WO2021128483A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2021128483A1
WO2021128483A1 PCT/CN2020/070840 CN2020070840W WO2021128483A1 WO 2021128483 A1 WO2021128483 A1 WO 2021128483A1 CN 2020070840 W CN2020070840 W CN 2020070840W WO 2021128483 A1 WO2021128483 A1 WO 2021128483A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
display panel
electrode
pitch
electrophoretic particles
Prior art date
Application number
PCT/CN2020/070840
Other languages
English (en)
French (fr)
Inventor
陈兴武
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/644,935 priority Critical patent/US11442327B2/en
Publication of WO2021128483A1 publication Critical patent/WO2021128483A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16755Substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16762Electrodes having three or more electrodes per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • This application relates to the field of display technology, and in particular to a display panel.
  • electrophoretic display devices are widely used in display fields such as electronic tags, electronic billboards, and wearable display devices due to their advantages of lightness, thinness, durability, and low power consumption.
  • Electrophoretic display devices generally display in black and white. In order to achieve color display, methods such as Color Filter, Color Dye, Multi-Particle, and Color Microcapsules are usually used. .
  • the above method not only has a complicated driving method, but also causes a decrease in the transmittance and resolution of the display device, thereby affecting the display effect of the display device.
  • the current electrophoretic display device has a poor display effect.
  • the embodiment of the present application provides a display panel, which can improve the display effect of the display panel.
  • the embodiment of the present application provides a display panel, including:
  • the second substrate, the second substrate is arranged opposite to the first substrate, and the second substrate includes a base layer, a metal layer, a first protective layer, a nanoparticle layer, and a second protective layer that are stacked and arranged.
  • the second protective layer is located on the side of the second substrate facing the first substrate;
  • a retaining wall, the retaining wall is arranged between the first substrate and the second substrate, and the retaining wall and the first substrate and the second substrate are enclosed to form a plurality of accommodating spaces;
  • Electrophoresis material, and the electrophoresis material is contained in the containing space.
  • the electrophoretic material includes an electrophoretic fluid and electrophoretic particles, and the electrophoretic particles are black charged particles.
  • the material of the retaining wall is a hydrophobic material
  • the electrophoretic particles are particles with hydrophobic surfaces.
  • the material of the retaining wall is a hydrophilic material
  • the electrophoretic particles are particles with hydrophilic surfaces.
  • the electrophoretic particles are used to move toward the first substrate under the action of an electric field, so that the display panel is in a dark state.
  • the electrophoretic particles are used to adsorb to the retaining wall, so that the display panel is in a reflective state.
  • the display panel further includes a first electrode and a second electrode, the first electrode is disposed on the first substrate, and the second electrode is disposed on the second electrode. On the substrate.
  • the first electrode is a transparent electrode, and the first electrode covers a side of the first substrate facing the second substrate, and is disposed between the retaining walls ;
  • the second electrode is located at a corner formed by the second substrate and the retaining wall.
  • the first electrode is used to apply a voltage opposite in polarity to the electrophoretic particles to the electrophoretic particles, so that the electrophoretic particles move toward the first substrate, so that The display panel is in a dark state;
  • the second electrode is used to apply a voltage opposite in polarity to the electrophoretic particles to the electrophoretic particles, so that the electrophoretic particles move toward the corner formed by the second substrate and the retaining wall, so that the The display panel is restored from the dark state to the reflective state.
  • the nanoparticle layer includes metal nanoparticles distributed in an array.
  • the accommodating space includes a first accommodating space, a second accommodating space, or a third accommodating space
  • the distance between adjacent metal nanoparticles in the first accommodating space is the first A distance
  • the distance between adjacent metal nanoparticles located in the second containing space is the second distance
  • the distance between adjacent metal nanoparticles located in the third containing space is the third distance
  • the first A pitch is different from the second pitch
  • the first pitch is different from the third pitch
  • the second pitch is different from the third pitch.
  • the first accommodating space is a red light area
  • the second accommodating space is a green light area
  • the third accommodating space is a blue light area
  • the metal nanoparticles are used to resonate with the metal plasma in the metal layer to generate a structural color, so that the second substrate reflects visible light.
  • the material of the metal nanoparticles includes magnesium, aluminum, molybdenum, copper, silver or titanium.
  • the size of the metal nano particles is 3 nanometers to 200 nanometers.
  • the distance between adjacent metal nanoparticles in the nanoparticle layer is 3 nanometers to 400 nanometers.
  • the electrophoretic material is electronic ink.
  • the material of the metal layer includes magnesium, aluminum, molybdenum, copper, silver, or titanium.
  • the material of the first protective layer includes aluminum oxide, silicon nitride, or silicon oxide.
  • the material of the second protective layer is aluminum oxide, silicon nitride or silicon oxide.
