WO2021129138A1 - 芳基双齿膦配体组合催化制备有机羧酸酯的方法 - Google Patents

芳基双齿膦配体组合催化制备有机羧酸酯的方法 Download PDF

Info

Publication number
WO2021129138A1
WO2021129138A1 PCT/CN2020/125030 CN2020125030W WO2021129138A1 WO 2021129138 A1 WO2021129138 A1 WO 2021129138A1 CN 2020125030 W CN2020125030 W CN 2020125030W WO 2021129138 A1 WO2021129138 A1 WO 2021129138A1
Authority
WO
WIPO (PCT)
Prior art keywords
aryl
bidentate phosphine
organic carboxylic
aryl bidentate
combination
Prior art date
Application number
PCT/CN2020/125030
Other languages
English (en)
French (fr)
Inventor
石峰
唐卫兵
王红利
赵静
赵康
王健
魏东成
李晓
Original Assignee
南京诚志清洁能源有限公司
中国科学院兰州化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京诚志清洁能源有限公司, 中国科学院兰州化学物理研究所 filed Critical 南京诚志清洁能源有限公司
Priority to DE112020003458.5T priority Critical patent/DE112020003458T5/de
Priority to US17/753,174 priority patent/US20220298097A1/en
Publication of WO2021129138A1 publication Critical patent/WO2021129138A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/38Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • B01J31/0227Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/10Non-coordinating groups comprising only oxygen beside carbon or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/20Non-coordinating groups comprising halogens
    • B01J2540/22Non-coordinating groups comprising halogens comprising fluorine, e.g. trifluoroacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/20Non-coordinating groups comprising halogens
    • B01J2540/22Non-coordinating groups comprising halogens comprising fluorine, e.g. trifluoroacetate
    • B01J2540/225Non-coordinating groups comprising halogens comprising fluorine, e.g. trifluoroacetate comprising perfluoroalkyl groups or moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Definitions

