present invention from another perspective.
  • Fig. 2 is a side view taken along
  • FIG. 6 is a block diagram of the control structure of the ice maker of the present invention. First, referring to FIG. 1A, FIG. 1B, FIG. 2, FIG. 3, FIG. 4, FIG. 5, and FIG. 6, an overview of the ice maker 2 of the present invention will be described.
  • the ice maker 2 includes a cooling unit 40 capable of freezing liquid to produce ice, a liquid container 50 capable of storing the liquid, a moving mechanism 60 that rotates the liquid container 50, and a liquid supply unit 72 that supplies the liquid to the liquid container 50 , And a liquid removal unit 74 that removes the liquid in the liquid container 50.
  • FIGS. 1A and 1B show the liquid supply/removal pipe 70 that actually supplies the liquid to the liquid container 50 and removes the liquid from the liquid container 50.
  • the liquid supply/removal tube 70 is a member that realizes the functions of both the liquid supply part 72 and the liquid removal part 74.
  • the ice maker 2 is configured as an independent ice maker, and includes a cooling system 80 for supplying refrigerant to the cooling part 40.
  • the present invention is not limited to this, and as will be described later, it is also possible to incorporate into a refrigerator and supply refrigerant from a cooling system of the refrigerator.
  • the ice maker 2 further includes a control unit 90 for controlling various components of the ice maker 2. Any liquid, such as drinking water, can be used as a liquid for freezing to produce ice.
  • the constituent parts of the cooling part 40 may be different.
  • the cooling part 40 includes a heat sink 10 and a metal piece 20 from top to bottom, and the lower surface of the heat sink 10 is joined to the upper surface of the metal piece 20.
  • the metal fitting 20 has a plurality of rod-shaped members 24 attached to the lower surface of the plate-shaped base 22.
  • the cooling part 40 includes a heat sink 10, a semiconductor refrigeration fin 30 and a metal piece 20 in order from top to bottom.
  • the metal fitting 20 has a plurality of rod-shaped members 24 attached to the lower surface of the plate-shaped base 22.
  • the semiconductor refrigeration fin 30 is arranged between the heat sink 10 and the metal piece 20 so that the surface (upper surface) of one side thereof is in contact with the surface (lower surface) of the heat sink 10, and the surface (lower surface) of the other side is in contact with The surface (upper surface) of the metal fitting 20 on the opposite side to the surface on which the rod-shaped member 24 is mounted is in contact.
  • the heat dissipation device 10 is in the shape of a flat plate and is made of metal with high thermal conductivity such as aluminum and copper.
  • the heat dissipating device 10 is provided with a flow channel 12 in which liquid or mist refrigerant flows.
  • a substantially M-shaped flow channel 12 with three turn-back portions is shown in plan view, but the present invention is not limited to this.
  • Connecting pipes 14A and 14B are installed at both ends of the flow channel 12.
  • the following can be exemplified: forming a groove-shaped flow channel on a metal piece, or joining a cooling pipe as a flow channel to a thin metal plate.
  • the cooling pipe may be joined to a single side of the thin metal plate, or the thin metal plate may be joined to cover the periphery of the cooling pipe.
  • the cooling pipe and the thin metal plate are preferably in surface contact.
  • the thickness of the metal thin plate about 1 to 20 mm can be exemplified.
  • the plane size of the heat dissipation device 10 is the same as the plane size of the metal piece 20 described later.
  • the high-pressure refrigerant gas compressed by the compressor 82 radiates heat in the condenser 84 and becomes liquid, is decompressed when passing through the capillary tube to lower the boiling point, and is connected to the condenser through the dryer 86
  • the tube 14A enters the flow channel 12 of the heat sink 10.
  • the liquid or mist refrigerant absorbs heat from the surroundings and evaporates.
  • the vaporized refrigerant returns from the connection pipe 14B to the compressor 82 via the line of the cooling system 80, and repeats the cycle of being compressed again. Through such a cooling cycle, the heat sink 10 can be cooled to a temperature below the freezing point.
  • the metal member 20 is formed of a metal with high thermal conductivity such as aluminum and copper.
  • the metal fitting 20 has a flat base 22 and a plurality of metal rod-shaped members 24 attached to the base 22.
  • the rod-shaped member 24 is installed on the lower surface of the base 22 so as to extend downward from the base end 24A to the tip 24B.
  • FIGS. 1A and 1B show a situation where six rod-shaped members 24 are mounted to the base 22.
  • the rod-shaped member 24 may have a circular cross-sectional shape, an outer diameter of about 5 to 20 mm, and a length of about 30 to 80 mm.
  • the planar shape of the base 22 is determined by the size of the rod-shaped member 24 and the number to be installed.
  • the heat dissipating device 10 also adopts substantially the same planar shape as the base 22 of the metal member 20.
  • the plane size of the heat sink 10 and the base 22 of the metal piece 20 may be about 40 to 400 mm in longitudinal and transverse dimensions.
  • the thickness of the base 22 may be about 2 to 10 mm.
  • the metal fitting 20 in this embodiment is provided with a male screw on the base end 24A side of the rod-shaped member 24 so as to be screwed with the female screw formed in the hole provided in the base 22.
  • the rod-shaped member 24 can be easily replaced and installed.
  • the rod-shaped member 24 of this embodiment has a circular cross-sectional shape, it is not limited to this, and may be replaced with a rod-shaped member having a polygonal, star-shaped, heart-shaped, or any cross-sectional shape.
  • the rod-shaped member 24 may be joined to the base 22 by welding or welding.
  • a solid rod-shaped member 24 is preferable, but in consideration of workability and the like, a hollow rod-shaped member 24 may be used.
  • the semiconductor refrigeration sheet 30 is an element that utilizes the Peltier effect. When two different types of metals or semiconductors are joined and current flows, heat absorption/release occurs at the joint. When current flows in a specified direction with respect to the peltier 30, the surface on one side becomes the heat-absorbing side, and the surface on the other side becomes the heat-emitting side. Then, when the current flows in the reverse direction with respect to the pelmet 30, the surface on the heat absorbing side and the surface on the heat releasing side are reversed.
  • any known semiconductor refrigeration sheet can be used.
  • the width and depth dimensions of the semiconductor refrigeration sheet 30 in this embodiment are about 20 to 100 mm, and the thickness thereof is about 2 to 20 mm.
  • a plurality of semiconductor refrigeration fins 30 may be provided in accordance with the size of the heat sink 1 and the metal member 20.
  • fastening members such as bolts and nuts can be used to fix them to each other so that the lower surface of the heat sink 10 and the upper surface of the metal member 20 are in close contact.
  • the pelmet 30 when the pelmet 30 is provided, there is a fixing structure in which both sides of the pelmet 30 are in close contact with the lower surface of the heat sink 10 and the upper surface of the metal member 20.
  • a fastening member such as bolts and nuts may be used to fix the heat sink 10 and the metal piece 20 that are provided to sandwich the peltier fin 30 to each other.
  • the lower surface of the heat sink 10 can be in close contact with the upper surface of the peltier 30, and the lower surface of the peltier 30 can be in close contact with the upper surface of the metal member 20.
  • any other fixing means may be used to form the fixing structure of the cooling part 40.
  • the liquid container 50 is made of a resin material having elasticity.
  • the liquid container 50 has a liquid storage region R surrounded by a bottom wall portion 50A and a side wall portion 50B erected from the bottom wall portion 50A.
  • the upper part of the liquid storage area R is open.
  • the rod-shaped member 24 of the metal piece 20 is inserted into the liquid storage area R through the opening so that a predetermined range from the tip portion 24B of the rod-shaped member 24 is set in the liquid storage area R.
  • the metal rod-shaped member 24 is lowered to a temperature lower than the freezing point by the cooling of the heat sink 10 cooled by the refrigerant. Since the predetermined range from the tip portion 24B of the rod-shaped member 24 is set within the liquid storage region R of the liquid container 50, ice may be generated around the portion of the rod-shaped member 24 immersed in the liquid. The predetermined range may be approximately 8 mm to 40 mm from the tip portion 24B of the rod-shaped member 24. Further, in the case of including the peltier fins 30, since cooling by the peltier fins 30 is added in addition to the cooling by the heat sink 10, the cooling can be performed at a lower temperature, and the cooling can be performed in a short time. Ice is generated around the rod-shaped member 24 of the metal piece 20.
  • the six rod-shaped members 24 are arranged substantially linearly, and the liquid storage region R also extends slenderly along the substantially linear shape.
  • the bottom wall portion 50A forming the bottom surface of the liquid storage region R and the side wall portion 50B forming the side surfaces are smoothed
  • the curved parts are connected, and the upper part is open.
  • the liquid container 50 is provided with a rib 50C which is connected to the side wall portion 50B constituting the liquid container 50 and partially covers the upper opening.
  • a shaft portion 52 extending in the extending direction of the liquid storage region R is provided in the region of the side surface of the liquid storage region R.
  • the end on one side of the shaft portion 52 of the liquid container 50 is coupled with the drive shaft of the moving mechanism 60 described later.
  • the end on the other side of the shaft portion 52 of the liquid container 50 is rotatably supported at the bearing portion 62 provided on the frame portion of the ice making device 2. With such a structure, the liquid container 50 can be rotated with the center point C of the shaft portion 52 as the rotation center.
  • the liquid container 50 can be rotated and moved with the center point C located at the end region of the liquid container 50 as the rotation center.
  • a protrusion 54 is provided on the liquid container 50. As will be described later, in a state where the protrusion 54 is in contact with the frame portion of the ice maker 2, the liquid container 50 is rotated by the moving mechanism 60 to twist the elastic liquid container 50 and make the liquid container 50 The ice inside falls off.
  • the moving mechanism 60 is configured to allow the liquid container 50 to rotate and move.
  • the drive motor of the moving mechanism 60 starts and the drive shaft rotates, the liquid container 50 rotates with the center point C as the rotation center.
  • the moving mechanism 60 can rotate and move the liquid container 50 clockwise/counterclockwise by, for example, the driving force of a driving motor (refer to the double arrow in FIG. 1B ).
  • the position of the liquid container 50 shown in FIGS. 3 and 4 is called an ice making position.
  • the opening of the liquid container 50 faces upwards, so the liquid can be stored in the liquid storage area R, and the rod-shaped member 24 of the metal piece 20 is provided through the opening in a predetermined range from the tip portion 24B In the liquid storage area R.
  • the liquid container 50 can be rotated from the ice making position with the center point C as the center of rotation (as shown in FIG. 2), and rotated until the liquid container 50 is not under the rod-shaped member 24 of the metal piece 20 At this time, the position of the liquid container 50 is called the avoiding position.
  • the rotation angle of the liquid container 50 between the ice making position and the avoiding position is mainly different depending on the positional relationship between the rod-shaped member 24 of the metal piece 20 and the liquid container 50, and the position of the center point C as the center of rotation, but it is preferable It is in the range of 70 degrees to 120 degrees.
  • the liquid container 50 can also be rotated from the ice making position with the center point C as the center of rotation, past the avoiding position, and rotated to a position where the opening of the liquid container 50 faces downward (as described later, and as shown in the figure) Shown in 8B and 8C).
  • the protrusion 54 provided on the outer surface of the liquid container 50 abuts against the frame portion of the ice making device 2.
  • the liquid container 50 is further rotated by the moving mechanism 60 to make the elastic
  • the liquid container 50 is twisted, and the ice frozen in the vicinity of the bottom wall portion 50A of the liquid container 50 is de-iced.
  • the ice maker further has a mechanism for supplying liquid to a liquid supply part 72 in the liquid container 50 and a liquid removing part 74 for discharging liquid from the liquid container 50.
  • the liquid supply part 72 and the liquid removal part 74 are mainly composed of a storage container for storing liquid, a liquid supply/removal pump that can be reversed in the suction direction and the discharge direction, a liquid supply/removal tube 70, and a liquid supply/removal pipe connecting them. Remove the runner composition.