  • the display panel provided by the embodiment of the present application includes a first substrate; a second substrate, the second substrate is disposed opposite to the first substrate, and the second substrate includes a stacked substrate layer, a metal layer, and a first protective layer , A nanoparticle layer and a second protective layer, the second protective layer is located on the side of the second substrate facing the first substrate; a retaining wall, the retaining wall is provided on the first substrate and the first substrate Between the two substrates, the retaining wall, the first substrate and the second substrate enclose a plurality of accommodating spaces; the electrophoresis material, the electrophoresis material is accommodated in the accommodating space.
  • FIG. 1 is a schematic diagram of a first structure of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a second substrate of a display panel provided by an embodiment of the present application.
  • Fig. 3 is a top view of Fig. 2 in the direction A-A' provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second structure of a display panel provided by an embodiment of the present application.
  • FIG. 5 is a third structural schematic diagram of a display panel provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fourth structure of a display panel provided by an embodiment of the present application.
  • FIG. 7 is a fifth structural schematic diagram of the display panel provided by the embodiment of the present application.
  • the embodiment of the present application provides a display panel, which will be described in detail below.
  • FIG. 1 is a first structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel 100 may include a first substrate 10, a second substrate 20, a barrier wall 30 and an electrophoretic material 40.
  • the first substrate 10 may be a flexible display substrate.
  • the material of the first substrate 10 may include organic flexible materials such as polyimide (PI).
  • the second substrate 20 is disposed opposite to the first substrate 10.
  • the second substrate 20 may include a substrate layer 21, a metal layer 22, a first protective layer 23, a nanoparticle layer 24, and a second protective layer 25 that are stacked in layers.
  • a substrate layer 21, a metal layer 22, a first protective layer 23, a nanoparticle layer 24, and a second protective layer 25 that are stacked in layers.
  • the substrate layer 21 may be a flexible substrate.
  • the material of the substrate layer 21 may include organic flexible materials such as polyimide (PI).
  • the material of the metal layer 22 and the nanoparticle layer 24 may include metal materials such as magnesium, aluminum, molybdenum, copper, silver, and titanium.
  • the materials of the first protection layer 23 and the second protection layer 25 may include materials such as aluminum oxide, silicon nitride, and silicon oxide.
  • the nanoparticle layer 24 may include several metal nanoparticles 241 distributed in an array.
  • the size of the metal nano particles 241 can be 3 nanometers to 200 nanometers, and the distance between adjacent metal nano particles 241 can be 3 nanometers to 400 nanometers.
  • the shape of the metal nano particles 241 may be square, rectangular, circular or other shapes.
  • the metal plasma in the nanoparticle layer 24 can resonate with the metal plasma in the metal layer 22 to generate a structural color, so that the second substrate 20 can reflect visible light.
  • the size of the metal nanoparticles 241 in the nanoparticle layer 24 and the distance between adjacent metal nanoparticles 241 can be adjusted accordingly, so that the second substrate 20 can reflect red light. , Green light, blue light or other colors of visible light.
  • the retaining wall 30 can be arranged between the first substrate 10 and the second substrate 20.
  • the retaining wall 30 can surround the first substrate 10 and the second substrate 20 to form a plurality of accommodating spaces 31.
  • the material of the retaining wall 30 can be selected according to actual conditions. Such as hydrophobic materials or hydrophilic materials.
  • the accommodating space 31 may include a first accommodating space 311, a second accommodating space 312 or a third accommodating space 313.
  • the distance between adjacent metal nanoparticles 241 located in the first accommodating space 311 is the first distance
  • the distance between adjacent metal nanoparticles 241 located in the second accommodating space 312 is the second distance, which is located in the third housing.
  • the distance between adjacent metal nanoparticles 241 in the space 313 is the third distance. It can be understood that, in order to enable the first, second, and third accommodating spaces 311, 312, and 313 to reflect red, green, or blue light, respectively, the first, second, and third intervals are different from each other. .
  • the first housing space 311 may be a red light area
  • the second housing space 312 may be a green light area
  • the third housing space 313 may be a blue light area.
  • the electrophoresis material 40 can be contained in the containing space 31.
  • the electrophoresis material 40 may include electrophoresis particles 41 and electrophoresis fluid 42.
  • the electrophoretic material 40 may be electronic ink. It can be understood that the electrophoretic particles 41 can move under the action of an electric field.
  • the electrophoretic particles 41 may be organic particles, inorganic particles or colored microcapsule particles.
  • the organic particles may include polymer spheres and similar compound pigment particles.
  • the inorganic particles may include silica, titanium dioxide, or carbon black particles, and the like.
  • the colored microcapsules can be used to encapsulate the colored solution into cod liver oil particles.
  • the electrophoretic particles 41 are black charged particles.
  • the electrophoretic particles 41 and the retaining wall 30 can be set accordingly.
  • the surface of the electrophoretic particles 41 may be subjected to hydrophobic treatment, so that the electrophoretic particles 41 become particles with hydrophobic surfaces.
  • the surface of the electrophoretic particles 41 may be treated with hydrophilicity, so that the electrophoretic particles 41 become particles with hydrophilic surfaces.
