WO2021128719A1 - 一种梯度疏水膜电极及其制备方法 - Google Patents
一种梯度疏水膜电极及其制备方法 Download PDFInfo
- Publication number
- WO2021128719A1 WO2021128719A1 PCT/CN2020/091495 CN2020091495W WO2021128719A1 WO 2021128719 A1 WO2021128719 A1 WO 2021128719A1 CN 2020091495 W CN2020091495 W CN 2020091495W WO 2021128719 A1 WO2021128719 A1 WO 2021128719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrophobic
- membrane electrode
- agent
- layer
- gradient
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the field of fuel cells, and specifically relates to a gradient hydrophobic membrane electrode and a preparation method thereof.
- Proton Exchange Membrane Fuel Cell is a kind of controllable conversion of fuel and oxidant into electrical energy through electrochemical reaction under chemical energy, and it is used as a power generation device. It has high energy conversion efficiency and is environmentally friendly. And other characteristics, can be applied to new energy vehicles, distributed power stations, portable electronic devices and other fields. Water is a key factor affecting the performance of proton exchange membrane fuel cells. More water is beneficial to the proton conductivity of the proton exchange membrane, but too much water in the porous electrode will form liquid water, hinder the transfer of substances, and cause flooding of the electrode. Therefore, the drainage performance of the battery has an important impact on the power generation performance of the fuel cell, and excellent water management can provide beneficial help for the industrial development of the proton exchange membrane fuel cell.
- the drainage performance of the proton exchange membrane fuel cell is mainly optimized from the inside of the battery structure, including the optimization of the pore structure of the catalytic layer and the diffusion layer, and the structure of the plate flow channel.
- the gradient design can effectively improve the water management capability of the battery.
- Zhan Zhigang et al. Zhang Zhigang, Zhang Yongsheng, Xiao Jinsheng, etc., Journal of Huazhong University of Science and Technology, 2007, 35(9): 45 ⁇ 48
- Chun et al. J H Chun, D H Jo, S G Kim et al. Renew.
- the purpose of the present invention is to provide a graded membrane electrode structure for a proton exchange membrane fuel cell and a preparation method thereof, which can improve the discharge capacity of liquid water and the working performance of the battery under high current density. It has the advantages of strong safety, simple operation and good performance.
- a gradient hydrophobic membrane electrode The proton exchange membrane of the membrane electrode is successively attached with a catalytic layer, a microporous layer and a supporting layer which are hydrophobically treated with a solution containing a hydrophobic agent and have a hydrophobicity successively decreasing.
- the hydrophobic treatment of the catalytic layer is sprayed on both sides of the proton exchange membrane by a suspension of catalyst, proton conductor and hydrophobic agent to form a hydrophobic treated catalytic layer; wherein the mass ratio of catalyst, proton conductor and hydrophobic agent is 1:0.2 -0.8: 0-1.
- the hydrophobic treatment of the support layer is to immerse the support material in a solution containing a hydrophobic agent for hydrophobic treatment; wherein the solution containing the hydrophobic agent is a mixture of the hydrophobic agent and the organic solvent, and the mass concentration fraction of the hydrophobic agent in the mixed solution is 3%-30 %.
- the hydrophobic treatment of the microporous layer is to dissolve the hydrophobic agent and the carbon nanomaterial in an organic solvent to form a suspension, and then scrape or spray it on one side of the support layer opposite to the proton exchange membrane to form hydrophobic micropores.
- Floor The hydrophobic treatment of the microporous layer is to dissolve the hydrophobic agent and the carbon nanomaterial in an organic solvent to form a suspension, and then scrape or spray it on one side of the support layer opposite to the proton exchange membrane to form hydrophobic micropores.
- the hydrophobic agent is organosiloxane.