  • the liquid supply part 72 and the liquid removal part 74 reduce the number of parts. In particular, since only the liquid supply/removal tube 70 is inserted into the liquid container 50, the space around the liquid container 50 can be saved.
  • the liquid in the storage container flows from the liquid supply/discharge pump to the liquid supply/removal pipe 70 via the liquid supply/removal flow path, and from The tip opening 70A of the liquid supply/removal tube 70 flows into the liquid container 50.
  • the liquid supply/removal pump is driven to the liquid removal side under the control of the control unit 90, the liquid in the liquid container 50 is sucked from the tip opening 70A of the liquid supply/removal pipe 70, and from the liquid supply/removal flow passage
  • the liquid supply/removal pipe 70 flows through the liquid supply/discharge pump and flows into the storage container.
  • the filtering function of the filter can suppress the increase in the concentration of the soluble or insoluble matter of the liquid in the storage container, thereby producing high-quality ice.
  • the liquid supply portion 72 and the liquid removal portion 74 are only an example, and each of the liquid supply portion 72 and the liquid removal portion 74 may also include respective liquid supply pumps and liquid removal pumps, and respective liquid supplies. Tube and liquid removal tube.
  • the liquid container 50 can store the liquid in the ice making position and open at the upper side.
  • the tip area of the liquid supply/removal tube 70 (or the liquid supply tube and the liquid removal tube) is simply inserted into the liquid container 50 from the upper opening, it is possible to easily prevent various members from rotating and moving the liquid container 50 Interference between.
  • the tip opening 70A of the liquid supply/removal tube 70 is set at a height H from the bottom surface of the liquid container 50, so even if the liquid supply/removal pump is driven to the liquid removal On the side, the liquid in the area up to the height H from the bottom surface will also remain.
  • control structure of the ice maker 2 including the control unit 90 will be described with reference to FIG. 6.
  • the control structure including the peltier fin 30 is taken as an example for description.
  • the liquid container 50 can be rotated to rotate between the ice making position and the retreat position, and the liquid container 50 can be twisted for deicing at the same time.
  • the control unit 90 controls the liquid supply/removal pump as the liquid supply unit 72 and drives it to the liquid supply side, so that the liquid can be supplied to the liquid container 50. Similarly, the control unit 90 controls the liquid supply/removal pump as the liquid removal unit 74 and drives it to the liquid removal side, so that the liquid in the liquid container 50 can be returned to the storage container. Further, in the case of including the pelmet 30, the direction and magnitude of the power supplied to the pelvis 30 can be controlled by the control unit 90 to form a temperature difference between the two surfaces, so that the surface on one side becomes a heat sink. The surface on one side and the other side becomes the exothermic side.
  • the ice maker 2 in this embodiment includes the cooling part 40, which has the heat dissipation device 10, which has the flow channel 12 for the flow of refrigerant, and the metal piece 20, which is installed so that the metal is made of
  • the rod-shaped member 24 extends downward from the base end 24A to the tip 24B; the liquid container 50, which can store liquid; the liquid supply part 72, which supplies the liquid to the liquid container 50 in the ice making position; the moving mechanism 60, which enables The liquid container 50 rotates and moves between the ice making position and the retreat position; and the control portion 90; so that a predetermined range from the tip portion 24B of the rod-shaped member 24 is set in the liquid storage area of the liquid container 50.
  • the liquid supply unit 72 supplies the liquid into the liquid storage area of the liquid container 50 at the ice making position.
  • the control unit 90 controls the switching valve in the cooling system 80 so that the refrigerant that has become low in the cooling system 80 flows into the heat sink 10.
  • the rod-shaped member 24 of the metal part 20 can be brought to an ice making temperature lower than the freezing point. Thereby, ice can be generated around the area of the rod-shaped member 24 immersed in the liquid.
  • the peltier cooling fins 30 in addition to cooling by the radiator 10 in which the low-temperature refrigerant flows, it can also be performed by adding the peltier cooling fins 30 arranged between the radiator 10 and the metal member 20.
  • the cooling can therefore be performed at a lower temperature than the structure in which only the refrigerant is used to cool the rod-shaped member 24, and ice can be generated around the rod-shaped member 24 of the metal piece 20 in a short time.
  • the control unit 90 controls the moving mechanism 60 so that the liquid container 50 is rotationally moved from the ice making position to a position where the liquid container 50 is not at a retreat position under the rod-shaped member 24 of the metal fitting 20. Then, the rod-shaped member 24 is brought to a deicing temperature higher than the freezing point by the control unit 90, and the generated ice is caused to fall from the rod-shaped member 24. After being dropped from the rod-shaped member 24, it is stored in the ice storage container 56 provided below.
  • the exchange valve in the cooling system 80 is exchanged by the control unit 90 so that the condenser 84 is replaced instead.
  • the high-temperature refrigerant that has just come out of the compressor 82 flows to the heat sink 10, thereby increasing the temperature of the heat sink 10, and the rod-shaped member 24 of the metal part 20 is heated by heat conduction.
  • the temperature also rises, reaching a deicing temperature above the freezing point.
  • the control unit 90 energizes the pelmet 30 so that the side in contact with the surface of the heat sink 10 becomes the heat-absorbing side and the side in contact with the surface of the metal member 20 becomes the heat-generating side Thereby, the temperature of the rod-shaped member 24 of the metal piece 20 can be increased to quickly reach the deicing temperature. In this case, even in a state where the refrigerant that has become low in the cooling system 80 flows in the heat sink 10, the temperature of the rod-shaped member 24 can be changed to the deicing temperature by the pelmet 30.
  • Figures 7A to 7G are side cross-sectional views of each process performed by the ice maker of the present invention.
  • Figure 7A shows the liquid supply process
  • Figure 7B shows the ice making process
  • Figure 7C shows the liquid removal process
  • Figure 7D shows
  • Fig. 7E shows the deicing process
  • Fig. 7F shows the recovery process
  • Fig. 7G shows the liquid supply process in the next cooling process.
  • the liquid container 50 is in the ice making position, and no liquid is stored in the liquid container 50.
  • a liquid supply process for supplying liquid to the liquid container 50 an ice making process for generating ice around the rod-shaped member 24, and the liquid container 50 is made from The avoidance process of rotating the ice position to the avoiding position, the deicing process of dropping the generated ice from the rod-shaped member 24, and the restoration process of rotating the liquid container 50 from the avoiding position to the ice making position.
  • the liquid supply part 72 supplies liquid to the upper opening of the liquid container 50 in the ice making position.
  • the drive motor of the liquid supply/removal pump of the liquid supply unit 72 is driven in the liquid supply direction.
  • the liquid supply/removal pump pumps up the liquid in the storage container, and supplies the liquid to the liquid container 50 through the liquid supply/removal flow path and the liquid supply/removal pipe 70.
  • the control unit 90 stops the operation of the liquid supply/removal pump. Through the liquid supply process, it becomes a state in which a predetermined range L from the tip portion 24B of the rod-shaped member 24 of the metal fitting 20 is immersed in the liquid in the liquid container 50.
  • the ice making temperature is reached after a predetermined time elapses after the above-mentioned liquid supply process, and the ice making process is performed: a predetermined range L from the tip portion 24B of the rod member 24 of the metal piece 20 at the ice making temperature is immersed in the liquid contained in the liquid container 50.
  • the refrigerant that has become low in the cooling system 80 flows to the heat sink 10.
  • the heat sink 10 that has become a temperature below the freezing point by the evaporation of the refrigerant flowing in the internal flow passage 12 cools the rod-shaped member 24 of the metal piece 20 to the ice making temperature below the freezing point.
  • the peltier fin 30 in the case where the peltier fin 30 is included, power is supplied to the peltier fin 30 under the control of the control unit 90 so that the side of the pelmet 30 in contact with the heat sink 10 becomes the heat-emitting side, and the metal The side in contact with the piece 20 becomes the heat-absorbing side, and the rod-shaped member 24 of the ice making temperature is further cooled.
  • the pelmet 30 absorbs heat from the side of the metal member 20 having the rod-shaped member 24 and dissipates heat to the side of the heat sink 10, in addition to cooling by the heat sink having a flow path for the flow of low-temperature refrigerant
  • the cooling by the pelmet 30 is also added, and the temperature of the rod-shaped member 24 of the metal piece 20 may be a lower temperature than the temperature in the case of using only the refrigerant. Thereby, ice can be generated around the rod-shaped member 24 of the metal piece 20 in a short time.
  • the ice making process is ended.
  • ice G may be generated so as to cover a predetermined range L from the tip portion of the rod-shaped member 24 of the metal piece 20.
  • the predetermined time T may be set to different values corresponding to the case where the pelmet 30 is included and the case where it is not included.
  • the control unit 90 stops the power supply to the pelmet 30.
  • the liquid removal unit 74 removes the liquid remaining in the liquid container 50 under the control of the control unit 90. Specifically, under the control of the control unit 90, the liquid supply/removal pump is driven in the liquid removal direction. Thereby, the liquid supply/removal pump draws the liquid in the liquid container 50 through the liquid supply/removal pipe 70 and the liquid supply/removal flow path, and returns it to the storage container. At this time, the liquid returned to the storage container flows into the storage container after being filtered by the filter provided at the inlet of the return path of the storage container.
  • the tip opening 70A of the liquid supply/removal tube 70 is provided at a position at a height H from the bottom surface of the liquid container 50, so that at least the liquid in the region at the height H from the bottom surface will remain.
  • the liquid container 50 is rotationally moved to the avoiding position, and the liquid container 50 has a structure capable of accommodating a predetermined amount of liquid in the avoiding position. Therefore, even after the liquid removal process, the amount of liquid remaining in the region of the height H from the bottom surface in the liquid container 50 is lower than the predetermined amount that can be stored in the liquid container 50 at the avoiding position.
  • the predetermined amount that can be stored in the liquid container 50 at the avoidance position is more than the amount of liquid in the region at the height H from the bottom surface of the liquid container 50, the remaining amount of liquid in the liquid container 50 can reach the predetermined amount. Stop the operation of the liquid supply/removal pump at a time point below the amount.
  • the liquid removing part 74 removes a part of the liquid remaining in the liquid container 50 so that the amount of liquid remaining in the liquid container 50 is reduced to a predetermined amount or less. In this way, since the amount of liquid remaining in the liquid container 50 can be reduced below a predetermined amount by the liquid removing part 74, it is possible to reliably store the remaining liquid in the avoidance process and the restoration process described later.
  • the liquid container 50 is rotated and moved. If the predetermined amount that can be stored in the liquid container 50 at the avoidance position is more than the total amount of liquid remaining in the liquid container 50 at the end of the ice making process, the liquid removal process may not be performed.
  • the moving mechanism 60 rotates and moves the liquid container 50 from the ice making position to the liquid container 50 not in the metal part. 20 is a retreat position on the lower side of the rod-shaped member 24.
  • the driving motor of the moving mechanism 60 By driving the driving motor of the moving mechanism 60, the liquid container 50 is rotated 70 degrees to 120 degrees from the ice making position to the avoiding position. With such a moving rotation angle, even if ice generated in the deicing process described later falls from the rod-shaped member 24 of the metal part 20, there is no risk of interference with the liquid container 50.
  • the liquid container 50 is provided with ribs 50C.
  • the ribs 50C are connected to the side wall portion 50B constituting the liquid container 50 and partially cover the upper opening, so that in the avoiding position, a predetermined amount of liquid passes through the ribs 50C and is trapped in the liquid container 50 Inside.