  • the electrophoretic particles 41 can move toward the first substrate 10 under the action of the electric field, and finally move to the surface of the first substrate 10.
  • the incident light can be absorbed by the electrophoretic particles 41, making the display panel 100 appear
  • the dark state can be specifically shown in Figure 5.
  • the display panel 100 further includes a first electrode 50 and a second electrode 60.
  • the first electrode 50 may be disposed on the first substrate 10.
  • the second electrode 60 may be disposed on the second substrate 20.
  • the application of voltage to the display panel 100 can be stopped, so that the electrophoretic particles 41 can move from the surface of the first substrate 10 toward the barrier according to the principle of similar attraction.
  • the wall 30 moves and is finally adsorbed on the retaining wall 30.
  • the first electrode 50 and the second electrode 60 may be processed accordingly.
  • the first electrode 50 may be configured as a transparent electrode, and the first electrode 50 covers the side of the first substrate 10 facing the second substrate 20. It can be understood that, in order to save the manufacturing cost, the first electrode 50 may be divided into multiple parts, and only the part of the first substrate 10 facing the second substrate 20 between the retaining walls 30. That is, the first electrode 50 can be arranged between the retaining walls 30. Specifically, the second electrode 60 can be divided into a plurality of parts and arranged at the corner formed by the second substrate 20 and the retaining wall 30.
  • a voltage with the opposite polarity to the electrophoretic particles 41 can be applied to the first electrode 50, so that the electrophoretic particles 41 quickly move toward the first substrate 10 and are adsorbed on the first substrate. 10, as shown in Figure 6.
  • the incident light may be absorbed by the electrophoretic particles 41, so that the display panel 100 is in a dark state.
  • the application of voltage to the first electrode 50 can be stopped, and a voltage opposite to the polarity of the electrophoretic particles 41 can be applied to the second electrode 60, so that the electrophoretic particles 41 quickly move to the second electrode.
  • incident light can reach the second substrate 20, so that the display panel 100 is in a reflective state to realize color display, as shown in FIG. 7.
  • the display panel 100 may include the first substrate 10, the second substrate 20, the barrier wall 30, and the electrophoretic material 40.
  • the second substrate 20 is disposed opposite to the first substrate 10, and the second substrate 20 includes a base layer 21, a metal layer 22, a first protective layer 23, a nanoparticle layer 24, and a second protective layer 25 that are stacked and arranged.
