WO2021128504A1 - 一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用 - Google Patents

一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021128504A1
WO2021128504A1 PCT/CN2020/071495 CN2020071495W WO2021128504A1 WO 2021128504 A1 WO2021128504 A1 WO 2021128504A1 CN 2020071495 W CN2020071495 W CN 2020071495W WO 2021128504 A1 WO2021128504 A1 WO 2021128504A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
nanoparticles
preparation
ethanol
nps
Prior art date
Application number
PCT/CN2020/071495
Other languages
English (en)
French (fr)
Inventor
梅卡达尔埃乌达尔 卡萨尔斯
曾牡玲
周泓志
李启宏
容志逢
罗森霍姆杰西卡
梅卡达尔格雷戈里 卡萨尔斯
彭特斯维克多
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2021128504A1 publication Critical patent/WO2021128504A1/zh
Priority to US17/847,142 priority Critical patent/US20220315440A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to a composite nano material using mesoporous silica to wrap nano particles, and a preparation method and application thereof, which are suitable for the technical fields of medicine, energy catalysts, environmental pollution control and the like.
  • Nanomaterials have broad application prospects due to their unique physical and chemical properties, but many practical applications are limited due to the difficulty of controlling their stability.
  • the mesoporous silica material has uniform morphology, adjustable pore channels, high pore volume and specific surface area, good biocompatibility and degradability, and easy surface modification. It is a carrier with great application potential.
  • many scientific researchers use mesoporous silica materials (shells) to wrap different nanoparticles (cores) to solve the problem of stability of nanomaterials.
  • the size of the prepared mesoporous silica nanoparticles is uncontrollable, and the fluctuation range is too large;
  • the surface of the nanoparticles was first coated, and then the core-shell materials were prepared by using mesoporous silica. Although the stability of the nanoparticles was improved, the multi-layer coating made the nanoparticles more stable. The surface effect/activity is reduced.
  • the purpose of the present invention is to provide a composite nanomaterial using mesoporous silica to encapsulate nanoparticles, and a preparation method and application thereof.
  • the present invention provides a method for preparing a composite nanomaterial using mesoporous silica to encapsulate nanoparticles, which includes the following steps:
  • NPs nanoparticles
  • CAB cetyltrimethylammonium bromide
  • the particle size of the nanoparticles is 1-20 nm.
  • the preparation method takes the nano particles as the core, and prepares radially arranged mesoporous silica shells thereon, and there is no need to prepare an interface bonding layer on the surface of the nano particles, that is, a stable composite nano material can be obtained. It can not only realize the encapsulation of one kind of nano-particles, but also embed di-core or tri-core nanoparticles with different functions in the same mesoporous silica shell to achieve multi-core encapsulation. The method is universal and can be extended to more different nano-particles. Encapsulation of particles to achieve composite nanomaterials required for the synthesis of different fields.
  • 100nm is the dividing line between micro-materials and nano-materials. Only materials with a particle size of less than 100nm may be applied to the medical field.
  • the inventor found that when the size of the nano-particles exceeds 20nm, the resulting composite nano-materials To control the particle size within 100nm, the silica shell must be very thin, which on the one hand leads to poor stability of the composite nanomaterials, on the other hand, it also prevents some nanoparticles from being loaded into the mesopores in the silica.
  • the particle size of the nanoparticles is 1-20nm, the particle size of the resulting composite nanomaterials can be controlled below 100nm, even as low as 50nm, and the nanoparticles can be uniform, It is well loaded into mesoporous silica, and the obtained composite nano material has good stability and high activity.
  • the preparation method is green and efficient, is carried out at room temperature, does not require heating or cooling, the solvent used is hydrophilic, the cost is low, and the process is simple.
  • composite nanomaterials of different sizes can be obtained by adjusting the ratio of the reagents used.
  • the preparation method shows a series of advantages, which are helpful for the application of the obtained composite nanomaterials in biomedicine and other fields.
  • the final composite material has a small size, simple manufacturing process and low cost (all in aqueous solution and at room temperature). And to obtain stable, multi-functional and controllable nanocomposite materials.
  • the volume ratio of ethanol to water is less than 1/4, although the nanoparticles can be encapsulated in the mesoporous silica, the silica cannot A uniform and stable spherical shape is formed; when the volume ratio of ethanol and water is greater than 1/3, the final size of the resulting composite nanomaterial will suddenly increase and uncontrollable, and when the volume ratio of ethanol and water is 1/4-1/3
  • the mesoporous silica shell of the composite nanomaterial is uniform and stable spherical, with a controllable size, and the size of the composite nanomaterial can be changed by adjusting the volume ratio of ethanol and water, so that the particle size of
  • the pH value of the solution a is 9-10.
  • the pH value of solution a is greater than 10, although the nanoparticles can be encapsulated in mesoporous silica, the silica cannot form a uniform and stable spherical shape; when the pH value of solution a is less than 9, the nanoparticles become non-uniform. Stable, its surface potential (negative) will become weak, resulting in a weakening of the attraction to CTAB (surface potential is positive), and the final packaged core-shell structure cannot be formed, that is, nanoparticles cannot be packaged in mesoporous silica .
  • the ratio of the mass of the cetyltrimethylammonium bromide to the specific surface area of the nanoparticles is 1 mg-3 mg: 10 14 nm 2 -10 17 nm 2 .