  • the rod-shaped member 24 of the metal part 20 is brought to the deicing temperature, and the ice G generated around the rod-shaped member falls from the rod-shaped member 24.
  • the fallen ice G is stored in the ice storage container 56 provided below.
  • the rod-shaped member 24 of the metal part 20 is brought to the de-icing temperature.
  • the high-temperature refrigerant that has just come out of the compressor 82 can be made to flow to the heat sink 10.
  • the temperature of the heat sink 10 rises, and the temperature of the rod-shaped member 24 of the metal part 20 rises by heat conduction, so that it becomes a deicing temperature higher than the freezing point.
  • the temperature of the rod-shaped member 24 of the metal piece 20 can be increased to quickly become the deicing temperature. In this way, a short ice making cycle can be reliably realized.
  • the temperature of the rod-shaped member 24 may be changed to the deicing temperature through the pelmet 30.
  • the moving mechanism 60 rotationally moves the liquid container 50 from the retreat position to the ice making position.
  • the driving motor of the moving mechanism 60 is driven on the side opposite to the avoiding process, and the liquid container 50 is rotated 70 to 120 degrees in the opposite direction and returned to the original ice making position.
  • FIG. 7G shows the time after the liquid supply to the liquid container 50 is completed in the liquid supply step of the next ice making process.
  • the liquid already accumulates in the region above the height H from the bottom surface of the liquid container 50.
  • the amount of liquid supplied to the liquid container 50 in the liquid supply process of the second round of ice making process becomes smaller than the amount of liquid that just remains in the first round of ice making process.
  • the remaining liquid has been cooled by the rod-shaped member 24 of the metal piece 20 in the previous ice making process, and becomes a lower temperature than the temperature of the newly supplied liquid. Therefore, in the ice making process of the ice making process after the second round, since the temperature of the liquid to be frozen is low in advance, it is possible to efficiently make ice in a short time.
  • the ice maker of this embodiment includes: a cooling part 40, which has a heat dissipation device 10 and a metal piece 20.
  • the heat dissipation device 10 has a flow channel 12 for refrigerant to flow.
  • the metal piece 20 is The rod-shaped member 24 is installed so that the metal rod-shaped member 24 extends downward from the base end portion 24A to the tip portion 24B, and the rod-shaped member 24 is cooled by the heat sink 10; the liquid container 50, which can store liquid; the liquid supply part 72, which transfers the liquid Is supplied to the liquid container 50; the moving mechanism 60 which rotates the liquid container 50; and the control part 90 which controls the temperature of the rod-shaped member 24, the action of the liquid supply part 72, and the action of the moving mechanism 60; in the control part 90
  • the ice making process is repeated multiple times under control, and the following processes are performed during the ice making process: a liquid supply process, in which the liquid supply part 72 supplies liquid to the liquid container 50 that is at the ice making position and is open
  • the rod-shaped member 24 is brought to the de-icing temperature, and the ice generated around the rod-shaped member 24 falls from the rod-shaped member 24; and the restoration process, which is after the deicing process, the remaining liquid is still stored in the liquid container 50
  • the moving mechanism 60 rotationally moves the liquid container 50 from the retreat position to the ice making position.
  • the liquid container 50 has a structure capable of accommodating a predetermined amount of liquid in the avoiding position.
  • the liquid remaining in the liquid container 50 in the ice-making process of the previous ice-making process can be used in the ice-making process of the next ice-making process, it can be used at the low temperature cooled in the previous ice-making process. Liquid to make ice. Therefore, it is possible to provide an ice maker that has high cooling efficiency and can make ice in a short time.
  • the multiple ice making processes as described above are repeated, and a series of ice making processes are completed after a predetermined amount of ice G is contained in the ice storage container 56.
  • FIG. 8A to 8C are side cross-sectional views of the ice maker 2 of the present invention when the ice making process is completed.
  • FIG. 8A shows the residual liquid freezing process
  • FIG. 8B shows the twisting liquid container 50 in the residual liquid deicing process.
  • FIG. 8C shows when the frozen residual liquid in the residual liquid deicing step falls from the liquid container 50.
  • FIG. 8A shows the time when the residual liquid is frozen in the state where the liquid container 50 is in the ice making position.
  • the means for freezing the residual liquid may be: a plurality of fins are provided on the outer surface of the heat sink 10 of the cooling part 40, and the cold air passing between the fins of the cooling part 40 is blown onto the residual liquid through the fins.
  • the residual liquid can be frozen by blowing cold air cooled to sub-zero temperature between the fins onto the residual liquid.
  • the bottom surface 50A of the liquid container 50 is formed of a metal with good thermal conductivity, and is connected to the cooling part 40 with a member with high thermal conductivity, or the liquid container 50 is moved to be in contact with the cooling part 40.
  • the ice maker 2 is installed in a refrigerator, by installing the liquid container 50 in the freezer compartment of the refrigerator, the residual liquid can be easily frozen.
  • the liquid container 50 is rotationally moved by the control unit 90 driving the drive motor of the moving mechanism 60 in the same direction as the avoiding step. At this time, rotate it beyond the avoidance position of 70 to 120 degrees, and further rotate to around 180 degrees. At this time, the protrusion 54 provided in the end region of the liquid container 50 abuts against the frame of the ice maker 2. In a state where a part of the elastic liquid container 50 is restrained by this abutment, the drive motor is continuously driven to further rotate the liquid container 50, and the liquid container 50 is twisted. The liquid container 50 is deformed due to twisting, as shown in FIG. 8C, and the frozen residual liquid detaches from the liquid container 50 and falls. The fallen frozen residual liquid is contained in the ice storage container 56 provided below.
  • the residual liquid existing in the vicinity of the bottom wall portion 50A in the state where the liquid container 50 is at the ice making position is frozen.
  • the frozen residual liquid can be easily detached from the liquid container 50.
  • the frozen residual liquid detached from the liquid container 50 drops substantially directly below, there is basically no risk of interfering with other components.
  • the present invention is not limited to this.
  • the remaining liquid may be frozen in a state where the liquid container 50 is in the avoiding position.
  • the means for detaching the frozen residual liquid from the liquid container 50 is not limited to the above description, and any known ice tray deicing means can be used.
  • the residual liquid freezing process is performed, in which the liquid remaining in the liquid container 50 at the ice making position or the avoiding position is placed It is frozen in a freezing environment; and a residual liquid deicing process, in which the frozen residual liquid falls from the liquid container 50.
  • the remaining liquid will not flow out of the liquid container, but can be frozen and de-iced from the liquid container 50, so an efficient ice making cycle can be realized.
  • Fig. 9 is a side sectional view of the refrigerator 100 of the present invention.
  • the flow of the refrigerant is shown by broken arrows.
  • the refrigerator 100 of the present invention will be described with reference to FIG. 9, and the refrigerator 100 has the ice maker 2 described above.
  • the refrigerator 100 includes a freezing compartment 102A and a refrigerating compartment 102B.
  • a freezing compartment 102A and a refrigerating compartment 102B On the back side of the freezing compartment 102A and the refrigerating compartment 102B, inlet-side flow passages 104A and 104B separated by a partition plate 106 are provided.
  • An evaporator 140 is provided in the inlet side flow path 104A on the side of the freezing compartment 102A, and a fan 170 is provided above it.
  • the compressor 110 communicating with the evaporator 140 is provided in the machine room outside the back side of the freezing compartment 102A.
  • the refrigerant (gas) compressed by the compressor 110 is liquefied in the condenser 120, is decompressed when passing through the capillary tube to lower the boiling point, and reaches the three-way valve 160 via the dryer 130.
  • the dryer 130 is shown in the machine room in FIG. 9, it is actually disposed near the three-way valve 160.
  • the three-way valve 160 allows the refrigerant to switch between a flow channel that directly flows into the evaporator 140 of the refrigerator 100 and a flow channel that flows into the evaporator 140 after flowing in the heat sink 10 of the ice maker 2.
  • the refrigerant flows directly into the evaporator 140.
  • the refrigerant takes away the heat of the gas in the refrigerator and vaporizes in the evaporator 140, and the vaporized refrigerant is compressed again in the compressor 110, and such a cycle is repeated.
  • the compressor 110, the condenser 120, the dryer 130, the evaporator 140, etc. are connected to form a cooling system 150 of the refrigerator.
  • the refrigerant flows into the flow passage 12 of the heat sink 10 through the connecting pipe 14A.
  • a part of the liquid or mist refrigerant absorbs heat from the surroundings and evaporates, and the vaporized refrigerant reaches the inlet side of the evaporator 140 through the connecting pipe 14B. Since the amount of refrigerant vaporized in the heat sink 10 is less than the capacity of the refrigerant circulating in the cooling system 150, when the refrigerant enters the evaporator 140, the refrigerant as a whole maintains a liquid or mist state. Therefore, the refrigerant takes the heat of the gas in the refrigerator and vaporizes in the evaporator 140, and the vaporized refrigerant is compressed again in the compressor 110, repeating such a cycle.
  • the three-way valve 160 may not be used for switching, so that the refrigerant flow that flows into the evaporator 140 and the refrigerant flow that flows into the evaporator 140 after passing through the heat sink 10 are always generated.
  • a damper 180 is provided between the entrance-side flow passage 104A on the side of the freezing compartment 102A and the entrance-side flow passage 104B on the side of the refrigerating compartment 102B.
  • Fig. 9 shows the state where the damper 180 is closed.
  • the air door 180 is closed, when the compressor 110 and the fan 170 are driven, the air in the freezer compartment 102A flows, and the cold air that has passed through the evaporator 140 flows into the freezer compartment 102A from the outlet 106A provided at the partition 106 .
  • the inflowing gas circulates in the freezing compartment 102A, and returns to the lower side of the evaporator 140 in the inlet-side flow passage 104A again.
  • the inside of the freezer compartment 102A can be cooled by the circulation of the gas cooled by the evaporator 140 in this way.
  • cold air also circulates on the side of the refrigerating compartment 102B.
  • the refrigerator 100 of this embodiment includes the ice maker 2 involved in the above embodiment, which can be branched from the cooling system 150 for cooling the inside of the refrigerator to supply liquid or mist low-temperature refrigerant to the ice maker. ⁇ 2 ⁇ heat dissipation device 10.
  • the rod-shaped member 24 of the metal piece 20 of the cooling part 40 can be brought to the ice making temperature.
  • the ice maker 2 includes the peltier fins 30, since cooling by the peltier fins 30 is added in addition to the cooling by the heat sink 10 of the cooling system 150 of the refrigerator 100, it is different from using only the refrigerant. Compared with the case, the ice making temperature of the rod-shaped member 24 can be further reduced.
  • the high-temperature refrigerant from the compressor 110 can be supplied to the heat sink 10 of the ice maker 2 using an unshown switching valve.
  • the rod-shaped member 24 of the metal piece 20 of the cooling part 40 can become a deicing temperature higher than the freezing point.
  • the energizing direction of the pelmet 30 can be connected to the ice making process. Rotating in the opposite direction raises the temperature of the rod-shaped member 24 of the metal piece 20, thereby quickly de-icing.
  • the three-way valve 160 may also be exchanged so that the refrigerant is not supplied to the heat sink 10.
  • the cooling efficiency is high, and the cooling efficiency is high.
  • the cooling efficiency is high.
  • the liquid container 50 of the ice maker 2 is provided in the freezer compartment 102A, in the above-mentioned residual liquid freezing step, the residual liquid of the liquid container 50 can be easily frozen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种制冰机和具有制冰机的冰箱,所述制冰机包括具有散热装置(10)和金属件(20)的冷却部(40)、能贮存液体的液体容器(50)、将液体供给至所述液体容器(50)的液体供给部(72)、使所述液体容器(50)旋转移动的移动机构(60)及控制部(90)。所述金属件(20)被安装成使得金属制的棒状构件(24)从基端部至尖端部向下延伸,并通过所述散热装置(10)来冷却所述棒状构件(24)。在所述控制部(90)的控制下多次重复制冰过程,在所述制冰过程中进行以下工序:液体供给工序、制冰工序、避让工序、脱冰工序、复原工序。所述制冰机冷却效率高并能在短时间内制冰。