  • the invention relates to a method for preparing organic carboxylic acid esters, in particular to a method for preparing organic carboxylic acid esters through catalysis of aryl bidentate phosphine ligands, and belongs to the technical field of chemical synthesis.
  • Organic carboxylic acid esters are an important class of oxygen-containing compounds, which are widely used in fine chemical products, medicines, pesticides, food additives, fragrances, coatings, paints and other fields.
  • methyl propionate is widely used in the food, feed, and cosmetic industries as a solvent, additive, preservative or fragrance.
  • it is also an important chemical intermediate, and it is a key raw material for the production of polymethyl methacrylate (PMMA).
  • PMMA has good weather resistance, moderate density, rigidity, stability, transparency and other advantages and is widely used in automotive, LED core original materials, construction, aviation and other fields. Therefore, it is of great significance to develop an efficient synthesis method of organic carboxylic acid esters.
  • the hydroesterification reaction of olefins is the reaction of olefins with carbon monoxide and alcohols under the action of metal compounds/phosphine ligands to obtain esters with one more carbon atom than the terminal olefins.
  • this is the most atomically economical and simple method.
  • the following scheme shows the general reaction equation for the hydroesterification of olefins:
  • the reported catalyst system is mainly composed of central metal, related phosphine ligands, and acid additives.
  • the central metal is the transition metals of the VIII and X subgroups, such as Rh, Pd, Ni, Co, Cu, etc. Among them, the metal Pd is the most studied.
  • Related phosphine ligands such as alkyl phosphines, cycloalkyl phosphines, bidentate phosphines, etc. have been described in many patents, such as EP-A-04489472, EP-A-0499329, EP-A-0495547, US2005085671A1, US6284919B1, US2001051745A1, US6476255B1.
  • Lucite Company disclosed a group of bidentate phosphines with substituted aryl bridges, 1,2-bis(di-tert-butylphosphinomethyl)benzene (DTBPMB) can provide significantly higher than those previously disclosed The reaction rate and little or no impurities are produced, and it has a high conversion rate (Chem. Commun. 1999, 1877-1878; WO 96/19434; WO 2004/014552 Al).
  • Evonik Degussa also disclosed 1,1'-bis(tert-butylphenylphosphino)-ferrocene ligands, which have high catalytic performance for the hydroesterification of olefins (Angew.Chem .Int.Ed.,2017,56(19),5267-5271; US 2017/0022234 Al). These two ligands are currently the most efficient ligands in olefin hydroesterification reactions. These cases pointed out that the important factor of high activity comes from the structure of the tertiary carbon alkyl phosphine ligand.
  • the object of the present invention is to provide a method for preparing organic carboxylic acid ester by olefin hydrogen esterification reaction catalyzed by aryl bidentate phosphine ligand combination catalyst.
  • the method provided by the present invention is under the action of a combination catalyst of a palladium compound/aryl bidentate phosphine ligand/acid additive, in an organic solvent, the terminal olefin, carbon monoxide and alcohol undergo a hydrogen esterification reaction to produce one more terminal olefin than the terminal olefin.
  • Organic carboxylic acid esters of carbon are examples of organic carboxylic acid esters of carbon.
  • the molar ratio of the aryl bidentate phosphine ligand to the palladium compound is 0.1:1 to 100:1; the ratio of the acid additive to the palladium compound The molar ratio is 0.1:1 to 100:1.
  • the molar ratio of the aryl bidentate phosphine ligand to the palladium compound is 2:1-10:1; the acidic additive and the palladium The molar ratio of the compound is 2:1-20:1.
  • the structural formula of the aryl bidentate phosphine ligand is as follows:
  • n 1 or 2;
  • R 1 , R 2 , R 3 and R 4 are independently (C 6 -C 20 )-aryl, (C 3 -C 20 )-heteroaryl, substituted (C 6 -C 20 )-aryl, substituted (C 3 -C 20 )-heteroaryl;
  • R 5 and R 6 are independently hydrogen, C 1-18 alkyl, methoxy, phenyl, phenoxy, halogen, trifluoromethyl, cyano and One or more substituents in the nitro group.
  • the substituents are: -(C 1 -C 12 )-alkyl,- (C 3 -C 12 )-cycloalkyl, -(C 3 -C 12 )-heterocycloalkyl, -(C 6 -C 20 )-aryl, -(C 3 -C 20 )-heteroaryl , -O-(C 1 -C 12 )-alkyl, -O-(C 1 -C 12 )-alkyl-(C 6 -C 20 )-aryl, -O-(C 3 -C 12 ) -Cycloalkyl, -S-(C 1 -C 12 )-alkyl, -S-(C 3 -C 12 )-cycloalkyl, -COO-(C 1 -
  • the structural formulas of the aryl bidentate phosphine ligands are shown in formulas a to x;
  • the palladium compound is selected from palladium acetate, palladium chloride, bis(triphenylphosphine) palladium dichloride, bis(acetonitrile) palladium dichloride, (1,5-cyclooctadiene) dichloride
  • the acidic additive is selected from perchloric acid, sulfuric acid, phosphoric acid, hydrochloric acid, formic acid, acetic acid, oxalic acid, methanesulfonic acid, trifluoromethanesulfonic acid, tert-butanesulfonic acid, p-toluenesulfonic acid, 2-hydroxy- One of methyl propane-2-sulfonic acid, 2,4,6-trimethylbenzenesulfonic acid, dodecylsulfonic acid, and aluminum trifluoromethanesulfonate.
  • the terminal olefin is an olefin having 2-20 carbon atoms.
  • the olefin with 2 to 20 carbon atoms is ethylene, propylene, 1-butene, cis-2-butene, trans-2-butene, isobutene, 1,3-butadiene, 1-pentene, cis-2-pentene, trans-2-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene , Hexene, tetramethylethylene, heptene, 1-octene, 2-octene, di-n-butene, diisobutene, n-decene, dodecene, hexadecene and octadecene or A variety of mixtures.
  • the amount of the combined catalyst is based on the amount of the palladium compound relative to the amount of the terminal olefin: the molar amount of the palladium compound is 0.001 to 5% of the molar amount of the terminal olefin.
  • the amount of the combined catalyst is based on the amount of the palladium compound relative to the amount of the terminal olefin: the molar amount of the palladium compound is 0.05 to 1% of the molar amount of the terminal olefin.
  • the alcohol is an aliphatic alcohol compound or a cycloaliphatic alcohol compound containing 1-20 carbon atoms.
  • the alcohol is methanol, ethanol, 1-propanol, isopropanol, isobutanol, tert-butanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3- Pentanol, 1-hexanol, cyclohexanol, 2-ethylhexanol, isononanol, 2-propylheptanol, cyclohexane-1,2-diol, 1,2-ethylene glycol, 1 ,3-propanediol, glycerol, 1,2,4-butanetriol, 2-hydroxymethyl-1,3-propanediol, pentaerythritol, 1,2,6-trihydroxyhexane and 1,1,1- One or more mixtures of tris(hydroxymethyl)ethane.
  • the organic solvent is alcohol, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, tetraglyme, 1,2-diethoxyethane ether, ethyl acetate, butyl acetate
  • alcohol dioxane
  • tetrahydrofuran ethylene glycol dimethyl ether
  • tetraglyme 1,2-diethoxyethane ether
  • ethyl acetate ethyl acetate
  • butyl acetate benzene, toluene, anisole, xylene, dichloromethane, chloroform and chloroform.
  • the molar ratio of the terminal olefin to the organic solvent is 1:1 to 1:50.
  • the hydrogen esterification reaction pressure is 0.5-10.0 MPa, and the reaction temperature is 30-180°C.
  • the hydrogen esterification reaction pressure is 3-6 MPa, and the reaction temperature is 80-120°C.
  • the present invention has the following advantages:
  • the aryl bidentate phosphine ligand has both the rigid skeleton structure of the rigid ligand (triphenylphosphine structure) and the flexibility of the flexible ligand (methylene group that is easy to rotate), which is "soft and rigid"
  • the properties of this ligand endow the ligand with suitable flexibility, which is conducive to the formation of the most favorable coordination mode and a more stable active structure in space. Therefore, it has good catalytic activity and selectivity in the synthesis of organic carboxylic acid esters by olefin carbonylation.
  • the aryl bidentate phosphine ligands used in the present invention have the advantages of high stability, simple synthesis method and the like.
  • the present invention provides a method for preparing organic carboxylic acid esters catalyzed by a combination of aryl bidentate phosphine ligands. Under the action of a combination catalyst of a palladium compound/aryl bidentate phosphine ligand/acid additive, in an organic solvent, terminal olefins and carbon monoxide Hydroesterification reaction with alcohol produces organic carboxylic acid ester with one carbon more than the terminal olefin.
  • the hydroesterification reaction pressure is preferably 0.5 to 10.0 MPa, more preferably 3 to 6 MPa, and the reaction temperature is preferably 30 to 180°C, more preferably 80 to 120°C.
  • the molar ratio of the aryl bidentate phosphine ligand to the palladium compound is preferably 0.1:1 to 100:1, more preferably 2:1-10:1; the molar ratio of the acidic additive to the palladium compound is preferably 0.1:1-100:1, more preferably 2:1-20:1.
  • the amount of the combined catalyst is based on the amount of the palladium compound relative to the amount of the olefin: the molar amount of the palladium compound is preferably 0.001 to 5% of the molar amount of the terminal olefin, more preferably 0.05 to 1%.
  • the structural formula of the aryl bidentate phosphine ligand is as follows:
  • n 1 or 2;
  • R 1 , R 2 , R 3 and R 4 are independently (C 6 -C 20 )-aryl, (C 3 -C 20 )-heteroaryl, substituted (C 6 -C 20 )-aryl or substituted ⁇ (C 3 -C 20 )-Heteroaryl.
  • the substituents are: -(C 1 -C 12 )-alkyl, -(C 3 -C 12 )-cycloalkyl, -(C 3 -C 12 )-heterocycloalkyl, (C 6 -C 20) -aryl, (C 3 -C 20 )-heteroaryl, -O-( C 1 -C 12 )-alkyl, -O-(C 1 -C 12 )-alkyl-(C 6 -C 20 )-aryl, -O-(C 3 -C 12 )-cycloalkyl, -S-(C 1 -C 12 )-alkyl, -S-(C 3 -C 12 )-cycloalkyl, -COO-(C 1 -C 12 )-alkyl,
  • R 5 and R 6 are independently hydrogen, C 1 - 18 alkyl, methoxy, phenyl, phenoxy, halogen, trifluoromethyl, cyano and nitro with one or more substituents.
  • the palladium compound is preferably palladium acetate, palladium chloride, bis(triphenylphosphine) palladium dichloride, bis(acetonitrile) palladium dichloride, (1,5-cyclooctadiene) two Palladium chloride, allyl palladium chloride, palladium tetraphenylphosphine, palladium acetylacetonate, bis(dibenzylideneacetone)palladium and tris(dibenzylideneacetone)dipalladium, more preferably PdCl 2 , Pd(acac) 2 , bis(acetonitrile) palladium dichloride, (1,5-cyclooctadiene) palladium dichloride or allyl palladium chloride.
  • the acidic additives are preferably perchloric acid, sulfuric acid, phosphoric acid, hydrochloric acid, formic acid, acetic acid, oxalic acid, methanesulfonic acid, trifluoromethanesulfonic acid, tert-butanesulfonic acid, p-toluenesulfonic acid (PTSA) , 2-hydroxy-propane-2-sulfonic acid, 2,4,6-trimethylbenzenesulfonic acid, dodecylsulfonic acid and one of aluminum trifluoromethanesulfonate, more preferably p-toluenesulfonic acid , Methanesulfonic acid, trifluoromethanesulfonic acid, tert-butanesulfonic acid, 2,4,6-trimethylbenzenesulfonic acid or dodecylsulfonic acid.
  • PTSA p-toluenesulfonic acid
  • the terminal olefin is preferably 2-20 olefins are ethylene, propylene, 1-butene, cis-2-butene, trans-2-butene, isobutene, 1,3-butene Ene, 1-pentene, cis-2-pentene, trans-2-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2- One of butene, hexene, tetramethylethylene, heptene, 1-octene, 2-octene, di-n-butene, diisobutene, n-decene, dodecene, hexadecene, and octadecene One or more mixtures.
  • the alcohol is preferably an aliphatic alcohol compound or cycloaliphatic alcohol compound containing 1-20 carbon atoms, more preferably methanol, ethanol, 1-propanol, isopropanol, isobutanol, tertiary Butanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 1-hexanol, cyclohexanol, 2-ethylhexanol, isononanol, 2- Propyl heptanol, cyclohexane-1,2-diol, 1,2-ethylene glycol, 1,3-propanediol, glycerol, 1,2,4-butanetriol, 2-hydroxymethyl- One or more mixtures of 1,3-propanediol, pentaerythritol, 1,2,6-trihydroxyhexane, and 1,1,1-tris(hydroxymethyl)ethanethanethan
  • the organic solvent is preferably alcohol, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, tetraglyme, 1,2-diethoxyethane ether, ethyl acetate, One of butyl acetate, benzene, toluene, anisole, xylene, dichloromethane, chloroform and chloroform.
  • the organic solvent is both a reactant and an organic solvent; when the organic solvent is an alcohol, the molar ratio of the terminal olefin to the organic solvent is 1:1 to 1:50.
  • aryl bidentate phosphine ligand a bis(2-(diphenylphosphino)phenyl)methane
  • aryl bidentate phosphine ligand c The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 2-bromo-5-fluorobenzaldehyde.
  • the structural formula of the aryl bidentate phosphine ligand c is as follows:
  • aryl bidentate phosphine ligand e The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 2-bromo-5-trifluoromethylbenzaldehyde.
  • the structural formula of the aryl bidentate phosphine ligand e is as follows:
  • aryl bidentate phosphine ligand g The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 2-bromo-4,5-dimethylbenzaldehyde .
  • the structural formula of the aryl bidentate phosphine ligand g is as follows:
  • aryl bidentate phosphine ligand i The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 2-bromo-4,5-dimethoxybenzene formaldehyde.
  • the structural formula of aryl bidentate phosphine ligand i is as follows:
  • Bis(4-(tert-butyl)2-(diphenylphosphino)phenyl)methane Add 4.38g of bis(2-bromo-4-(tert-butylphenyl))methane (10mmol ) Replace the system with an argon atmosphere, and add 30 mL of anhydrous ether. After cooling to -78°C, 9.2 mL (22 mmol) of butyl lithium (2.4M n-hexane) was slowly added dropwise. Maintain the temperature at -78°C, stir for 1 hour and add 4.84 g of diphenylphosphine chloride (22 mmol). Then it was warmed to room temperature and reacted for 24 hours.
  • aryl bidentate phosphine ligand j bis(4-(tert-butyl)2-(diphenylphosphino)phenyl)methane
  • aryl bidentate phosphine ligand o The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 3-bromo-2-carboxaldehyde furan.
  • the structural formula of the aryl bidentate phosphine ligand o is as follows:
  • aryl bidentate phosphine ligand u The preparation method is the same as that of aryl bidentate phosphine ligand a, except that the chlorodiphenylphosphine is replaced with chlorobis(4-fluorophenyl)phosphine.
  • the structural formula of the aryl bidentate phosphine ligand u is as follows:
  • aryl bidentate phosphine ligand w The preparation method is the same as that of aryl bidentate phosphine ligand a, except that the chlorodiphenylphosphine is replaced with chlorobis(4-methylphenyl)phosphine.
  • the structural formula of the aryl bidentate phosphine ligand w is as follows:
  • DTBPMB 1,2-bis(di-tert-butylphosphinomethyl)benzene
  • the liquid obtained from the reaction was qualitatively analyzed by Agilent 6890/5973 gas chromatography-mass spectrometer and HP-7890A gas chromatography was used for quantitative analysis.
  • Biphenyl was used as internal standard, and ethylene was used for qualitative analysis.
  • the conversion rate is 90%, and the selectivity of the product ethyl propionate is 98%.
  • aryl bidentate phosphine ligand b The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 2-bromo-6-fluorobenzaldehyde.
  • the structural formula of the aryl bidentate phosphine ligand b is as follows:
  • aryl bidentate phosphine ligand f The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 2-bromo-5-methylbenzaldehyde.
  • the structural formula of the aryl bidentate phosphine ligand f is as follows:
  • the liquid obtained from the reaction was qualitatively analyzed by Agilent 6890/5973 gas chromatography-mass spectrometer and HP-7890A gas chromatography was used for quantitative analysis.
  • Biphenyl was used as internal standard, and ethylene was used for qualitative analysis.
  • the conversion rate is 96%, and the selectivity of the product lauryl propionate is 96%.
  • aryl bidentate phosphine ligand h The preparation method is the same as that of aryl bidentate phosphine ligand a, except that 2-bromobenzaldehyde is replaced with 2-bromo-5-methoxybenzaldehyde.
  • the structural formula of the aryl bidentate phosphine ligand h is as follows:
  • the liquid obtained from the reaction was qualitatively analyzed by Agilent 6890/5973 gas chromatography-mass spectrometer and HP-7890A gas chromatography was used for quantitative analysis.
  • Biphenyl was used as the internal standard
  • benzene was used as the internal standard.
  • the conversion rate of ethylene is 90%
  • the selectivity of hydroesterification products is 95%
  • methyl phenylpropionate/2-methylphenylacetate is 96%.
  • the reaction formula is as follows:
  • the temperature was slowly raised to 100°C by a temperature controller, and reacted for 8 hours. After cooling to room temperature, vent gas slowly, unload the kettle, and use Agilent 6890/5973 gas chromatography-mass spectrometer for qualitative analysis of the liquid obtained from the reaction, use HP-7890A gas chromatography for quantitative analysis, and use biphenyl as the internal standard.
  • the conversion rate of methoxystyrene is 96%, and the products of hydrogen esterification ((3-(4-methoxyphenyl) ethyl propionate, 2-(4-methoxyphenyl) ethyl propionate)
  • the selectivity is 94%, 3-(4-methoxyphenyl) ethyl propionate/2-(4-methoxyphenyl) ethyl propionate is 96/4.
  • the reaction formula is as follows:
  • the temperature was slowly raised to 100°C by a temperature controller, and reacted for 4 hours. After cooling to room temperature, vent gas slowly, unload the kettle, and use Agilent 6890/5973 gas chromatography-mass spectrometer for qualitative analysis of the liquid obtained from the reaction, use HP-7890A gas chromatography for quantitative analysis, and use biphenyl as the internal standard.
  • the conversion rate of methylstyrene is 97%, and the selectivity of the hydrogen esterification products (3-(4-methylphenyl) ethyl propionate, 2-(4-methylphenyl) ethyl propionate) is 98 %, 3-(4-methylphenyl) ethyl propionate/2-(4-methylphenyl) ethyl propionate is 95/5.
  • the reaction formula is as follows:
  • Example 28 Preparation of ethyl 3-(4-fluorophenyl) propionate/2-(4-fluorophenyl) ethyl propionate
  • aryl bidentate phosphine ligand x The preparation method is the same as that of aryl bidentate phosphine ligand a, except that the chlorodiphenylphosphine is replaced with chlorobis(4-methoxyphenyl)phosphine. Its structural formula is as follows:
  • the temperature was slowly raised to 100°C by a temperature controller, and reacted for 4 hours. After cooling to room temperature, slowly vent gas, unload the kettle, and use Agilent 6890/5973 gas chromatography-mass spectrometer for qualitative analysis of the liquid obtained from the reaction, use HP-7890A gas chromatography for quantitative analysis, and use biphenyl as the internal standard.
  • the temperature was slowly raised to 100°C by a temperature controller, and reacted for 4 hours. After cooling to room temperature, vent gas slowly, unload the kettle, and use Agilent 6890/5973 gas chromatography-mass spectrometer for qualitative analysis of the liquid obtained from the reaction, use HP-7890A gas chromatography for quantitative analysis, and use biphenyl as the internal standard.
  • the conversion rate of cyanostyrene is 98%, and the selectivity of the hydrogen esterification products (3-(4-cyanophenyl) ethyl propionate, 2-(4-cyanophenyl) ethyl propionate) is 98 %, 3-(4-cyanophenyl) ethyl propionate/2-(4-cyanophenyl) ethyl propionate is 95/5.
  • the reaction formula is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种芳基双齿膦配体组合催化制备有机羧酸酯的方法,是在钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂作用下,末端烯烃、一氧化碳和醇进行氢酯基化反应生成较所述末端烯烃多一个碳的有机羧酸酯。上述组合催化剂对于烯烃的氢酯基化反应具有良好的催化活性和选择性,能高效催化烯烃羰基化合成有机羧酸酯。该芳基双齿膦配体兼具刚性配体的刚性骨架结构和柔性配体的灵活性,这种"柔中带刚"的特性赋予该配体拥有合适柔韧度,有利于形成空间上最有利的配位模式和较为稳定的活性结构。另外,芳基双齿膦配体具有稳定性高、合成方法简便等优点,为有机羧酸酯化合物的生产提供了新的工业化技术。