  • the ratio of the mass of the cetyltrimethylammonium bromide to the specific surface area of the nanoparticles is greater than 3 mg/10 14 nm 2 , part of the silica encapsulates the nanoparticles and part of the nanoparticles is not encapsulated, and the final result is The size of the material is uncontrollable, the package is uneven or the package is unsuccessful; when the ratio of the mass of the cetyltrimethylammonium bromide to the specific surface area of the nanoparticles is less than 1 mg/10 17 nm 2 , the final result
  • the core-shell structure is not uniform, the size is uncontrollable, or the encapsulation is unsuccessful; when the ratio of the mass of the cetyltrimethylammonium bromide to the specific surface area of the nanoparticles is 1mg-3mg:10 14 nm 2- Only within the range of 10 17 nm 2 can a spherically stable, uniformly packaged, and size-controllable composite nanomaterial with a core
  • the ratio of the mass of the cetyltrimethylammonium bromide to the specific surface area of the nanoparticles is 3 mg/10 17 nm 2 .
  • the concentration of cetyltrimethylammonium bromide in the solution b is 30 mg/mL.
  • the time for continuing the ultrasound is at least 30 minutes.
  • the stirring time is 12 hours.
  • the present invention also provides a composite nano material made by the preparation method.
  • the particle size of the composite nano material is 50-80 nm.
  • the present invention also provides the application of the composite nano material in medicine, energy catalyst or environmental pollution control.
  • the present invention has the following advantages and beneficial effects:
  • the solvent used in the preparation method of the present invention is hydrophilic, does not require heating or cooling, has a simple process, is green and efficient, can embed more than two kinds of nanoparticles in the same mesoporous silica shell, and the method is versatile and can be extended to more The packaging of different nanoparticles to achieve the composite nanomaterials required for the synthesis of different fields;
  • the composite nano material obtained by the preparation method of the present invention is stable, uniform in size, and the particle size is as low as 50 nm, and the composite nano material of different sizes can be obtained by adjusting the ratio of the reagents used.
  • the composite nano material prepared by the preparation method of the present invention is suitable for the technical fields of medicine, energy catalysts, environmental pollution control and the like.
  • Figure 1 is a process flow diagram of the preparation method of the present invention
  • Figure 2 is a TEM (transmission electron microscope) diagram of four of the composite nanomaterials obtained by wrapping a nanoparticle with mesoporous silica by the preparation method of the present invention and the corresponding nanoparticle.
  • the size identification in the figure is 100nm.
  • FIG. 2A is the TEM image of Gd 2 O 3 NPs
  • Figure 2B and Figure 2C are the TEM images of SiO 2 @Gd 2 O 3 NPs
  • Figure 2D is the TEM image of Fe 3 O 4 NPs
  • Figures 2E and 2F are SiO 2 @ The TEM image of Fe 3 O 4 NPs
  • Figure 2G is the TEM image of UCNPs
  • Figure 2H and Figure 2I are the TEM images of SiO 2 @UCNPs
  • Figure 2J is the TEM image of CeO 2 NPs
  • Figure 2K and Figure 2L are SiO 2 @ TEM image of CeO 2 NPs
  • Fig. 3 is a TEM image and elemental analysis chart of one of the composite nanomaterials obtained by wrapping two kinds of nanoparticles with mesoporous silica by the preparation method of the present invention, wherein the size label in Fig. 3A is 100nm, and the size label in Fig. 3B is 20nm;
  • Fig. 4 is a TEM image and an elemental analysis chart of one of the composite nanomaterials obtained by wrapping three kinds of nanoparticles with mesoporous silica by the preparation method of the present invention, and the size identification is 100nm;
  • Figure 5 is a diagram showing the effect of key factors in preparing SiO 2 @CeO 2 NPs by the preparation method of the present invention, where (a) is the optimal conditions for preparing SiO 2 @CeO 2 NPs and its TEM image (size identification is 50nm) ; (B) The influence of different factors on the structure and morphology of SiO 2 @CeO 2 NPs; (c) The influence of the volume ratio of ethanol to water in the ethanol aqueous solution on the size of SiO 2 @CeO 2 NPs (the dimensions in the figure are all 100nm ).
  • This embodiment is an embodiment of a method for preparing a composite nanomaterial using mesoporous silica to encapsulate nanoparticles in the present invention.
  • the preparation method includes the following steps:
  • This embodiment is an embodiment of a method for preparing a composite nanomaterial using mesoporous silica to encapsulate nanoparticles in the present invention.
  • the preparation method includes the following steps:
  • This embodiment is an embodiment of a method for preparing a composite nanomaterial using mesoporous silica to encapsulate nanoparticles in the present invention.
  • the preparation method includes the following steps:
  • This embodiment is an embodiment of a method for preparing a composite nanomaterial using mesoporous silica to encapsulate nanoparticles in the present invention.
  • the preparation method includes the following steps:
  • This embodiment is an embodiment of a method for preparing a composite nanomaterial using mesoporous silica to encapsulate nanoparticles in the present invention.
  • the preparation method includes the following steps:
  • This embodiment is an embodiment of a method for preparing a composite nanomaterial using mesoporous silica to encapsulate nanoparticles in the present invention.