Description

制冰机和具有制冰机的冰箱 技术领域
本发明涉及冷冻液体以产生冰的制冰机以及具有该制冰机的冰箱。
背景技术
在冷冻液体以产生冰的制冰机当中,通过用冰箱的冷却系统的制冷剂来冷却浸入托盘内的液体中的冷却突起,以进行制冰(例如,参照专利文献1)。
(在先技术文献)
(专利文献)
专利文献1:日本特开第2004-150785号
然而,在专利文献1中记载的制冰机中,除了在冷却突起周围冻结的液体以外的残留在托盘内的液体被排出。因此,由于在进行新的制冰时要将未经冷却的新的液体供给至托盘,因此冷却效率低并且制冰周期变长。
有鉴于此,有必要对现有的制冰机和冰箱予以改进,以解决上述问题。
发明内容
本发明的目的在于提供一种冷却效率高并能在短时间内制冰的制冰机以及具有该制冰机的冰箱。
为实现上述目的,本发明提供了一种制冰机,其包括具有散热装置和金属件的冷却部、能贮存液体的液体容器、将液体供给至所述液体容器的液体供给部、使所述液体容器旋转移动的移动机构及控制部。所述散热装置具有用于制冷剂流动的流道,所述金属件被安装成使得金属制的棒状构件从基端部至尖端部向下延伸,并通过所述散热装置来冷却所述棒状构件。所述控制部控制所述棒状构件的温度、所述液体供给部的动作以及所述移动机构的动作。
在所述控制部的控制下多次重复制冰过程,在所述制冰过程中进行以下工序:
液体供给工序,所述液体供给部将液体供给至处于制冰位置时上方开口的所述液体容器,
制冰工序,其在所述液体供给工序之后,经过预定时间达到制冰温度并成为以下状态:距处于制冰温度的所述棒状构件的所述尖端部的预定范围浸入容纳在所述液体容器中的液体,
避让工序,其在所述制冰工序之后,在残留的液体仍旧贮存在所述液体容器内的情况下,所述移动机构将所述液体容器从所述制冰位置旋转移动到所述液体容器不在所述棒状构件下侧的避让位置,所述液体容器具有能在所述避让位置中容纳预定量液体的结构,
脱冰工序,其在所述避让工序之后,使所述棒状构件变为脱冰温度,以使所述棒状构件周围产生的冰从所述棒状构件落下,以及
复原工序,其在所述脱冰工序之后,在残留的液体仍旧贮存在所述液体容器内的情况下,所述移动机构将所述液体容器从所述避让位置向所述制冰位置旋转移动。
如此,由于在前一个制冰过程的制冰工序中残留在液体容器内的液体可以用在下一个制 冰过程的制冰工序中,因此可以用在前一个制冰过程中冷却过的低温液体来进行制冰。于是,可以提供冷却效率高并且能在短时间内制冰的制冰机。
作为本发明的进一步改进,所述制冰机还包括用以去除残留在所述液体容器内液体的液体去除部,在所述控制部的控制下,在所述制冰工序之后,在进行了液体去除工序之后进行所述避让工序,在所述液体去除工序中,所述液体去除部去除残留在所述液体容器内的液体的一部分,使得残留在所述液体容器内的液体的量减少到所述预定量以下。
如此,由于可以通过液体去除部将残留在液体容器内的液体的量减少到预定量以下,因此可以可靠地在残留的液体仍旧贮存在液体容器内的情况下将液体容器向避让位置旋转移动。
作为本发明的进一步改进,在重复了多个所述制冰过程之后,在所述控制部的控制下进行以下工序:
残留液冻结工序,将残留在处于所述制冰位置或所述避让位置的所述液体容器内的残留液置于冷冻环境中以使之冻结,以及
残留液脱冰工序,其在所述残留液冻结工序之后,其中,所述移动机构通过在具有弹性的所述液体容器的一部分被拘束住的状态下进一步旋转移动所述液体容器来使所述液体容器扭转,以使冻结的所述残留液从所述液体容器落下。
如此,在完成了一系列制冰过程之后,残留的液体不会从液体容器流出。由于可以进行冻结并从液体容器脱冰,因此可以实现效率高的制冰周期。
作为本发明的进一步改进,所述制冰机还包括半导体制冷片,其被设置在所述散热装置与所述金属件之间,其一侧的表面与所述散热装置的表面接触,其另一侧的表面与所述金属件的和安装了所述棒状构件的表面相反侧的表面接触;
在所述制冰工序中,通过向所述半导体制冷片供电使得所述半导体制冷片的与所述散热装置接触的一侧成为放热侧、而与所述金属件接触的一侧成为吸热侧,进一步对所述制冰温度的所述棒状构件进行冷却,并且
在所述脱冰工序中,向所述半导体制冷片供电使得所述半导体制冷片的与所述散热装置接触的一侧成为吸热侧、而与所述金属件接触的一侧成为放热侧,以使所述棒状构件变为所述脱冰温度。
如此,由于通过半导体制冷片从具有棒状构件的金属件侧吸热并向散热装置侧放热,因此除了通过具有用于制冷剂流动的流道的散热装置进行冷却以外还增加了通过半导体制冷片进行冷却,并且金属件的棒状构件的温度可以是与仅用制冷剂的情况的温度相比更低的温度。藉此,可以在短时间内在金属件的棒状构件周围产生冰。进一步地,通过从上述反转半导体制冷片的通电方向,可以使棒状构件的温度快速上升并实现脱冰。藉此,可以可靠地实现短制冰周期。
作为本发明的进一步改进,在所述脱冰工序中,以所述液体容器的端部区域为旋转中心, 使所述液体容器旋转70度至120度从所述制冰位置到所述避让位置,并且所述液体容器设有肋条,所述肋条与构成所述液体容器的侧壁部相连并且部分地覆盖上方的开口,并且在所述避让位置中,所述预定量的液体通过所述肋条而被拦在所述液体容器内。
如此,通过在液体容器处设有部分地覆盖上方开口的肋条,可以具有简单的结构,并且可靠地在避让位置中使预定量的液体贮存在液体容器内。
为实现上述目的,本发明还提供了一种冰箱,所述冰箱具有所述制冰机,从用于冷却冰箱内部的冷却系统中分支出来的制冷剂被供给至所述制冰机的散热装置。
如此,所述冰箱冷却效率高并且能在短时间内制冰。
附图说明
图1A是本发明的一个实施例的制冰机的立体图。
图1B是图1A所示制冰机另一视角的视图。
图2是沿图1A中箭头A-A来看的侧视图。
图3是沿图1A中箭头B-B的截面图,并且是本发明制冰机的侧视截面图。
图4是与图3相同的截面图,并且是本发明制冰机的变型例的侧视截面图。
图5是本发明的散热装置的平面形状以及连接到散热装置的冷却系统的图。
图6是本发明的制冰机的控制结构的方框图。
图7A是本发明在制冰机中实施的液体供给工序的侧视截面图。
图7B是本发明在制冰机中实施的脱冰工序的侧视截面图。
图7C是本发明在制冰机中实施的液体去除工序的侧视截面图。
图7D是本发明在制冰机中实施的避让工序的侧视截面图。
图7E是本发明在制冰机中实施的脱冰工序的侧视截面图。
图7F是本发明在制冰机中实施的复原工序的侧视截面图。
图7G是本发明在制冰机中实施的下一个制冰过程中的液体供给工序的侧视截面图。
图8A是本发明在制冰机中实施的残留液冻结工序的侧视截面图。
图8B是本发明在制冰机中实施的残留液脱冰工序中的在扭转液体容器时的侧视截面图。
图8C是本发明在制冰机中实施的残留液脱冰工序中的在冻结的残留液从液体容器落下时的侧视截面图。
图9是本发明冰箱的侧视截面图。
元件符号说明
2 制冰机
10 散热装置
12 流道
14A、14B 连接管
20 金属件
22 基部
24 棒状构件
24A 基端部
24B 尖端部
30 半导体制冷片
40 冷却部
50 液体容器
50A 底壁部
50B 侧壁部
50C 肋条
52 轴部
54 突起
56 冰收纳容器
60 移动机构
62 轴承部
70 液体供给/去除管
72 液体供给部
72A 尖端开口
74 液体去除部
80 冷却系统
82 压缩机
84 冷凝器
86 干燥器
90 控制部
100 冰箱
102A 冷冻室
102B 冷藏室
104A、B 入口侧流道
106 隔板
106A 吹出口
110 压缩机
120 冷凝器
130 干燥器
140 蒸发器
150 冷却系统
160 三通阀
170 风扇
180 风门
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
以下,基于附图来详细说明本发明的实施例。另外,接下来说明的装置是用于具体化本发明的技术思想的装置,除非有特别指出的记载,否则本发明不限于以下内容。为了使说明清楚,可能存在夸张地示出了各图中元件的大小或位置关系等的情况。在说明书和附图中,上下方向是在假定设置在地面上的冰箱的情况下示出的。
(制冰机的一个实施例)
图1A是本发明制冰机2的立体图。图1B是本发明制冰机2另一视角的立体图。图2是沿图1A中箭头A-A来看的侧视图。图3是沿图1A中箭头B-B的截面图,并且是展示了本发明制冰机的侧视截面图。图4是与图3相同的截面图,并且展示了本发明制冰机的变型例的侧视截面图。图5是本发明散热装置的平面形状以及连接到散热装置的冷却系统的图。图6是本发明制冰机的控制结构的方框图。首先,参照图1A、图1B、图2、图3、图4、图5和图6来说明本发明制冰机2的概况。
所述制冰机2包括:能冷冻液体以产生冰的冷却部40、能贮存液体的液体容器50、使液体容器50旋转移动的移动机构60、将液体供给至液体容器50的液体供给部72、以及去除液体容器50内的液体的液体去除部74。图1A和1B展示了实际上将液体供给至液体容器50并从液体容器50去除液体的液体供给/去除管70。液体供给/去除管70是实现液体供给部72和液体去除部74二者功能的构件。在本实施例中,所述制冰机2被构造成独立的制冰机,并且包括用于向冷却部40供给制冷剂的冷却系统80。然而,本发明不限于此,并且如稍后将描述的,也可能结合到冰箱中并且从冰箱的冷却系统供给制冷剂。制冰机2还包括控制部90,其用以控制制冰机2的各组成装置。任何液体,例如饮用水,都可以用作冷冻产生冰的液体。
<冷却部>
根据图3所示的实施例和图4所示的变型例,所述冷却部40的构成部件可以有所不同。
[一个实施例]
在图3所示的实施例中,所述冷却部40从上到下包括散热装置10和金属件20,并且散热装置10的下表面与金属件20的上表面接合。金属件20在板状基部22的下侧表面安装有多个棒状构件24。
[变型例]
在图4所示的变型例中,所述冷却部40从上到下按顺序包括散热装置10、半导体制冷片30和金属件20。金属件20在板状基部22的下侧表面安装有多个棒状构件24。半导体制冷片30被设置在散热装置10与金属件20之间,使得其一侧的表面(上表面)与散热装置10的表面(下表面)接触,其另一侧的表面(下表面)与金属件20的与安装了棒状构件24的表面相反侧的表面(上表面)接触。
[散热装置]
所述散热装置10呈平板状,并且由铝、铜之类的导热率高的金属制成。所述散热装置10在其内部设有供液态或雾状的制冷剂流动的流道12。在图5中,以虚线箭头示出了制冷剂的流动。在图5中,以平面视图示出了具有三个折返部分的大致呈M字形的流道12,但是本发明不限于此。根据散热装置10的大小,也可以使用具有一个折返部分的流道或具有三个以上的折返部分的流道。在流道12的两端安装有连接管14A、14B。作为散热装置10的结构,可以举例如下:在金属件上形成沟状流道,或者将作为流道的冷却管接合到金属薄板。在后一种情况下,可以是冷却管接合到金属薄板的单面,也可以是接合金属薄板以覆盖冷却管的周围。考虑到热传导,冷却管和金属薄板优选地以面接触。作为金属薄板的厚度,可以举例为约1至20mm。散热装置10的平面尺寸与稍后描述的金属件20的平面尺寸相同。
在本实施例的冷却系统80中,由压缩机82压缩的高压制冷剂气体在冷凝器84中放热并变回液体,在通过毛细管时被减压以降低沸点,并且经由干燥器86从连接管14A进入散热装置10的流道12。在通过流道12时,液态或雾状的制冷剂从周围吸收热量并蒸发。汽化的制冷剂从连接管14B经由冷却系统80的管线返回到压缩机82,并且重复再次被压缩的循环。通过这样的冷却循环,可以将散热装置10冷却到冰点以下的温度。
[金属件]
所述金属件20由铝、铜之类的导热率高的金属形成。金属件20具有平板状的基部22和安装到基部22的多个金属制的棒状构件24。所述棒状构件24安装在基部22的下表面,使得从基端部24A至尖端部24B向下延伸。
图1A、1B展示了六个棒状构件24安装到基部22的情况。棒状构件24可以为具有圆形的截面形状,外径为大约5至20mm,并且长度为大约30至80mm。基部22的平面形状由棒状构件24的大小和要安装的个数来确定。散热装置10也采用与金属件20的基部22大致相同的平面形状。所述散热装置10和金属件20的基部22的平面尺寸,可以为纵向和横向尺寸为大约40至400mm。所述基部22的厚度可以为大约2至10mm。
本实施例中的金属件20在棒状构件24的基端部24A侧设有公螺纹,使得与形成在设在基部22的孔部的母螺纹进行螺纹连接。通过这样的结构,可以容易地更换和安装棒状构件24。虽然本实施例的棒状构件24具有圆形的截面形状,但是不限于此,也可以换成具有多边形、星形、心形以及任何截面形状的棒状构件。另外,也可以通过熔接或焊接将棒状构件24接合到基部22。考虑到棒状构件24的冷却效果,优选为实心的棒状构件24,但是考 虑到可加工性等,也可以采用中空的棒状构件24。
[半导体制冷片]
半导体制冷片30是利用珀耳帖效应的元件,当两个不同种类的金属或半导体接合并有电流流过时,在接合点处发生热量的吸收/放出。当电流以相对于半导体制冷片30的指定方向流动时,一侧的表面成为吸热侧,而另一侧的表面成为放热侧。而且,当电流以相对于半导体制冷片30的逆方向流动时,成为吸热侧的表面和成为放热侧的表面反转。在本实施例中,可以使用任何已知的半导体制冷片。本实施例中的半导体制冷片30的宽度和深度尺寸,为大约20至100mm,并且其厚度为大约2至20mm。另外,也可以与散热装置1和金属件20的大小相适应地设置多个半导体制冷片30。