Description

芳基双齿膦配体组合催化制备有机羧酸酯的方法
本申请要求于2019年12月27日提交中国专利局、申请号为201911377577.3、发明名称为“芳基双齿膦配体组合催化制备有机羧酸酯的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种有机羧酸酯的制备方法,尤其涉及一种芳基双齿膦配体组合催化制备有机羧酸酯的方法,属于化学合成技术领域。
背景技术
有机羧酸酯是一类重要的含氧化合物,广泛应用于精细化工产品、医药、农药、食品添加剂、香料、涂料、油漆等领域。例如,丙酸甲酯作为溶剂、添加剂、防腐剂或香料,广泛应用于食品、饲料、化妆品行业。此外,它还是重要的化工中间体,它是生产聚甲基丙烯酸甲酯(PMMA)关键的原料。PMMA拥有良好的耐候性,适中的密度,刚性,稳定性,透明性等优点而广泛应用于汽车、LED核心原件材料、建筑、航空等领域。因此,开发有机羧酸酯高效合成方法具有重要的意义。
烯烃的氢酯基化反应是在金属化合物/膦配体作用下,烯烃与一氧化碳和醇反应得到比所述末端烯烃多一个碳原子的酯。在众多合成有机羧酸酯的方法中,这是一种最原子经济、简便的方法。以下方案显示了烯烃氢酯基化反应的通用反应方程式:
Figure PCTCN2020125030-appb-000001
目前,已报道的催化剂体系主要是由中心金属、相关膦配体、酸添加剂组成。中心金属是VIII、X副族过渡金属如Rh、Pd、Ni、Co、Cu等,其中研究最多的就是金属Pd。相关膦配体如烷基膦、环烷基膦、二齿膦等的研究已经在许多专利中进行了描述,例如EP-A-04489472、EP-A-0499329、EP-A-0495547、US2005085671A1、US6284919B1、US2001051745A1、US6476255B1。尤其是Lucite公司公开了一组具有取代芳基桥的二齿膦化物,1,2-双(二叔丁基膦基甲基)苯(DTBPMB)可以提供显著的高于先前公开的那些催化剂的反应速率和产生少许或不产生杂质,且具有高转化率(Chem.Commun.1999,1877-1878;WO 96/19434;WO 2004/014552 Al)。此外,赢创德固赛公司也公开了1,1'-双(叔丁基苯基膦基)-二茂铁配体,对于烯烃的氢酯基化反应具有高的催化性能(Angew.Chem.Int.Ed.,2017,56(19),5267-5271;US 2017/0022234 Al)。这两个配体是目前烯烃氢酯基化反应中最高效的配体。这些案例指出高活性的重要因素来源于叔碳烷基膦配体结构。虽然这两个配体在氢酯基化反应中表现出良好的性能,但是由于烷基膦配体在空气中极不稳定等缺陷,势必会给工业 应用带来投资成本的增加。因此,迫切需要开发稳定性好、合成方法简便且催化性能优异的烯烃氢酯化反应配体。
发明内容
本发明的目的是提供一种芳基双齿膦配体组合催化剂催化的烯烃氢酯基化反应制备有机羧酸酯的方法。本发明提供的方法是在钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂作用下,在有机溶剂中,末端烯烃、一氧化碳和醇进行氢酯基化反应生成较所述末端烯烃多一个碳的有机羧酸酯。
优选的,所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体与钯化合物的摩尔比为0.1:1~100:1;酸性添加剂与钯化合物的摩尔比为0.1:1~100:1。
优选的,所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体与钯化合物的摩尔比为2:1~10:1;所述酸性添加剂与钯化合物的摩尔比为2:1~20:1。
优选的,所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体的结构式如下:
Figure PCTCN2020125030-appb-000002
其中m为1或2;
R 1、R 2、R 3和R 4独立为(C 6-C 20)-芳基、(C 3-C 20)-杂芳基、取代的(C 6-C 20)-芳基、取代的(C 3-C 20)-杂芳基;R 5和R 6独立为氢、C 1-18烷基、甲氧基、苯基、苯氧基、卤素、三氟甲基、氰基和硝基中的一个或多个取代基。
优选的,所述取代的(C 6-C 20)-芳基、取代的(C 3-C 20)-杂芳基中,取代基为:-(C 1-C 12)-烷基、-(C 3-C 12)-环烷基、-(C 3-C 12)-杂环烷基、-(C 6-C 20)-芳基、-(C 3-C 20)-杂芳基、-O-(C 1-C 12)-烷基、-O-(C 1-C 12)-烷基-(C 6-C 20)-芳基、-O-(C 3-C 12)-环烷基、-S-(C 1-C 12)-烷基、-S-(C 3-C 12)-环烷基、-COO-(C 1-C 12)-烷基、-COO-(C 3-C 12)-环烷基、-CONH-(C 1-C 12)-烷基、-CONH-(C 3-C 12)-环烷基、-CO-(C 1-C 12)-烷基、-CO-(C 3-C 12)-环烷基、-N-[(C 1-C 12)-烷基] 2、-(C 6-C 20)-芳基、-(C 6-C 20)-芳基-(C 1-C 12)-烷基、-(C 6-C 20)-芳基-O-(C 1-C 12)-烷基、-(C 3-C 20)-杂芳基、-(C 3-C 20)-杂芳基-(C 1-C 12)-烷基、-(C 3-C 20)-杂芳基-O-(C 1-C 12)-烷基、-COOH、-OH、-SO 3H、-NH 2或卤素。
优选的,所述芳基双齿膦配体的结构式如式a~x所示;
Figure PCTCN2020125030-appb-000003
Figure PCTCN2020125030-appb-000004
优选的,所述钯化合物选自醋酸钯、氯化钯、双(三苯基膦)二氯化钯、双(乙腈)二氯化钯、(1,5-环辛二烯)二氯化钯、烯丙基氯化钯、四三苯基膦钯、乙酰丙酮钯、双(二亚苄基丙酮)钯和三(二亚苄基丙酮)二钯中的一种。
优选的,所述酸性添加剂选自高氯酸、硫酸、磷酸、盐酸、甲酸、乙酸、草酸、甲磺酸、三氟甲磺酸、叔丁烷磺酸、对甲苯磺酸、2-羟-基丙烷-2-磺酸、2,4,6-三甲基 苯磺酸和十二烷基磺酸和三氟甲磺酸铝中的一种。
优选的,所述末端烯烃为碳原子数为2~20的烯烃。
优选的,所述碳原子数为2~20的烯烃为乙烯、丙烯、1-丁烯、顺式-2-丁烯、反式-2-丁烯、异丁烯、1,3-丁二烯、1-戊烯、顺式-2-戊烯、反式-2-戊烯、2-甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯、己烯、四甲基乙烯、庚烯、1-辛烯、2-辛烯、二正丁烯、二异丁烯、正癸烯、十二烯、十六烯和十八烯中的一种或多种的混合物。
优选的,所述组合催化剂的用量以钯化合物相对末端烯烃的用量计:钯化合物的摩尔量为末端烯烃摩尔量的0.001~5%。
优选的,所述组合催化剂的用量以钯化合物相对末端烯烃的用量计:钯化合物的摩尔量为末端烯烃摩尔量的0.05~1%。
优选的,所述醇为含1~20个碳原子的脂肪族醇化合物或环脂族醇化合物。
优选的,所述醇为甲醇、乙醇、1-丙醇、异丙醇、异丁醇、叔丁醇、1-丁醇、2-丁醇、1-戊醇、2-戊醇、3-戊醇、1-己醇、环己醇、2-乙基己醇、异壬醇、2-丙基庚醇、环己烷-1,2-二醇、1,2-乙二醇、1,3-丙二醇、丙三醇、1,2,4-丁三醇、2-羟基甲基-1,3-丙二醇、季戊四醇、1,2,6-三羟基己烷和1,1,1-三(羟基甲基)乙烷中的一种或多种的混合物。
优选的,所述有机溶剂为醇、二氧六环、四氢呋喃、乙二醇二甲醚、四甘醇二甲醚、1,2-二乙氧基乙烷醚、乙酸乙酯、乙酸丁酯、苯、甲苯、苯甲醚、二甲苯、二氯甲烷、三氯甲烷和氯仿中的一种。
优选的,当所述有机溶剂为醇时,所述末端烯烃与有机溶剂的摩尔比为1:1~1:50。
优选的,所述氢酯基化反应压力为0.5~10.0MPa,反应温度为30~180℃。
优选的,所述氢酯基化反应压力为3~6MPa,反应温度为80~120℃。
本发明相对现有技术具有以下优点:
1、该芳基双齿膦配体兼具刚性配体的刚性骨架结构(三苯基膦结构)和柔性配体的灵活性(易于旋转的亚甲基),这种“柔中带刚”的特性赋予该配体拥有合适柔韧度,有利于形成空间上最有利的配位模式和较为稳定的活性结构,因此在烯烃羰基化合成有机羧酸酯反应中具有良好的催化活性和选择性。
2、与目前氢酯基化反应广泛使用的脂肪族膦配体相比,本发明使用的芳基双齿膦配体具有稳定性高、合成方法简便等优点。
具体实施方式
本发明提供了芳基双齿膦配体组合催化制备有机羧酸酯的方法,是在钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂作用下,在有机溶剂中,末端烯烃、一氧化碳和醇进行氢酯基化反应生成较所述末端烯烃多一个碳的有机羧酸酯。
在本发明中,所述氢酯基化反应压力优选为0.5~10.0Mpa,更优选为3~6MPa, 反应温度优选为30~180℃,更优选为80~120℃。
在本发明中,所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体与钯化合物的摩尔比优选为0.1:1~100:1,更优选为2:1~10:1;所述酸性添加剂与钯化合物的摩尔比优选为0.1:1~100:1,更优选2:1~20:1。所述组合催化剂的用量以钯化合物相对烯烃的用量计:钯化合物的摩尔量优选为末端烯烃摩尔量的0.001~5%,更优选为0.05~1%。
在本发明中,所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体的结构式如下:
Figure PCTCN2020125030-appb-000005
其中m为1或2;
R 1、R 2、R 3和R 4独立为(C 6-C 20)-芳基、(C 3-C 20)-杂芳基、取代的(C 6-C 20)-芳基或取代的(C 3-C 20)-杂芳基。所述取代的(C 6-C 20)-芳基、取代的(C 3-C 20)-杂芳基中,取代基为:-(C 1-C 12)-烷基、-(C 3-C 12)-环烷基、-(C 3-C 12)-杂环烷基、(C 6-C 20)-芳基、(C 3-C 20)-杂芳基、-O-(C 1-C 12)-烷基、-O-(C 1-C 12)-烷基-(C 6-C 20)-芳基、-O-(C 3-C 12)-环烷基、-S-(C 1-C 12)-烷基、-S-(C 3-C 12)-环烷基、-COO-(C 1-C 12)-烷基、-COO-(C 3-C 12)-环烷基、CONH-(C 1-C 12)-烷基、-CONH-(C 3-C 12)-环烷基、-CO-(C 1-C 12)-烷基、-CO-(C 3-C 12)-环烷基、-N-[(C 1-C 12)-烷基] 2、-(C 6-C 20)-芳基、-(C 6-C 20)-芳基-(C 1-C 12)-烷基、-(C 6-C 20)-芳基-O-(C 1-C 12)-烷基、-(C 3-C 20)-杂芳基、-(C 3-C 20)-杂芳基-(C 1-C 12)-烷基、-(C 3-C 20)-杂芳基-O-(C 1-C 12)-烷基、-COOH、-OH、-SO 3H、-NH 2或卤素。