  • the preparation method includes the following steps:
  • the size of the final material is uncontrollable, and the encapsulation is uneven or not encapsulated. Success; when the ratio of the mass of the CTAB mass to the specific surface area of the nanoparticles is less than 1mg/10 17 nm 2 , the final core-shell structure is not uniform, the size is uncontrollable, or the package is unsuccessful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用。先将纳米颗粒分散于乙醇水溶液中,加入氨水调节pH,再在超声作用下滴加十六烷基三甲基溴化铵的乙醇水溶液,之后继续超声,再滴加正硅酸乙酯,经纯化,得到以介孔二氧化硅为壳、纳米颗粒为核、大小均匀、稳定且可控的复合纳米材料;该制备方法能将不同种类/功能的双核或三核纳米颗粒嵌入到同一介孔二氧化硅壳中,实现多核包裹,且方法通用,可扩展到更多不同的纳米颗粒的包裹,制备过程绿色高效,室温下即可进行,所用溶剂亲水,成本较低,工艺简单,所得复合纳米材料的粒径低至50nm,还可通过调整所用试剂的配比,得到不同尺寸的复合纳米材料。

Description

一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用 技术领域
本发明涉及一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用,适用于医药、能源催化剂、环境污染治理等技术领域。
背景技术
纳米材料因特有的物化性质而具有广阔的应用前景,但因难以控制其稳定性导致其很多实际应用受到限制。介孔二氧化硅材料形貌均一,孔道可调变,孔容和比表面积高,生物相容性和降解性良好,易于表面修饰,是极具应用潜力的载体。目前,有很多科研学者利用介孔二氧化硅材料(壳)包裹不同纳米颗粒(核)来解决纳米材料稳定性的问题。
但是,目前介孔二氧化硅材料包裹纳米颗粒存在以下问题:
(1)只能实现一种纳米颗粒的包裹;
(2)一般实验都需在高温下进行,且步骤繁琐;
(3)大部分实验都涉及非极性(疏水)溶剂,如氯仿、二氯苯等,这限制了材料的很多应用,如医药、环保等;
(4)包裹后的纳米颗粒稳定性依然不高;
(5)制得的介孔二氧化硅纳米粒子粒径不可控,波动范围太大;
(6)还有一些实验是先在纳米颗粒的表面进行包覆,再利用介孔二氧化硅包裹来制备核壳材料,虽然纳米颗粒的稳定性提高了,但多层的包裹使得纳米颗粒的比表效应/活性降低了。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用。
为实现上述目的,本发明采用的技术方案为:
第一方面,本发明提供了一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法,其包括以下步骤:
(1)将纳米颗粒(NPs)分散于乙醇水溶液中,再加入氨水,搅拌均匀,得到溶液a;将十六烷基三甲基溴化铵(CTAB)溶于相同的乙醇水溶液中,得到溶液b;
(2)在超声作用下将所述溶液b滴加到所述溶液a中,之后继续超声,得到溶液c;
(3)在所述溶液c中滴加正硅酸乙酯(TEOS),之后依次经搅拌、固液分离和纯化,得到所述复合纳米材料;
其中,所述纳米颗粒的粒径为1-20nm。所述制备方法以所述纳米颗粒作为核,在其上制备了径向排列的介孔二氧化硅壳,且无需在所述纳米颗粒表面制备界面结合层,即能得到稳定的复合纳米材料,不仅能实现对一种纳米颗粒的包裹,还能将不同功能的双核或三核纳米颗粒嵌入到同一介孔二氧化硅壳中,实现多核包裹,且方法通用,可扩展到更多不同的纳米颗粒的包裹,以实现针对不同的领域合成所需的复合纳米材料。100nm是微米材料和纳米材料的分界线,只有粒径低于100nm的材料才有可能被应用到医学界,发明人在研究过程中发现当纳米颗粒的粒径超过20nm时,所得复合纳米材料的粒径要控制在100nm以内,其二氧化硅壳就要很薄,这一方面导致复合纳米材料的稳定性较差,另一方面也使得部分纳米颗粒不能载入二氧化硅中的介孔内;纳米颗粒越小,介孔二氧化硅包裹纳米颗粒后所得材料的比表面积越大,活性也越大,尤其是Au纳米颗粒、Fe 3O 4纳米颗粒以及CeO 2纳米颗粒,但纳米颗粒越小,也越难控制它们的分散性和稳定性,当纳米颗粒的粒径为1-20nm时,所得复合纳米材料的粒径可控制在100nm以下,甚至低至50nm,且纳米颗粒能均匀、很好地载入介孔二氧化硅中,所得复合纳米材料稳定性好,活性大。此外,所述制备方法绿色高效,室温下进行,无需加热或降温,所用溶剂亲水,成本较低,工艺简单,同时还可通过调整所用试剂的配比,得到不同尺寸的复合纳米材料。 所述制备方法显示出的一系列的优点,有助于所得复合纳米材料在生物医学等领域中应用,例如,最终复合材料的尺寸小,制造过程简单和成本低(全部在水溶液中和室温下进行),以及获得稳定的、具有多种功能的、可控的纳米复合材料。
作为本发明制备方法的优选实施方式,所述乙醇水溶液A和所述乙醇水溶液B相同,且其中乙醇和水的体积比均为乙醇:水=1:3-4。在所述乙醇水溶液A和所述乙醇水溶液B相同的条件下,当其中乙醇和水的体积比小于1/4时,纳米颗粒虽然能被包裹进介孔二氧化硅中,但二氧化硅不能形成均匀稳定的球状;当其中乙醇和水的体积比大于1/3时,所得复合纳米材料的最终尺寸将突增且不可控,而当乙醇和水的体积比在1/4-1/3范围内时,所得复合纳米材料的介孔二氧化硅壳为均匀稳定的球状,大小可控,且通过调整乙醇和水的体积比能改变复合纳米材料的大小,使复合纳米材料的粒径可控制在50-80nm范围内。