[冷却部的固定结构]
在未设置半导体制冷片30的情况下,例如,可以用诸如螺栓螺母之类的紧固构件来使之彼此固定,使得散热装置10的下表面与金属件20的上表面紧贴。另一方面,在设置半导体制冷片30的情况下具有这样的固定结构:将半导体制冷片30的两面与散热装置10的下表面和金属件20的上表面紧贴。例如,可以用诸如螺栓螺母之类的紧固构件将被设置成夹入半导体制冷片30的散热装置10和金属件20彼此固定。通过紧固从而使螺栓轴经受拉伸应力,可以使散热装置10的下表面与半导体制冷片30的上表面紧贴,并使半导体制冷片30的下表面与金属件20的上表面紧贴。然而,不限于该固定方法,可以用任何其他固定手段来形成冷却部40的固定结构。
<液体容器>
液体容器50由具有弹性的树脂材料制成。液体容器50具有液体贮存区域R,其由底壁部50A以及从底壁部50A立起设置的侧壁部50B围设形成。液体贮存区域R的上方开口。金属件20的棒状构件24通过该开口插入液体贮存区域R内,使得距棒状构件24的尖端部24B的预定范围设置在液体贮存区域R内。
在本实施例的制冰机2中,通过被制冷剂冷却的散热装置10的冷却,金属制的棒状构件24降至低于冰点的温度。由于使得距棒状构件24的尖端部24B的预定范围设置在液体容器50的液体贮存区域R内,可以在棒状构件24的浸入液体的部分周围产生冰。所述预定范围可以为距棒状构件24的尖端部24B约8mm至40mm。进一步地,在包括半导体制冷片30的情况中,由于除了通过散热装置10进行冷却以外还增加了通过半导体制冷片30进行冷却,因此可以在更低的温度下进行冷却,并且可以在短时间内在金属件20的棒状构件24周围产生冰。
在本实施例中,六个棒状构件24大致呈直线状地排列,并且液体贮存区域R也沿着大致直线状细长地延伸。如图3和图4所示,其中示出了与液体贮存区域R的延伸方向大致正交的截面,形成液体贮存区域R的底面的底壁部50A和形成侧面的侧壁部50B经由平滑的曲线部而相连,并且上方开口。进一步地,液体容器50设有肋条50C,其与构成液体容 器50的侧壁部50B相连并且部分地覆盖上方的开口。
在图2所示的侧视图中,在液体贮存区域R的侧面的区域中设有沿液体贮存区域R的延伸方向延伸的轴部52。如图1A和图1B所示,液体容器50的轴部52的一侧的端部与稍后描述的移动机构60的驱动轴联结。另一方面,液体容器50的轴部52的另一侧的端部以自由旋转的方式支撑在设在制冰装置2的框架部上的轴承部62处。通过这样的结构,使得液体容器50能以轴部52的中心点C为旋转中心旋转。也就是说,通过移动机构60的驱动力,可以使液体容器50以位于液体容器50的端部区域的中心点C为旋转中心旋转移动。此外,液体容器50上设有突起54。如稍后将描述的,在突起54与制冰装置2的框架部抵接的状态下,所述液体容器50藉由移动机构60旋转,可以使具有弹性的液体容器50扭转并使液体容器50内的冰脱落。
<移动机构>
所述移动机构60被设置成可使所述液体容器50旋转移动。在所述移动机构60的驱动马达起动且驱动轴旋转时,液体容器50以中心点C为旋转中心旋转。移动机构60可以通过例如驱动马达的驱动力来使液体容器50顺时针/逆时针旋转移动(参照图1B的双箭头所示)。
如图3和图4所示的液体容器50的位置称为制冰位置。在液体容器50处于制冰位置的情况下,液体容器50的开口朝向上方,因此液体能够贮存在液体贮存区域R内,并且金属件20的棒状构件24距尖端部24B的预定范围通过该开口设置在液体贮存区域R内。通过移动机构60,可以使液体容器50以中心点C为旋转中心从制冰位置开始旋转(如图2所示),并且旋转直到液体容器50不在金属件20的棒状构件24下侧的状态为止,此时所述该液体容器50的位置称为避让位置。液体容器50在制冰位置与避让位置之间的旋转角度主要取决于金属件20的棒状构件24和液体容器50的位置关系、以及作为旋转中心的中心点C的位置而有所不同,不过优选为70度至120度的范围。
通过移动机构60,也可以使液体容器50以中心点C为旋转中心从制冰位置开始旋转,越过避让位置,并且旋转到液体容器50的开口朝向下方的位置(如稍后描述,并且如图8B、8C所示)。在这种情况下,设在液体容器50外面的突起54与制冰装置2的框架部抵接,在这种状态下,通过液体容器50藉由移动机构60而进一步旋转,可以使具有弹性的液体容器50扭转,并使在液体容器50的底壁部50A附近冻结的冰脱冰。
<液体供给部/液体去除部>
在本实施例中,所述制冰机还具有将液体供给至液体容器50内的液体供给部72和从液体容器50内排出液体的液体去除部74的机构。所述液体供给部72和液体去除部74主要由贮存液体的贮存容器、能在吸入方向和吐出方向上反转的液体供给/去除泵、液体供给/去除管70、以及连接它们的液体供给/去除流道构成。通过液体供给部72和液体去除部74,减少了零部件个数,特别地,由于仅液体供给/去除管70插入液体容器50内,因此可节省液 体容器50周围的空间。
当在控制部90的控制下将液体供给/去除泵驱动至液体供给侧时,贮存容器内的液体经由液体供给/去除流道从液体供给/排出泵流至液体供给/去除管70,并从液体供给/去除管70的尖端开口70A流入液体容器50内。当在控制部90的控制下将液体供给/去除泵驱动至液体去除侧时,液体容器50内的液体被从液体供给/去除管70的尖端开口70A吸入,经由液体供给/去除流道,从液体供给/去除管70流经液体供给/排出泵并流入贮存容器内。此时,优选的是,在返回的液体流入贮存容器内之前,使其通过过滤器。可以通过过滤器的过滤功能来抑制贮存容器内的液体的可溶物或不溶物的浓度的上升,从而产生高品质的冰。然而,所述液体供给部72和液体去除部74仅是一个示例,并且液体供给部72和液体去除部74中的每一个也可以包括各自的液体供给泵和液体去除泵、以及各自的液体供给管和液体去除管。
在任一种情况下,液体容器50都能够在制冰位置中贮存液体,并在上方开口。藉此,由于液体供给/去除管70(或液体供给管和液体去除管)的尖端区域简单地从上方开口部插进液体容器50内,因此可以容易防止在液体容器50旋转移动时的各构件之间的干扰。然而,如从图3和图4所示,液体供给/去除管70的尖端开口70A被设置成在距液体容器50的底面为高度H的位置,因此即使将液体供给/去除泵驱动至液体去除侧,距底面高度H为止的区域内的液体也会残留下来。假设在液体容器50的底部设有液体供给/去除口的情况下,可以排出液体容器50内的所有液体。然而,当液体容器50旋转移动时,与其他构件的干扰增加,并且会产生液体供给/去除软管的处理变得复杂的问题。
接下来,将参照图6来进行对包含控制部90的制冰机2的控制结构的说明。在此,以包含半导体制冷片30的控制结构为例进行说明。通过控制部90对移动机构60的马达的驱动控制,可以使液体容器50旋转,以在制冰位置和避让位置之间旋转移动,同时使液体容器50扭转以进行脱冰。
通过控制部90控制作为液体供给部72的液体供给/去除泵并将其驱动至液体供给侧,可以将液体供给至液体容器50。同样,通过控制部90控制作为液体去除部74的液体供给/去除泵并将其驱动至液体去除侧,可以使液体容器50内的液体返回至贮存容器。进一步地,在包括半导体制冷片30的情况中,通过控制部90控制供给至半导体制冷片30的电力的方向和大小,可以在两个表面之间形成温度差,使得一侧的表面成为吸热侧而另一侧的表面成为放热侧。
如上所述,本实施例中的制冰机2包括:冷却部40,其具有散热装置10,其具有用于制冷剂流动的流道12,以及金属件20,其被安装成使得金属制的棒状构件24从基端部24A至尖端部24B向下延伸;液体容器50,其能贮存液体;液体供给部72,其将液体供给至处于制冰位置的液体容器50;移动机构60,其使液体容器50在制冰位置与避让位置之间旋转移动;以及控制部90;使得距棒状构件24的尖端部24B的预定范围设置在液体容器50的 液体贮存区域内。
在控制部90的控制下,液体供给部72将液体供给至处于制冰位置的液体容器50的液体贮存区域内。例如,控制部90控制冷却系统80内的调换阀,使得在冷却系统80中变为低温的制冷剂流动到散热装置10内。通过其中流动有低温制冷剂的散热装置10进行冷却,可以使金属部20的棒状构件24达到低于冰点的制冰温度。藉此,可以在棒状构件24的浸入液体的区域周围产生冰。
进一步地,在包括半导体制冷片30的情况中,由于除了通过其中流动有低温制冷剂的散热装置10进行冷却以外还可以通过增加设置在散热装置10与金属件20之间的半导体制冷片30进行冷却,因此可以在与仅用制冷剂来冷却棒状构件24的结构相比更低的温度下进行冷却,并且可以在短时间内在金属件20的棒状构件24周围产生冰。
控制部90控制移动机构60,使得液体容器50从制冰位置旋转移动到液体容器50不在金属件20的棒状构件24下侧的避让位置。然后,通过控制部90使棒状构件24变为比冰点更高的脱冰温度,进而使得所产生的冰从棒状构件24落下。从棒状构件24落下后收纳于设置在下方的冰收纳容器56中。
在不包括半导体制冷片30的情况中,作为使棒状构件24变为脱冰温度的一种手段,考虑以下方式:通过控制部90调换冷却系统80内的调换阀,使得代替通过了冷凝器84和毛细管而变为低温的制冷剂,使刚从压缩机82出来的高温制冷剂流动到散热装置10,藉此使散热装置10的温度上升,并且通过热传导而使金属部20的棒状构件24的温度也上升,从而达到高于冰点的脱冰温度。
在包括半导体制冷片30的情况中,通过控制部90对半导体制冷片30通电,使得与散热装置10的表面接触的一侧成为吸热侧而与金属件20的表面接触的一侧成为发热侧,藉此可以使金属件20的棒状构件24的温度上升,以快速地变为脱冰温度。在这种情况下,即使是在冷却系统80中变为低温的制冷剂在散热装置10中流动的状态下,也可以通过半导体制冷片30使棒状构件24的温度变为脱冰温度。
(控制处理)
接下来对控制部90的控制处理进行说明。图7A至图7G是本发明制冰机实施的各工序时的侧视截面图,图7A展示了液体供给工序,图7B展示了制冰工序,图7C展示了液体去除工序,图7D展示了避让工序,图7E展示了脱冰工序,图7F展示了复原工序,并且图7G展示了下一个冷却过程中的液体供给工序。
(制冰过程)
以从初始状态开始的情况为例进行说明,在初始状态下,液体容器50处于制冰位置,并且没有液体贮存在液体容器50内。在此对重复进行多次的制冰过程进行详细说明,其中进行以下工序:将液体供给至液体容器50的液体供给工序,在棒状构件24周围产生冰的制冰工序,使液体容器50从制冰位置旋转移动至避让位置的避让工序,使所产生的冰从棒状 构件24落下的脱冰工序,以及使液体容器50从避让位置旋转移动到制冰位置的复原工序。
<液体供给工序(参照图7A)>
液体供给部72将液体供给至处于制冰位置的液体容器50的上方开口。具体来说,在控制部90的控制下,以液体供给方向来驱动液体供给部72的液体供给/去除泵的驱动马达。藉此,液体供给/去除泵将贮存容器内的液体抽上来,并且藉由液体供给/去除流道和液体供给/去除管70来将液体供给至液体容器50。当通过来自液面传感器的信号或计时器的定时而辨别出液体容器50内的液体高度达到了指定高度时,控制部90停止液体供给/去除泵的运转。通过液体供给工序,使得成为以下状态:距金属件20的棒状构件24的尖端部24B的预定范围L浸入液体容器50内的液体。
<制冰工序(参照图7B)>
在上述液体供给工序之后经过预定时间达到制冰温度,进行制冰工序:距处于制冰温度的金属件20的棒状构件24的尖端部24B的预定范围L浸入容纳在液体容器50中的液体。
具体来说,在控制部90的控制下,在冷却系统80中变为低温的制冷剂流动到散热装置10。通过在内部流道12流动的制冷剂的蒸发而变为冰点以下的温度的散热装置10进行冷却,使得金属件20的棒状构件24变为冰点以下的制冰温度。
另一方面,在包括半导体制冷片30的情况中,通过在控制部90的控制下向半导体制冷片30供电使得半导体制冷片30的与散热装置10接触的一侧成为放热侧、而与金属件20接触的一侧成为吸热侧,对制冰温度的棒状构件24进行进一步冷却。也就是说,由于通过半导体制冷片30从具有棒状构件24的金属件20侧吸热并向散热装置10侧放热,因此除了通过具有用于低温制冷剂流动的流道的散热装置进行冷却以外还增加了通过半导体制冷片30进行冷却,并且金属件20的棒状构件24的温度可以是与仅用制冷剂的情况的温度相比更低的温度。藉此,可以在短时间内在金属件20的棒状构件24周围产生冰。
然后,当通过计时器的计时辨别出经过了预定时间T时,结束制冰工序。如图7B所示,可以产生冰G,使之覆盖距金属件20的棒状构件24的尖端部的预定范围L。可以将包括半导体制冷片30的情况和不包括它的情况相对应地将预定时间T设定为不同的值。在包括半导体制冷片30的情况中,结束制冰工序,控制部90停止向半导体制冷片30的供电。
<液体去除工序(参照图7C)>
在上述制冰工序之后,在控制部90的控制下,液体去除部74去除残留在液体容器50内的液体。具体来说,在控制部90的控制下,以液体去除方向来驱动液体供给/去除泵。藉此,液体供给/去除泵藉由液体供给/去除管70和液体供给/去除流道抽出液体容器50内的液体,并将其返回至贮存容器。此时,返回至贮存容器的液体在被设置在贮存容器的返回路径入口处的过滤器过滤之后流入贮存容器。