  • the protective layer 25 is located on the side of the second substrate 20 facing the first substrate 10; the retaining wall 30 is disposed between the first substrate 10 and the second substrate 20, and the retaining wall 30 is surrounded by the first substrate 10 and the second substrate 20.
  • a plurality of containing spaces 31; the electrophoresis material 40 is contained in the containing spaces 31.
  • the metal plasma of the metal nanoparticles 241 in the nanoparticle layer 24 of the second substrate 20 can resonate with the metal plasma in the metal layer 22 to generate structural colors, so that the incident light can reflect the corresponding after reaching the second substrate 20. Visible light.
  • the visible light can be directly emitted from the first substrate 10 without undergoing other processing, such as filtering, etc., thereby reducing light consumption and improving the light utilization rate of the display panel 100.
  • color display can be realized without the need of color resist or color ink filtering, that is, the light blocking is reduced, the light consumption is reduced, and the The transmittance of the display panel 100 and the resolution of the display panel 100 further improve the display effect of the display panel 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种显示面板(100),包括第一基板(10)、第二基板(20)、挡墙(30)和电泳材料(40),第二基板(20)与第一基板(10)相对设置,第二基板(20)包括层叠设置的衬底层(21)、金属层(22)、第一保护层(23)、纳米颗粒层(24)和第二保护层(25),第二保护层(25)位于第二基板(20)朝向第一基板(10)的一侧;挡墙(30)设置于第一基板(10)和第二基板(20)之间,挡墙(30)与第一基板(10)、第二基板(20)围设成多个收容空间(311,312,313);电泳材料(40)收容于收容空间(311,312,313)内。

Description

显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板。
背景技术
随着显示技术的快速发展,由于电泳显示装置具有轻薄、耐用和低耗电等优点而被广泛应用于电子标签、电子广告牌和穿戴式显示装置等显示领域。
电泳显示装置一般都是黑白显示,为了实现彩色显示,通常需要采用彩色滤光片(Color Filter)、彩色染料(Color Dye)、多粒子(Multi-Particle)和彩色微胶囊(Color Microcapsules)等方法。
然而,以上方法不仅驱动方式复杂,而且还会导致显示装置的穿透率和分辨率下降,进而影响显示装置的显示效果。
技术问题
目前的电泳显示装置显示效果不佳。
技术解决方案
本申请实施例提供了一种显示面板,可以提高显示面板的显示效果。
本申请实施例提供了一种显示面板,包括:
第一基板;
第二基板,所述第二基板与所述第一基板相对设置,所述第二基板包括层叠设置的衬底层、金属层、第一保护层、纳米颗粒层和第二保护层,所述第二保护层位于所述第二基板朝向所述第一基板的一侧;
挡墙,所述挡墙设置于所述第一基板和所述第二基板之间,所述挡墙与所述第一基板、所述第二基板围设成多个收容空间;
电泳材料,所述电泳材料收容于所述收容空间内。
在本申请实施例提供的显示面板中,所述电泳材料包括电泳液和电泳颗粒,所述电泳颗粒为黑色带电粒子。
在本申请实施例提供的显示面板中,所述挡墙的材料为疏水性材料,所述电泳颗粒为表面具有疏水性的颗粒。
在本申请实施例提供的显示面板中,所述挡墙的材料为亲水性材料,所述电泳颗粒为表面具有亲水性的颗粒。
在本申请实施例提供的显示面板中,所述电泳颗粒用于在电场的作用下朝第一基板移动,使得所述显示面板呈暗态。
在本申请实施例提供的显示面板中,所述电泳颗粒用于吸附于所述挡墙,使得所述显示面板呈反射状态。
在本申请实施例提供的显示面板中,所述显示面板还包括第一电极和第二电极,所述第一电极设置于所述第一基板上,所述第二电极设置于所述第二基板上。
在本申请实施例提供的显示面板中,所述第一电极为透明电极,所述第一电极覆盖所述第一基板朝向所述第二基板的一侧,并设置于所述挡墙之间;
所述第二电极位于所述第二基板与所述挡墙构成的拐角处。
在本申请实施例提供的显示面板中,所述第一电极用于对所述电泳颗粒施加与所述电泳颗粒极性相反的电压,使得所述电泳颗粒朝所述第一基板移动,以使所述显示面板呈暗态;
所述第二电极用于对所述电泳颗粒施加与所述电泳颗粒极性相反的电压,使得所述电泳颗粒朝所述第二基板与所述挡墙构成的拐角处移动,以使所述显示面板从暗态恢复为反射状态。
在本申请实施例提供的显示面板中,所述纳米颗粒层包括阵列分布的金属纳米颗粒。