R 5和R 6独立为氢、C 1- 18烷基、甲氧基、苯基、苯氧基、卤素、三氟甲基、氰基和硝基中的一个或多个取代基。
在本发明中,所述钯化合物优选为醋酸钯、氯化钯、双(三苯基膦)二氯化钯、双(乙腈)二氯化钯、(1,5-环辛二烯)二氯化钯、烯丙基氯化钯、四三苯基膦钯、乙酰丙酮钯、双(二亚苄基丙酮)钯和三(二亚苄基丙酮)二钯中的一种,更优选为PdCl 2、Pd(acac) 2,双(乙腈)二氯化钯、(1,5-环辛二烯)二氯化钯或烯丙基氯化钯。
在本发明中,所述酸性添加剂优选为高氯酸、硫酸、磷酸、盐酸、甲酸、乙酸、草酸、甲磺酸、三氟甲磺酸、叔丁烷磺酸、对甲苯磺酸(PTSA)、2-羟-基丙烷-2-磺酸、2,4,6-三甲基苯磺酸和十二烷基磺酸和三氟甲磺酸铝的一种,更优选为对甲苯磺酸、甲磺酸、三氟甲磺酸、叔丁烷磺酸、2,4,6-三甲基苯磺酸或十二烷基磺酸。
在本发明中,所述末端烯烃优选为2~20的烯烃为乙烯、丙烯、1-丁烯、顺式-2-丁烯、反式-2-丁烯、异丁烯、1,3-丁二烯、1-戊烯、顺式-2-戊烯、反式-2-戊烯、2- 甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯、己烯、四甲基乙烯、庚烯、1-辛烯、2-辛烯、二正丁烯、二异丁烯、正癸烯、十二烯、十六烯和十八烯中的一种或多种的混合物。
在本发明中,所述醇优选为含1~20个碳原子的脂肪族醇化合物或环脂族醇化合物,更优选为甲醇、乙醇、1-丙醇、异丙醇、异丁醇、叔丁醇、1-丁醇、2-丁醇、1-戊醇、2-戊醇、3-戊醇、1-己醇、环己醇、2-乙基己醇、异壬醇、2-丙基庚醇、环己烷-1,2-二醇、1,2-乙二醇、1,3-丙二醇、丙三醇、1,2,4-丁三醇、2-羟基甲基-1,3-丙二醇、季戊四醇、1,2,6-三羟基己烷和1,1,1-三(羟基甲基)乙烷中的一种或多种混合物。
在本发明中,所述有机溶剂优选为醇、二氧六环、四氢呋喃、乙二醇二甲醚、四甘醇二甲醚、1,2-二乙氧基乙烷醚、乙酸乙酯、乙酸丁酯、苯、甲苯、苯甲醚、二甲苯、二氯甲烷、三氯甲烷和氯仿中的一种。当所述有机溶剂使用醇时,醇既是反应物也是有机溶剂;当所述有机溶剂为醇时,所述末端烯烃与有机溶剂的摩尔比为1:1~1:50。
下面通过具体实施例对本发明芳基双齿膦配体组合催化制备有机羧酸酯的方法作进一步说明。
实施例1、丙酸甲酯的制备
(1)芳基双齿膦配体a(双(2-(二苯基膦基)苯基)甲烷)的制备
双(2-溴苯基)甲醇的制备:在氩气氛围下-15℃下,将14.0g 2-溴碘苯(50mmol)的四氢呋喃(250mL)溶液缓慢滴加到异丙基氯化镁合氯化锂(2M THF,27mL,54mmol)的溶液中。当交换完成之后,反应液冷至-78℃,加入2-溴苯甲醛。滴加完毕,反应温度升至室温并搅拌24小时。反应结束后,加盐酸(6M)淬灭反应,用乙酸乙酯萃取(3×80mL),无水硫酸钠干燥有机相,减压蒸馏出去溶剂,所得混合物经硅胶色谱柱分离,得到15.39g双(2-溴苯基)甲醇(45mmol,90%)。
1H NMR(400MHz,CDCl 3):δ=7.59(d,J=6Hz,2H),7.33(m,4H),7.18(m,2H),6.42(s,1H),2.59(s,1H); 13C NMR(100MHz,CDCl 3):δ141.1,133.2,129.6,128.9,127.8,124.1,74.4。
双(2-溴苯基)甲烷的制备:在室温下,向16.8g双(2-溴苯基)甲醇(49.1mmol)的醋酸(250mL)溶液中,加入氢碘酸(25.8mL,57%水溶液,196mmol)。130℃反应2小时后冷至室温。然后,加入饱和NaSO 3溶液溶液和水,用乙酸乙酯萃取(3×80mL),无水硫酸钠干燥有机相,减压蒸馏出去溶剂,所得混合物经硅胶色谱柱分离,得到11.2g双(2-溴苯基)甲烷(70%)。
1H NMR(400MHz,CDCl 3):δ=7.60(dd,J=8.0,J=1.3,2H),7.22(m,2H),7.11(m,2H),6.98(dd,J=7.6,1.6,2H),4.20(s,2H); 13C NMR(100MHz,CDCl 3):δ=138.9,132.8,130.7,128.1,127.5,125.1,42.1。151.4,136.0,130.3,129.7,124.8,124.6,41.0。
双(2-(二苯基膦基)苯基)甲烷的制备:在100mL史莱克瓶中加入3.26g双(2-溴苯基)甲烷(10mmol)并将体系置换成氩气氛围,加入30mL无水乙醚。冷至-78℃后,缓慢滴加9.2mL(22mmol)的丁基锂(2.4M正己烷)。保持温度-78℃,搅拌1小时后加入4.84g二苯基氯化膦(22mmol)。然后升至室温反应24小时后加水淬灭反应,二氯甲烷萃取,无水硫酸钠干燥有机相,减压蒸馏出去溶剂,所得混合物经硅胶色谱柱分离,得到4.020g双(2-(二苯基膦基)苯基)甲烷(75%)。
1H NMR(400MHz,CD 3COCD 3):δ=4.45(d,J=2.0Hz,2H),6.87-7.36(m,28H); 31P NMR(162MHz,CD 3COCD 3):δ-11.5。
芳基双齿膦配体a(双(2-(二苯基膦基)苯基)甲烷)的合成路线为:
Figure PCTCN2020125030-appb-000006
(2)丙酸甲酯的制备:在100毫升高压反应釜中,依次加入Pd(acac) 2(0.03mmol),芳基双齿膦配体a(0.06mmol),对甲苯磺酸(0.12mmol),无水甲醇(10mL)。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入2g乙烯(66.7mmol),再充入一氧化碳至反应釜压力为5.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标。乙烯转化率90%,丙酸甲酯选择性96%。
实施例2、丙酸甲酯的制备
(1)芳基双齿膦配体c的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成2-溴-5-氟苯甲醛。芳基双齿膦配体c的结构式如下:
Figure PCTCN2020125030-appb-000007
(2)丙酸甲酯的制备:采用芳基双齿膦配体c,其他与实施例1同。乙烯转化率83%,丙酸甲酯选择性98%。
实施例3、丙酸甲酯的制备
(1)芳基双齿膦配体e的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成2-溴-5-三氟甲基苯甲醛。芳基双齿膦配体e的结构式如下:
Figure PCTCN2020125030-appb-000008
(2)丙酸甲酯的制备:采用芳基双齿膦配体e,其他与实施例1同。乙烯转化率79%,丙酸甲酯选择性97%。
实施例4、丙酸甲酯的制备
(1)芳基双齿膦配体g的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成2-溴-4,5-二甲基苯甲醛。芳基双齿膦配体g的结构式如下:
Figure PCTCN2020125030-appb-000009
(2)丙酸甲酯的制备:采用芳基双齿膦配体g,其他与实施例1同。乙烯转化率98%,丙酸甲酯选择性99%。
实施例5、丙酸甲酯的制备
(1)芳基双齿膦配体i的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成2-溴-4,5-二甲氧基苯甲醛。芳基双齿膦配体i的结构式如下:
Figure PCTCN2020125030-appb-000010
(2)丙酸甲酯的制备:采用芳基双齿膦配体i,其他与实施例1同。乙烯转化率94%,丙酸甲酯选择性96%。
实施例6、丙酸甲酯的制备
(1)芳基双齿膦配体j(双(4-(叔丁基)2-(二苯基膦基)苯基)甲烷)的制备:
制备双(2-溴-(4-叔丁基)苯基)甲烷:在200mL圆底烧瓶中加入20.0g双(4-叔丁基苯基)甲烷(72mmol)和0.36g铁粉(6.4mmol)二氯甲烷(72mL)。0℃条件下,向其中缓慢加入溴(7.7mL,150mmol)的二氯甲烷(36mL)溶液。反应温度升至室温,反应1小时。加入NaHSO 3溶液,二氯甲烷萃取,无水硫酸钠干燥有机相,减压蒸馏出去溶剂,所得混合物经硅胶色谱柱分离,得到29.959g双(2-溴-(4- 叔丁基)苯基)甲烷(95%)。
1H NMR(400MHz,CDCl 3):δ=7.59(d,J=2.0Hz,2H),7.23(dd,J=2.0Hz,J=8.1Hz,2H),6.92(d,J=8.1Hz,2H),4.13(s,2H),1.30(s,18H). 13C NMR(100MHz,CDCl 3):δ=151.4,136.0,130.3,129.7,124.8,124.6,41.0,34.5,31.2。
双(4-(叔丁基)2-(二苯基膦基)苯基)甲烷:在100mL史莱克瓶中加入4.38g双(2-溴-4-(叔丁苯基))甲烷(10mmol)并将体系置换成氩气氛围,加入30mL无水乙醚。冷至-78℃后,缓慢滴加9.2mL(22mmol)的丁基锂(2.4M正己烷)。保持温度-78℃,搅拌1小时后加入4.84g二苯基氯化膦(22mmol)。然后升至室温反应24小时后加水淬灭反应,二氯甲烷萃取,无水硫酸钠干燥有机相,减压蒸馏出去溶剂,所得混合物经硅胶色谱柱分离,得到4.536g双(4-(叔丁基)2-(二苯基膦基)苯基)甲烷(70%)。
1H NMR(400MHz,C 6D 6):δ=1.10(s,18H),4.84(t,J=2.2Hz,2H),7.00-7.08(m,12H),7.08-7.11(m,4H),7.25(m,2H),7.41(m,8H); 13C NMR(100MHz,C 6D 6):δ=30.9,34.2,37.8,125.8,128.3,130.1,130.8,134.0,136.0,137.6,142.9,148.5. 31P NMR(162MHz,C 6D 6):δ=-13.3。
芳基双齿膦配体j(双(4-(叔丁基)2-(二苯基膦基)苯基)甲烷)的合成路线为:
Figure PCTCN2020125030-appb-000011
(2)丙酸甲酯的制备:采用芳基双齿膦配体j,其他与实施例1同。乙烯转化率68%,丙酸甲酯选择性97%。
实施例7、丙酸甲酯的制备
(1)芳基双齿膦配体m(双(2-(二苯基膦基)萘基)甲烷)的制备:在氩气氛围下,将389.2mg双(2-三氟甲磺酸基-萘基)甲烷(0.69mmol),100.0mg叔丁醇钠(1.4mmol),8.0mg醋酸钯(0.036mmol),1,1'-双(二苯基膦)二茂铁(20.0mg,0.036mmol),3mL甲苯和260.4mg二苯基膦(1.4mmol)依次加入到100mL史莱克瓶中。在110℃下反应24小时后停止反应并冷至室温。接着,反应混合物用硅藻土过滤、二氯甲烷洗涤。粗产品浓缩后,经硅胶色谱柱分离,得到445.9mg双(2-(二苯基膦基)萘基)甲烷(70%)。
