WO2017181694A1 - 一种减法混色电泳型显示装置及其制造方法 - Google Patents

一种减法混色电泳型显示装置及其制造方法 Download PDF

Info

Publication number
WO2017181694A1
WO2017181694A1 PCT/CN2016/108988 CN2016108988W WO2017181694A1 WO 2017181694 A1 WO2017181694 A1 WO 2017181694A1 CN 2016108988 W CN2016108988 W CN 2016108988W WO 2017181694 A1 WO2017181694 A1 WO 2017181694A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged
electrode
particles
microcup
display
Prior art date
Application number
PCT/CN2016/108988
Other languages
English (en)
French (fr)
Inventor
赵景罡
Original Assignee
大连东方科脉电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610247573.3A external-priority patent/CN105785686A/zh
Priority claimed from CN201620335114.6U external-priority patent/CN205563034U/zh
Application filed by 大连东方科脉电子股份有限公司 filed Critical 大连东方科脉电子股份有限公司
Priority to KR1020187033322A priority Critical patent/KR102088385B1/ko
Publication of WO2017181694A1 publication Critical patent/WO2017181694A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Definitions

  • the invention relates to an electrophoresis type display device, in particular to a subtractive mixed color electrophoresis type display device and a manufacturing method thereof.
  • the principle of an electrophoretic display device is to display an image by directing an electric field of a charged pigment particle by a direct current electric field.
  • the basic structure of the electrophoretic display device is to fill a display medium layer between two electrodes, which is composed of a certain thickness and a certain amount of charged pigment particles and an electrophoresis liquid; to prevent agglomeration of charged particles, the display medium layer is divided into a large number of micro
  • the substructure of the cup or microcapsule forms a microcup or microcapsule layer.
  • the electrophoretic display device is widely used in the field of transmitting static graphic information, such as an electronic book or an electronic newspaper publication, and is a display device whose display performance is closest to paper characteristics; the electrophoretic display device has display content storage property even if it is not powered The display content does not disappear.
  • the particles of the electrophoretic display device have scattering characteristics, and when the image is displayed, particles of different colors scatter or absorb ambient light, which is the same as the characteristics of the paper ink.
  • a particle type electrophoretic display device is one of display devices that can easily realize high reflectance.
  • the electrophoretic display device has the advantages of the paper-like described above and high reflectance, it is difficult to realize a high-quality color image, which limits the wide application of the electrophoretic display device.
  • a color filter film is formed on an electrophoretic display medium, and the color filter film is fixed on the electrophoresis type display medium through an adhesive layer; at this time, the color display of the electrophoretic display device is performed by using external light. After the color filter film, the white charged particles in the electrophoresis liquid reflect the external light, and then pass through the color filter film to perform color reproduction and display.
  • Such a color picture realization method has a problem that the color reproduction efficiency of the color filter film is low, so that the electrophoretic display device is affected in light color saturation and brightness performance.
  • color display can be realized by using particles of a plurality of colors, but there is a problem that the movement characteristics of a plurality of charged pigment particles are difficult to control.
  • the electrophoresis speed varies with the type, particle size and concentration of the charged particles, the strength, distribution and direction of the applied electric field, and the type of electrophoresis liquid (electrophoresis liquid). The factors have different behaviors, so the trajectory of the particles is difficult to control, and it is very difficult to achieve a stable color display device.
  • electrophoresis speed varies with the type, particle size and concentration of the charged particles, the strength, distribution and direction of the applied electric field, and the type of electrophoresis liquid (electrophoresis liquid). The factors have different behaviors, so the trajectory of the particles is difficult to control, and it is very difficult to achieve a stable color display device.
  • the present invention is directed to the above problems, and develops a subtractive mixed color electrophoresis type display device and a method of fabricating the same.
