WO2021128886A1 - 纳滤膜的制备方法和由此制备的纳滤膜 - Google Patents

纳滤膜的制备方法和由此制备的纳滤膜 Download PDF

Info

Publication number
WO2021128886A1
WO2021128886A1 PCT/CN2020/110219 CN2020110219W WO2021128886A1 WO 2021128886 A1 WO2021128886 A1 WO 2021128886A1 CN 2020110219 W CN2020110219 W CN 2020110219W WO 2021128886 A1 WO2021128886 A1 WO 2021128886A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
preparation
nanofiltration membrane
polymer
compound
Prior art date
Application number
PCT/CN2020/110219
Other languages
English (en)
French (fr)
Inventor
刘仕忠
梁松苗
许国杨
宋鹏
金焱
吴宗策
Original Assignee
时代沃顿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时代沃顿科技有限公司 filed Critical 时代沃顿科技有限公司
Publication of WO2021128886A1 publication Critical patent/WO2021128886A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present disclosure relates to the technical field of water treatment membranes, more specifically to the technical field of nanofiltration membranes, and in particular to nanofiltration membranes that can achieve selective separation of organics with different molecular weights while maintaining the high flux of the nanofiltration membranes Preparation method and nanofiltration membrane prepared therefrom.
  • nanofiltration membranes With the improvement of environmental protection requirements, the application range of nanofiltration membranes has become wider and wider. With the development of membrane technology, separation membranes tend to target more challenging feed systems, from separating salts of different valences to separating organics of different molecular weights or even their mixtures. For this reason, nanofiltration membranes with higher solute selectivity will play an increasingly important role in the field of selective separation.
  • the existing composite nanofiltration membrane technology usually performs the interfacial polymerization reaction of piperazine and trimesoyl chloride on the porous support layer of the base membrane.
  • the nanofiltration membrane obtained by this technology has a high desalination rate for divalent ionic salts and high permeability to monovalent ionic salts, so it can better select and separate monovalent and divalent salts.
  • the conventional nanofiltration membrane has a rejection rate of over 85% for PEG200, and over 95% for PEG400 and PEG600. It has poor selective separation performance for organics of different molecular weights.
  • Yan-Li Ji et al. prepared a ZCP membrane (ZCPM) by coating zwitterionic colloidal particles (ZCP) on the ultrafiltration membrane with a polysulfone support layer as the base membrane, and then cross-linked with glutaraldehyde at 50°C. 3 hour.
  • the membrane prepared by this method has good separation performance from organic molecules (polyethylene glycol, PEG).
  • PEG polyethylene glycol
  • the average rejection rates of PEG1000, PEG600, and PEG200 by ZCPM are about 96%, 88%, and 60% respectively (Ji Y L, Zhao Q, An Q F, et al. Novel separation membranes based on zwitterionic colloid particles: tunable selectivity and enhanced antiifouling property[J].Journal of Materials Chemistry A,2013,1(39):12213).
  • the research of Yan-Li Ji et al. has a certain selective separation performance for organics of different molecular weights, but the technology is mainly prepared by coating methods.
  • the separation layer obtained by the coating method is physically attached to the base film and is connected to the base film.
  • the membrane lacks chemical cross-linking effect, so the firmness is not good, which leads to poor stability of the separation layer, and the separation layer is easy to fall off, so it is difficult to maintain excellent selective separation effect stably for a long time, and the coating method reported above can only It is carried out in the laboratory, and industrial production has not yet been realized, and the feasibility of industrial application has not been verified. Whether the technology can be applied to industrial production to achieve the technical effects obtained in the laboratory has not been verified.
  • the present disclosure uses one or more of dendritic PAMAM, aliphatic nitrogen-containing heterocyclic compounds, or aromatic amine compound-terminated poly(alkylene glycols) as water phase monomers and organic phase monomers.
  • the acyl chloride compound undergoes interfacial polymerization reaction to form a separation layer on the polymer base membrane, thereby preparing a new type of nanofiltration membrane.
  • the novel nanofiltration membrane has relatively different rejection rates for organics of different molecular weights, so that the nanofiltration membrane can achieve selective separation of organics of different molecular weights.
  • the inventors of the present disclosure have conducted intensive research and proposed a method for preparing nanofiltration membranes, using dendritic PAMAM, aliphatic nitrogen-containing heterocyclic compounds or aromatic amine compounds terminated poly(alkylene)
  • One or more of the diols are used as water phase monomers, and the interfacial polymerization reaction is carried out with the acid chloride compound as the organic phase monomers to form a separation layer on the polymer base membrane.
  • Dendritic PAMAM has more branched chains and a large number of amino groups that can participate in interfacial polymerization.
  • Poly(alkylene glycols) terminated by aliphatic nitrogen-containing heterocyclic compounds or aromatic amine compounds have longer linear chains and higher activity. Highly blocked amino groups.
  • One or more of dendritic PAMAM, aliphatic nitrogen-containing heterocyclic compound or aromatic amine compound-terminated poly(alkylene glycol) is used as water phase monomer and organic phase monomer acid chloride compound for interfacial polymerization
  • the reaction, the separation layer produced by the reaction is looser and has a larger pore size. Thereby, it can realize the penetration of low molecular weight organics and the interception of high molecular weight organics.
  • the structure and performance of the separation layer can be adjusted, and the nanofiltration membrane can be adjusted for different
  • the rejection rate of organics of molecular weight makes the nanofiltration membrane prepared in the present disclosure have different selectivity to organics of different molecular weights. So as to achieve the selective separation of a variety of organic compounds with different molecular weights.
  • One aspect of the present disclosure relates to a method for preparing a nanofiltration membrane, which is characterized in that it comprises the following steps:
  • the base film is immersed in an aqueous solution containing dendrimer polyamidoamine PAMAM, aliphatic nitrogen-containing heterocyclic compound or aromatic amine compound-terminated poly(alkylene glycol) One or more, and then immerse the base film in an organic phase solution containing an acid chloride compound;
  • the nanofiltration membrane is obtained.
  • the preparation method according to the present disclosure is characterized in that the polymer is one or more of polyphenylsulfone PPSU, polyetherimide PEI, polysulfone, and polyethersulfone.
  • the preparation method according to the present disclosure is characterized in that the solvent in the polymer solution is N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N- One or more of methylpyrrolidone, tetrahydrofuran, and imidazolinone; preferably, the support material is a non-woven fabric.
  • the preparation method according to the present disclosure is characterized in that, based on the weight of the polymer solution, the amount of the polymer is 15-28 wt%, preferably 15-25 wt%, more preferably 16-22 wt%.
  • the preparation method according to the present disclosure is characterized in that, based on the weight of the aqueous solution, the amount of the dendritic polyamidoamine PAMAM is 0.0-3.0% by weight, preferably 0.0-2.5% by weight, and aliphatic
  • the amount of poly(alkylene glycol) capped by nitrogen-containing heterocyclic compound or aromatic amine compound is 0.0-3.0wt%, preferably 0.0-2.5wt%, wherein the amount of the dendritic polyamidoamine PAMAM and The amount of poly(alkylene glycol) capped by aliphatic nitrogen-containing heterocyclic compound or aromatic amine compound is not zero at the same time.
  • the preparation method according to the present disclosure is characterized in that the aliphatic nitrogen-containing heterocyclic compound is piperazine, homopiperazine, N-methylpiperazine, N-ethylpiperazine, and N-isopropylpiperazine.