在本申请实施例提供的显示面板中,所述收容空间包括第一收容空间、第二收容空间或第三收容空间,位于所述第一收容空间的相邻金属纳米颗粒之间的间距为第一间距,位于所述第二收容空间的相邻金属纳米颗粒之间的间距为第二间距,位于所述第三收容空间的相邻金属纳米颗粒之间的间距为第三间距,所述第一间距与所述第二间距不相同,所述第一间距与所述第三间距不相同,所述第二间距与所述第三间距不相同。
在本申请实施例提供的显示面板中,所述第一收容空间为红光区域,所述第二收容空间为绿光区域,所述第三收容空间为蓝光区域。
在本申请实施例提供的显示面板中,所述金属纳米颗粒用于与所述金属层中的金属等离子共振产生结构色,使得所述第二基板反射出可见光。
在本申请实施例提供的显示面板中,所述金属纳米颗粒的材料包括镁、铝、钼、铜、银或钛。
在本申请实施例提供的显示面板中,所述金属纳米颗粒的尺寸为3纳米-200纳米。
在本申请实施例提供的显示面板中,所述纳米颗粒层中相邻的金属纳米颗粒之间的间距为3纳米-400纳米。
在本申请实施例提供的显示面板中,所述电泳材料为电子墨水。
在本申请实施例提供的显示面板中,所述金属层的材料包括镁、铝、钼、铜、银或钛。
在本申请实施例提供的显示面板中,所述第一保护层的材料包括氧化铝、氮化硅或氧化硅。
在本申请实施例提供的显示面板中,所述第二保护层的材料氧化铝、氮化硅或氧化硅。
有益效果
本申请实施例提供的显示面板包括第一基板;第二基板,所述第二基板与所述第一基板相对设置,所述第二基板包括层叠设置的衬底层、金属层、第一保护层、纳米颗粒层和第二保护层,所述第二保护层位于所述第二基板朝向所述第一基板的一侧;挡墙,所述挡墙设置于所述第一基板和所述第二基板之间,所述挡墙与所述第一基板、所述第二基板围设成多个收容空间;电泳材料,所述电泳材料收容于所述收容空间内。通过本方案可以提高显示面板的穿透率和分辨率,进而提高显示面板的显示效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的第一结构示意图。
图2是本申请实施例提供的显示面板的第二基板的结构示意图。
图3是本申请实施例提供的图2在A-A’方向上的俯视图。
图4是本申请实施例提供的显示面板的第二结构示意图。
图5是本申请实施例提供的显示面板的第三结构示意图。
图6是本申请实施例提供的显示面板的第四结构示意图。
图7是本申请实施例提供的显示面板的第五结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种显示面板,以下将进行详细说明。
请参阅图1,图1是本申请实施例提供的显示面板的第一结构示意图。该显示面板100可以包括第一基板10、第二基板20、挡墙30和电泳材料40。
其中,第一基板10可以为柔性显示基板。该第一基板10的材料可以包括聚酰亚胺(Polyimide,PI)等有机柔性材料。
其中,该第二基板20与第一基板10相对设置。在一些实施例中,该第二基板20可以包括层叠设置的衬底层21、金属层22、第一保护层23、纳米颗粒层24和第二保护层25,具体可以参阅图2。
需要说明的是,在本申请的描述中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个所述特征。
需要说明的是,在本申请实施例的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
其中,衬底层21可以为柔性衬底。该衬底层21的材料可以包括聚酰亚胺(Polyimide,PI)等有机柔性材料。该金属层22和纳米颗粒层24的材料可以包括镁、铝、钼、铜、银、钛等金属材料。第一保护层23和第二保护层25的材料可以包括氧化铝、氮化硅、氧化硅等材料。
在一些实施例中,如图3所示,该纳米颗粒层24可以包括若干阵列分布的金属纳米颗粒241。其中,该金属纳米颗粒241的尺寸可以为3纳米-200纳米,相邻的金属纳米颗粒241之间的间距可以为3纳米-400纳米。该金属纳米颗粒241的形状可以为方形、矩形、圆形或其他形状。
需要说明的是,该纳米颗粒层24中的金属等离子可以与金属层22中的金属等离子发生共振产生结构色,从而使得第二基板20可以反射出可见光。
在一些实施例中,可以通过对该纳米颗粒层24中的金属纳米颗粒241的尺寸大小以及相邻的金属纳米颗粒241之间的间距进行相应的调节,使得第二基板20可以反射出红光、绿光、蓝光或其他颜色的可见光。
其中,挡墙30可以设置于第一基板10和第二基板20之间。该挡墙30可以与第一基板10、第二基板20围设成多个收容空间31。需要说明的是,该挡墙30的材料可以根据实际情况选定。比如疏水性材料或亲水性材料。
在一些实施例中,该收容空间31可以包括第一收容空间311、第二收容空间312或第三收容空间313。其中,位于第一收容空间311的相邻金属纳米颗粒241之间的间距为第一间距,位于第二收容空间312的相邻金属纳米颗粒241之间的间距为第二间距,位于第三收容空间313的相邻金属纳米颗粒241之间的间距为第三间距。可以理解的是,为了使得第一收容空间311、第二收容空间312和第三收容空间313可以分别反射出红光、绿光或蓝光,第一间距、第二间距和第三间距互不相同。即是,第一间距与第二间距不相同,第一间距与第三间距不相同,第二间距与第三间距不相同。在一些实施例中,第一收容空间311可以为红光区域,第二收容空间312可以为绿光区域,第三收容空间313可以为蓝光区域。
其中,电泳材料40可以收容于收容空间31内。其中,该电泳材料40可以包括电泳颗粒41和电泳液42。该电泳材料40可以为电子墨水。可以理解的是,该电泳颗粒41可以在电场的作用下进行移动。
需要说明的是,该电泳颗粒41可以是有机颗粒、无机颗粒或彩色微胶囊颗粒。其中,有机颗粒可以包括聚合物球及类似的化合物颜料颗粒。无机颗粒可以包括二氧化硅、二氧化钛或炭黑颗粒等。彩色微胶囊可以是将彩色溶液包裹成鱼肝油式的颗粒。在本申请实施例中,该电泳颗粒41为黑色带电粒子。
为了使得电泳颗粒41可以在不存在电场时吸附于挡墙30上,以便显示面板100呈反射状态,实现彩色显示。在一些实施例中,可以对电泳颗粒41和挡墙30进行相应的设置。具体的,当挡墙30的材料为疏水性材料时,可以对电泳颗粒41的表面做疏水性处理,使得电泳颗粒41变为表面具有疏水性的颗粒。或当挡墙30的材料为亲水性材料时,可以对电泳颗粒41的表面做亲水性处理,使得电泳颗粒41变为表面具有亲水性的颗粒。可以理解的是,根据相似相吸原则,当挡墙30的材料与电泳颗粒41的表面具有同一性质时,在不存在电场时,电泳颗粒41会吸附于挡墙30上,如图4所示。