- Hydrophobic treatment is to spray the suspension of catalyst, proton conductor and hydrophobizing agent on both sides of the proton exchange membrane to form a hydrophobized catalytic layer; wherein the mass ratio of catalyst, proton conductor and hydrophobing agent is 1:0.2-0.8 : 0-1;
- the hydrophobic treatment of the support layer is to immerse the support material in a solution containing a hydrophobic agent for hydrophobic treatment; wherein the solution containing the hydrophobic agent is a mixture of the hydrophobic agent and the organic solvent, and the mass concentration fraction of the hydrophobic agent in the mixed solution is 3% -30%;
- the hydrophobic treatment of the microporous layer is to dissolve the hydrophobic agent and the carbon nanomaterial in an organic solvent to form a suspension, and scrape or spray it on one side of the support layer opposite to the proton exchange membrane to form hydrophobicity Microporous layer; the final concentration of the hydrophobic agent in the suspension is 1% to 30% by weight, and the final concentration of the carbon nano material is 1% to 40% by weight. Preferably they are 1wt%-5wt%, 2wt%-10wt%;
- the hydrophobicity of each layer after the above hydrophobic treatment is as follows: the contact angle of the catalytic layer: 140-160°; the contact angle of the microporous layer: 130-150°; the contact angle of the support layer: 120-140°.
- the carbon nano material is one or more of carbon black, acetylene black, and carbon nanotube; preferably carbon black;
- the organic solvent is one or more of tetrahydrofuran, chloroform, dichloromethane, toluene, dimethyl ether, and carbon tetrachloride; preferably tetrahydrofuran;
- the organosiloxane is one or more of polydimethylsiloxane, polymethylsiloxane, and ⁇ , ⁇ -dihydroxypolysiloxane. Preferably it is polydimethylsiloxane.
- the carbon material and hydrophobic agent loading on the surface of the microporous layer prepared by knife coating or spraying is 0.5-5.0 mg/cm 2 .
- Preferably it is 0.5-2.0 mg/cm 2 .
- the present invention performs hydrophobic treatment on different layers of the electrode, and the hydrophobic properties of the membrane electrode catalytic layer, the microporous layer and the diffusion layer after the treatment show a gradient decreasing trend.
- the obtained membrane electrode has higher electrochemical output performance than the membrane electrode treated with conventional fluorine-containing hydrophobic agent, which can effectively improve the discharge capacity of liquid water and the working performance under high current density; the structure of gradient hydrophobic membrane electrode can be optimized
- the liquid water discharge capacity of the membrane electrode improves the electrical output performance under high current density;
- the preparation method of the present invention is not only simple, fast, mild, feasible, environmentally friendly, and suitable for large-scale industrial production; and the equipment used in the present invention The requirement is low, the raw material cost is low, and the preparation process is simple.
- FIG. 1 is a schematic diagram of the present invention and the contact angles obtained from the structural test of each part of Example 1.
- FIG. 1 is a schematic diagram of the present invention and the contact angles obtained from the structural test of each part of Example 1.
- Fig. 2 is an optical photograph of the membrane electrode of Example 1 provided by an embodiment of the present invention.
- Fig. 3 is a polarization curve diagram of the membrane electrode of Example 1 provided by an embodiment of the present invention.
- the reagents used are as follows: polydimethylsiloxane (SYLGARD184) was purchased from Dow Corning, the carbon paper was purchased from Toray-H-60 of Toray, Japan, and the 60% Pt/C catalyst was purchased from the United States. Johnson Matthey Company, carbon black (VXC-72R) was purchased from Cabot Corporation, acetylene black was purchased from Xinyuan Power Co., Ltd., proton exchange membrane and Nafion solution were purchased from Chemours, USA, and other reagents were purchased from Sinopharm Chemical Purchased by Reagent Co., Ltd.
- the contact angle is measured by a contact angle measuring instrument CA100A.
- the membrane electrode polarization curve test is measured by a test platform built by the laboratory.
- the membrane electrode processed by the method of the present invention has a hydrophobicity from high to low from the catalytic layer to the microporous layer to the supporting layer through organosiloxane treatment.