如上所述,液体供给/去除管70的尖端开口70A被设置在距液体容器50的底面为高度H的位置,因此至少距底面高度H的区域内的液体会残留。在稍后描述的避让工序中,液 体容器50旋转移动到避让位置,液体容器50具有能在避让位置中容纳预定量的液体的结构。使得即使在液体去除工序之后,残留在液体容器50内的距底面高度H的区域中的液体的量也低于在避让位置能贮存在液体容器50中的预定量。假设在避让位置能贮存在液体容器50中的预定量比距液体容器50的底面高度H的区域中的液体的量还要多的情况下,可以在液体容器50内的液体的残存量达到预定量以下的时间点处停止液体供给/去除泵的运转。
如上所述,在液体去除工序中,在制冰工序之后,液体去除部74去除残留在液体容器50内的液体的一部分,以使得残留在液体容器50内的液体的量减少到预定量以下。以此方式,由于可以通过液体去除部74将残留在液体容器50内的液体的量减少到预定量以下,因此可以在稍后描述的避让工序和复原工序中可靠地在残留的液体仍旧贮存在液体容器50内的情况下旋转移动液体容器50。假设在避让位置能贮存在液体容器50中的预定量比制冰工序结束时残存在液体容器50内的液体总量还要多的情况下,也可以不进行液体去除工序。
<避让工序(参照图7D)>
在上述制冰工序之后,在控制部90的控制下,在残留的液体仍旧贮存在液体容器50内的情况下,移动机构60将液体容器50从制冰位置旋转移动到液体容器50不在金属部20的棒状构件24下侧的避让位置。通过驱动移动机构60的驱动马达,使液体容器50从制冰位置旋转70度至120度到避让位置。通过这样的移动旋转角度,即使在稍后描述的脱冰工序中所产生的冰从金属部20的棒状构件24落下,也没有与液体容器50发生干扰的风险。
液体容器50设有肋条50C,肋条50C与构成液体容器50的侧壁部50B相连并且部分地覆盖上方的开口,因此使得在避让位置中,预定量的液体通过肋条50C而被拦在液体容器50内。通过在液体容器50中设置如此的结构,在避让工序中的液体容器50的旋转移动期间、在脱冰工序中的处于避让位置的状态、以及在复原工序中的液体容器50的旋转移动期间,没有液体从液体容器50流出的风险。藉此,可以预防液体向周围飞溅、流出的液体冻结并粘附之类的问题。如此,通过设有部分地覆盖液体容器50的上方开口的肋条50C,可以具有简单的结构,并且可靠地在避让位置中使预定量的液体贮存在液体容器50内。
<脱冰工序(参照图7E)>
在避让工序之后,在控制部90的控制下,使金属部20的棒状构件24变为脱冰温度,并且在棒状构件周围产生的冰G从棒状构件24落下。落下的冰G收纳于设置在下方的冰收纳容器56中。使金属部20的棒状构件24变为脱冰温度,在不包括半导体制冷片30的情况中,代替低温制冷剂,可以通过使刚从压缩机82出来的高温制冷剂流动到散热装置10来使散热装置10的温度上升,并且通过热传导而使金属部20的棒状构件24的温度上升,从而变为高于冰点的脱冰温度。
另一方面,在包括半导体制冷片30的情况中,通过对半导体制冷片30通电,使得与散热装置10的表面接触的一侧成为吸热侧而与金属件20的表面接触的一侧成为发热侧,藉此可以使金属件20的棒状构件24的温度上升,以快速地变为脱冰温度。藉此,可以可靠地实 现短制冰周期。在这种情况下,在冷却系统80中变为低温的制冷剂仍旧在散热装置10中流动的状态下,也可以通过半导体制冷片30使棒状构件24的温度变为脱冰温度。
<复原工序(参照图7F)>
在上述脱冰工序之后,在控制部90的控制下,在残留的液体仍旧贮存在液体容器50内的情况下,移动机构60将液体容器50从避让位置向制冰位置旋转移动。以与避让工序的相反侧来驱动移动机构60的驱动马达,使液体容器50在相反方向上旋转70度至120度并回到原来的制冰位置。藉此,第一回合的制冰过程结束,并且实施第二回合的制冰过程的液体供给工序。
<第二回合以后的制冰过程(参照图7G)>
在第二回合的制冰过程的液体供给工序中,与上述同样地,在控制部90的控制下,以液体供给方向来驱动液体供给部72的液体供给/去除泵的驱动马达,并将液体供给至上方开口的液体容器50。图7G展示了在下一个制冰过程的液体供给工序中向液体容器50的液体供给完成后的时候。在第二回合以后的制冰过程的液体供给工序中,在液体供给开始之前,液体已经积存在了距液体容器50的底面高度H以上的区域中。由此,在第二回合的制冰过程的液体供给工序中供给至液体容器50的液体的量变得比在第一回合的制冰过程中少恰好残留的液体的分量。残留的液体已在前一个制冰过程中被金属件20的棒状构件24所冷却,并且变为比新供给的液体的温度更低的低温。由此,在第二回合以后的制冰过程的制冰工序中,由于要冻结的液体的温度预先较低,因此可以在短时间内有效率地进行制冰。
如上所述,本实施例的制冰机包括:冷却部40,其具有散热装置10及金属件20,所述散热装置10具有用于供制冷剂流动的流道12,所述金属件20被安装成使得金属制的棒状构件24从基端部24A至尖端部24B向下延伸,并通过散热装置10来冷却棒状构件24;液体容器50,其能贮存液体;液体供给部72,其将液体供给至液体容器50;移动机构60,其使液体容器50旋转移动;以及控制部90,其控制棒状构件24的温度、液体供给部72的动作、以及移动机构60的动作;在控制部90的控制下重复多次制冰过程,在所述制冰过程中进行以下工序:液体供给工序,其中,液体供给部72将液体供给至处于制冰位置且上方开口的液体容器50;制冰工序,其在液体供给工序之后经过预定时间达到制冰温度:距处于制冰温度的棒状构件24的尖端部24B的预定范围L浸入容纳在液体容器50中的液体;避让工序,其在制冰工序之后,在残留的液体仍旧贮存在液体容器50内的情况下,移动机构60将液体容器50从制冰位置旋转移动到液体容器50不在棒状构件24下侧的避让位置;脱冰工序,其在避让工序之后,使棒状构件24变为脱冰温度,并且在棒状构件24周围产生的冰从棒状构件24落下;以及复原工序,其在脱冰工序之后,在残留的液体仍旧贮存在液体容器50内的情况下,移动机构60将液体容器50从避让位置向制冰位置旋转移动。此时,液体容器50具有能在避让位置中容纳预定量的液体的结构。
藉此,由于在前一个制冰过程的制冰工序中残留在液体容器50内的液体可以用在下一 个制冰过程的制冰工序中,因此可以用在前一个制冰过程中冷却过的低温液体来进行制冰。于是,可以提供冷却效率高并且能在短时间内制冰的制冰机。重复如上所述的多个制冰过程,并且在冰收纳容器56中收纳了预定量的冰G之后完成一系列的制冰过程。
(多个制冰过程完成时的处理)
图8A至图8C是本发明制冰机2制冰过程完成时的侧视截面图,图8A展示了残留液冻结工序,图8B展示了残留液脱冰工序中的扭转液体容器50的时候,并且图8C展示了残留液脱冰工序中的冻结的残留液从液体容器50落下的时候。
<残留液冻结工序(参照图8A)>
在残留液冻结工序中,在完成了一系列的制冰过程之后,进行冻结残留在液体容器50中的残留液的处理。图8A中示出了在液体容器50处于制冰位置的状态下冻结残留液的时候。
冻结残留液的手段可以为:在冷却部40的散热装置10的外面设有多个鳍片,并且通过鳍片使在冷却部40的鳍片之间通过的冷气吹到残留液上。可以通过使在鳍片之间被冷却到零下温度的冷气吹到残留液上来冻结残留液。此外,还可以为:将用与冷却部40不同的散热装置或半导体制冷片等冷却的冷气吹到残留的液体上。
进一步地,还可以为:液体容器50的底面50A由具有良好导热率的金属形成,并且用具有高导热率的构件连接到冷却部40,或者移动液体容器50以与冷却部40接触。此外,如下所述,在将制冰机2设置在冰箱中的情况下,通过将液体容器50设置在冰箱的冷冻室中,可以容易地冻结残留液。
<残留液脱冰工序(参照图8B和8C)>
在上述残留液冻结工序之后,通过控制部90以与避让工序相同的方向驱动移动机构60的驱动马达来使液体容器50旋转移动。此时,使之旋转超过旋转70度至120度的避让位置、进一步旋转到180度附近。此时,设在液体容器50的端部区域的突起54与制冰机2的框架抵接。在通过该抵接而拘束住具有弹性的液体容器50的一部分的状态下,继续驱动驱动马达使液体容器50进一步旋转,于是液体容器50被扭转。液体容器50因扭转而变形,如图8C所示,并且冻结的残留液从液体容器50脱离并落下。落下的冻结的残留液收纳在设置在下方的冰收纳容器56中。
在图8A所示的示例中,在液体容器50处于制冰位置的状态下存在于底壁部50A附近的残留液被冻结。藉此,当液体容器50被扭转时,由于底壁部50A是变形相对较大的区域,因此冻结的残留液可以容易地从液体容器50脱离。进一步地,由于从液体容器50脱离的冻结的残留液大致向正下方落下,因此基本没有干扰其他构件的风险。然而,本发明不限于此,例如,也可以在液体容器50处于避让位置的状态下冻结残留液。作为冻结的残留液从液体容器50脱离的手段,也不限于上述记载,可以采用任何已知的制冰盘脱冰手段。
如上所述,在重复完成了多个制冰过程之后,在控制部90的控制下进行:残留液冻结 工序,其中,残留在处于制冰位置或避让位置的液体容器50内的液体被置于冷冻环境中并被冻结;以及残留液脱冰工序,其中,冻结的残留液从液体容器50落下。藉此,在一系列的制冰过程完成之后,残留的液体不会从液体容器流出,而是可以被冻结并从液体容器50脱冰,因此可以实现效率高的制冰周期。
(本发明的冰箱)
图9是本发明冰箱100的侧视截面图。在图9中,以虚线箭头示出了制冷剂的流动。将参照图9来对本发明的冰箱100进行说明,所述冰箱100具有上述制冰机2。
冰箱100包括冷冻室102A和冷藏室102B。在冷冻室102A和冷藏室102B的背面侧设有以隔板106隔开的入口侧流道104A、104B。在冷冻室102A侧的入口侧流道104A中设置有蒸发器140,在其上方设置有风扇170。在冷冻室102A的背面侧外部的机械室中设置有与蒸发器140连通的压缩机110。由压缩机110压缩的制冷剂(气体)在冷凝器120中液化,在通过毛细管时被减压以降低沸点,并且经由干燥器130到达三通阀160。尽管干燥器130在图9中展示为在机械室内,但其实际上被设置在三通阀160附近。
通过三通阀160使制冷剂在直接流入冰箱100的蒸发器140的流道与在制冰机2的散热装置10内流动之后流入蒸发器140的流道之间切换。在不用制冰机2进行制冰的情况下,制冷剂直接流入蒸发器140。然后,制冷剂在蒸发器140中带走冰箱内气体的热量并汽化,并且汽化的制冷剂在压缩机110中再次压缩,重复这样的循环。所述压缩机110、冷凝器120、干燥器130、蒸发器140等相连通以构成冰箱的冷却系统150。
在用制冰机2进行制冰的情况下,通过三通阀160的切换,制冷剂藉由连接管14A流入散热装置10的流道12。在通过流道12时,液态或雾状的制冷剂的一部分从周围吸收热量并蒸发,并且汽化的制冷剂藉由连接管14B到达蒸发器140的入口侧。由于在散热装置10中汽化的制冷剂的量小于在冷却系统150中循环的制冷剂的容量,因此当制冷剂进入蒸发器140时,制冷剂整体上保持液态或雾状状态。因此,制冷剂在蒸发器140中带走冰箱内气体的热量并汽化,并且汽化的制冷剂在压缩机110中再次压缩,重复这样的循环。
也可以不用三通阀160进行切换,通常使得始终产生流入蒸发器140的制冷剂流和经过散热装置10后流入蒸发器140的制冷剂流。
在冷冻室102A侧的入口侧流道104A与冷藏室102B侧的入口侧流道104B之间设置有风门180。图9中展示了风门180关闭的状态。在风门180关闭的状态下,当驱动压缩机110和风扇170时,冷冻室102A内的气体流动,并且通过了蒸发器140的冷气从设在隔板106处的吹出口106A流入冷冻室102A内。如图9的点划线箭头所示,流入的气体在冷冻室102A内循环,并再次返回入口侧流道104A内的蒸发器140的下侧。可以通过这样的通过蒸发器140而被冷却的气体的循环来对冷冻室102A内进行冷却。在风门180打开的状态下,冷气也在冷藏室102B侧循环。
如上所述,本实施例的冰箱100包括上述实施例所涉及的制冰机2,可以从用于冷却冰 箱内部的冷却系统150分支出来,以将液态或雾状的低温制冷剂供给至制冰机2的散热装置10。藉此,冷却部40的金属件20的棒状构件24可以变为制冰温度。此外,在制冰机2包括半导体制冷片30的情况中,由于除了通过利用冰箱100的冷却系统150的散热装置10进行冷却以外还增加了通过半导体制冷片30进行冷却,因此与仅用制冷剂的情况相比,可以进一步降低棒状构件24的制冰温度。
在脱冰工序中,可以用未图示的调换阀将来自压缩机110的高温制冷剂供给至制冰机2的散热装置10。藉此,冷却部40的金属件20的棒状构件24可以变为比冰点更高的脱冰温度。此外,在制冰机2包括半导体制冷片30的情况中,在来自冷却系统150的低温制冷剂仍旧供给至散热装置10的状态下,可以通过对半导体制冷片30的通电方向进行与制冰时相反的方向转动来升高金属件20的棒状构件24的温度,从而快速地脱冰。此外,在脱冰工序中,还可以调换三通阀160,使得不将制冷剂供给至散热装置10。
在如上所述的包括上述制冰机2并且从用于冷却冰箱内部的冷却系统150分支出来以将制冷剂供给至制冰机2的散热装置10的冰箱100中,冷却效率较高,并且能在短时间内制冰。特别地,由于制冰机2的液体容器50设置在冷冻室102A内,因此在上述残留液冻结工序中,可以容易地冻结液体容器50的残留液。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (6)