  • the aromatic amine compound is one or any of m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 4-methyl m-phenylenediamine Several kinds.
  • the preparation method according to the present disclosure is characterized in that the poly(alkylene glycol) is poly(ethylene glycol), poly(propylene glycol), or poly(butylene glycol); preferably, the poly(alkylene glycol) is poly(ethylene glycol), poly(propylene glycol), or poly(butylene glycol);
  • the degree of polymerization of the alkylene glycol) is 5 to 95, more preferably 5 to 15.
  • the preparation method according to the present disclosure is characterized in that the acid chloride compound is one or more of trimesoyl chloride, phthaloyl chloride, isophthaloyl chloride, and terephthaloyl chloride.
  • the preparation method according to the present disclosure is characterized in that, based on the weight of the organic phase solution, the amount of the acid chloride compound is 0.05 to 0.5 wt%, preferably 0.1 to 0.3 wt%, more preferably 0.1 to 0.25 wt%.
  • Another aspect of the present disclosure relates to a nanofiltration membrane prepared according to the method for preparing a nanofiltration membrane of the present disclosure.
  • the nanofiltration membrane prepared according to the preparation method of the present disclosure can increase the difference between the rejection rates for organics of different molecular weights while maintaining the high flux of the nanofiltration membrane, and the choice for the separation of organics of different molecular weights Improved performance to achieve selective separation of organics with different molecular weights, reduce the rejection rate for low molecular weight organics, make low molecular weight organics easier to permeate, increase the rejection rate for high molecular weight organics, and make high molecular weight organics It is more difficult to penetrate and most of them are intercepted.
  • the flux of the nanofiltration membrane prepared according to the present disclosure is higher than that of the nanofiltration membrane in the prior art, and compared with the separation layer obtained by the coating method in the prior art, it is obtained by the interfacial polymerization reaction of the present disclosure.
  • the separation layer is not physically attached to the surface of the base membrane but is obtained by a chemical reaction on the surface of the base membrane, so it has better firmness and stability, and can maintain high flux and excellent selective separation effect stably for a long time.
  • the preparation method according to the present disclosure can directly utilize existing industrial production equipment, without performing additional coating procedures, and without adjusting the existing production equipment and production processes, thereby reducing production costs and improving production efficiency.
  • the present disclosure provides a method for preparing a nanofiltration membrane, which includes the following steps:
  • base film preparation process Dissolve the polymer in a solvent to prepare a polymer solution, and solidify the polymer solution on the support material to form a base film (hereinafter referred to as "base film preparation process");
  • the base film is immersed in an aqueous solution containing dendrimer polyamidoamine PAMAM, aliphatic nitrogen-containing heterocyclic compound or aromatic amine compound-terminated poly(alkylene glycol) One or any of several, and then immerse the base film in an organic phase solution containing an acid chloride compound (hereinafter referred to as "separation layer preparation process");
  • the nanofiltration membrane is obtained.
  • the polymer is one or any of polyphenylsulfone PPSU, polyetherimide PEI, polysulfone, and polyethersulfone.
  • the molecular weight of the polymer is not particularly limited, and preferably, the number average molecular weight is between 30,000 and 50,000.
  • the solvent in the polymer solution is not particularly limited, as long as it can fully dissolve the polymer.
  • the solvent is N,N-dimethylformamide, N,N-dimethylacetamide, and dimethylacetamide.
  • the supporting material is not particularly limited.
  • the supporting material is a non-woven fabric.
  • the amount of the polymer is 15-28 wt%, preferably 15-25 wt%, more preferably 16-22 wt%. If the amount of the polymer is less than 15 wt%, the pressure resistance of the prepared nanofiltration membrane will be reduced. If the amount of the polymer is higher than 28wt%, the viscosity of the polymer solution, also known as the casting solution, will increase, which will increase the difficulty and defects of the preparation of the base film.
  • the method of curing to form the base film is not particularly limited, and it is preferable to use a liquid-solid phase conversion method to form the base film.
  • the time for the phase inversion to occur is controlled to be 0.5 to 1 min
  • the temperature of the water bath is 15 to 20°C
  • the temperature of the thermal curing water bath is 70 to 85°C
  • the thickness of the film including the non-woven fabric is 5.0 to 6.0 mils.
  • the base film preparation process includes:
  • the polymer solution is formed on the non-woven fabric by the liquid-solid phase conversion method to form the base film.
  • the phase conversion time is controlled to 0.5-1 min, the temperature of the water bath is 15-20 °C, and the temperature of the thermal curing water bath is 70-85 °C, including non-woven fabrics.
  • the thickness of the film inside the woven fabric is 5.0-6.0mil.
  • the obtained polymer base film is immersed in deionized water for storage, and the preparation of the porous support layer base film is completed.
  • Dendritic polyamidoamine PAMAM is a three-dimensional, highly branched, single-dispersed dendritic polymer.
  • the dendrimer polyamidoamine PAMAM is composed of an active center, a surface functional group, and a branched segment connecting the two. A series of concentric layers generated by the branched segment repeating according to geometric rules becomes a generation (G).
  • Dendritic PAMAM is derived from the core (amine or ethylenediamine) through repeated step-by-step reactions for molecular construction.
  • the surface of the molecule has a high density of functional groups, and the interior of the molecule has a wide cavity.
  • the dendritic PAMAM has good properties. With the ability to contain reactive agents, a large number of reactive or functional groups can be introduced in the center and end of the molecule.
  • the dendrimer polyamidoamine PAMAM has the structure shown below:
  • the dendrimer polyamidoamine PAMAM is commercially available, for example, it can be purchased from Weihai Chenyuan Molecular New Material Co., Ltd.
  • the amount of the dendritic polyamidoamine PAMAM is 0.0-3.0 wt%, preferably 0.0-2.5 wt%. If the amount is higher than 3.0wt%, the selectivity and flux of the nanofiltration membrane for organic separation will be reduced.
  • the amount of the poly(alkylene glycol) terminated by the aliphatic nitrogen-containing heterocyclic compound or aromatic amine compound is 0.0-3.0 wt%, preferably 0.0-2.5 wt% %. If the amount is higher than 3.0wt%, the selectivity and flux of the nanofiltration membrane for organic separation will be reduced.
  • the amount of the dendritic polyamidoamine PAMAM and the amount of the poly(alkylene glycol) capped by the aliphatic nitrogen-containing heterocyclic compound or the aromatic amine compound are not zero at the same time.
  • the amount of the dendritic polyamidoamine PAMAM and the aliphatic nitrogen-containing heterocyclic compound or aromatic amine compound-terminated poly(alkylene glycol) is 0:2.5wt% ⁇ 2.5wt%:0, preferably 0.5wt%:0.5wt% ⁇ 1.5wt%:0.2wt% (that is, the ratio of the two is in the range of 1:1 ⁇ 7.5:1), More preferably, it is 0.8 wt%: 0.4 wt% to 0.5 wt%: 0.1 wt% (that is, the ratio of the two is in the range of 2:1 to 5:1).
  • the nanofiltration membrane has poor selectivity for organic separation or the nanofiltration membrane may have defects in the film formation process.
  • the pH regulator is sodium hydroxide, potassium hydroxide, sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium carbonate, sodium bicarbonate , Potassium carbonate, sodium citrate, potassium citrate, one or more of them; based on the total weight of the aqueous solution, the added amount of the pH adjuster is 0.01 wt% to 0.1 wt%, further, preferably The addition amount of the pH adjuster is 0.01 wt% to 0.05 wt%, and the pH adjuster is used to absorb the excess acid generated by the interfacial polymerization and promote the continuous forward reaction of the interfacial polymerization. .