1H NMR(400MHz,CDCl 3)δ=8.11(d,J=8.7Hz,2H),7.63(d,J=8.1Hz,2H),7.56(d,J=8.7Hz,2H),7.31-7.10(m,24H),7.07(t,J=8.4Hz,2H),6.76(t,J=7.5Hz,2H); 13C NMR(100MHz,CDCl 3)δ=144.8,144.6,144.4,136.9,136.8,134.2,133.8,133.5,132.9,130.2,128.5,128.3,126.9,126.0,125.5,36.0; 31P NMR(162MHz,CDCl 3)δ=-12.16。
芳基双齿膦配体m(双(2-(二苯基膦基)萘基)甲烷)的合成路线为:
Figure PCTCN2020125030-appb-000012
(2)丙酸甲酯的制备:采用芳基双齿膦配体m,其他与实施例1同。乙烯转化率85%,丙酸甲酯选择性98%。
实施例8、丙酸甲酯的制备
(1)芳基双齿膦配体o的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成3-溴-2-甲醛基呋喃。芳基双齿膦配体o的结构式如下:
Figure PCTCN2020125030-appb-000013
(2)丙酸甲酯的制备:采用芳基双齿膦配体o,其他与实施例1同。乙烯转化率91%,丙酸甲酯选择性95%。
实施例9、丙酸甲酯的制备
(1)芳基双齿膦配体r(1,2-双(2-(二苯基膦基)苯基)乙烷)的制备
1,2-双(2-(溴苯基)乙烷的制备:在100mL史莱克瓶中加入33.36g 2-溴苯甲基溴化物(133.5mmol)并将体系置换成氩气氛围,加入200mL四氢呋喃。冷至-78℃后,缓慢滴加47.0mL(66.7mmol)的丁基锂(1.4M正己烷)。保持温度-78℃,搅拌3小时后随后逐渐升温。升至室温反后加水淬灭反应(40mL),二氯甲烷萃取(3×50mL),无水硫酸钠干燥有机相,减压蒸馏除去溶剂,所得白色固体由热己烷重结晶得到18.48g的1,2-双(2-(溴苯基)乙烷(81%)。
1H NMR(400MHz,CDC1 3)δ=7.55(dd,J=7.8,l.l Hz,2H),7.24-7.17(m,4H),7.07(ddd,J=8.0,6.7,2.4Hz,2H),3.05(s,4H); 13C NMR(100MHz,CDCl 3)δ=140.54,132.77,130.60,127.79,127.41,124.46,36.42。
1,2-双(2-(二苯基膦基)苯基)乙烷的制备:在100mL史莱克瓶中加入3.40g1,2-双(2-(溴苯基)乙烷(10mmol)并将体系置换成氩气氛围,加入30mL无水乙醚。冷至-78℃后,缓慢滴加9.2mL(22mmol)的丁基锂(2.4M正己烷)。保持温 度-78℃,搅拌1小时后加入二苯基氯化膦(4.84g,22mmol)。然后升至室温反应24小时后加水淬灭反应,二氯甲烷萃取(3×50mL),无水硫酸钠干燥有机相,减压蒸馏出去溶剂,所得混合物经硅胶色谱柱分离,得到4.536g的1,2-双(2-(二苯基膦基)苯基)乙烷(70%)。
1H NMR(400MHz,C 6D 6):δ=6.86-7.40(m,48H),3.44(s,4H). 13C NMR(100MHz,C 6D 6):δ=147.1(d,J=25.8Hz),137.8(d,J=11.9Hz),136.0(d,J=11.9Hz),134.4(d,J=20.4Hz),126.78-134.22(m),37.2(d,J=23.6Hz); 31PNMR(162MHz,C 6D 6):δ=15.1。
芳基双齿膦配体r(双(2-(二苯基膦基)苯基)乙烷)的合成路线为:
Figure PCTCN2020125030-appb-000014
(2)丙酸甲酯的制备:采用芳基双齿膦配体r,其他与实施例1同。乙烯转化率65%,丙酸甲酯选择性95%。
实施例10、丙酸甲酯的制备
(1)芳基双齿膦配体u的制备:制备方法同芳基双齿膦配体a,仅仅将其中的氯二苯基膦换成氯二(4-氟苯基)膦。芳基双齿膦配体u的结构式如下:
Figure PCTCN2020125030-appb-000015
(2)丙酸甲酯的制备:采用芳基双齿膦配体u,其他与实施例1同。乙烯转化率80%,丙酸甲酯选择性96%。
实施例11、丙酸甲酯的制备
(1)芳基双齿膦配体w的制备:制备方法同芳基双齿膦配体a,仅仅将其中的氯二苯基膦换成氯二(4-甲基苯基)膦。芳基双齿膦配体w的结构式如下:
Figure PCTCN2020125030-appb-000016
(2)丙酸甲酯的制备:采用芳基双齿膦配体w,其他与实施例1同。乙烯转化率97%,丙酸甲酯选择性98%。
对比例1、丙酸甲酯的制备
(1)对比膦配体1,2-双(二叔丁基膦基甲基)苯(DTBPMB)可在市面上买到。它的结构式如下:
Figure PCTCN2020125030-appb-000017
(2)丙酸甲酯的制备:采用对比膦配体1,2-双(二叔丁基膦基甲基)苯,其他与实施例1同。乙烯转化率97%,丙酸甲酯选择性99%。
实施例12、丙酸乙酯的制备
(1)芳基双齿膦配体a的制备:同实施例1;
(2)丙酸乙酯的制备:在100毫升高压反应釜中,依次加入Pd(acac) 2(0.01mmol),芳基双齿膦配体a(0.04mmol),对甲苯磺酸(0.1mmol),无水乙醇(10mL)。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入乙烯(2g,66.7mmol),再充入一氧化碳至反应釜压力为4.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,乙烯转化率为90%,产物丙酸乙酯选择性为98%。
实施例13、丙酸丙酯的制备
(1)芳基双齿膦配体b的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成2-溴-6-氟苯甲醛。芳基双齿膦配体b的结构式如下:
Figure PCTCN2020125030-appb-000018
(2)丙酸丙酯的制备:在100毫升高压反应釜中,依次加入双(三苯基膦)二氯化钯(0.10mmol),芳基双齿膦配体b(0.04mmol),硫酸(0.30mmol),正丙醇(8mL),二氧六环(5mL)。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入乙烯(2g,66.7mmol),再充入一氧化碳至反应釜压力为5.0MPa。由控温仪控制温度缓慢升至90℃,反应8小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,乙烯转化率为89%,产物丙酸丙酯选择性为97%。
实施例14、丙酸辛酯的制备
(1)芳基双齿膦配体c的制备:同实施例2
(2)丙酸辛酯的制备:在100毫升高压反应釜中,依次加入0.50mmol双(乙腈)二氯化钯,0.04mmol芳基双齿膦配体c,0.5mmol磷酸,10mL正辛醇。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入1g乙烯(33.3mmol),再充入一氧化碳至反应釜压力为8.0MPa。由控温仪控制温度缓慢升至60℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,乙烯转化率为90%,产物丙酸辛酯选择性为96%。
实施例15、丙酸十二酯的制备
(1)芳基双齿膦配体f的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成2-溴-5-甲基苯甲醛。芳基双齿膦配体f的结构式如下:
Figure PCTCN2020125030-appb-000019
(2)丙酸十二酯的制备:在100毫升高压反应釜中,依次加入0.01mmolPd(acac) 2,0.08mmol芳基双齿膦配体f,0.4mmol盐酸,10mL正十二醇。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入2g乙烯(66.7mmol),再充入一氧化碳至反应釜压力为4.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,乙烯转化率为96%,产物丙酸十二酯选择性为96%。
实施例16、丙酸苯酯的制备
(1)芳基双齿膦配体g的制备:同实施例4;
(2)丙酸苯酯的制备:在100毫升高压反应釜中,依次加入0.20mmol(1,5-环辛二烯)二氯化钯,0.04mmol芳基双齿膦配体g,0.1mmol对甲苯磺酸,10g苯酚,10mL甲苯。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入2g乙烯(66.7mmol),再充入一氧化碳至反应釜压力为6.0MPa。由控温仪控制温度缓慢升至120℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,乙烯转化率为98%,产物丙酸苯酯选择性为96%。
实施例17、丁酸甲酯、异丁酸甲酯的制备
(1)芳基双齿膦配体i的制备:同实施例5;
(2)丁酸甲酯、异丁酸甲酯的制备:在100毫升高压反应釜中,依次加入0.30mmolPd(acac) 2,0.04mmol芳基双齿膦配体i,0.1mmol甲磺酸,10mL无水甲醇,10mL乙二醇二甲醚。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入30mmol丙烯,再充入一氧化碳至反应釜压力为4.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,丙烯转化率为94%,氢酯基化产物(丁酸甲酯、异丁酸甲酯)选择性为98%(丁酸甲酯/异丁酸甲酯为94/6)。反应式如下:
Figure PCTCN2020125030-appb-000020
实施例18、丁酸甲酯、异丁酸甲酯的制备
(1)芳基双齿膦配体j的制备:见实施例6;
(2)丁酸甲酯、异丁酸甲酯的制备:在100毫升高压反应釜中,依次加入0.01mmol烯丙基氯化钯,0.20mmol芳基双齿膦配体j,0.1mmol对甲苯磺酸,10mL无水甲醇。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入66.7mmol丙烯,再充入一氧化碳至反应釜压力为3.0MPa。由控温仪控制温度缓慢升至150℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,丙烯转化率为88%,氢酯基化产物(丁酸甲酯、异丁酸甲酯)选择性为95%,丁酸甲酯/异丁酸甲酯为95/5。反应式如下:
Figure PCTCN2020125030-appb-000021
实施例19、戊酸甲酯、异戊酸甲酯的制备
(1)芳基双齿膦配体g的制备:同实施例4;
(2)戊酸甲酯、异戊酸甲酯的制备:在100毫升高压反应釜中,依次加入0.5mmol氯化钯,0.04mmol芳基双齿膦配体g,0.05mmol三氟甲磺酸,10mL无水甲醇,8mL乙酸乙酯。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入10mmol丁烯,再充入一氧化碳至反应釜压力为2.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,丁烯转化率为98%,氢酯基化产物(戊酸甲酯、异戊酸甲酯)选择性为97%,戊酸甲酯/异戊酸甲酯为97/3。反应式如下:
Figure PCTCN2020125030-appb-000022
实施例20、庚酸甲酯、异庚酸甲酯的制备
(1)芳基双齿膦配体h的制备:制备方法同芳基双齿膦配体a,仅仅将其中的2-溴苯甲醛换成2-溴-5-甲氧基苯甲醛。芳基双齿膦配体h的结构式如下:
Figure PCTCN2020125030-appb-000023
(2)庚酸甲酯、异庚酸甲酯的制备:在100毫升高压反应釜中,依次加入0.05mmolPd(acac) 2,0.04mmol芳基双齿膦配体h,0.1mmol叔丁烷磺酸,30mmol1-己烯,10mL无水甲醇。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为1.0MPa。由控温仪控制温度缓慢升至180℃,反应24小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,1-己烯转化率为80%,氢酯基化产物(庚酸甲酯、异庚酸甲酯)选择性为90%,庚酸甲酯/异庚酸甲酯为94/6。反应式如下:
Figure PCTCN2020125030-appb-000024
实施例21、壬酸甲酯、2-甲基辛酸甲酯的制备
(1)芳基双齿膦配体i的制备:同实施例5;
(2)壬酸甲酯、2-甲基辛酸甲酯的制备:在100毫升高压反应釜中,依次加入0.20mmol四三苯基膦钯,0.04mmol芳基双齿膦配体i,0.1mmol对甲苯磺酸,30mmol1-辛烯,10mL无水甲醇。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为4.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,1-辛烯转化率为96%,氢酯基化产物(壬酸甲酯、2-甲基辛酸甲酯)选择性为98%,壬酸甲酯/2-甲基辛酸甲酯为94/6。反应式如下:
Figure PCTCN2020125030-appb-000025
实施例22、十三酸甲酯/2-甲基-十二酸甲酯的制备
(1)芳基双齿膦配体g的制备:同实施例4;
(2)十三酸甲酯/2-甲基-十二酸甲酯的制备:在100毫升高压反应釜中,依次加入0.30mmolPd(acac) 2,0.04mmol芳基双齿膦配体g,0.1mmol2-羟-基丙烷-2-磺酸,30 mmol1-十二烯,10mL无水甲醇。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为5.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,1-十二烯转化率为95%,氢酯基化产物(十三酸甲酯、2-甲基-十二酸甲酯)选择性为96%,十三酸甲酯/2-甲基-十二酸甲酯为95/5。反应式如下:
Figure PCTCN2020125030-appb-000026
实施例23、苯丙酸甲酯/2-甲基苯乙酸甲酯的制备
(1)芳基双齿膦配体m的制备:同实施例7;
(2)苯丙酸甲酯/2-甲基苯乙酸甲酯的制备:在100毫升高压反应釜中,依次加入0.08mmolPd(acac) 2,0.04mmol芳基双齿膦配体m,0.1mmol2,4,6-三甲基苯磺酸,30mmol苯乙烯,10mL无水甲醇。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为6.0MPa。由控温仪控制温度缓慢升至80℃,反应12小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,苯乙烯转化率为90%,氢酯基化产物(苯丙酸甲酯、2-甲基苯乙酸甲酯)选择性为95%,苯丙酸甲酯/2-甲基苯乙酸甲酯为96/4。反应式如下:
Figure PCTCN2020125030-appb-000027
实施例24、苯丙酸苯酯/2-甲基苯乙酸苯酯的制备
(1)芳基双齿膦配体g的制备:同实施例4;
(2)苯丙酸苯酯/2-甲基苯乙酸苯酯的制备:在100毫升高压反应釜中,依次加入0.80mmol双(二亚苄基丙酮)钯,0.10mmol芳基双齿膦配体g,0.8mmol对甲苯磺酸,30mmol苯乙烯,10g苯酚,10mL苯甲醚。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为4.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,苯乙烯转化率为95%,氢酯基化产物(苯丙酸苯酯、2-甲基苯乙酸苯酯)选择性为95%,苯丙酸苯酯/2-甲基苯乙酸苯酯为97/3。反应式如下:
Figure PCTCN2020125030-appb-000028
实施例25、3-(4-甲氧基苯基)丙酸乙酯/2-(4-甲氧基苯基)丙酸乙酯的制备
(1)芳基双齿膦配体o的制备:同实施例8;
(2)3-(4-甲氧基苯基)丙酸乙酯/2-(4-甲氧基苯基)丙酸乙酯的制备:在100毫升高压反应釜中,依次加入0.06mmolPd(acac) 2,0.30mmol芳基双齿膦配体o,0.06mmol十二烷基磺酸,30mmol对甲氧基苯乙烯,10mL无水甲醇。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为5.0MPa。由控温仪控制温度缓慢升至100℃,反应8小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,对甲氧基苯乙烯转化率为96%,氢酯基化产物((3-(4-甲氧基苯基)丙酸乙酯、2-(4-甲氧基苯基)丙酸乙酯)选择性为94%,3-(4-甲氧基苯基)丙酸乙酯/2-(4-甲氧基苯基)丙酸乙酯为96/4。反应式如下:
Figure PCTCN2020125030-appb-000029
实施例26、3-(4-甲基苯基)丙酸乙酯/2-(4-甲基苯基)丙酸乙酯的制备
(1)芳基双齿膦配体g的制备:同实施例4;
(2)3-(4-甲基苯基)丙酸乙酯/2-(4-甲基苯基)丙酸乙酯的制备:在100毫升高压反应釜中,依次加入0.01mmolPd(acac) 2,0.04mmol芳基双齿膦配体g,0.40mmol对甲苯磺酸,30mmol对甲基苯乙烯,10mL无水乙醇,10mL二甲苯。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为6.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,对甲基苯乙烯转化率为97%,氢酯基化产物(3-(4-甲基苯基)丙酸乙酯、2-(4-甲基苯基)丙酸乙酯)选择性为98%,3-(4-甲基苯基)丙酸乙酯/2-(4-甲基苯基)丙酸乙酯为95/5。反应式如下:
Figure PCTCN2020125030-appb-000030
实施例27、苯丙酸异丙酯/2-甲基苯乙酸异丙酯的制备
(1)芳基双齿膦配体o的制备:同实施例8;
(2)苯丙酸异丙酯/2-甲基苯乙酸异丙酯的制备:在100毫升高压反应釜中,依次 加入0.01mmol三(二亚苄基丙酮)二钯,1.0mmol芳基双齿膦配体o,0.1mmol对甲苯磺酸,30mmol苯乙烯,10mL无水异丙醇。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为6.0MPa。由控温仪控制温度缓慢升至80℃,反应16小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,苯乙烯转化率为95%,氢酯基化产物(苯丙酸异丙酯、2-甲基苯乙酸异丙酯)选择性为96%,苯丙酸异丙酯/2-甲基苯乙酸异丙酯为94/6。反应式如下:
Figure PCTCN2020125030-appb-000031
实施例28、3-(4-氟苯基)丙酸乙酯/2-(4-氟苯基)丙酸乙酯的制备
(1)芳基双齿膦配体w的制备:同实施例12;
(2)3-(4-氟苯基)丙酸乙酯/2-(4-氟苯基)丙酸乙酯的制备:在100毫升高压反应釜中,依次加入0.01mmolPd(acac) 2,0.20mmol芳基双齿膦配体w,1.0mmol三氟甲磺酸铝,30mmol对氟苯乙烯,10mL乙醇。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为6.0MPa。由控温仪控制温度缓慢升至100℃,反应20小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,对氟苯乙烯转化率为97%,氢酯基化产物(3-(4-氟苯基)丙酸乙酯、2-(4-氟苯基)丙酸乙酯)选择性为98%,3-(4-氟苯基)丙酸乙酯/2-(4-氟苯基)丙酸乙酯为97/3。反应式如下:
Figure PCTCN2020125030-appb-000032
实施例29、3-(4-溴苯基)丙酸乙酯/2-(4-溴苯基)丙酸乙酯
(1)芳基双齿膦配体x的制备:制备方法同芳基双齿膦配体a,仅仅将其中的氯二苯基膦换成氯二(4-甲氧基苯基)膦。它的结构式如下:
Figure PCTCN2020125030-appb-000033
(2)3-(4-溴苯基)丙酸乙酯/2-(4-溴苯基)丙酸乙酯的制备:在100毫升高压反应釜中,依次加入0.01mmol烯丙基氯化钯,0.30mmol芳基双齿膦配体x,0.30mmol 对甲苯磺酸,30mmol对溴苯乙烯,10mL乙醇。密闭反应釜后用一氧化碳将反应釜置换3次,然后充入30mmol对溴苯乙烯,再充入一氧化碳至反应釜压力为8.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,对溴苯乙烯转化率为97%,氢酯基化产物(3-(4-溴苯基)丙酸乙酯、2-(4-溴苯基)丙酸乙酯)选择性为98%,3-(4-溴苯基)丙酸乙酯/2-(4-溴苯基)丙酸乙酯为94/6。反应式如下:
Figure PCTCN2020125030-appb-000034
实施例30
(1)芳基双齿膦配体w的制备:同实施例12;
(2)3-(4-氰基苯基)丙酸乙酯/2-(4-氰基苯基)丙酸乙酯的制备:在100毫升高压反应釜中,依次加入0.01mmolPd(acac) 2,0.50mmol芳基双齿膦配体w,0.50mmol对甲苯磺酸,30mmol对氰基苯乙烯,10mL乙醇,8mL氯仿。密闭反应釜后用一氧化碳将反应釜置换3次,再充入一氧化碳至反应釜压力为4.0MPa。由控温仪控制温度缓慢升至100℃,反应4小时。冷却至室温后缓慢放气,卸釜,将反应所得的液体用Agilent 6890/5973气相色谱-质谱联用仪进行定性分析、使用HP-7890A气相色谱进行定量分析,采用联苯作为内标,对氰基苯乙烯转化率为98%,氢酯基化产物(3-(4-氰基苯基)丙酸乙酯、2-(4-氰基苯基)丙酸乙酯)选择性为98%,3-(4-氰基苯基)丙酸乙酯/2-(4-氰基苯基)丙酸乙酯为95/5。反应式如下:
Figure PCTCN2020125030-appb-000035
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (18)