- the overall gradient design of the hydrophobic performance of the membrane electrode is carried out by using organosiloxane, and the hydrophobic performance of the catalytic layer, microporous layer and diffusion layer of the membrane electrode after treatment shows a gradient decreasing trend.
- the preparation method is not only simple, feasible, green and environmentally friendly, but the obtained membrane electrode has higher electrochemical output performance than the membrane electrode treated with conventional fluorine-containing hydrophobic agent, and can effectively improve the discharge capacity of liquid water and work under high current density. performance.
- the equipment used in the invention has low requirements, low cost of raw materials, simple and fast preparation process, mild conditions, and is suitable for large-scale industrial production.
- Treatment of the support layer completely immerse the carbon paper in a tetrahydrofuran solution containing 5 wt% of polydimethylsiloxane for 10 minutes for hydrophobic treatment, take it out, and dry at room temperature;
- Microporous layer preparation 3g polydimethylsiloxane and 3g carbon black are dissolved in tetrahydrofuran (polydimethylsiloxane mass fraction is 3wt%), mechanically stirred and ultrasonicated to form a uniform suspension. One side of the hydrophobic treated carbon paper was scraped with the suspension until the carbon black loading was 0.5 mg/cm 2 , dried naturally, placed in a drying box, and sintered at 160° C. for 10 min.
- Membrane electrode assembly and hot pressing The above-mentioned CCM proton exchange membrane and the prepared support layer with microporous layer are hot pressed at 140° C. and 0.1 MPa for 1 min to form a membrane electrode.
- the 5wt% polydimethylsiloxane solution was changed to a 30wt% polydimethylsiloxane solution, and the rest was the same as in Example 1.
- Example 1 The polydimethylsiloxane in Example 1 was changed to polymethylsiloxane, and the rest were the same as in Example 1.
- Example 1 The carbon black in Example 1 was changed to acetylene black, and the rest were the same as in Example 1.
- Example 1 The tetrahydrofuran in Example 1 was changed to chloroform, and the rest were the same as in Example 1.