  • the aliphatic nitrogen-containing heterocyclic compound is one or more of piperazine, homopiperazine, N-methylpiperazine, N-ethylpiperazine, N-isopropylpiperazine, and pyrazole;
  • the aromatic amine compound is one or more of m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, and 4-methyl m-phenylenediamine.
  • the poly(alkylene glycol) is poly(ethylene glycol), poly(propylene glycol), poly(butylene glycol) (please confirm whether it is appropriate), more preferably poly(ethylene glycol); preferably, the The degree of polymerization of the poly(alkylene glycol) is 5 to 95, more preferably 5 to 15. From the viewpoint of the availability of raw materials, the lower limit of the degree of polymerization is preferably 5; when the degree of polymerization is higher than 95, the reaction does not proceed easily.
  • the poly(alkylene glycol) capped by the aliphatic nitrogen-containing heterocyclic compound or aromatic amine compound is piperazine capped polyethylene glycol PIP-PEG-PIP.
  • the preparation process of piperazine-terminated polyethylene glycol PIP-PEG-PIP includes:
  • the prepared piperazine-terminated polyethylene glycol PIP-PEG-PIP is used within one hour.
  • the acid chloride compound is one or more of trimesoyl chloride, phthaloyl chloride, isophthaloyl chloride, and terephthaloyl chloride.
  • the amount of the acid chloride compound is 0.05-0.5 wt%, preferably 0.1-0.3 wt%, more preferably 0.1-0.25 wt%.
  • the separation layer preparation process includes:
  • step (3) The membrane after the interface reaction in step (2) is heat-treated with hydrothermal treatment at a temperature of 80-90°C for 1-3 minutes, washed with pure water and then immersed in an aqueous solution containing glycerol for 1-3 minutes, and then dried to prepare High-precision selectivity adjustable nanofiltration membrane.
  • the dendritic PAMAM and piperazine-terminated polyethylene glycol PIP-PEG-PIP are taken as examples to illustrate.
  • the preparation method of the present disclosure is characterized by: using dendritic PAMAM and piperazine-terminated polyethylene glycol
  • One or two of the PIP-PEG-PIP is used as the water phase monomer, and the interfacial polymerization reaction is carried out with the acid chloride compound as the organic phase monomer to form a separation layer on the polymer base membrane.
  • Dendritic PAMAM has more branched chains and a large number of amino groups that can participate in the interfacial polymerization reaction.
  • Piperazine-terminated polyethylene glycol PIP-PEG-PIP has longer linear chains and higher active end-capped amino groups.
  • One or two of dendritic PAMAM and piperazine-terminated polyethylene glycol PIP-PEG-PIP are used as the aqueous phase monomer and the organic phase monomer acyl chloride compound for interfacial polymerization reaction, and the separation layer formed by the reaction is loose and The aperture is larger. Thereby, it can realize the penetration of low molecular weight organics and the interception of high molecular weight organics.
  • the structure and performance of the separation layer can be adjusted, and the rejection rate of the nanofiltration membrane for organics of different molecular weights can be adjusted, so that the present disclosure
  • the prepared nanofiltration membranes have different selectivity to organics of different molecular weights. So as to achieve the selective separation of a variety of organic compounds with different molecular weights.
  • the present disclosure also provides a nanofiltration membrane prepared according to the preparation method.
  • the nanofiltration membrane can be applied to the selective separation of organics with different molecular weights in the fields of water treatment, dyes, biochemical industry, food, environmental protection and the like.
  • step (2) Preparation of base film:
  • the polymer solution obtained in step (1) is prepared on a non-woven fabric by a liquid-solid phase conversion method to prepare a porous polymer support layer.
  • the phase inversion time is controlled to 0.5min, the temperature of the water bath is 18°C, the temperature of the thermal curing water bath is 80°C, and the film thickness is controlled at 5.5mil;
  • step (3) Immerse the polymer base membrane obtained in step (2) in deionized water for storage to complete the preparation of the polymer base membrane;
  • step (6) Treat the composite membrane in step (5) with hot water at a temperature of 80°C for 2 minutes, then soak it in glycerin with a concentration of 18% by weight at 25°C for 15 minutes, and finally dry it with hot air at a temperature of 60°C ,
  • the nanofiltration membrane was prepared.
  • Steps (1)-(3) are the same as in Example 1;
  • Steps (6)-(7) are the same as steps (5) and (6) of Example 1.
  • Steps (1)-(4) are the same as in Example 2;
  • Steps (6)-(7) are the same as steps (5) and (6) of Example 1.
  • Steps (1)-(4) are the same as in Example 2;
  • Steps (6)-(7) are the same as steps (5) and (6) of Example 1.
  • Steps (1)-(4) are the same as in Example 1.
  • Step (6) is the same as step (6) of Example 1.
  • Example 1 Take the composite nanofiltration membranes prepared in Example 1 to Example 5, and carry out the organic removal test on the diaphragm detection bench.
  • the operating pressure is 100psi
  • the original aqueous solution with the organic concentration of 2000ppm the solution temperature is 25°C
  • the pH is 6.5
  • Table 1 shows the test results for PEG200
  • Table 2 shows the test results for PEG400
  • Table 3 shows the test results for PEG600:
  • Example number Water flux (GFD) Interception rate (%) Example 1 30.15 78.36
  • Example 2 29.60 80.23
  • Example 3 33.18 69.11
  • Example 4 36.27 51.35
  • Example 5 37.96 50.03
  • Example number Water flux (GFD) Interception rate (%) Example 1 23.24 96.68 Example 2 23.05 97.44 Example 3 29.71 80.06 Example 4 31.37 72.24 Example 5 33.26 69.74
  • Example Water flux (GFD) Interception rate (%) Example 1 22.50 98.46 Example 2 21.09 99.08 Example 3 21.93 98.97 Example 4 22.13 97.83 Example 5 22.37 97.29
  • the resulting nanofiltration membrane achieves a higher flux than the prior art nanofiltration membrane while increasing the The difference between the rejection rates of PEG200, PEG400, and PEG600 for organics of different molecular weights, reduces the rejection rate for PEG200, increases the rejection rate for PEG400, PEG600, and improves the selectivity for the separation of organics with different molecular weights to achieve different molecular weights. Selective separation of organic matter.
  • the preparation method according to the present disclosure can directly utilize existing production equipment, without performing additional coating procedures, and without adjusting existing production equipment and production processes, thereby reducing production costs and improving production efficiency.
  • composite nanofiltration membranes with different rejection rates and high fluxes for organics of different molecular weights can be obtained, and higher rejections for organics of high molecular weight can be obtained.
  • Both the efficiency and the flux can allow low molecular weight organics to pass through (that is, compared with the high rejection rate for high molecular weight organics, the rejection rate for low molecular weight organics is low and the flux is high) composite nanofiltration membrane.
  • the membrane has a relatively high rejection rate for high molecular weight organics, and a relatively low rejection rate for low molecular weight organics; it is necessary to intercept most of the high molecular weight organics, and at the same time it is necessary to make a suitable amount of low and medium molecular weight organics When passing, the membrane is required to have a relatively high rejection rate for high-molecular-weight organics, and a suitable rejection rate for low- and medium-molecular-weight organics.
  • the composite nanofiltration membrane prepared by the method of the present disclosure meets different application requirements and achieves The rejection rate and flux for organics of different molecular weights can be adjusted.
  • the selective separation of organic substances with different molecular weights can be achieved while maintaining the high flux of the nanofiltration membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种纳滤膜的制备方法和由此制备的纳滤膜,纳滤膜的制备方法包括以下步骤:使聚合物溶于溶剂中制得聚合物溶液,使聚合物溶液在支撑材料上固化形成基膜;使基膜浸入水相溶液中,水相溶液中包含树枝状聚酰胺胺PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)中的一种或任意几种,然后使基膜浸入包含酰氯化合物的有机相溶液中;经后处理、烘干后得到纳滤膜。