  1. 芳基双齿膦配体组合催化制备有机羧酸酯的方法,是在钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂作用下,在有机溶剂中,末端烯烃、一氧化碳和醇进行氢酯基化反应生成较所述末端烯烃多一个碳的有机羧酸酯。
  2. 如权利要求1所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体与钯化合物的摩尔比为0.1:1~100:1;酸性添加剂与钯化合物的摩尔比为0.1:1~100:1。
  3. 如权利要求2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体与钯化合物的摩尔比为2:1~10:1;所述酸性添加剂与钯化合物的摩尔比为2:1~20:1。
  4. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述钯化合物/芳基双齿膦配体/酸性添加剂组合催化剂中,芳基双齿膦配体的结构式如下:
    Figure PCTCN2020125030-appb-100001
    其中m为1或2;
    R 1、R 2、R 3和R 4独立为(C 6-C 20)-芳基、(C 3-C 20)-杂芳基、取代的(C 6-C 20)-芳基或取代的(C 3-C 20)-杂芳基;
    R 5和R 6独立为氢、C 1-18烷基、甲氧基、苯基、苯氧基、卤素、三氟甲基、氰基和硝基中的一个或多个取代基。
  5. 如权利要求4所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述取代的(C 6-C 20)-芳基、取代的(C 3-C 20)-杂芳基中,取代基为:-(C 1-C 12)-烷基、-(C 3-C 12)-环烷基、-(C 3-C 12)-杂环烷基、-(C 6-C 20)-芳基、-(C 3-C 20)-杂芳基、-O-(C 1-C 12)-烷基、-O-(C 1-C 12)-烷基-(C 6-C 20)-芳基、-O-(C 3-C 12)-环烷基、-S-(C 1-C 12)-烷基、-S-(C 3-C 12)-环烷基、-COO-(C 1-C 12)-烷基、-COO-(C 3-C 12)-环烷基、-CONH-(C 1-C 12)-烷基、-CONH-(C 3-C 12)-环烷基、-CO-(C 1-C 12)-烷基、-CO-(C 3-C 12)-环烷基、-N-[(C 1-C 12)-烷基] 2、-(C 6-C 20)-芳基、-(C 6-C 20)-芳基-(C 1-C 12)-烷基、-(C 6-C 20)-芳基-O-(C 1-C 12)-烷基、-(C 3-C 20)-杂芳基、-(C 3-C 20)-杂芳基-(C 1-C 12)-烷基、-(C 3-C 20)-杂芳基-O-(C 1-C 12)-烷基、-COOH、-OH、-SO 3H、-NH 2或卤素。
  6. 如权利要求5所述的芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述芳基双齿膦配体的结构式如式a~x所示;
    Figure PCTCN2020125030-appb-100002
  7. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述钯化合物选自醋酸钯、氯化钯、双(三苯基膦)二氯化钯、双(乙腈)二氯化钯、(1,5-环辛二烯)二氯化钯、烯丙基氯化钯、四三苯基膦钯、乙酰丙酮钯、 双(二亚苄基丙酮)钯和三(二亚苄基丙酮)二钯中的一种。
  8. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述酸性添加剂选自高氯酸、硫酸、磷酸、盐酸、甲酸、乙酸、草酸、甲磺酸、三氟甲磺酸、叔丁烷磺酸、对甲苯磺酸、2-羟-基丙烷-2-磺酸、2,4,6-三甲基苯磺酸和十二烷基磺酸和三氟甲磺酸铝中的一种。
  9. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述末端烯烃为碳原子数为2~20的烯烃。
  10. 如权利要求9所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述碳原子数为2~20的烯烃为乙烯、丙烯、1-丁烯、顺式-2-丁烯、反式-2-丁烯、异丁烯、1,3-丁二烯、1-戊烯、顺式-2-戊烯、反式-2-戊烯、2-甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯、己烯、四甲基乙烯、庚烯、1-辛烯、2-辛烯、二正丁烯、二异丁烯、正癸烯、十二烯、十六烯和十八烯中的一种或多种的混合物。
  11. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述组合催化剂的用量以钯化合物相对末端烯烃的用量计:钯化合物的摩尔量为末端烯烃摩尔量的0.001~5%。
  12. 如权利要求11所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述钯化合物的摩尔量为末端烯烃摩尔量的0.05~1%。
  13. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述醇为含1~20个碳原子的脂肪族醇化合物或环脂族醇化合物。
  14. 如权利要求13所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述醇为甲醇、乙醇、1-丙醇、异丙醇、异丁醇、叔丁醇、1-丁醇、2-丁醇、1-戊醇、2-戊醇、3-戊醇、1-己醇、环己醇、2-乙基己醇、异壬醇、2-丙基庚醇、环己烷-1,2-二醇、1,2-乙二醇、1,3-丙二醇、丙三醇、1,2,4-丁三醇、2-羟基甲基-1,3-丙二醇、季戊四醇、1,2,6-三羟基己烷和1,1,1-三(羟基甲基)乙烷中的一种或多种的混合物。
  15. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述有机溶剂为醇、二氧六环、四氢呋喃、乙二醇二甲醚、四甘醇二甲醚、1,2-二乙氧基乙烷醚、乙酸乙酯、乙酸丁酯、苯、甲苯、苯甲醚、二甲苯、二氯甲烷、三氯甲烷和氯仿中的一种。
  16. 如权利要求15所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:当所述有机溶剂为醇时,所述末端烯烃与有机溶剂的摩尔比为1:1~1:50。
  17. 如权利要求1或2所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述氢酯基化反应压力为0.5~10.0MPa,反应温度为30~180℃。
  18. 如权利要求17所述芳基双齿膦配体组合催化制备有机羧酸酯的方法,其特征在于:所述氢酯基化反应压力为3~6MPa,反应温度为80~120℃。
PCT/CN2020/125030 2019-12-27 2020-10-30 芳基双齿膦配体组合催化制备有机羧酸酯的方法 WO2021129138A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020003458.5T DE112020003458T5 (de) 2019-12-27 2020-10-30 Verfahren zur Herstellung von organischen Carbonsäureestern unter Verwendung eines kombinierten Katalysators aus einem zweizähnigen Arylphosphinliganden
US17/753,174 US20220298097A1 (en) 2019-12-27 2020-10-30 Method for preparing organic carboxylic ester by using combined catalyst of aryl bidentate phosphine ligand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911377577.3 2019-12-27
CN201911377577.3A CN111087306B (zh) 2019-12-27 2019-12-27 芳基双齿膦配体组合催化制备有机羧酸酯的方法