需要说明的是,当存在电场时,电泳颗粒41可以在电场的作用下朝第一基板10运动,最终移动到第一基板10的表面,入射光可以被电泳颗粒41吸收,使得显示面板100呈暗态,具体可以如图5所示。
其中,该显示面板100还包括第一电极50和第二电极60。其中,第一电极50可以设置于第一基板10上。第二电极60可以设置于第二基板20上。
可以理解的是,当需要使得该显示面板100从暗态恢复到反射状态时,可以停止对显示面板100施加电压,以使得电泳颗粒41可以根据相似相吸原则从第一基板10的表面朝挡墙30移动,最终吸附于挡墙30上。
然而,仅通过相似相吸原则使得显示面板100从暗态恢复到反射状态的速度较慢,从而会导致显示面板100的响应速度较慢。在一些实施例中,为了加快显示面板100从暗态恢复到反射状态的速度,可以对第一电极50和第二电极60进行相应的处理。
具体的,可以如图6或图7所示,将第一电极50设置为透明电极,该第一电极50覆盖第一基板10朝向第二基板20的一侧。可以理解的是,为了节省制造成本,该第一电极50可以分成多个部分,仅对挡墙30之间的第一基板10朝向第二基板20的一侧的部分。即是,该第一电极50可以设置于挡墙30之间。具体的,可以将第二电极60分为多个部分,并将其设置于第二基板20与挡墙30构成的拐角处。需要说明的是,当需要显示面板100呈暗态时,可以对第一电极50施加与电泳颗粒41极性相反的电压,使得电泳颗粒41快速朝第一基板10移动,并吸附于第一基板10上,如图6所示。入射光可以被电泳颗粒41吸收,使得显示面板100呈暗态。当需要将显示面板100从暗态恢复到反射状态时,可以停止对第一电极50施加电压,并对第二电极60施加与电泳颗粒41极性相反的电压,使得电泳颗粒41快速移动到第二基板20与挡墙30构成的拐角处,入射光可以到达第二基板20,使得显示面板100呈反射状态,实现彩色显示,如图7所示。
由上,本申请实施例提供的显示面板100可以包括第一基板10、第二基板20、挡墙30和电泳材料40。其中,第二基板20与第一基板10相对设置,该第二基板20包括层叠设置的衬底层21、金属层22、第一保护层23、纳米颗粒层24和第二保护层25,第二保护层25位于第二基板20朝向第一基板10的一侧;挡墙30设置于第一基板10和第二基板20之间,挡墙30与第一基板10、第二基板20围设成多个收容空间31;电泳材料40收容于所述收容空间内31。本方案可以通过第二基板20的纳米颗粒层24中的金属纳米颗粒241的金属等离子与金属层22中的金属等离子发生共振产生结构色,使得入射光到达第二基板20后可以反射出相应的可见光。该可见光不需要经过其他处理,比如过滤等,便可以直接从第一基板10射出,从而减少了光的消耗,提高了显示面板100对光的利用率。并且,由于可以直接由第二基板20反射出相应的可见光,不需要经过色阻或彩色油墨的过滤即可实现彩色显示,即是减少了对光的阻挡,减少了光的消耗,从而提高了显示面板100的穿透率以及显示面板100的分辨率,进而提高显示面板100的显示效果。
以上对本申请实施例所提供的一种显示面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板,其包括:
    第一基板;
    第二基板,所述第二基板与所述第一基板相对设置,所述第二基板包括层叠设置的衬底层、金属层、第一保护层、纳米颗粒层和第二保护层,所述第二保护层位于所述第二基板朝向所述第一基板的一侧;
    挡墙,所述挡墙设置于所述第一基板和所述第二基板之间,所述挡墙与所述第一基板、所述第二基板围设成多个收容空间;
    电泳材料,所述电泳材料收容于所述收容空间内。
  2. 如权利要求1所述的显示面板,其中,所述电泳材料包括电泳液和电泳颗粒,所述电泳颗粒为黑色带电粒子。
  3. 如权利要求2所述的显示面板,其中,所述挡墙的材料为疏水性材料,所述电泳颗粒为表面具有疏水性的颗粒。
  4. 如权利要求2所述的显示面板,其中,所述挡墙的材料为亲水性材料,所述电泳颗粒为表面具有亲水性的颗粒。
  5. 如权利要求2所述的显示面板,其中,所述电泳颗粒用于在电场的作用下朝第一基板移动,使得所述显示面板呈暗态。
  6. 如权利要求2所述的显示面板,其特征在于,所述电泳颗粒用于吸附于所述挡墙,使得所述显示面板呈反射状态。
  7. 如权利要齐1所述的显示面板,其中,所述显示面板还包括第一电极和第二电极,所述第一电极设置于所述第一基板上,所述第二电极设置于所述第二基板上。
  8. 如权利要求7所述的显示面板,其中,所述第一电极为透明电极,所述第一电极覆盖所述第一基板朝向所述第二基板的一侧,并设置于所述挡墙之间;
    所述第二电极位于所述第二基板与所述挡墙构成的拐角处。
  9. 如权利要求8所述的显示面板,其中,所述第一电极用于对所述电泳颗粒施加与所述电泳颗粒极性相反的电压,使得所述电泳颗粒朝所述第一基板移动,以使所述显示面板呈暗态;
    所述第二电极用于对所述电泳颗粒施加与所述电泳颗粒极性相反的电压,使得所述电泳颗粒朝所述第二基板与所述挡墙构成的拐角处移动,以使所述显示面板从暗态恢复为反射状态。
  10. 如权利要求1所述的显示面板,其中,所述纳米颗粒层包括阵列分布的金属纳米颗粒。
  11. 如权利要求10所述的显示面板,其中,所述收容空间包括第一收容空间、第二收容空间或第三收容空间,位于所述第一收容空间的相邻金属纳米颗粒之间的间距为第一间距,位于所述第二收容空间的相邻金属纳米颗粒之间的间距为第二间距,位于所述第三收容空间的相邻金属纳米颗粒之间的间距为第三间距,所述第一间距与所述第二间距不相同,所述第一间距与所述第三间距不相同,所述第二间距与所述第三间距不相同。
  12. 如权利要求11所述的显示面板,其中,所述第一收容空间为红光区域,所述第二收容空间为绿光区域,所述第三收容空间为蓝光区域。
  13. 如权利要求10所述的显示面板,其中,所述金属纳米颗粒用于与所述金属层中的金属等离子共振产生结构色,使得所述第二基板反射出可见光。
  14. 如权利要求10所述的显示面板,其特征在于,所述金属纳米颗粒的材料包括镁、铝、钼、铜、银或钛。
  15. 如权利要求10所述的显示面板,其特征在于,所述金属纳米颗粒的尺寸为3纳米-200纳米。
  16. 如权利要求10所述的显示面板,其特征在于,所述纳米颗粒层中相邻的金属纳米颗粒之间的间距为3纳米-400纳米。
  17. 如权利要求1所述的显示面板,其特征在于,所述电泳材料为电子墨水。
  18. 如权利要求1所述的显示面板,其特征在于,所述金属层的材料包括镁、铝、钼、铜、银或钛。