  1. 一种制冰机,其特征在于,包括:
    冷却部,其具有:
    散热装置,其具有用于制冷剂流动的流道,以及
    金属件,其被安装成使得金属制的棒状构件从基端部至尖端部向下延伸,并通过所述散热装置来冷却所述棒状构件;
    液体容器,其能贮存液体;
    液体供给部,其将液体供给至所述液体容器;
    移动机构,其使所述液体容器旋转移动;以及
    控制部,其控制所述棒状构件的温度、所述液体供给部的动作、以及所述移动机构的动作;
    在所述控制部的控制下多次重复制冰过程,在所述制冰过程中进行以下工序:
    液体供给工序,所述液体供给部将液体供给至处于制冰位置时上方开口的所述液体容器,
    制冰工序,其在所述液体供给工序之后,经过预定时间达到制冰温度并成为以下状态:距处于制冰温度的所述棒状构件的所述尖端部的预定范围浸入容纳在所述液体容器中的液体,
    避让工序,其在所述制冰工序之后,在残留的液体仍旧贮存在所述液体容器内的情况下,所述移动机构将所述液体容器从所述制冰位置旋转移动到所述液体容器不在所述棒状构件下侧的避让位置,
    脱冰工序,其在所述避让工序之后,使所述棒状构件变为脱冰温度,以使所述棒状构件周围产生的冰从所述棒状构件落下,以及
    复原工序,其在所述脱冰工序之后,在残留的液体仍旧贮存在所述液体容器内的情况下,所述移动机构将所述液体容器从所述避让位置向所述制冰位置旋转移动;
    其中,所述液体容器具有能在所述避让位置中容纳预定量液体的结构。
  2. 根据权利要求1所述的制冰机,其特征在于:所述制冰机还包括用以去除残留在所述液体容器内液体的液体去除部,在所述控制部的控制下,在所述制冰工序之后,在进行了液体去除工序之后进行所述避让工序,在所述液体去除工序中,所述液体去除部去除残留在所述液体容器内的液体的一部分,使得残留在所述液体容器内的液体的量减少到所述预定量以下。
  3. 根据权利要求1或2所述的制冰机,其特征在于:在重复了多个所述制冰过程之后,在所述控制部的控制下进行以下工序:
    残留液冻结工序,将残留在处于所述制冰位置或所述避让位置的所述液体容器内的残留液置于冷冻环境中以使之冻结,以及
    残留液脱冰工序,其在所述残留液冻结工序之后,其中,所述移动机构通过在具有弹性的所述液体容器的一部分被拘束住的状态下进一步旋转移动所述液体容器来使所述液体容器扭转,以使冻结的所述残留液从所述液体容器落下。
  4. 根据权利要求3所述的制冰机,其特征在于:所述制冰机还包括半导体制冷片,其被设置在所述散热装置与所述金属件之间,其一侧的表面与所述散热装置的表面接触,其另一侧的表面与所述金属件的和安装了所述棒状构件的表面相反侧的表面接触;
    在所述制冰工序中,通过向所述半导体制冷片供电使得所述半导体制冷片的与所述散热装置接触的一侧成为放热侧、而与所述金属件接触的一侧成为吸热侧,进一步对所述制冰温度的所述棒状构件进行冷却,并且
    在所述脱冰工序中,向所述半导体制冷片供电使得所述半导体制冷片的与所述散热装置接触的一侧成为吸热侧、而与所述金属件接触的一侧成为放热侧,以使所述棒状构件变为所述脱冰温度。
  5. 根据权利要求4所述的制冰机,其特征在于:在所述脱冰工序中,以所述液体容器的端部区域为旋转中心,使所述液体容器旋转70度至120度从所述制冰位置到所述避让位置,并且所述液体容器设有肋条,所述肋条与构成所述液体容器的侧壁部相连并且部分地覆盖上方的开口,并且在所述避让位置中,所述预定量的液体通过所述肋条而被拦在所述液体容器内。
  6. 一种冰箱,其特征在于:所述冰箱具有如权利要求1至5中的任一项所述的制冰机,从用于冷却冰箱内部的冷却系统中分支出来的制冷剂被供给至所述制冰机的散热装置。
PCT/CN2020/136817 2019-12-25 2020-12-16 制冰机和具有制冰机的冰箱 WO2021129485A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080086050.XA CN114787567B (zh) 2019-12-25 2020-12-16 制冰机和具有制冰机的冰箱
US17/788,292 US20230026532A1 (en) 2019-12-25 2020-12-16 Ice maker and refrigerator having same
EP20908248.6A EP4083543A4 (en) 2019-12-25 2020-12-16 ICE MAKER AND REFRIGERATOR WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234062 2019-12-25
JP2019234062A JP7469789B2 (ja) 2019-12-25 2019-12-25 製氷機及び製氷機を備えた冷蔵庫