  • a subtractive color mixing electrophoresis type display device comprising:
  • a pixel array having a plurality of pixel units
  • the display electrode array formed on an upper surface of the second substrate;
  • the display electrode array has a plurality of display electrodes; each display electrode and the at least three common electrodes respectively constitute a driving electrode of each pixel unit;
  • Each of the pixel units includes:
  • microcup layer disposed between the display electrode and the common electrode; the microcup layer includes at least one microcup structure; when there are a plurality of microcup structures, a plurality of microcup structures are formed by the microcup wall;
  • the display medium includes an electrophoretic fluid and charged particles dispersed in the electrophoretic fluid; an electric field can be formed between the display electrode and different common electrodes, the charging The particles move in the electrophoresis liquid according to the direction of the electric field; the charged particles include at least four kinds;
  • the three charged pigment particles comprise charged cyan particles, charged magenta particles and charged yellow particles;
  • the volume of the microcup structure is less than 10 7 ⁇ m 3 ; the length direction of the microcup structure is perpendicular to the length direction of the common electrode; the length of the microcup structure is the same as the width of each common electrode The difference between them is less than 50 ⁇ m;
  • an electric field having different directions and strengths is formed between each display electrode and different common electrodes
  • the upper surface of the second substrate is further provided with a plurality of TFT driving units respectively connected to the display electrodes; the axial direction of each common electrode is the same as the gate electrode lead or the source of the TFT driving unit. The direction of the pole leads is the same;
  • the microcup layer is in direct contact with the display electrode or the common electrode or is separated by an insulating film
  • the length or width of the display electrode, the difference between the width and the width of each common electrode is less than 50 ⁇ m;
  • the common electrode is rectangular, or adjacent edges of different common electrodes are provided with mutually symmetrical irregular structures; the irregular structure has a plurality of inner concave portions and a plurality of outer convex portions;
  • Each of the common electrodes is transferred to each of the transfer electrodes formed on the upper surface of the second substrate;
  • the pixel unit When the charged white particles in each microcup structure of a pixel unit cover the common electrodes, the pixel unit forms a white color
  • the pixel unit When the charged cyan particles in each microcup structure of a pixel unit cover the common electrodes, the pixel unit forms a cyan color;
  • the pixel unit When the charged magenta particles in each microcup structure of a pixel unit cover the common electrodes, the pixel unit forms a magenta color;
  • the pixel unit When the charged yellow particles in each microcup structure of a pixel unit cover the common electrodes, the pixel unit forms a yellow color
  • the number of the common electrodes is three, respectively, the first electrode, the second electrode, and the third electrode;
  • the product of the light transmittance of the charged cyan particles in the microcup structure and the area of the common electrode covered, the product of the transmittance of the charged magenta particles and the area of the common electrode covered, and the transmittance of the charged yellow particles is equal;
  • the pixel unit When any two of the charged cyan particles, the charged magenta particles, and the charged yellow particles in the microcup structure of a certain pixel unit and the charged white particles respectively cover different common electrodes, the pixel unit correspondingly forms red, green or blue. color;
  • the pixel unit is formed into a plurality of different ones. colour;
  • the at least two The pixel units are correspondingly formed in red, green or blue.
  • a method of manufacturing a subtractive color mixing electrophoresis type display device comprising the steps of:
  • each microcup structure of each pixel unit forms a micro across at least three common electrodes Cup layer
  • first alignment identifier and the second alignment identifier aligning the first alignment identifier with at least three common electrodes, and aligning the second alignment identifier with the display electrode array, thereby using the first substrate and the second substrate Alignment lamination
  • a plurality of TFT driving units respectively connected to the display electrodes are formed on the upper surface of the second substrate, and at least three transfer electrodes are formed, and at least three are formed.
  • An anisotropic conductive film or an anisotropic conductive paste is printed on the transfer electrode.
  • the present invention provides a subtractive mixed color electrophoretic display device and a method for fabricating the same, wherein a display electrode corresponds to the movement of charged particles between three common electrodes, so that a pixel unit space can be used least.
  • the number of charged particles reduces the particle concentration, achieves high-brightness color display of multiple colors, and increases the refresh rate.
  • the present invention fully mixes at least four charged pigment particles on at least three common electrodes in a single pixel unit, ensuring display stability and high brightness color reproduction.