- the carbon black loading amount was changed from 0.5 mg/cm 2 to 5 mg/cm 2 , and the rest was the same as in Example 1.
- Polarization curve test conditions The test uses hydrogen as the fuel gas, oxygen as the oxidant, the pressure is 0.1MPa, and the working temperature is set to 60°C. First, activate the battery under constant current for 2 hours, and wait until the battery reaches a stable test. After the environment and performance, by adjusting the external circuit resistance, record the corresponding current and voltage values, according to which the battery polarization curve is obtained (see Figure 3).
- the battery to be tested is an electrode obtained in Example 1, and a conventional membrane electrode not treated with polydimethylsiloxane is used as a comparison.
- the membrane electrodes obtained by testing the above-mentioned Embodiments 2-8 also have the structure and corresponding characteristics of the above-mentioned Embodiment 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Composite Materials (AREA)
- Inert Electrodes (AREA)
Abstract
一种梯度疏水膜电极及其制备方法,属于燃料电池领域。膜电极的质子交换膜上依次附有经含疏水剂的溶液疏水处理的疏水性依次递减的催化层、微孔层以及支撑层。所述膜电极的制备方法不仅简单可行、绿色环保,而且得到的膜电极较常规含氟疏水剂处理的膜电极具有更高的电化学输出性能,可有效提高液态水的排出能力及在高电流密度下的工作性能。所述膜电极的制备方法所使用的设备要求低,原料成本低廉,制备工艺简单、快捷、条件温和,适用于大规模的工业生产。
Description
本发明属于燃料电池领域,具体涉及一种梯度疏水膜电极及其制备方法。
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)是一种将燃料和氧化剂在化学能下通过电化学反应可控转换成电能,将其作为发电装置,其具有能量转化效率高、环境友好等特点,可应用于新能源交通工具、分布式电站、便携式电子装置等领域。水是影响质子交换膜燃料电池性能的关键因素。水分多对质子交换膜的质子传导率是有利的,但是在多孔电极中水分过多,会形成液态水,阻碍物质的传输,造成电极的水淹。因此,电池的排水性能对于燃料电池的发电性能有重要影响,优良的水管理可为质子交换膜燃料电池的产业化发展提供有利帮助。
目前,质子交换膜燃料电池排水性能主要从电池结构内部进行优化,包括对催化层、扩散层的孔结构、极板流道结构等进行优化。其中梯度化设计可有效提升电池的水管理能力。例如詹志刚等(詹志刚,张永生,肖金生等,华中科技大学学报,2007,35(9):45~48)利用梯度化分布的扩散层提高了液态水的排出量并降低其残留量。Chun等(J H Chun,D H Jo,S G Kim et al.Renew.Energy,2013,58:28~33)通过加入造孔剂得到了梯度化的微孔层,提高了液态水的排出能力及在高电流密度下的工作性能。值得注意的是,为了最大程度提高燃料电池的排水能力,单一的各部位结构设计已不能满足需求,需要对膜电极整体梯度化进行配合设计。
发明内容
本发明的目的在于提供一种用于质子交换膜燃料电池的梯度化膜电极结构及其制备方法,该方法可提高液态水的排出能力及电池在高电流密度下的工作性能。具有安全性强,操作简单,性能好等优点。
为了实现上述目的,本发明的技术方案是:
一种梯度疏水膜电极,膜电极的质子交换膜上依次附有经含疏水剂的溶液疏水处理的疏水性依次递减的催化层、微孔层以及支撑层。
所述催化层疏水处理为通过催化剂、质子导体及疏水剂的悬浊液喷涂于质子交换膜两侧,形成疏水处理的催化层;其中,催化剂、质子导体及疏水剂的质量比为1:0.2-0.8:0-1。
所述支撑层疏水处理为将支撑材料浸入含疏水剂的溶液中进行疏水处理;其中,含疏水剂的溶液为疏水剂与有机溶剂混合,混合溶液中疏水剂的质量浓度分数为3%-30%。
所述微孔层疏水处理为将疏水剂和碳纳米材料溶于有机溶剂形成悬浊液,并将其刮涂或喷涂于与质子交换膜相对的支撑层的其中一侧,形成疏 水性微孔层。
所述疏水剂为有机硅氧烷。