作为本发明制备方法的优选实施方式,所述溶液a的pH值为9-10。当溶液a的pH值大于10时,虽然纳米颗粒能被包裹进介孔二氧化硅中,但二氧化硅不能形成均匀稳定的球状;当溶液a的pH值小于9时,纳米颗粒变得不稳定,其表面电位(负)会变弱,导致对CTAB(表面电位为正)的吸引力减弱,而不能形成最终的包裹的核壳结构,即纳米颗粒不能被包裹进介孔二氧化硅中。
作为本发明制备方法的优选实施方式,所述十六烷基三甲基溴化铵的质量与所述纳米颗粒的比表面积的比例为1mg-3mg:10 14nm 2-10 17nm 2。发明人首次发现纳米颗粒比表面积的控制对成功制备复合纳米材料非常重要,也是将本发明制备方法扩展到其他不同纳米颗粒的关键因素。当所述十六烷基三甲基溴化铵的质量与所述纳米颗粒的比表面积的比例大于3mg/10 14nm 2时,部分二氧化硅包裹了纳米颗粒,部分没有包裹,最终所得的材料大小不可控,包裹不均匀或包裹不成功;当所述十六烷基三甲基溴化铵的质量与所述纳米颗粒的比表面积的比例小于1mg/10 17nm 2时,最终所得的核壳结构不均匀,大小不可控,或者包裹不成功;当所述十六烷基三甲基溴化铵的质量与所述纳米颗粒的比表面积的比例在1mg-3mg:10 14nm 2-10 17nm 2范围内,才能成功制得球状稳定的、包裹均匀的、大小可控的核壳结构的复合纳米材料。
作为本发明制备方法的优选实施方式,所述十六烷基三甲基溴化铵的质量与所述纳米颗粒的比表面积的比例为3mg/10 17nm 2
作为本发明制备方法的优选实施方式,所述溶液b和所述溶液a的体积比为溶液b:溶液a=1:9。
作为本发明制备方法的优选实施方式,所述步骤(2)中,所述溶液b中十六烷基三甲基溴化铵的浓度为30mg/mL。
作为本发明制备方法的优选实施方式,所述步骤(2)中,继续超声的时间至少为30min。
作为本发明制备方法的优选实施方式,所述步骤(3)中,正硅酸乙酯与十六烷基三甲基溴化铵的比例为正硅酸乙酯:十六烷基三甲基溴化铵=1mL:5g。
作为本发明制备方法的优选实施方式,所述步骤(3)中,搅拌时间为12h。
第二方面,本发明还提供了所述制备方法制成的复合纳米材料。
作为本发明制备方法的优选实施方式,所述复合纳米材料的粒径为50-80nm。
第三方面,本发明还提供了所述复合纳米材料在医药、能源催化剂或环境污染治理方面的应用。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明制备方法所用溶剂亲水,无需加热或降温,工艺简单,绿色高效,能将两种以上纳米颗粒嵌入到同一介孔二氧化硅壳中,且方法通用,可扩展到更多不同的纳米颗粒的包裹,以实现针对不同的领域合成所需的复合纳米材料;
(2)本发明制备方法所得复合纳米材料稳定,大小均匀,粒径低至50nm,且可通过调整所用试剂的配比,得到不同尺寸的复合纳米材料。
(3)本发明制备方法制得的复合纳米材料适用于医药、能源催化剂、环境污染治理等技术领域。
说明书附图
图1为本发明制备方法的工艺流程图;
图2为本发明制备方法利用介孔二氧化硅包裹一种纳米颗粒所得复合纳米材料中的其中四种以及相应纳米颗粒的TEM(透射电子显微镜)图,图中尺寸标识都为100nm,其中图2A为Gd 2O 3NPs的TEM图,图2B和图2C为SiO 2@Gd 2O 3NPs的TEM图;图2D为Fe 3O 4NPs的TEM图,图2E和图2F为SiO 2@Fe 3O 4NPs的TEM图;图2G为UCNPs的TEM图,图2H和图2I为SiO 2@UCNPs的TEM图;图2J为CeO 2NPs的TEM图,图2K和图2L为SiO 2@CeO 2NPs的TEM图;
图3为本发明制备方法利用介孔二氧化硅包裹两种纳米颗粒所得复合纳米材料中的其中一种的TEM图和元素分析图谱,其中图3A中尺寸标识为100nm,图3B中尺寸标识为20nm;
图4为本发明制备方法利用介孔二氧化硅包裹三种纳米颗粒所得复合纳米材料中的其中一种的TEM图和元素分析图谱,尺寸标识都为100nm;
图5为本发明制备方法制备SiO 2@CeO 2NPs时关键因素的影响效果图,其中,(a)为制备SiO 2@CeO 2NPs时的最佳条件及其TEM图(尺寸标识为50nm);(b)不同因素对SiO 2@CeO 2NPs结构形态的影响;(c)乙醇水溶液中乙醇和水的体积比的变化对SiO 2@CeO 2NPs大小的影响(图中尺寸标识都为100nm)。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本实施例为本发明利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法的一种实施例,该制备方法包括以下步骤:
(1)将粒径为4nm的Gd 2O 3NPs(其TEM图如图2A所示)分散于乙醇水溶液(乙醇和水的体积比为乙醇:水=1:4)中,再加入氨水,保持搅拌30min,得到pH值为10的溶液a(根据纳米颗粒的大小计算其比表面积,为使CTAB的质量与纳米颗粒的比表面积的比例为3mg:10 17nm 2,溶液a中Gd 2O 3NPs浓度为0.5mg/mL);将CTAB加入相同的乙醇水溶液中,保持搅拌30min,得到CTAB浓度为30mg/mL的溶液b;
(2)在超声作用下将溶液b滴加到溶液a(溶液b和溶液a的体积比为溶液b:溶液a=1:9)中,再继续超声至少30min,得到溶液c;
(3)按TEOS:CTAB=1mL:5g的比例在溶液c中滴加TEOS,保持搅拌12h后离心分离,收集固体并洗涤3次(每次均为将固体加入洗涤液中,混合半小时后离心分离,其中洗涤液由比例为硝酸铵:乙醇=2g:100mL的硝酸铵和乙醇配制而成),得到所述复合纳米材料,即为SiO 2@Gd 2O 3NPs,该SiO 2@Fe 3O 4NPs的TEM图如图2B和图2C所示。
实施例2
本实施例为本发明利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法的一种实施例,该制备方法包括以下步骤:
(1)将粒径为7nm的Fe 3O 4NPs(其TEM图如图2D所示)分散于乙醇水溶液(乙醇和水的体积比为乙醇:水=1:4)中,再加氨水,保持搅拌30min,得到pH值为10的溶液a(根据纳米颗粒的大小计算其比表面积,为使CTAB的质量与纳米颗粒的比表面积的比例为3mg:10 17nm 2,溶液a中Fe 3O 4NPs浓度为0.6mg/mL);将CTAB加入相同的乙醇水溶液中,保持搅拌30min,得到CTAB浓度为30mg/mL的溶液b;