  • FIG. 1 is a hierarchical schematic view of an electrophoretic display device according to the present invention.
  • FIG. 2 is a schematic plan view of the electrophoretic display device of the present invention.
  • Fig. 6 is a view showing an example of the edge structure of the common electrode of the present invention.
  • first substrate 2, second substrate, 3, display electrode, 4, first electrode, 5, second electrode, 6, third electrode, 7, microcup structure, 8, microcup wall, 9, electrophoresis liquid, 10, first transfer electrode, 11, second transfer electrode, 12, third transfer electrode, 13, TFT drive unit, 14, gate electrode lead, 15, source electrode lead, 16, insulation Film, 17, sealant.
  • a subtractive color mixing electrophoresis type display device includes: a pixel array having a plurality of pixel units; and a first substrate 1 and a plurality of opposite substrates a second substrate 2; at least three common electrodes formed on a lower surface of the first substrate 1; a display electrode array formed on an upper surface of the second substrate 2; the display electrode array having a plurality of display electrodes 3; The electrode 3 and the at least three common electrodes respectively constitute a driving electrode of each pixel unit; each of the pixel units includes: a microcup layer disposed between the display electrode 3 and the common electrode; The layer comprises at least one microcup structure 7; when there are a plurality of microcup structures 7, a plurality of microcup structures 7 are formed by the microcup wall 8; a display medium placed in the microcup structure 7; the display medium comprises And an electrophoretic liquid 9 and charged particles dispersed in the electrophor
  • a method of manufacturing a subtractive color mixing electrophoresis type display device comprising the steps of: forming a display electrode array on the upper surface of the second substrate 2 and a first alignment position opposite to at least three common electrodes Marking; forming at least three common electrodes on the lower surface of the first substrate 1 and a second alignment mark opposite to the display electrode array; forming a microcup wall 8 and a microcup structure 7 on the lower surface of the at least three common electrodes, And filling the electrophoresis liquid 9 and the charged particles in the microcup structure 7; each microcup structure 7 of each pixel unit forms a microcup layer across at least three common electrodes; using the first alignment mark and the second alignment mark, Aligning the first alignment mark with at least three common electrodes, aligning the second alignment mark with the display electrode array, and then laminating the first substrate 1 and the second substrate 2 in alignment; further, After the display electrode array is formed on the upper surface of the second substrate 2, a plurality of TFT driving units 13 respectively connected
  • the space formed between the microcup structure 7 of the present invention and the first substrate 1 and the second substrate 2 can ensure that the charged particles do not aggregate; when the electrophoretic liquid 9 is freely moved in a space of 10 7 ⁇ m 3 or longer, the length is long.
  • the microcup structure 7 included in the pixel unit is a plurality of microcup structures 7 parallel to each other, each microcup
  • the length direction of the structure 7 is perpendicular to the length direction of the common electrode; the length of the microcup structure 7 is less than 50 ⁇ m from the width and width of the common electrodes, which does not affect the free movement of the charged particles and prevents agglutination. A phenomenon occurs.
  • the invention shows that the electrodes 3 and the different common electrodes respectively form electricity with different directions and strengths.
  • Field when the number of common electrodes of a certain pixel unit is three, between the display electrode 3 and the first electrode 4, between the display electrode 3 and the second electrode 5, and between the display electrode 3 and the third electrode 6.
  • the electric fields having different directions and strengths are respectively formed; each pair of electrodes can form positive and negative electric fields, and the electric fields of each polarity can have different electric field strengths. Therefore, the electrophoretic display device of the present invention can set various electric field environments.
  • the brightness of the charged particles is inversely proportional to the area of the common electrode at the upper end of the microcup structure 7 to achieve sufficient and balanced subtractive color mixing.