一种梯度疏水膜电极的制备方法,
1)疏水处理为通过催化剂、质子导体及疏水剂的悬浊液喷涂于质子交换膜两侧,形成疏水处理的催化层;其中,催化剂、质子导体及疏水剂的质量比为1:0.2-0.8:0-1;
2)所述支撑层疏水处理为将支撑材料浸入含疏水剂的溶液中进行疏水处理;其中,含疏水剂的溶液为疏水剂与有机溶剂混合,混合溶液中疏水剂的质量浓度分数为3%-30%;
3)所述微孔层疏水处理为将疏水剂和碳纳米材料溶于有机溶剂形成悬浊液,并将其刮涂或喷涂于与质子交换膜相对的支撑层的其中一侧,形成疏水性微孔层;所述悬浊液中疏水剂终浓度为1wt%-30wt%、碳纳米材料终浓度为1wt%-40wt%。优选分别为1wt%-5wt%、2wt%-10wt%;
4)将上述处理后的带有疏水催化层的质子交换膜与带有疏水性微孔层的经疏水处理的支撑层热压制成膜电极。
经上述疏水处理后各层的达到的疏水性为,催化层接触角:140-160°;微孔层接触角:130-150°;支撑层接触角:120-140°。
所述碳纳米材料为炭黑、乙炔黑、碳纳米管中的一种或几种;优选为炭黑;
所述有机溶剂为四氢呋喃、氯仿、二氯甲烷、甲苯、二甲醚、四氯化碳中的一种或几种;优选为四氢呋喃;
所述有机硅氧烷为聚二甲基硅氧烷、聚甲基硅氧烷、α,ω-二羟基聚硅氧烷中的一种或几种。优选为聚二甲基硅氧烷。
所述刮涂或喷涂制备微孔层表面的碳材料和疏水剂载量为0.5-5.0mg/cm
2。优选为0.5-2.0mg/cm
2。
与现有技术相比,本发明的特点如下:
本发明针对电极不同层进行疏水处理,处理后的膜电极催化层、微孔层以及扩散层的疏水性能呈梯度降低趋势。得到的膜电极较常规含氟疏水剂处理的膜电极具有更高的电化学输出性能,可有效提高液态水的排出能力及在高电流密度下的工作性能;采用梯度疏水膜电极结构,可优化膜电极的液态水排出能力,提高高电流密度下的电学输出性能;本发明制备方法不仅简单、快捷、条件温和、可行、绿色环保,适用于大规模的工业生产;而且本发明所使用的设备要求低,原料成本低廉,制备工艺简单。
图1是本发明的示意图以及实施例1各部分结构测试所得的接触角。
图2是本发明实施例提供的实施例1膜电极的光学照片图。
图3是本发明实施例提供的实施例1膜电极的极化曲线图。
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。以下将通过实施例对本发明进行详细描述。
以下实施例中,所用试剂如下所示:聚二甲基硅氧烷(SYLGARD184)购于美国道康宁公司,碳纸购于日本东丽公司Toray-H-60,60%Pt/C催化剂购于美国Johnson Matthey公司,炭黑(VXC-72R)购于美国卡博特公司,乙炔黑购于新源动力股份有限公司,质子交换膜以及Nafion溶液购于美国科慕公司,其他试剂均由国药集团化学试剂有限公司购买。
接触角由接触角测量仪CA100A测得。
膜电极极化曲线测试由实验室自搭的测试平台测量。
采用本发明方法处理后的膜电极自催化层至微孔层再到支撑层通过有机硅氧烷处理疏水性由高至低。具体是利用有机硅氧烷对膜电极疏水性能进行整体梯度化设计,处理后的膜电极催化层、微孔层以及扩散层的疏水性能呈梯度降低趋势。该制备方法不仅简单可行、绿色环保,而且得到的膜电极较常规含氟疏水剂处理的膜电极具有更高的电化学输出性能,可有效提高液态水的排出能力及在高电流密度下的工作性能。本发明所使用的设备要求低,原料成本低廉,制备工艺简单、快捷、条件温和,适用于大规模的工业生产。
实施例1
催化层的处理(Catalyst Coated Membrane(CCM)的制备):称量0.1488g Pt/C催化剂,0.992g 5%的Nafion溶液,0.015g聚二甲基硅氧烷依次加入于8ml的异丙醇中,搅拌超声震荡约1-2h;然后将其喷涂于质子交换膜两侧,放于烘箱80℃真空烘干0.5h,称量使其催化剂担量为0.5mg/cm
2。
支撑层的处理:将碳纸完全浸入含有5wt%的聚二甲基硅氧烷的四氢呋喃溶液中10min进行疏水处理,取出,室温干燥;
微孔层制备:将3g聚二甲基硅氧烷和3g炭黑溶于四氢呋喃中(聚二甲基硅氧烷质量分数为3wt%),机械搅拌,超声形成均匀的悬浊液,将上述疏水处理的碳纸的一侧刮涂悬浊液直到碳黑的担载量为0.5mg/cm
2,自然晾干,置于干燥箱中,在160℃下烧结10min。
膜电极组装及热压:将上述带有的CCM质子交换膜与制备好的带有微孔层的支撑层140℃、0.1MPa下热压1min,制成膜电极。
实施例2
CCM制备中,0.015g聚二甲基硅氧烷更改为0.15g聚二甲基硅氧烷,其余同实施例1。
实施例3
支撑层的处理中,5wt%的聚二甲基硅氧烷溶液更改为30wt%的聚二甲基硅氧烷溶液,其余同实施例1。
实施例4
微孔层制备中,3g聚二甲基硅氧烷更改为30g聚二甲基硅氧烷,其余同实施例1。
实施例5
将实施例1中的聚二甲基硅氧烷更改为聚甲基硅氧烷,其余同实施例1。
实施例6
将实施例1中的炭黑更改为乙炔黑,其余同实施例1。
实施例7
将实施例1中的四氢呋喃更改为氯仿,其余同实施例1。
实施例8
微孔层制备中,将碳黑担载量0.5mg/cm
2更改为5mg/cm
2,其余同实施例1。
性能测试:
(1)疏水性测试:
对上述实施例1组装后电极进行光学测试(参见图2),同时对处理后的各层进行疏水性测试,测定各层接触角。
由图1可见经疏水处理后,催化层、微孔层以及支撑层疏水性依次递减。