(2)在超声作用下将溶液b滴加到溶液a(溶液b和溶液a的体积比为溶液b:溶液a=1:9)中,再继续超声至少30min,得到溶液c;
(3)按TEOS:CTAB=1mL:5g的比例在溶液c中滴加TEOS,保持搅拌12h后离心分离,收集固体并洗涤3次(每次均为将固体加入洗涤液中,混合半小时后离心分离,其中洗涤液由比例为硝酸铵:乙醇=2g:100mL的硝酸铵和乙醇 配制而成),得到所述复合纳米材料,即为SiO 2@Fe 3O 4NPs,该SiO 2@Fe 3O 4NPs的TEM图如图2E和图2F所示。
实施例3
本实施例为本发明利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法的一种实施例,该制备方法包括以下步骤:
(1)将粒径为15nm的UCNPs(即Tm 3+共掺杂的NaYF 4纳米晶,Tm 3+upconversion nanophosphors,其TEM图如图2G所示)分散于乙醇水溶液(乙醇和水的体积比为乙醇:水=1:4)中,再加入氨水,保持搅拌30min,得到pH值为10的溶液a(根据纳米颗粒的大小计算其比表面积,为使CTAB的质量与纳米颗粒的比表面积的比例为3mg:10 17nm 2,溶液a中UCNPs浓度为1.5mg/mL);将CTAB加入相同的乙醇水溶液中,保持搅拌30min,得到CTAB浓度为30mg/mL的溶液b;
(2)在超声作用下将溶液b滴加到溶液a(溶液b和溶液a的体积比为溶液b:溶液a=1:9)中,再继续超声至少30min,得到溶液c;
(3)按TEOS:CTAB=1mL:5g的比例在溶液c中滴加TEOS,保持搅拌12h后离心分离,收集固体并洗涤3次(每次均为将固体加入洗涤液中,混合半小时后离心分离,其中洗涤液由比例为硝酸铵:乙醇=2g:100mL的硝酸铵和乙醇配制而成),得到所述复合纳米材料,即为SiO 2@UCNPs,该SiO 2@UCNPs的TEM图如图2H和图2I所示。
实施例4
本实施例为本发明利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法的一种实施例,该制备方法包括以下步骤:
(1)将粒径为12nm的CeO 2NPs(其TEM图如图5J所示)分散于乙醇水溶液(乙醇和水的体积比为乙醇:水=1:4)中,再加入氨水,保持搅拌30min,得到pH值为10的溶液a(根据纳米颗粒的大小计算其比表面积,为使CTAB的质量与纳米颗粒的比表面积的比例为3mg:10 17nm 2,溶液a中CeO 2NPs浓度为1.5mg/mL);将CTAB加入相同的乙醇水溶液中,保持搅拌30min,得到CTAB浓度为30mg/mL的溶液b;
(2)在超声作用下将溶液b滴加到溶液a(溶液b和溶液a的体积比为溶液b:溶液a=1:9)中,再继续超声至少30min,得到溶液c;
(3)按TEOS:CTAB=1mL:5g的比例在溶液c中滴加TEOS,保持搅拌12h后离心分离,收集固体并洗涤3次(每次均为将固体加入洗涤液中,混合半小时后离心分离,其中洗涤液由比例为硝酸铵:乙醇=2g:100mL的硝酸铵和乙醇配制而成),得到所述复合纳米材料,即为SiO 2@CeO 2NPs,该SiO 2@CeO 2NPs的TEM图如图2K和图2L所示。
实施例5
本实施例为本发明利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法的一种实施例,该制备方法包括以下步骤:
(1)将粒径分别为10nm的AgNPs、7nm的Fe 3O 4NPs分散于乙醇水溶液(乙醇和水的体积比为乙醇:水=1:4)中,再加入氨水,保持搅拌30min,得到pH值为10、AgNPs浓度为0.05mg/mL、Fe 3O 4NPs浓度为0.6mg/mL的溶液a;将CTAB加入相同的乙醇水溶液中,保持搅拌30min,得到CTAB浓度为30mg/mL的溶液b;
(2)在超声作用下将溶液b滴加到溶液a(溶液b和溶液a的体积比为溶液b:溶液a=1:9,CTAB的质量与AgNPs和Fe 3O 4NPs总的比表面积的比例为3mg:10 17nm 2)中,再继续超声至少30min,得到溶液c;
(3)按TEOS:CTAB=1mL:5g的比例在溶液c中滴加TEOS,保持搅拌12h后离心分离,收集固体并洗涤3次(每次均为将固体加入洗涤液中,混合半小时后离心分离,其中洗涤液由比例为硝酸铵:乙醇=2g:100mL的硝酸铵和乙醇配制而成),得到所述复合纳米材料,即为SiO 2@AgNPs+Fe 3O 4NPs,该SiO 2@AgNPs+Fe 3O 4NPs的TEM图和元素分析图谱如图3所示。
实施例6
本实施例为本发明利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法的一种实施例,该制备方法包括以下步骤:
(1)将粒径分别为10nm的AuNPs、7nm的Fe 3O 4NPs以及4nm的CeO 2NPs的分散于乙醇水溶液(乙醇和水的体积比为乙醇:水=1:4)中,再加入氨水,保 持搅拌30min,得到pH值为10、AuNPs浓度为0.05mg/mL、Fe 3O 4NPs浓度为0.3mg/mL、CeO 2NPs浓度为0.3mg/mL的溶液a;将CTAB加入相同的乙醇水溶液中,保持搅拌30min,得到CTAB浓度为30mg/mL的溶液b;
(2)在超声作用下将溶液b滴加到溶液a(溶液b和溶液a的体积比为溶液b:溶液a=1:9,CTAB的质量与AuNPs、Fe 3O 4NPs和CeO 2NPs总的比表面积的比例为3mg:10 17nm 2)中,再继续超声至少30min,得到溶液c;
(3)按TEOS:CTAB=1mL:5g的比例在溶液c中滴加TEOS,保持搅拌12h后离心分离,收集固体并洗涤3次(每次均为将固体加入洗涤液中,混合半小时后离心分离,其中洗涤液由比例为硝酸铵:乙醇=2g:100mL的硝酸铵和乙醇配制而成),得到所述复合纳米材料,即为SiO 2@AuNPs+Fe 3O 4NPs+CeO 2NPs,该SiO 2@AuNPs+Fe 3O 4NPs+CeO 2NPs的TEM图和元素分析图谱如图4所示。