Description

纳滤膜的制备方法和由此制备的纳滤膜 技术领域
本公开涉及水处理膜技术领域,更具体地涉及纳滤膜技术领域,特别涉及可以在保持纳滤膜的高通量的情况下,实现对具有不同分子量的有机物的选择性分离的纳滤膜的制备方法和由其制备的纳滤膜。
背景技术
随着环保要求的提高,纳滤膜的应用范围越来越广。随着膜技术的发展,分离膜倾向于针对更具挑战性的进料系统,从分离不同价态的盐到分离不同分子量的有机物甚至它们的混合物。为此,具有更高的溶质选择性的纳滤膜在选择分离领域将发挥越来越重要的作用。
然而目前具有选择性地截留不同分子量的有机物的纳滤膜研究较少。相关研究的公开专利文献目前几乎没有。
现有的复合纳滤膜技术通常在基膜的多孔支撑层上进行哌嗪与均苯三甲酰氯的界面聚合反应。该技术获得的纳滤膜对二价离子盐具有很高的脱盐率,对一价离子盐具有较高的透过性,因此能够较好地选择分离一价盐、二价盐。然而常规的纳滤膜对PEG200的截留率为85%以上,对PEG400、PEG600的截留率为95%以上。其对不同分子量有机物的选择分离性能较差。
Yan-Li Ji等人在具有聚砜的支撑层作为基膜的超滤膜上通过表面涂覆两性离子胶体颗粒(ZCP)制备ZCP膜(ZCPM),然后在50℃下戊二醛交联3小时。该方法制备的膜与有机分子(聚乙二醇,PEG)具有良好的分离性能。例如,ZCPM对PEG1000、PEG600、PEG200的平均截留率分别为约96%、88%、60%(Ji Y L,Zhao Q,An Q F,et al.Novel separation membranes based on zwitterionic colloid particles:tunable selectivity and enhanced antifouling property[J].Journal of Materials Chemistry A,2013,1(39):12213)。
Yan-Li Ji等人的研究对不同分子量的有机物具有一定的选择性分离性能,但是该技术 主要是通过涂覆的方法制备,涂覆法得到的分离层物理地附着在基膜上,与基膜缺乏化学交联作用,因此牢固性不佳,从而导致分离层的稳定性不佳,分离层容易脱落,从而难以长期稳定保持优异的选择性分离效果,并且以上报道的涂覆法目前仅能在实验室中进行,尚未实现工业化生产,工业应用的可行性尚未得到验证,将该技术应用于工业化生产是否能够达到在实验室中取得的技术效果也未得到验证。
发明内容
发明要解决的问题
为解决现有纳滤膜在有机物的选择分离性差和无法工业化生产的问题,提高纳滤膜在选择性分离领域的适用范围,并且实现工业化生产。本公开通过利用树枝状PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)中的一种或任意几种作为水相单体与作为有机相单体的酰氯化合物进行界面聚合反应,在聚合物基膜上形成分离层,从而制备新型纳滤膜。该新型纳滤膜对不同分子量的有机物具有差异较大的截留率,从而能够实现纳滤膜对不同分子量的有机物的选择性分离。
用于解决问题的方案
本公开的发明人等为了实现以上目的,进行锐意研究,提出一种纳滤膜的制备方法,利用树枝状PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)中的一种或任意几种作为水相单体,与作为有机相单体的酰氯化合物进行界面聚合反应在聚合物基膜上形成分离层。
树枝状PAMAM具有较多支链以及大量可参与界面聚合反应的氨基,脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)具有较长的直链和活性较高的封端氨基。树枝状PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)中的一种或任意几种作为水相单体与有机相单体酰氯化合物进行界面聚合反应,反应生成的分离层较疏松且孔径较大。从而可以实现对低分子量有机物的透过、对高分子量有机物的截留。
通过调节树枝状PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚 烷基二醇)的比例与浓度,可调控分离层的结构和性能,进而调节纳滤膜对不同分子量的有机物的截留率,使得本公开制备的纳滤膜对不同分子量的有机物具有不同的选择性。从而实现对多种不同分子量的有机物的选择性分离。
本公开的一个方面涉及一种纳滤膜的制备方法,其特征在于,包括以下步骤:
使聚合物溶于溶剂中制得聚合物溶液,使所述聚合物溶液在支撑材料上固化形成基膜;
使所述基膜浸入水相溶液中,所述水相溶液中包含树枝状聚酰胺胺PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)中的一种或任意几种,然后使所述基膜浸入包含酰氯化合物的有机相溶液中;
经后处理、烘干后得到纳滤膜。
根据本公开所述的制备方法,其特征在于,所述聚合物为聚亚苯基砜PPSU、聚醚酰亚胺PEI、聚砜、聚醚砜中的一种或任意几种。
根据本公开所述的制备方法,其特征在于,所述聚合物溶液中的溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、四氢呋喃、咪唑啉酮中的一种或任意几种;优选地,所述支撑材料为无纺布。
根据本公开所述的制备方法,其特征在于,以所述聚合物溶液的重量计,所述聚合物的用量为15~28wt%,优选为15~25wt%,更优选为16~22wt%。
根据本公开所述的制备方法,其特征在于,以所述水相溶液的重量计,所述树枝状聚酰胺胺PAMAM的用量为0.0~3.0wt%,优选为0.0~2.5wt%,脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)的用量为0.0~3.0wt%,优选为0.0~2.5wt%,其中所述树枝状聚酰胺胺PAMAM的用量和脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)的用量不同时为0。
根据本公开所述的制备方法,其特征在于,所述脂肪族含氮杂环化合物为哌嗪、高哌嗪、N-甲基哌嗪、N-乙基哌嗪、N-异丙基哌嗪、吡唑中的一种或任意几种;所述芳香族胺类化合物为间苯二胺、对苯二胺、邻苯二胺、4-甲基间苯二胺中的一种或任意几种。
根据本公开所述的制备方法,其特征在于,所述聚(亚烷基二醇)为聚(乙二醇)、聚(丙 二醇)、聚(丁二醇);优选地,所述聚(亚烷基二醇)的聚合度为5~95,更优选为5~15。
根据本公开所述的制备方法,其特征在于,所述酰氯化合物为均苯三甲酰氯、邻苯二甲酰氯、间苯二甲酰氯、对苯二甲酰氯中的一种或任意几种。
根据本公开所述的制备方法,其特征在于,以所述有机相溶液的重量计,所述酰氯化合物的用量为0.05~0.5wt%,优选为0.1~0.3wt%,更优选为0.1~0.25wt%。
本公开的另一个方面涉及一种根据本公开的纳滤膜的制备方法制得的纳滤膜。
发明的效果
根据本公开的制备方法制备得到的纳滤膜可以在保持纳滤膜的高通量的情况下,使得对于不同分子量的有机物的截留率之间的差异增加,对于不同分子量的有机物的分离的选择性提高,从而实现对具有不同分子量的有机物的选择性分离,降低对于低分子量的有机物的截留率,使得低分子量的有机物更易透过,提高对于高分子量的有机物的截留率,使得高分子量的有机物更难透过、大部分被截留。
根据本公开制备的纳滤膜的通量高于现有技术中的纳滤膜的通量,并且与现有技术中通过涂覆法得到的分离层相比,通过本公开的界面聚合反应得到的分离层不是物理地附着在基膜表面而是在基膜表面利用化学反应得到,因此牢固性更优异,稳定性更优异,能够长期稳定保持高通量和优异的选择性分离效果。
根据本公开的制备方法可直接利用现有的工业生产设备,无需进行额外的涂覆工序,无需对现有的生产设备和生产工艺进行调整,降低生产成本,提高生产效率。
具体实施方式