由图2可见膜电极各部分经疏水处理及热压组装后表面平整。
(2)极化曲线测试条件:测试以氢气为燃料气,氧气为氧化剂,压力为0.1MPa,工作温度设定为60℃,先将电池在恒电流下活化2小时,待电池达到稳定的测试环境和性能后,通过调节外电路电阻,记录相应的电流和电压值,据此得到电池极化曲线(参见图3)。
所述待测电池为由实施例1获得电极,同时以不经聚二甲基硅氧烷处理的常规膜电极作为对比。
由图3可见实施例所制备膜电极的性能整体优于常规膜电极,且在高电流密度区更加明显,说明本方法所得膜电极的传质能力更好。(根据图上体现的效果结合效果数据给出结论)
同时经检测上述实施例2-8所获得膜电极也具有上述实施例1的结构及相应特性。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (8)
- 一种梯度疏水膜电极,其特征在于,膜电极的质子交换膜上依次附有经含疏水剂的溶液疏水处理的疏水性依次递减的催化层、微孔层以及支撑层。
- 按权利要求1所述的梯度疏水膜电极,其特征在于,所述催化层疏水处理为通过催化剂、质子导体及疏水剂的悬浊液喷涂于质子交换膜两侧,形成疏水处理的催化层;其中,催化剂、质子导体及疏水剂的质量比为1:0.2-0.8:0-1。
- 按权利要求1所述的梯度疏水膜电极,其特征在于,所述支撑层疏水处理为将支撑材料浸入含疏水剂的溶液中进行疏水处理;其中,含疏水剂的溶液为疏水剂与有机溶剂混合,混合溶液中疏水剂的质量浓度分数为3%-30%。
- 按权利要求1所述的梯度疏水膜电极,其特征在于,所述微孔层疏水处理为将疏水剂和碳纳米材料溶于有机溶剂形成悬浊液,并将其刮涂或喷涂于与质子交换膜相对的支撑层的其中一侧,形成疏水性微孔层。
- 按权利要求1-4任意一项所述的梯度疏水膜电极,其特征在于,所述疏水剂为有机硅氧烷。
- 一种权利要求1所述梯度疏水膜电极的制备方法,其特征在于,1)疏水处理为通过催化剂、质子导体及疏水剂的悬浊液喷涂于质子交换膜两侧,形成疏水处理的催化层;其中,催化剂、质子导体及疏水剂的质量比为1:0.2-0.8:0-1;2)所述支撑层疏水处理为将支撑材料浸入含疏水剂的溶液中进行疏水处理;其中,含疏水剂的溶液为疏水剂与有机溶剂混合,混合溶液中疏水剂的质量浓度分数为3%-30%;3)所述微孔层疏水处理为将疏水剂和碳纳米材料溶于有机溶剂形成悬浊液,并将其刮涂或喷涂于与质子交换膜相对的支撑层的其中一侧,形成疏水性微孔层;所述悬浊液中疏水剂终浓度为1wt%-30wt%、碳纳米材料终浓度为1wt%-40wt%。4)将上述处理后的带有疏水催化层的质子交换膜与带有疏水性微孔层的经疏水处理的支撑层热压制成膜电极。
- 按权利要求6所述梯度疏水膜电极的制备方法,其特征在于,所述碳纳米材料为炭黑、乙炔黑、碳纳米管中的一种或几种;所述有机溶剂为四氢呋喃、氯仿、二氯甲烷、甲苯、二甲醚、四氯化碳中的一种或几种;所述有机硅氧烷为聚二甲基硅氧烷、聚甲基硅氧烷、α,ω-二羟基聚硅氧烷中的一种或几种。
- 按权利要求6所述梯度疏水膜电极的制备方法,其特征在于,所述刮涂或喷涂制备微孔层表面的碳材料和疏水剂载量为0.5-5.0mg/cm 2。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911344599.XA CN111129554A (zh) | 2019-12-24 | 2019-12-24 | 一种梯度疏水膜电极及其制备方法 |
CN201911344599.X | 2019-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128719A1 true WO2021128719A1 (zh) | 2021-07-01 |
Family
ID=70501663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/091495 WO2021128719A1 (zh) | 2019-12-24 | 2020-05-21 | 一种梯度疏水膜电极及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111129554A (zh) |
WO (1) | WO2021128719A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111129554A (zh) * | 2019-12-24 | 2020-05-08 | 中国科学院青岛生物能源与过程研究所 | 一种梯度疏水膜电极及其制备方法 |
CN111725523A (zh) * | 2020-06-04 | 2020-09-29 | 浙江高成绿能科技有限公司 | 一种薄层疏水的燃料电池膜电极及其制备方法 |
CN111900428A (zh) * | 2020-06-22 | 2020-11-06 | 浙江高成绿能科技有限公司 | 一种具有高排水能力的燃料电池堆及其制备方法 |
CN114976050B (zh) * | 2022-05-13 | 2024-06-25 | 上海碳际实业集团有限公司 | 一种燃料电池用气体扩散层的制备工艺 |