Publications (1)

Publication Number Publication Date
WO2021129138A1 true WO2021129138A1 (zh) 2021-07-01

Family

ID=70398093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125030 WO2021129138A1 (zh) 2019-12-27 2020-10-30 芳基双齿膦配体组合催化制备有机羧酸酯的方法

Country Status (4)

Country Link
US (1) US20220298097A1 (zh)
CN (1) CN111087306B (zh)
DE (1) DE112020003458T5 (zh)
WO (1) WO2021129138A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087306B (zh) * 2019-12-27 2021-08-03 南京诚志清洁能源有限公司 芳基双齿膦配体组合催化制备有机羧酸酯的方法
CN112679336A (zh) * 2020-12-29 2021-04-20 广西师范大学 一种异相钯金属催化合成苯丙酸类化合物的方法
CN113620990B (zh) * 2021-08-30 2022-11-08 万华化学集团股份有限公司 一种硫脲型氮膦配体及其制备方法和应用
CN113788748A (zh) * 2021-09-15 2021-12-14 华东师范大学 多齿膦配体修饰的钯组合催化剂催化不饱和烃制备直链羰基化合物的方法
CN114308129B (zh) * 2021-11-24 2022-12-06 中国科学院兰州化学物理研究所 用于烯烃烷氧羰基化的催化剂组合物及其制备方法与应用
CN115873221B (zh) * 2021-12-17 2024-06-04 浙江新和成股份有限公司 一种含磷聚合物及其制备方法和应用
CN114957012A (zh) * 2022-05-20 2022-08-30 湖南工程学院 一种二氧化碳和炔烃合成不饱和有机羧酸酯的制备方法
CN114957006A (zh) * 2022-06-09 2022-08-30 中国科学院兰州化学物理研究所 利用碳四烯烃制备戊酸酯类化合物的方法
CN115819235A (zh) * 2022-12-01 2023-03-21 南京诚志清洁能源有限公司 一种乙烯氢酯基化制备丙酸甲酯的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063277A (zh) * 1991-01-15 1992-08-05 国际壳牌研究有限公司 烯烃的羰基化
CN1276779A (zh) * 1997-10-29 2000-12-13 伊尼奥斯丙烯酸英国有限公司 酯的生产
CN101003456A (zh) * 2006-01-16 2007-07-25 中国石油化工股份有限公司 制备β-γ不饱和酯的方法
CN101844981A (zh) * 2010-05-17 2010-09-29 中国科学院过程工程研究所 离子液体存在下烯烃氢酯基化的方法
CN102531890A (zh) * 2010-12-18 2012-07-04 中国科学院兰州化学物理研究所 由烯烃氢酯基化反应制备有机羧酸酯的方法
CN111087306A (zh) * 2019-12-27 2020-05-01 南京诚志清洁能源有限公司 芳基双齿膦配体组合催化制备有机羧酸酯的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499329B1 (en) 1991-02-15 1994-05-04 Shell Internationale Researchmaatschappij B.V. Carbonylation catalyst system
GB9425911D0 (en) 1994-12-22 1995-02-22 Ici Plc Process for the carbonylation of olefins and catalyst system for use therein
GB9705699D0 (en) 1997-03-19 1997-05-07 Ici Plc Process for the carbonylation of ethylene
US6489506B2 (en) 1997-03-19 2002-12-03 Lucite International Uk Limited Process for the palladium and phosphine ligand catalyzed carbonylation of ethylene
TWI301481B (en) 2002-08-10 2008-10-01 Lucite Int Uk Ltd A catalyst system
DE10243446B4 (de) 2002-09-19 2005-12-15 Celanese Chemicals Europe Gmbh Verfahren zur Herstellung von Aldehyden
US9725398B2 (en) 2015-07-23 2017-08-08 Evonik Degussa Gmbh Benzene-based diphosphine ligands for alkoxycarbonylation
EP3181546B1 (de) * 2015-12-16 2018-05-02 Evonik Degussa GmbH Verfahren zur doppelten carbonylierung von allylalkoholen zu entsprechenden diestern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063277A (zh) * 1991-01-15 1992-08-05 国际壳牌研究有限公司 烯烃的羰基化
CN1276779A (zh) * 1997-10-29 2000-12-13 伊尼奥斯丙烯酸英国有限公司 酯的生产
CN101003456A (zh) * 2006-01-16 2007-07-25 中国石油化工股份有限公司 制备β-γ不饱和酯的方法
CN101844981A (zh) * 2010-05-17 2010-09-29 中国科学院过程工程研究所 离子液体存在下烯烃氢酯基化的方法
CN102531890A (zh) * 2010-12-18 2012-07-04 中国科学院兰州化学物理研究所 由烯烃氢酯基化反应制备有机羧酸酯的方法
CN111087306A (zh) * 2019-12-27 2020-05-01 南京诚志清洁能源有限公司 芳基双齿膦配体组合催化制备有机羧酸酯的方法

Also Published As

Publication number Publication date
CN111087306A (zh) 2020-05-01
CN111087306B (zh) 2021-08-03
DE112020003458T5 (de) 2022-04-14
US20220298097A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2021129138A1 (zh) 芳基双齿膦配体组合催化制备有机羧酸酯的方法
US9688604B2 (en) Phosphine ligand and palladium catalysts based thereon for the alkoxycarbonylation of ethylenically unsaturated compounds
JP5386968B2 (ja) n−ブタノールの製造方法
CN114308129B (zh) 用于烯烃烷氧羰基化的催化剂组合物及其制备方法与应用
WO2016155338A1 (zh) 一种丙烯氢甲酰化制备丁醛的方法
CN102458659A (zh) 不对称氢化催化剂
TW201235100A (en) Use of supported ionic liquid phase (SILP) catalyst systems in the hydroformylation of olefin-containing mixtures to aldehyde mixtures with a high content of aldehydes unbranched in the 2 position
CN107629093B (zh) 用于烷氧基羰基化的1,1'-双(膦基)二茂铁配体
US8912365B2 (en) Process for preparing a polyol ether
Kataoka et al. An efficiemt synthetic method of methyl (±)-jasmonate
WO2014059757A1 (zh) 新型钌络合物及制备甲醇和二醇的方法
JP2015536922A5 (zh)
Nudelman et al. Insertion of carbon monoxide into carbon-lithium bonds. a convenient one-step synthesis of 1, 2-diketone diaryl derivatives
CN112047797A (zh) 一种制备α-烷基取代酮类化合物的方法
CN103145769A (zh) 异核钌钯双环金属化合物及其制备方法和应用
Liu et al. Pd/C/PPh3: A simple and efficient catalyst system for double carbonylation reactions
EP4305027A1 (en) Catalytic cannabinol synthesis and precursors
TWI667245B (zh) 用於烷氧羰基化之1,1’-雙(膦基)二茂鐵配體類
CN107827723B (zh) 一种长链二酮合成方法
Zhou et al. Carbon nanotubes-supported palladium nanoparticles for the Suzuki reaction in supercritical carbon dioxide: A facile method for the synthesis of tetrasubstituted olefins
REN et al. Rh-catalyzed hydroformylation of alkynes to α, β-unsaturated aldehydes
Jin et al. TiO2/SO42-, an efficient catalyst for the methoxymethylation of alcohols
Frediani et al. One-pot syntheses of alcohols from olefins through Co/Ru tandem catalysis
US11274071B2 (en) Synthesis of alkyl 2-acetyl-5,9,13-trimethyltetradeca-4,8,12-trienoates and derivatives by a non-continuous production process
CN108794541A (zh) 一种含吡啶甲醇钌羰基配合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906872

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20906872

Country of ref document: EP

Kind code of ref document: A1