Publications (1)

Publication Number Publication Date
WO2021129485A1 true WO2021129485A1 (zh) 2021-07-01

Family

ID=76573670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136817 WO2021129485A1 (zh) 2019-12-25 2020-12-16 制冰机和具有制冰机的冰箱

Country Status (5)

Country Link
US (1) US20230026532A1 (zh)
EP (1) EP4083543A4 (zh)
JP (1) JP7469789B2 (zh)
CN (1) CN114787567B (zh)
WO (1) WO2021129485A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230243564A1 (en) * 2022-02-03 2023-08-03 Haier Us Appliance Solutions, Inc. Ice making assembly with chilled reservoir

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099946A (en) * 1974-04-22 1978-07-11 Armalite, Inc. Method for producing ice
US5992167A (en) * 1998-04-07 1999-11-30 Varity Automotive Inc. Ice maker
CN1493833A (zh) * 2002-10-31 2004-05-05 ������������ʽ���� 制冰机
CN1540268A (zh) * 2003-10-30 2004-10-27 ��ҫ�� 四通阀和使用该四通阀的制冰机
CN1936465A (zh) * 2006-09-01 2007-03-28 徐文焕 多功能制冰机
US20070227176A1 (en) * 2006-03-31 2007-10-04 Maytag Corp. Icemaker assembly for a refrigerator
JP2010019510A (ja) * 2008-07-11 2010-01-28 Nidec Sankyo Corp 製氷装置
CN101903718A (zh) * 2007-12-18 2010-12-01 Lg电子株式会社 冰箱用制冰机
CN101995128A (zh) * 2009-08-21 2011-03-30 珠海格力电器股份有限公司 制冷水、制冰装置和方法
CN102549360A (zh) * 2009-09-30 2012-07-04 熊津豪威株式会社 制冰机及控制该制冰机的方法
CN106123420A (zh) * 2016-07-13 2016-11-16 滁州富达机械电子有限公司 一种全自动低能耗交流和直流控制的铝槽制冰机
CN108332466A (zh) * 2017-01-19 2018-07-27 富士电机株式会社 制冰装置
CN108895740A (zh) * 2018-04-25 2018-11-27 青岛海尔股份有限公司 制冰机及冰箱
CN110274415A (zh) * 2019-06-17 2019-09-24 合肥华凌股份有限公司 制冰机控制方法、制冰机及计算机可读存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1158765A (en) * 1966-05-20 1969-07-16 Pietro Bartolini-Salimbe Vival Apparatus for making Ice Blocks
AU1449000A (en) * 1998-10-20 2000-05-08 John A. Broadbent Low cost ice making evaporator
JP2002228333A (ja) * 2001-02-02 2002-08-14 Sanyo Electric Co Ltd 冷凍冷蔵庫
DE10162917A1 (de) * 2001-12-20 2003-07-03 Bsh Bosch Siemens Hausgeraete Eiswürfelbereiter
KR20040085605A (ko) * 2003-04-01 2004-10-08 삼성광주전자 주식회사 제빙기의 제빙기판
JP2006118782A (ja) * 2004-10-21 2006-05-11 Sharp Corp 製氷装置およびそれを備えた冷凍冷蔵庫
KR101421735B1 (ko) * 2008-02-28 2014-07-22 엘지전자 주식회사 냉장고의 제빙장치
KR100982700B1 (ko) * 2008-04-22 2010-09-17 웅진코웨이주식회사 두 개의 물받이를 구비하는 얼음 정수기
JP2010019509A (ja) * 2008-07-11 2010-01-28 Nidec Sankyo Corp 製氷装置
WO2010099454A2 (en) * 2009-02-28 2010-09-02 Electrolux Home Products, Inc. Method and apparatus for making clear ice
KR101688133B1 (ko) * 2009-06-22 2016-12-20 엘지전자 주식회사 제빙장치 및 이를 구비한 냉장고 및 이 냉장고의 제빙방법
KR101718019B1 (ko) * 2010-07-01 2017-04-04 엘지전자 주식회사 제빙기용 절전 장치 및 제빙기의 절전 방법
KR20120076327A (ko) * 2010-12-29 2012-07-09 웅진코웨이주식회사 다른 형상의 얼음을 제조하는 제빙기
KR20120105186A (ko) * 2011-03-15 2012-09-25 웅진코웨이주식회사 제빙기 및 이를 이용한 냉수제조 및 제빙방법
US8756951B2 (en) * 2011-06-22 2014-06-24 Whirlpool Corporation Vertical ice maker producing clear ice pieces
KR20130033045A (ko) * 2011-09-26 2013-04-03 코웨이 주식회사 제빙기
KR102186818B1 (ko) * 2013-08-30 2020-12-04 코웨이 주식회사 제빙기
KR101826875B1 (ko) * 2013-11-06 2018-02-09 코웨이 주식회사 얼음저장장치 및 이를 포함하는 제빙장치
DE102016005522B4 (de) * 2016-04-29 2019-02-21 Emz-Hanauer Gmbh & Co. Kgaa Eisbereiter mit Gefrierhilfe

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099946A (en) * 1974-04-22 1978-07-11 Armalite, Inc. Method for producing ice
US5992167A (en) * 1998-04-07 1999-11-30 Varity Automotive Inc. Ice maker
CN1493833A (zh) * 2002-10-31 2004-05-05 ������������ʽ���� 制冰机
JP2004150785A (ja) 2002-10-31 2004-05-27 Samsung Kwangju Electronics Co Ltd 製氷機
CN1540268A (zh) * 2003-10-30 2004-10-27 ��ҫ�� 四通阀和使用该四通阀的制冰机
US20070227176A1 (en) * 2006-03-31 2007-10-04 Maytag Corp. Icemaker assembly for a refrigerator
CN1936465A (zh) * 2006-09-01 2007-03-28 徐文焕 多功能制冰机
CN101903718A (zh) * 2007-12-18 2010-12-01 Lg电子株式会社 冰箱用制冰机
JP2010019510A (ja) * 2008-07-11 2010-01-28 Nidec Sankyo Corp 製氷装置
CN101995128A (zh) * 2009-08-21 2011-03-30 珠海格力电器股份有限公司 制冷水、制冰装置和方法
CN102549360A (zh) * 2009-09-30 2012-07-04 熊津豪威株式会社 制冰机及控制该制冰机的方法
CN106123420A (zh) * 2016-07-13 2016-11-16 滁州富达机械电子有限公司 一种全自动低能耗交流和直流控制的铝槽制冰机
CN108332466A (zh) * 2017-01-19 2018-07-27 富士电机株式会社 制冰装置
CN108895740A (zh) * 2018-04-25 2018-11-27 青岛海尔股份有限公司 制冰机及冰箱
CN110274415A (zh) * 2019-06-17 2019-09-24 合肥华凌股份有限公司 制冰机控制方法、制冰机及计算机可读存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230243564A1 (en) * 2022-02-03 2023-08-03 Haier Us Appliance Solutions, Inc. Ice making assembly with chilled reservoir

Also Published As

Publication number Publication date
EP4083543A4 (en) 2023-06-07
EP4083543A1 (en) 2022-11-02
JP7469789B2 (ja) 2024-04-17
JP2021103032A (ja) 2021-07-15
CN114787567A (zh) 2022-07-22
CN114787567B (zh) 2023-11-03
US20230026532A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US5941085A (en) Refrigerator having an apparatus for defrosting
JP4892713B2 (ja) 空気調和機
KR101798553B1 (ko) 냉장고용 제빙장치 및 이를 포함하는 냉장고
US10047982B2 (en) Ice storage apparatus and ice making apparatus comprising same
WO2005057102A1 (ja) 冷却庫
WO2021129485A1 (zh) 制冰机和具有制冰机的冰箱
CN113108521B (zh) 制冰机和具有制冰机的冰箱
US20090173088A1 (en) Condenser and metering device in refrigeration system for saving energy
CN113028694B (zh) 制冰机和包括制冰机的冰箱
JP5369157B2 (ja) 冷凍冷蔵庫
JP2957415B2 (ja) 冷凍冷蔵庫の製氷ユニット
KR100814687B1 (ko) 열전 소자를 갖는 제빙 장치
JP7483241B2 (ja) 製氷機及び製氷機を備えた冷蔵庫
EP3106784A1 (en) Ice making duct for refrigerator and ice making method of using the same
JP6707183B2 (ja) 冷蔵庫
JP6729269B2 (ja) 冷蔵庫とその制御方法
JP2005098581A (ja) 冷凍回路及び冷凍回路を用いた冷却装置
WO2022048471A1 (zh) 制冰机
JP4837068B2 (ja) 冷凍冷蔵庫
WO2022135128A1 (zh) 制冰机
CN118475804A (zh) 冷藏库
JP2005098615A (ja) 冷却装置
KR101699084B1 (ko) 공기 조화 시스템
JPH03105181A (ja) 熱交換器の凍結防止装置
KR20010000409U (ko) 냉동실용 저온증발기의 제상전기히터장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020908248

Country of ref document: EP

Effective date: 20220725