CN117276576B (zh) * | 2023-10-20 | 2024-08-23 | 苏州大学 | 一种质子交换膜燃料电池的微孔层及其制备方法与应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006236817A (ja) * | 2005-02-25 | 2006-09-07 | Nissan Motor Co Ltd | 燃料電池 |
CN102005582A (zh) * | 2010-09-28 | 2011-04-06 | 中国科学院上海微系统与信息技术研究所 | 一种直接醇类燃料电池膜电极集合体的结构及制备方法 |
CN102024961A (zh) * | 2010-11-29 | 2011-04-20 | 新源动力股份有限公司 | 一种质子交换膜燃料电池的气体扩散层及其制备方法 |
US20160064755A1 (en) * | 2013-04-30 | 2016-03-03 | Aktiengesellschaft | Self-wetting membrane electrode unit and fuel cell having such a unit |
KR20160045425A (ko) * | 2014-10-17 | 2016-04-27 | 주식회사 엘지화학 | 리튬 공기 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 공기 전지 |
CN109256569A (zh) * | 2017-07-14 | 2019-01-22 | 中国科学院青岛生物能源与过程研究所 | 一种质子交换膜燃料电池气体扩散层微孔层及其制备方法 |
CN109888299A (zh) * | 2017-12-06 | 2019-06-14 | 中国科学院大连化学物理研究所 | 一种金属空气电池阴极及其制备方法 |
CN111129554A (zh) * | 2019-12-24 | 2020-05-08 | 中国科学院青岛生物能源与过程研究所 | 一种梯度疏水膜电极及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101399347A (zh) * | 2007-09-27 | 2009-04-01 | 中国科学院大连化学物理研究所 | 用于质子交换膜燃料电池的气体扩散层及制法和应用 |
-
2019
- 2019-12-24 CN CN201911344599.XA patent/CN111129554A/zh active Pending
-
2020
- 2020-05-21 WO PCT/CN2020/091495 patent/WO2021128719A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006236817A (ja) * | 2005-02-25 | 2006-09-07 | Nissan Motor Co Ltd | 燃料電池 |
CN102005582A (zh) * | 2010-09-28 | 2011-04-06 | 中国科学院上海微系统与信息技术研究所 | 一种直接醇类燃料电池膜电极集合体的结构及制备方法 |
CN102024961A (zh) * | 2010-11-29 | 2011-04-20 | 新源动力股份有限公司 | 一种质子交换膜燃料电池的气体扩散层及其制备方法 |
US20160064755A1 (en) * | 2013-04-30 | 2016-03-03 | Aktiengesellschaft | Self-wetting membrane electrode unit and fuel cell having such a unit |
KR20160045425A (ko) * | 2014-10-17 | 2016-04-27 | 주식회사 엘지화학 | 리튬 공기 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 공기 전지 |
CN109256569A (zh) * | 2017-07-14 | 2019-01-22 | 中国科学院青岛生物能源与过程研究所 | 一种质子交换膜燃料电池气体扩散层微孔层及其制备方法 |
CN109888299A (zh) * | 2017-12-06 | 2019-06-14 | 中国科学院大连化学物理研究所 | 一种金属空气电池阴极及其制备方法 |
CN111129554A (zh) * | 2019-12-24 | 2020-05-08 | 中国科学院青岛生物能源与过程研究所 | 一种梯度疏水膜电极及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111129554A (zh) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021128719A1 (zh) | 一种梯度疏水膜电极及其制备方法 | |
Zhang et al. | Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery | |
CN110323460B (zh) | 催化剂浆料、制备方法及燃料电池 | |
Kim et al. | The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method | |