实施例7
本实施例研究了本发明制备方法制备SiO 2@CeO 2NPs的关键影响因素以及最佳工艺条件,其中最佳工艺条件下的制备方法如下:将粒径为4nm的CeO 2NPs分散于乙醇水溶液中,再加入氨水调节pH值,得到CeO 2NPs浓度为0.6mg/mL的溶液a;将CTAB溶于相同的乙醇水溶液中,得到CTAB浓度为30mg/mL的溶液b;在超声作用下将溶液b滴加到溶液a(溶液b和溶液a的体积比为溶液b:溶液a=1:9,CTAB的质量与AgNPs和Fe 3O 4NPs总的比表面积的比例为3mg:10 17nm 2)中,再继续超声至少30min,得到溶液c;按TEOS:CTAB=1mL:5g的比例在溶液c中滴加TEOS,保持搅拌12h后离心分离,收集固体并洗涤3次(每次均为将固体加入洗涤液中,混合半小时后离心分离,其中洗涤液由比例为硝酸铵:乙醇=2g:100mL的硝酸铵和乙醇配制而成),得到复合纳米材料SiO 2@CeO 2NPs,其TEM图如图5a所示。
(a)探究CTAB的质量与CeO 2NPs的比表面积的比例对SiO 2@CeO 2NPs的影响时,其他条件均与最佳工艺条件相同,CTAB的质量与CeO 2NPs的比表面积的比例高于3mg/10 14nm 2或低于1mg/10 17nm 2时,所得SiO 2@CeO 2NPs的TEM图分别如图5b所示。当CTAB的质量的质量与纳米颗粒的比表面积的比例大于3mg/10 14nm 2时,部分二氧化硅包裹了纳米颗粒,部分没有包裹,最终所 得的材料大小不可控,包裹不均匀或包裹不成功;当CTAB的质量的质量与纳米颗粒的比表面积的比例小于1mg/10 17nm 2时,最终所得的核壳结构不均匀,大小不可控,或者包裹不成功。
(b)探究溶液a的pH值对SiO 2@CeO 2NPs的影响时,其他条件均与最佳工艺条件相同,溶液a的pH值大于10或小于9时,所得SiO 2@CeO 2NPs的TEM图分别如图5b所示。
(c)探究乙醇水溶液中乙醇和水的比例对SiO 2@CeO 2NPs的影响时,其他条件均与最佳工艺条件相同,乙醇和水的体积比小于1/4时,所得SiO 2@CeO 2NPs的TEM图如图5b所示;乙醇和水的体积比为2:8、2.2:7.8、2.5:7.5或3:7时,所得SiO 2@CeO 2NPs的TEM图分别如图5c所示。由这些SiO 2@CeO 2NPs的TEM图可知,制备SiO 2@CeO 2NPs时,CTAB的质量与CeO 2NPs的比表面积的比例、溶液a的pH值以及乙醇水溶液中乙醇和水的体积比要适中,以防止CeO 2NPs未能被包裹进去或者SiO 2无法形成均匀稳定的球状。另外,在研究过程中发现,乙醇水溶液中的乙醇和水的体积比是影响SiO 2@CeO 2NPs的主要的因素,由图5(c)可知,随着调节乙醇水溶液中乙醇和水的体积比的增大,所得SiO 2@CeO 2NPs粒径增大。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)将纳米颗粒分散于乙醇水溶液中,再加入氨水,搅拌均匀,得到溶液a;将十六烷基三甲基溴化铵溶于相同的乙醇水溶液中,得到溶液b;
    (2)在超声作用下将所述溶液b滴加到所述溶液a中,之后继续超声,得到溶液c;
    (3)在所述溶液c中滴加正硅酸乙酯,之后依次经搅拌、固液分离和纯化,得到所述复合纳米材料;
    其中,所述纳米颗粒的粒径为1-20nm。
  2. 根据权利要求1所述的制备方法,其特征在于,所述乙醇水溶液A和所述乙醇水溶液B相同,且其中乙醇和水的体积比均为乙醇:水=1:3-4。
  3. 根据权利要求1所述的制备方法,其特征在于,所述溶液a的pH值为9-10。
  4. 根据权利要求1所述的制备方法,其特征在于,所述十六烷基三甲基溴化铵的质量与所述纳米颗粒的比表面积的比例为1mg-3mg:10 14nm 2-10 17nm 2
  5. 根据权利要求1所述的制备方法,其特征在于,所述溶液b和所述溶液a的体积比为溶液b:溶液a=1:9。
  6. 根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中,溶液b中十六烷基三甲基溴化铵的浓度为30mg/mL,继续超声的时间至少为30min。
  7. 根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中,正硅酸乙酯与十六烷基三甲基溴化铵的比例为正硅酸乙酯:十六烷基三甲基溴化铵=1mL:5g,搅拌时间为12h。
  8. 如权利要求1-7中任一项所述的制备方法制成的复合纳米材料。
  9. 根据权利要求8所述的复合纳米材料,其特征在于,所述复合纳米材料的粒径为50-80nm。
  10. 如权利要求8-9中任一项所述的复合纳米材料在医药、能源催化剂或环境污染治理方面的应用。
PCT/CN2020/071495 2019-12-23 2020-01-10 一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用 WO2021128504A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/847,142 US20220315440A1 (en) 2019-12-23 2022-06-22 Mesoporous silica wrapped nanoparticle composite material, preparation method thereof, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911352142.3 2019-12-23