术语“任选”或“任选地”是指随后描述的事件或情况可能发生或可能不发生,该描述包括发生所述事件或情况和不发生所述事件或情况。例如,“任选地”含有,是指可以含有也可以不含有。本领域技术人员可理解,对于包含一个或多个取代基的任何基团,不会引入任何在空间上不可能存在和/或不能合成的取代或取代模式。
在整个本说明书中提到的“一实施方案”或“实施方案”或“在另一实施方案中”或“在某些实施方案中”或“在本公开的部分实施方式中”意指在至少一实施方案中包 括与该实施方案所述的相关的具体参考要素、结构或特征。因此,在整个说明书中不同位置出现的短语“在一实施方案中”或“在实施方案中”或“在另一实施方案中”或“在某些实施方案中”或“在本公开的部分实施方式中”不必全部指同一实施方案。此外,具体要素、结构或特征可以任何适当的方式在一个或多个实施方案中结合。
除非本公开中另外要求,在整个说明书和其后的权利要求书中,词语“包括(comprise)”、“包含(contain)”、“含有(contain)”及其英文变体例如“包括(comprises)”、“包括(comprising)”、“包含(contains)”、“包含(containing)”、“含有(contains)”“含有(containing)”应解释为开放式的、含括式的意义,即“包括但不限于”、“包含但不限于”、“含有但不限于”。
应当理解,在本公开说明书和附加的权利要求书中用到的单数形式的冠词“一”(对应于英文“a”、“an”和“the”)包括复数的对象,除非文中另外明确地规定。还应当理解,术语“或”通常以其包括“和/或”的含义而使用,除非文中另外明确地规定。
本公开提供一种纳滤膜的制备方法,其包括以下步骤:
使聚合物溶于溶剂中制得聚合物溶液,使所述聚合物溶液在支撑材料上固化形成基膜(以下称为“基膜制备工序”);
使所述基膜浸入水相溶液中,所述水相溶液中包含树枝状聚酰胺胺PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)中的一种或任意几种,然后使所述基膜浸入包含酰氯化合物的有机相溶液中(以下称为“分离层制备工序”);
经后处理、烘干后得到纳滤膜。
在基膜制备工序中,所述聚合物为聚亚苯基砜PPSU、聚醚酰亚胺PEI、聚砜、聚醚砜中的一种或任意几种。对聚合物的分子量没有特别限制,优选地,数均分子量在30000~50000之间。
所述聚合物溶液中的溶剂没有特别限制,只要其能够充分溶解聚合物即可,优选地所述溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、四氢呋喃、咪唑啉酮中的一种或任意几种。
所述支撑材料没有特别限制,优选地,所述支撑材料为无纺布。
以所述聚合物溶液的重量计,所述聚合物的用量为15~28wt%,优选为15~25wt%,更优选为16~22wt%。如果聚合物的用量低于15wt%,会使得制备得到的纳滤膜的耐压性能有所降低。如果聚合物的用量高于28wt%,则会使得聚合物溶液又称铸膜液粘度增大,会增大基膜的制备难度和缺陷。
在本公开中,固化形成基膜的方法没有特别限制,优选采用液-固相转化法形成基膜。优选地,相转化发生时间控制为0.5~1min,水浴温度为15~20℃,热固化水浴温度为70~85℃,包括无纺布在内的膜厚度在5.0~6.0mil。
作为一个非限制性的例子,所述基膜制备工序包括:
将16-22wt%聚砜或聚醚砜作为聚合物溶解于二甲基甲酰胺(DMF)或二甲基乙酰胺(DMAC)中,在150℃下搅拌2-3h直到聚合物完全溶解。静置脱泡10h。将聚合物溶液在无纺布上经液-固相转化法形成基膜,相转化发生时间控制为0.5~1min,水浴温度为15~20℃,热固化水浴温度为70~85℃,包括无纺布在内的膜厚度在5.0-6.0mil。将得到的聚合物基膜浸泡于去离子水中保存,完成多孔支撑层基膜的制备。
树枝状聚酰胺胺PAMAM是一类三维、高度枝化、具有单一分散性的树枝状聚合物。树枝状聚酰胺胺PAMAM由活性中心、表面功能基团及连接二者的支化链段构成,支化链段按几何学规则重复产生的一系列同心层成为代数(generation,G)。树枝状PAMAM是由核心(胺或乙二胺)出发,通过重复的逐步反应进行分子构建得到的,分子表面具有很高的官能团密度,同时分子内部具有广阔的空腔,树枝状PAMAM具有很好的反应活性剂包容能力,在分子中心和分子末端可以引入大量的反应性或功能性基团。在本公开中,树枝状聚酰胺胺PAMAM具有如下所示的结构:
Figure PCTCN2020110219-appb-000001
树枝状聚酰胺胺PAMAM是商购可得的,例如可以购自威海晨源分子新材料有限公司。
以所述水相溶液的重量计,所述树枝状聚酰胺胺PAMAM的用量为0.0~3.0wt%,优选为0.0~2.5wt%。如果用量高于3.0wt%,则会降低纳滤膜对有机物分离的选择性和通量。
以所述水相溶液的重量计,所述脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)的用量为0.0~3.0wt%,优选为0.0~2.5wt%。如果用量高于3.0wt%,则会降低纳滤膜对有机物分离的选择性和通量。
优选地,所述树枝状聚酰胺胺PAMAM的用量和脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)的用量不同时为0。
优选地,以所述水相溶液的重量计,所述树枝状聚酰胺胺PAMAM与所述脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)的用量之比为0:2.5wt%~2.5wt%:0,优选为0.5wt%:0.5wt%~1.5wt%:0.2wt%(即,两者比例在1:1~7.5:1的范围内),更优选为0.8wt%:0.4wt%~0.5wt%:0.1wt%(即,两者比例在2:1~5:1的范围内)。当不在上述范围内时,则纳滤膜对有机物分离的选择性较差或者纳滤膜在成膜过程中有可能出现缺陷。
在水相溶液中可任选地加入pH调节剂,优选地,所述pH调节剂为氢氧化钠、氢氧化钾、磷酸钠、磷酸氢二钠、磷酸二氢钠、碳酸钠、碳酸氢钠、碳酸钾、柠檬酸钠、柠檬酸钾中的一种或任意几种;基于水相溶液的总重量,所述pH调节剂的添加量为0.01wt%~0.1wt%,进一步地,优选的pH调节剂添加量为0.01wt%~0.05wt%,所述pH调节剂用来吸收界面聚合产生的多余的酸,促进界面聚合持续正向反应。。
所述脂肪族含氮杂环化合物为哌嗪、高哌嗪、N-甲基哌嗪、N-乙基哌嗪、N-异丙基 哌嗪、吡唑中的一种或任意几种;所述芳香族胺类化合物为间苯二胺、对苯二胺、邻苯二胺、4-甲基间苯二胺中的一种或任意几种。
所述聚(亚烷基二醇)为聚(乙二醇)、聚(丙二醇)、聚(丁二醇)(请确认是否合适),更优选为聚(乙二醇);优选地,所述聚(亚烷基二醇)的聚合度为5~95,更优选为5~15。从原料易得性的观点,聚合度的下限优选为5;当聚合度高于95时,则反应不容易进行。
优选地是,所述脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)为哌嗪封端的聚乙二醇PIP-PEG-PIP。
作为一个非限制性的例子,哌嗪封端的聚乙二醇PIP-PEG-PIP的制备工序包括:
称取50g哌嗪加入烧杯中,并加入2000mL纯水,再加入8g聚(乙二醇)二丙烯酸酯(AA-PEG-AA,PEG的聚合度为5),25℃下恒温搅拌反应10分钟,制得哌嗪封端的聚乙二醇PIP-PEG-PIP。
优选地,制得的哌嗪封端的聚乙二醇PIP-PEG-PIP在一小时内使用。
所述酰氯化合物为均苯三甲酰氯、邻苯二甲酰氯、间苯二甲酰氯、对苯二甲酰氯中的一种或任意几种。
以所述有机相溶液的重量计,所述酰氯化合物的用量为0.05~0.5wt%,优选为0.1~0.3wt%,更优选为0.1~0.25wt%。
作为一个非限制性的例子,所述分离层制备工序包括:
(1)将基膜浸泡于含树枝状PAMAM(0.0-2.5wt%)、哌嗪封端聚乙二醇PIP-PEG-PIP(0.0-2.5wt%)、氢氧化钠(0.01-0.05wt%)的水相溶液中0.5~2min,沥干表面水珠,其中树枝状PAMAM与哌嗪封端聚乙二醇PIP-PEG-PIP的含量不同时为0;