Devrim et al. | Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique | |
Su et al. | Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst | |
CN106784943A (zh) | 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法 | |
Chi et al. | Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer | |
Chien et al. | Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells | |
CN109256569B (zh) | 一种质子交换膜燃料电池气体扩散层微孔层及其制备方法 | |
CN101557001B (zh) | 一种燃料电池膜电极及其制备方法 | |
CN103358612B (zh) | 直接甲醇燃料电池用的阻醇膜及其制法 | |
Athanasaki et al. | Design and development of gas diffusion layers with pore forming agent for proton exchange membrane fuel cells at various relative humidity conditions | |
Su et al. | Membrane electrode assembly with Pt/SiO2/C anode catalyst for proton exchange membrane fuel cell operation under low humidity conditions | |
Cho et al. | Effect of catalyst layer ionomer content on performance of intermediate temperature proton exchange membrane fuel cells (IT-PEMFCs) under reduced humidity conditions | |
Son et al. | Preparation of Pt/zeolite–Nafion composite membranes for self-humidifying polymer electrolyte fuel cells | |
Lu et al. | High-performance and low-leakage phosphoric acid fuel cell with synergic composite membrane stacking of micro glass microfiber and nano PTFE | |
Su et al. | The effect of gas diffusion layer PTFE content on the performance of high temperature proton exchange membrane fuel cell | |
Li et al. | Preparation of hierarchical-pore gas diffusion layer for fuel cell | |
Huang et al. | Development of gas diffusion electrodes for low relative humidity proton exchange membrane fuel cells | |
Lee et al. | Poly (ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells | |
Xing et al. | Effect of anode diffusion layer fabricated with mesoporous carbon on the performance of direct dimethyl ether fuel cell | |
CN112615033A (zh) | 一种直接甲醇燃料电池催化层梯度化膜电极及其制备方法 | |
Lee et al. | Sulfonated poly (ether ether ketone) as an ionomer for direct methanol fuel cell electrodes | |
Tsai et al. | Poly (ethylene glycol) modified activated carbon for high performance proton exchange membrane fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20908003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20908003 Country of ref document: EP Kind code of ref document: A1 |