CN201911352142.3A CN111137915B (zh) 2019-12-23 2019-12-23 一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/847,142 Continuation-In-Part US20220315440A1 (en) 2019-12-23 2022-06-22 Mesoporous silica wrapped nanoparticle composite material, preparation method thereof, and use thereof

Publications (1)

Publication Number Publication Date
WO2021128504A1 true WO2021128504A1 (zh) 2021-07-01

Family

ID=70519795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071495 WO2021128504A1 (zh) 2019-12-23 2020-01-10 一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用

Country Status (3)

Country Link
US (1) US20220315440A1 (zh)
CN (1) CN111137915B (zh)
WO (1) WO2021128504A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111840252B (zh) * 2020-07-22 2021-05-25 四川大学华西医院 一种具有刺状结构产活性氧仿酶纳米材料及其制备方法和用途
CN114685077B (zh) * 2020-12-30 2023-04-14 博特新材料泰州有限公司 一种缓释型促凝复合材料及其制备方法和其在水泥基材料中的应用
CN114685079B (zh) * 2020-12-30 2023-04-14 博特新材料泰州有限公司 一种缓释引气型纳米多孔复合材料及其制备方法和应用
CN114685089B (zh) * 2020-12-30 2023-04-14 博特新材料泰州有限公司 一种缓释消泡型纳米多孔复合材料及其制备方法和应用
CN114685090B (zh) * 2020-12-30 2023-04-14 博特新材料泰州有限公司 一种缓控释早强复合材料、制备方法和其在水泥基材料中的应用
CN113070080A (zh) * 2021-03-30 2021-07-06 福州大学 微通道连续制备核壳结构磷化物纳米颗粒的方法
CN113952950A (zh) * 2021-11-05 2022-01-21 苏州大学 一种半包覆结构金属纳米催化剂、其制备方法及应用
CN114682266B (zh) * 2022-04-14 2023-05-23 厦门大学 一种介孔二氧化硅包覆纳米氧化铝负载的镍钼催化剂及其制备方法与应用
CN114849676A (zh) * 2022-06-14 2022-08-05 蚌埠学院 一种SiO2@ZIF-67复合材料的制备方法及其在有机废水中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464065A (zh) * 2013-09-22 2013-12-25 北京化工大学 一种具有介孔壳磁性纳米球及快速制备方法
CN104225599A (zh) * 2013-06-14 2014-12-24 吉林大学 共载化疗和基因药物的非对称磁介孔二氧化硅棒及其在肿瘤诊治方面的应用
CN105154429A (zh) * 2015-10-29 2015-12-16 齐齐哈尔大学 固定脂肪酶的磁性氧化石墨复合物载体的制备方法及其固定脂肪酶的方法
CN105290394A (zh) * 2015-11-03 2016-02-03 宁波大学 银-介孔二氧化硅-银三明治核壳纳米材料其制备及应用
US20160051471A1 (en) * 2014-07-29 2016-02-25 Regents Of The University Of Minnesota Mesoporous silica-coated nanoparticles
CN105561315A (zh) * 2016-01-12 2016-05-11 江苏省计量科学研究院 一种功能磁性二氧化硅介孔材料靶向控释体系的制备方法
CN105903032A (zh) * 2016-05-31 2016-08-31 武汉理工大学 超顺磁性靶向双药物缓释载体材料及其制备方法
CN107674548A (zh) * 2017-11-01 2018-02-09 青岛农业大学 一种基于磁梯度自愈合防腐涂层的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104225599A (zh) * 2013-06-14 2014-12-24 吉林大学 共载化疗和基因药物的非对称磁介孔二氧化硅棒及其在肿瘤诊治方面的应用
CN103464065A (zh) * 2013-09-22 2013-12-25 北京化工大学 一种具有介孔壳磁性纳米球及快速制备方法
US20160051471A1 (en) * 2014-07-29 2016-02-25 Regents Of The University Of Minnesota Mesoporous silica-coated nanoparticles
CN105154429A (zh) * 2015-10-29 2015-12-16 齐齐哈尔大学 固定脂肪酶的磁性氧化石墨复合物载体的制备方法及其固定脂肪酶的方法
CN105290394A (zh) * 2015-11-03 2016-02-03 宁波大学 银-介孔二氧化硅-银三明治核壳纳米材料其制备及应用
CN105561315A (zh) * 2016-01-12 2016-05-11 江苏省计量科学研究院 一种功能磁性二氧化硅介孔材料靶向控释体系的制备方法
CN105903032A (zh) * 2016-05-31 2016-08-31 武汉理工大学 超顺磁性靶向双药物缓释载体材料及其制备方法