  19. 如权利要求1所述的显示面板,其中,所述第一保护层的材料包括氧化铝、氮化硅或氧化硅。
  20. 如权利要求1所述的显示面板,其中,所述第二保护层的材料氧化铝、氮化硅或氧化硅。
PCT/CN2020/070840 2019-12-23 2020-01-08 显示面板 WO2021128483A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/644,935 US11442327B2 (en) 2019-12-23 2020-01-08 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911335343.2 2019-12-23
CN201911335343.2A CN110967889A (zh) 2019-12-23 2019-12-23 显示面板

Publications (1)

Publication Number Publication Date
WO2021128483A1 true WO2021128483A1 (zh) 2021-07-01

Family

ID=70035989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070840 WO2021128483A1 (zh) 2019-12-23 2020-01-08 显示面板

Country Status (3)

Country Link
US (1) US11442327B2 (zh)
CN (1) CN110967889A (zh)
WO (1) WO2021128483A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113934069B (zh) * 2021-10-19 2023-06-20 中山大学 一种基于界面改性的微杯制作工艺
CN115047686B (zh) * 2021-11-24 2023-05-09 荣耀终端有限公司 电子墨水屏及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540617A (zh) * 2010-12-17 2012-07-04 三星电子株式会社 电泳显示装置
US20120293858A1 (en) * 2011-05-21 2012-11-22 E Ink Corporation Electro-optic displays
CN106405823A (zh) * 2016-11-01 2017-02-15 京东方科技集团股份有限公司 电润湿显示面板、显示装置及其驱动方法
CN106873234A (zh) * 2017-03-16 2017-06-20 京东方科技集团股份有限公司 发光显示器件及其制作方法、发光显示装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4724384B2 (ja) * 2004-06-08 2011-07-13 キヤノン株式会社 電気泳動表示素子及び電気泳動表示素子の駆動方法
JP2006023711A (ja) * 2004-06-08 2006-01-26 Canon Inc 電気泳動表示装置
TWI306533B (en) * 2005-03-15 2009-02-21 Ind Tech Res Inst A transflective electrophoresis display and manufacturing method
JP2007004077A (ja) * 2005-06-27 2007-01-11 Canon Inc 電気泳動表示素子
CN100465749C (zh) * 2005-07-18 2009-03-04 财团法人工业技术研究院 具透反式透膜的电泳显示器及制作方法
JP5135707B2 (ja) * 2006-04-11 2013-02-06 富士ゼロックス株式会社 表示方法及び表示素子
US8082538B2 (en) * 2006-05-15 2011-12-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Systems, methods and apparatus for developing and maintaining evolving systems with software product lines
JP2008051931A (ja) * 2006-08-23 2008-03-06 Brother Ind Ltd 電気泳動表示媒体
JP4033225B1 (ja) * 2006-08-29 2008-01-16 富士ゼロックス株式会社 表示媒体、表示装置および表示方法
JP4049202B1 (ja) * 2006-11-10 2008-02-20 富士ゼロックス株式会社 表示媒体、表示装置および表示方法
KR101290719B1 (ko) * 2007-02-27 2013-07-29 삼성디스플레이 주식회사 전기영동 표시장치
KR100884444B1 (ko) * 2007-04-19 2009-02-19 삼성모바일디스플레이주식회사 다기능 키 패드용 표시 장치 및 이를 갖는 전자기기
KR101437164B1 (ko) * 2007-12-20 2014-09-03 삼성전자주식회사 전기영동 표시 소자 및 그 구동 방법
KR101309364B1 (ko) * 2008-12-24 2013-09-17 엘지디스플레이 주식회사 전기영동표시장치 및 그의 제조방법과 그의 리페어방법
WO2011002453A1 (en) * 2009-06-30 2011-01-06 Hewlett-Packard Development Company, L.P. Full-color reflective display
JP2011048332A (ja) * 2009-07-29 2011-03-10 Seiko Epson Corp 電気泳動表示体、電気泳動表示装置、及び電子機器
JP5533384B2 (ja) * 2010-03-10 2014-06-25 セイコーエプソン株式会社 電気泳動粒子を含む分散液を封入する封入方法
US8729551B2 (en) * 2010-03-17 2014-05-20 Samsung Display Co., Ltd. Flat panel display