(2)将经步骤(1)处理的基膜浸泡于含有均苯三甲酰氯(0.1-0.3wt%)的有机溶剂(正己烷、乙基环己烷、正辛烷、正庚烷等)中反应0.5-2min;
(3)将经步骤(2)界面反应后的膜,用温度为80-90℃的水热处理1-3min,纯水清洗后再用含甘油的水溶液浸泡1-3min,然后烘干,制得高精度选择性可调节纳滤膜。
不受特别的限制,以树枝状PAMAM、哌嗪封端的聚乙二醇PIP-PEG-PIP为例来说明,本公开的制备方法特点在于:利用树枝状PAMAM、哌嗪封端的聚乙二醇PIP-PEG-PIP中 的一种或两种作为水相单体,与作为有机相单体的酰氯化合物进行界面聚合反应在聚合物基膜上形成分离层。
树枝状PAMAM具有较多支链以及大量可参与界面聚合反应的氨基,哌嗪封端的聚乙二醇PIP-PEG-PIP具有较长的直链和活性较高的封端氨基。将树枝状PAMAM、哌嗪封端的聚乙二醇PIP-PEG-PIP中的一种或两种作为水相单体与有机相单体酰氯化合物进行界面聚合反应,反应生成的分离层较疏松且孔径较大。从而可以实现对低分子量有机物的透过、对高分子量有机物的截留。
通过调节树枝状PAMAM、哌嗪封端的聚乙二醇PIP-PEG-PIP的比例与浓度,可调控分离层的结构和性能,进而调节纳滤膜对不同分子量的有机物的截留率,使得本公开制备的纳滤膜对不同分子量的有机物具有不同的选择性。从而实现对多种不同分子量的有机物的选择性分离。
本公开还提供根据所述的制备方法制得的纳滤膜。所述纳滤膜可以应用于水处理、染料、生物化工、食品、环保等领域中对于具有不同分子量的有机物的选择性分离。
实施例
下面结合具体实施例进一步详细说明本公开,但本公开绝不限于以下实施例。需要说明的是,本公开实施例中采用的试剂和原料除非特别说明,皆为商购可得的常规产品。
实施例1
(1)配制聚合物溶液:将45g聚砜(PS)加入到205g N,N-二甲基甲酰胺(DMF)中,在150℃下高速搅拌6h溶解后,将所得溶液进行真空静置脱泡,获得聚合物溶液;
(2)基膜制备:将步骤(1)中得到的聚合物溶液在无纺布上经液-固相转化法制备多孔聚合物支撑层。相转化发生时间控制为0.5min,水浴温度为18℃,热固化水浴温度为80℃,膜厚度控制在5.5mil;
(3)将步骤(2)中得到的聚合物基膜浸泡于去离子水中保存,完成高分子聚合物基膜的制备;
(4)将10g树枝状PAMAM、0.2g氢氧化钠溶解于989.8g去离子水中,搅拌溶解完全得到水相溶液,将步骤(3)中制备的基膜在水相溶液中浸泡2min,沥干膜面水珠;
(5)将1.5g均苯三甲酰氯溶解于998.5g正己烷中,搅拌溶解得到有机相溶液,将步骤(4)中浸泡了水相溶液的基膜浸泡于有机相溶液中0.5min;
(6)将经过步骤(5)的复合膜用温度为80℃的热水处理2min,再将其浸泡于25℃、浓度为18wt%的甘油中15min,最后用温度为60℃热空气烘干,制得纳滤膜。
实施例2
步骤(1)-(3)同实施例1;
(4)哌嗪封端聚乙二醇PIP-PEG-PIP的制备:称取50g哌嗪加入烧杯中,并加入2000mL纯水,再加入8g聚(乙二醇)二丙烯酸酯(AA-PEG-AA,PEG的聚合度为5),25℃下恒温搅拌反应10分钟,制得哌嗪封端聚乙二醇PIP-PEG-PIP;
(5)将10g哌嗪封端聚乙二醇PIP-PEG-PIP、0.2g氢氧化钠溶解于989.8g去离子水中,搅拌溶解完全得到水相溶液;将步骤(3)中制备的基膜在水相溶液中浸泡2min,沥干膜面水珠;
步骤(6)-(7)与实施例1的步骤(5)、(6)相同。
实施例3
步骤(1)-(4)同实施例2;
(5)将6g树枝状PAMAM、4g哌嗪封端聚乙二醇PIP-PEG-PIP、0.2g氢氧化钠溶解于989.8g去离子水中,搅拌溶解完全得到水相溶液;将步骤(3)中制备的基膜在水相溶液中浸泡2min,沥干膜面水珠;
步骤(6)-(7)与实施例1的步骤(5)、(6)相同。
实施例4
步骤(1)-(4)同实施例2;
(5)将4g树枝状PAMAM、1g哌嗪封端聚乙二醇PIP-PEG-PIP、0.2g氢氧化钠溶解于994.8g去离子水中,搅拌溶解完全得到水相溶液;将步骤(3)中制备的基膜在水相溶液中 浸泡2min,沥干膜面水珠。
步骤(6)-(7)与实施例1的步骤(5)、(6)相同。
实施例5
步骤(1)-(4)同实施例1。
(5)将1.0g均苯三甲酰氯溶解于999g正己烷中,搅拌溶解得到有机相溶液;将步骤(4)中浸泡了水相溶液的基膜浸泡于有机相溶液中0.5min。
步骤(6)与实施例1的步骤(6)相同。
测试与结果
纳滤膜的通量和不同分子量的有机物的脱除测试即截留率测试
取实施例1~实施例5制备的复合纳滤膜,在膜片检测台上进行有机物脱除测试,操作压力为100psi、有机物浓度为2000ppm的原水溶液、溶液温度为25℃、pH值为6.5-7.5的测试条件下,测得膜片运行30min后的水通量和截留率,结果如表1-3所示,其中表1为对于PEG200的测试结果,表2为对于PEG400的测试结果,表3为对于PEG600的测试结果:
表1
实施例编号 水通量(GFD) 截留率(%)
实施例1 30.15 78.36
实施例2 29.60 80.23
实施例3 33.18 69.11
实施例4 36.27 51.35
实施例5 37.96 50.03
表2
实施例编号 水通量(GFD) 截留率(%)
实施例1 23.24 96.68
实施例2 23.05 97.44
实施例3 29.71 80.06
实施例4 31.37 72.24
实施例5 33.26 69.74
表3
实施例 水通量(GFD) 截留率(%)
实施例1 22.50 98.46
实施例2 21.09 99.08
实施例3 21.93 98.97
实施例4 22.13 97.83
实施例5 22.37 97.29
从表1-3列出的实施例1-5得到的复合纳滤膜的测试结果可以看出,通过采用树枝状聚酰胺胺PAMAM、哌嗪封端聚乙二醇PIP-PEG-PIP中的一种或两种作为水相单体与酰氯化合物进行界面聚合反应制备分离层,所得的纳滤膜实现了在保持优于现有技术的纳滤膜的高通量的情况下,增大对于不同分子量的有机物即PEG200、PEG400、PEG600的截留率之间的差异,降低对PEG200的截留率,提高对PEG400、PEG600的截留率,对于不同分子量的有机物的分离的选择性提高,实现对不同分子量有机物的选择性分离。
并且根据本公开的制备方法可直接利用现有的生产设备,无需进行额外的涂覆工序,无需对现有的生产设备和生产工艺进行调整,降低生产成本,提高生产效率。
总体而言,通过选择特定的水相单体及其组合,可以获得对于不同分子量的有机物具有不同的截留率和高通量的复合纳滤膜,能够获得对于高分子量的有机物具有较高的截留率和通量同时能够使得低分子量的有机物通过(即,与对于高分子量的有机物的高截留率相比,对于低分子量的有机物的截留率低、通量高)的复合纳滤膜。
需要说明的是:对于膜性能的评价,并不是截留分子量越高越好,也不是截留率越高越好,主要是由膜的应用环境决定。比如,在某些实际应用过程中,待过滤的液体中同时含有不同分子量的有机物,需要对绝大部分高分子量的有机物进行截留,同时需要使绝大部分低分子量的有机物通过时,就要求膜对高分子量的有机物具有相对较高的截留率,而对低分子量的有机物有相对低的截留率;需要对绝大部分高分子量的有机物进行截留,同时需要使合适量的低、中分子量的有机物通过时,就要求膜对高分子量的有机物有相对较高的截留率,而对低、中分子量的有机物具有适宜的截留率。
通过以上表1中给出的实施例1-5得到的复合纳滤膜的截留率和通量的数据可知,通过本公开的方法制备得到的复合纳滤膜满足了不同的应用要求,实现了可以调节对于不同分子量的有机物的截留率和通量。
产业上的可利用性
采用本公开的制备方法制备纳滤膜,可以在保持纳滤膜的高通量的情况下,实现对具有不同分子量的有机物的选择性分离。