CN107674548A (zh) * 2017-11-01 2018-02-09 青岛农业大学 一种基于磁梯度自愈合防腐涂层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIA YONGSHENG, LI ENZE; PAN ZIHE; DU ZHIPING; CHENG FANGQIN: "Preparation of functional magnetic core-shell nanoparticles and their adsorption of bisphenol A", WUJIYAN-GONGYE = INORGANIC CHEMICALS INDUSTRY, TIANJIN HUAGONG YANJIUSUO, CN, vol. 51, no. 4, 1 April 2019 (2019-04-01), CN, pages 72 - 76, XP055823390, ISSN: 1006-4990 *

Also Published As

Publication number Publication date
US20220315440A1 (en) 2022-10-06
CN111137915B (zh) 2022-01-11
CN111137915A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021128504A1 (zh) 一种利用介孔二氧化硅包裹纳米颗粒的复合纳米材料及其制备方法与应用
Ghimire et al. Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities
Zou et al. A facile bi-phase synthesis of Fe 3 O 4@ SiO 2 core–shell nanoparticles with tunable film thicknesses
Guo et al. Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres
Zhang et al. Rattle-type silica colloidal particles prepared by a surface-protected etching process
Zhang et al. Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation
CN105174272B (zh) Au@SiO2介孔复合纳米材料及其制备方法
KR100846839B1 (ko) 산화금속 중공 나노캡슐 및 이의 제조방법
Xiao et al. “Ship‐in‐a‐Bottle” Growth of Noble Metal Nanostructures
CN107286705B (zh) 纳米无机复合颜料及其制备方法
CN111232994B (zh) 一种中空介孔二氧化硅纳米微球的制备方法
Lan et al. Synthesis of superparamagnetic Fe 3 O 4/PMMA/SiO 2 nanorattles with periodic mesoporous shell for lysozyme adsorption
Chen et al. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application
CN110293232A (zh) 一种超声辅助盐酸羟胺种子生长法制备硅核金壳纳米颗粒的方法
Wang et al. Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties
Park et al. Microwave enhanced silica encapsulation of magnetic nanoparticles
CN107824198A (zh) 一种负载纳米金的磁性纳米催化剂的制备方法及其应用
Song et al. One-pot two-step synthesis of core–shell mesoporous silica-coated gold nanoparticles
Fuji et al. Synthesis and applications of hollow particles
Wu et al. Thermosensitive Au-PNIPA yolk-shell particles as “nanoreactors” with tunable optical properties
Cheng et al. Chemical template-assisted synthesis of monodisperse rattle-type Fe3O4@ C hollow microspheres as drug carrier
CN104439276A (zh) 一种快速制备中空多孔二氧化硅/银纳米复合材料的方法及产品
Chen Core/shell structured silica spheres with controllable thickness of mesoporous shell and its adsorption, drug storage and release properties
Fu et al. A facile preparation method for single-hole hollow Fe3O4@ SiO2 microspheres
Varache et al. Improving structural stability of water-dispersed MCM-41 silica nanoparticles through post-synthesis pH aging process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904615

Country of ref document: EP

Kind code of ref document: A1