KR101670887B1 (ko) * 2010-03-22 2016-11-10 삼성디스플레이 주식회사 전기영동 표시장치 및 이의 제조방법
JP5811314B2 (ja) * 2010-06-16 2015-11-11 国立研究開発法人物質・材料研究機構 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法
KR101766878B1 (ko) * 2011-02-28 2017-08-10 삼성디스플레이 주식회사 전기 영동 표시 장치 및 그 제조 방법
KR101810642B1 (ko) * 2011-05-02 2018-01-26 삼성디스플레이 주식회사 전기영동 표시장치 및 이의 구동방법
CN103309115B (zh) * 2013-05-30 2016-03-23 京东方科技集团股份有限公司 彩色电泳显示面板及其制造方法、显示装置
US9874799B2 (en) * 2014-02-17 2018-01-23 Nlt Technologies, Ltd. Optical device, manufacturing method of optical device, and display device, electronic device and illuminating device including optical device
TWI577739B (zh) * 2015-05-25 2017-04-11 奇美實業股份有限公司 白色感光性樹脂組成物及其應用
US20170017133A1 (en) * 2015-07-15 2017-01-19 Microsoft Technology Licensing, Llc Electronic paper display device
JP2017116822A (ja) * 2015-12-25 2017-06-29 セイコーエプソン株式会社 表示装置
CN105652488B (zh) * 2016-01-14 2017-10-10 京东方科技集团股份有限公司 一种可书写液晶显示装置及其制作方法、驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540617A (zh) * 2010-12-17 2012-07-04 三星电子株式会社 电泳显示装置
US20120293858A1 (en) * 2011-05-21 2012-11-22 E Ink Corporation Electro-optic displays
CN106405823A (zh) * 2016-11-01 2017-02-15 京东方科技集团股份有限公司 电润湿显示面板、显示装置及其驱动方法
CN106873234A (zh) * 2017-03-16 2017-06-20 京东方科技集团股份有限公司 发光显示器件及其制作方法、发光显示装置

Also Published As

Publication number Publication date
CN110967889A (zh) 2020-04-07
US20210405495A1 (en) 2021-12-30
US11442327B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
TWI387829B (zh) 彩色顯示裝置
US20080198439A1 (en) Magnetic display pixel and magnetic display panel
JP5390136B2 (ja) 電気泳動表示素子およびその駆動方法
US20080198440A1 (en) Active reflective polarizer and magnetic display panel comprising the same
CN106796948B (zh) 显示面板及其制造方法
WO2021128483A1 (zh) 显示面板
US20080199667A1 (en) Magnetic field controlled active reflector and magnetic display panel comprising the active reflector
JP2006162969A (ja) 粒子移動型表示素子及び粒子移動型表示装置
US20090027329A1 (en) Surface plasmon display device and method thereof
US11537023B2 (en) Liquid crystal cell and electronic device
WO2008100042A1 (en) Color magnetic display pixel panel
KR101308079B1 (ko) 표면 플라즈몬 컬러필터
JP4578270B2 (ja) 電気泳動表示用液、それを用いた表示媒体及び表示装置
WO2014034569A1 (ja) 表示装置
US10502984B2 (en) Electronic ink sealing chamber, manufacturing method thereof and display device
JP2008216300A (ja) 積層型表示素子及びその製造方法並びに表示装置
TW201111843A (en) Color filter substrate and color display apparatus
TW201502674A (zh) 電致變色膜
CN103105704A (zh) 液晶显示器及其制作方法
CN109683383B (zh) 像素单元及其显示方法、显示面板
KR20030038042A (ko) 전기영동 표시장치
CN106249463B (zh) 显示面板及其制作方法、显示装置
WO2017181694A1 (zh) 一种减法混色电泳型显示装置及其制造方法
KR20090016154A (ko) 컬러 선택성 능동형 편광자 및 이를 채용한 마그네틱디스플레이 패널
WO2020124705A1 (zh) 显示面板的制备方法、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905010

Country of ref document: EP

Kind code of ref document: A1