Claims (10)

  1. 一种纳滤膜的制备方法,其特征在于,包括以下步骤:
    使聚合物溶于溶剂中制得聚合物溶液,使所述聚合物溶液在支撑材料上固化形成基膜;
    使所述基膜浸入水相溶液中,所述水相溶液中包含树枝状聚酰胺胺PAMAM、脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)中的一种或任意几种,然后使所述基膜浸入包含酰氯化合物的有机相溶液中;
    经后处理、烘干后得到纳滤膜。
  2. 根据权利要求1所述的制备方法,其特征在于,所述聚合物为聚亚苯基砜PPSU、聚醚酰亚胺PEI、聚砜、聚醚砜中的一种或任意几种。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述聚合物溶液中的溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、四氢呋喃、咪唑啉酮中的一种或任意几种;优选地,所述支撑材料为无纺布。
  4. 根据权利要求1或2所述的制备方法,其特征在于,以所述聚合物溶液的重量计,所述聚合物的用量为15~28wt%,优选为15~25wt%,更优选为16~22wt%。
  5. 根据权利要求1或2所述的制备方法,其特征在于,以所述水相溶液的重量计,所述树枝状聚酰胺胺PAMAM的用量为0.0~3.0wt%,优选为0.0~2.5wt%,脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)的用量为0.0~3.0wt%,优选为0.0~2.5wt%,其中所述树枝状聚酰胺胺PAMAM的用量和脂肪族含氮杂环化合物或芳香族胺类化合物封端的聚(亚烷基二醇)的用量不同时为0。
  6. 根据权利要求1或2所述的制备方法,其特征在于,所述脂肪族含氮杂环化合物为哌嗪、高哌嗪、N-甲基哌嗪、N-乙基哌嗪、N-异丙基哌嗪、吡唑中的一种或任意几种;所述芳香族胺类化合物为间苯二胺、对苯二胺、邻苯二胺、4-甲基间苯二胺中的一种或任意几种。
  7. 根据权利要求1或2所述的制备方法,其特征在于,所述聚(亚烷基二醇)为聚(乙二醇)、聚(丙二醇)、聚(丁二醇);优选地,所述聚(亚烷基二醇)的聚合度为5~95,更优选为5~15。
  8. 根据权利要求1或2所述的制备方法,其特征在于,所述酰氯化合物为均苯三甲酰氯、邻苯二甲酰氯、间苯二甲酰氯、对苯二甲酰氯中的一种或任意几种。
  9. 根据权利要求1或2所述的制备方法,其特征在于,以所述有机相溶液的重量计,所述酰氯化合物的用量为0.05~0.5wt%,优选为0.1~0.3wt%,更优选为0.1~0.25wt%。
  10. 一种根据权利要求1~9任一项所述的制备方法制得的纳滤膜。
PCT/CN2020/110219 2019-12-27 2020-08-20 纳滤膜的制备方法和由此制备的纳滤膜 WO2021128886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911387371.9 2019-12-27
CN201911387371.9A CN113041840B (zh) 2019-12-27 2019-12-27 纳滤膜的制备方法和由此制备的纳滤膜

Publications (1)

Publication Number Publication Date
WO2021128886A1 true WO2021128886A1 (zh) 2021-07-01

Family

ID=76507647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110219 WO2021128886A1 (zh) 2019-12-27 2020-08-20 纳滤膜的制备方法和由此制备的纳滤膜

Country Status (2)

Country Link
CN (1) CN113041840B (zh)
WO (1) WO2021128886A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870629A (zh) * 2022-06-06 2022-08-09 天津工业大学 高选择性纳滤膜及其制备方法和用途
CN114931865A (zh) * 2022-05-16 2022-08-23 重庆理工大学 一种聚酰胺陶瓷复合纳滤膜、制备方法及其应用
CN114984785A (zh) * 2022-06-10 2022-09-02 中国科学院过程工程研究所 一种复合纳滤膜及其制备方法和应用
CN115337789A (zh) * 2022-06-24 2022-11-15 星达(泰州)膜科技有限公司 一种纳滤膜的制备方法
CN115475537A (zh) * 2022-08-25 2022-12-16 三达膜科技(厦门)有限公司 一种高截留平板纳滤基膜及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114259878A (zh) * 2021-12-14 2022-04-01 恩泰环保科技(常州)有限公司 一种孔径可调高通量纳滤膜及其制备方法
CN115487689B (zh) * 2022-08-25 2023-11-21 三达膜科技(厦门)有限公司 一种高通量平板纳滤基膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108355497A (zh) * 2018-02-09 2018-08-03 深圳大学 一种高性能正渗透膜及其制备方法、应用
CN109621733A (zh) * 2018-12-20 2019-04-16 时代沃顿科技有限公司 一种纳滤膜的制备方法和由此制备的纳滤膜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160046A (en) * 1991-11-18 1992-11-03 Texaco Inc. Membrane separation process
CN1636623A (zh) * 2004-12-16 2005-07-13 李连超 新型纳滤膜及其制备方法
CN102151490A (zh) * 2011-01-30 2011-08-17 哈尔滨工业大学 树状聚酰胺-胺包埋无机纳米粒子制备纳滤膜的方法
CN104474927A (zh) * 2014-12-17 2015-04-01 北京碧水源净水科技有限公司 一种制备结构和性能可控的超级纳滤膜的方法
CN104587845A (zh) * 2015-01-26 2015-05-06 天津工业大学 一种具有亲水分离层的复合膜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108355497A (zh) * 2018-02-09 2018-08-03 深圳大学 一种高性能正渗透膜及其制备方法、应用
CN109621733A (zh) * 2018-12-20 2019-04-16 时代沃顿科技有限公司 一种纳滤膜的制备方法和由此制备的纳滤膜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOL RAVINDRA M., ANUPAM BERA, SEMIRE BANJO, BISHWAJIT GANGULY, SURESH K. JEWRAJKA: "Effect of amine spacer of PEG on the properties, performance and antifouling behavior of poly(piperazineamide) thin film composite nanofiltration membranes prepared by in situ PEGylation approach", JOURNAL OF MEMBRANE SCIENCE, vol. 472, 27 August 2014 (2014-08-27), pages 154 - 166, XP055823686, DOI: 10.1016/j.memsci.2014.08.015 *
GOL RAVINDRA M., SURESH K. JEWRAJKA: "Facile in situ PEGylation of polyamide thin film composite membranes for improving fouling resistance", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 455, 3 January 2014 (2014-01-03), NL, pages 271 - 282, XP055823691, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2013.12.058 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931865A (zh) * 2022-05-16 2022-08-23 重庆理工大学 一种聚酰胺陶瓷复合纳滤膜、制备方法及其应用
CN114931865B (zh) * 2022-05-16 2023-06-09 重庆理工大学 一种聚酰胺陶瓷复合纳滤膜、制备方法及其应用
CN114870629A (zh) * 2022-06-06 2022-08-09 天津工业大学 高选择性纳滤膜及其制备方法和用途
CN114870629B (zh) * 2022-06-06 2023-06-30 天津工业大学 高选择性纳滤膜及其制备方法和用途
CN114984785A (zh) * 2022-06-10 2022-09-02 中国科学院过程工程研究所 一种复合纳滤膜及其制备方法和应用
CN115337789A (zh) * 2022-06-24 2022-11-15 星达(泰州)膜科技有限公司 一种纳滤膜的制备方法
CN115475537A (zh) * 2022-08-25 2022-12-16 三达膜科技(厦门)有限公司 一种高截留平板纳滤基膜及其制备方法
CN115475537B (zh) * 2022-08-25 2023-10-13 三达膜科技(厦门)有限公司 一种高截留平板纳滤基膜及其制备方法

Also Published As

Publication number Publication date
CN113041840A (zh) 2021-06-29
CN113041840B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2021128886A1 (zh) 纳滤膜的制备方法和由此制备的纳滤膜
JP6183945B2 (ja) ポリアミド複合膜の製造方法
CN109173741B (zh) 一种高通量复合聚酰胺反渗透膜的制备方法
CN110917897A (zh) 一种复合纳滤膜及其制备方法
CN105597552A (zh) 高水通量高截盐率正渗透膜及一步法制备该正渗透膜的方法
CN110947307B (zh) 一种复合脱盐层纳滤膜制备方法
Liu et al. From ultrafiltration to nanofiltration: Nanofiltration membrane fabricated by a combined process of chemical crosslinking and thermal annealing
CN107930412B (zh) 一种耐酸型聚(酰胺-三嗪-胺)纳滤复合膜的制备方法
JP2018520847A (ja) 水処理分離膜およびその製造方法
CN112023731B (zh) 一种高通量低压反渗透膜的制备方法
JP6312148B2 (ja) 高性能の正荷電複合膜及びそれらをナノろ過プロセスに用いる使用
CN110394065B (zh) 复合纳滤膜及其制备方法和应用
KR101659122B1 (ko) 염제거율 및 투과유량 특성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
KR101418064B1 (ko) 정밀여과막 또는 한외여과막 제조용 고분자 수지 조성물, 고분자 여과막의 제조 방법 및 고분자 여과막
CN110385046B (zh) 一种以多酰氯取代环状大分子制备大通量反渗透膜的方法
CN113244781B (zh) 一种抗黄化复合反渗透膜及其制备方法
KR101780012B1 (ko) 고분자 여과막의 제조 방법 및 고분자 여과막
JPS6225402B2 (zh)
JP4793978B2 (ja) 乾燥複合半透膜の製造方法
US20050006302A1 (en) Process for the preparation of porous membrane
KR101716045B1 (ko) 투과유량 특성이 우수한 폴리아미드계 수처리 분리막의 제조 방법 및 상기 제조 방법으로 제조된 수처리 분리막
KR20210033718A (ko) 폴리아미드 계면중합용 조성물 및 이를 이용한 수처리 분리막의 제조 방법
CN104096484B (zh) 超滤膜及其制备方法
Hwang et al. Characteristics and separation efficiencies of PPSU/PEI/PEG blend membranes with different compositions for water treatment
JPH1057783A (ja) 逆浸透複合膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20908304

Country of ref document: EP

Kind code of ref document: A1