  • the area of the display electrode 3 and the area of each common electrode are equal or similar; the areas of the different common electrodes may be equal or unequal; the shape of the common electrode may be rectangular, different common electrodes Adjacent edges are provided with mutually symmetrical irregular structures; the irregular structure has a plurality of inner concave portions and a plurality of outer convex portions, such as zigzag, semicircular or rectangular spaces spaced apart from each other; the electrophoretic display device further a sealant 17 disposed at an edge of the first substrate 1 and the second substrate 2, the sealant 17 for sealing the first substrate 1 and the second substrate 2; the common electrode being a transparent electrode, thus attached to The charged particles on the common electrode reflect the ambient light to realize image display; the higher the transmittance of the common electrode, the higher the reflectivity of the display device; the common electrode can be made of ITO material, PEDOT material, graphene or nano silver The wire material is made of the same; the display electrode 3 is a transparent electrode or a non-transparent electrode,
  • any of the charged particles in each of the microcup structures 7 can freely move between the display electrode 3 and the different common electrodes, specifically, as in the display electrode 3 and the first electrode 4, between the display electrode 3 and the second electrode 5, and between the display electrode 3 and the third electrode 6; each common electrode is transferred to each transfer electrode formed on the upper surface of the second substrate 2 Specifically, the first electrode 4 is transferred onto the first transfer electrode 10 formed on the upper surface of the second substrate 2, and the second electrode 5 is transferred to the surface formed on the upper surface of the second substrate 2.
  • the third electrode 6 is transferred onto the third transfer electrode 12 formed on the upper surface of the second substrate 2, where it can pass through an anisotropic conductive film, an anisotropic conductive paste, or
  • the epoxy resin having metal spherical particles is transferred, thereby transferring the fine electrode between the first substrate 1 and the second substrate 2; the first electrode 4 and the second transfer electrode 11 and the third transfer electrode 12 is isolated by at least one insulating film 16; the second electricity 5 is separated from the first transfer electrode 10 and the third transfer electrode 12 by at least one insulating film 16; at least one of the third electrode 6 and the first transfer electrode 10 and the second transfer electrode 11
  • the insulating film 16 is isolated; the repeatedly arranged common electrode and the transfer electrode are mutually orthogonally the most convenient transfer mode; when the first transfer electrode 10, the second transfer electrode 11, and the third transfer electrode 12 are both displayed When one side of the zone is formed, an insulating film 16 needs to be formed on two of the transfer electrodes to isolate the The two transfer electrodes are not corresponding to the common electrode; specifically
  • FIG. 1 shows the present invention.
  • a hierarchical schematic diagram of an electrophoretic display device wherein I represents the level of the common electrode, such as the first electrode 4, the second electrode 5, and the third electrode 6, and II represents the microcup structure 7, the electrophoretic fluid 9 and the charged particles, III. , IV and V represent the layers of the transfer electrode, the display electrode 3, the TFT driving unit 13, the source electrode lead 15, and the gate electrode lead 14, wherein III represents a transfer electrode, IV represents a display electrode 3, and V represents a TFT driving unit 13.
  • the present invention shows that the electrophoretic speed of the medium is related to the type and concentration of the charged particles.
  • the particles can move between the display electrode 3 and the common electrode, which can improve the contribution of each particle to the display reflection and reduce the concentration of the particles.
  • each common electrode When the charged white particles in each microcup structure 7 of a certain pixel unit cover each common electrode When the pixel unit forms a white color; when the charged cyan particles in each microcup structure 7 of a certain pixel unit cover the common electrodes, the pixel unit forms a cyan; when a certain pixel unit is in each microcup structure 7 When the charged magenta particles cover each common electrode, the pixel unit forms a magenta color; when the charged yellow particles in each microcup structure 7 of a pixel unit cover the common electrodes, the pixel unit forms a yellow color;
  • Each of the above colors can cover the entire pixel unit, and the color saturation and color brightness are optimized under the same concentration and resolution;
  • the pixel unit When any two of the charged cyan particles, the charged magenta particles, and the charged yellow particles in the microcup structure 7 of a certain pixel unit and the charged white particles respectively cover different common electrodes, the pixel unit correspondingly forms red, green or Blue; adjusts the gray of red, green, and blue by white to achieve richer color performance; charged white particles, charged cyan particles, charged magenta particles, and charged yellow in each microcup structure 7 of a pixel unit When any two or three of the particles respectively cover different common electrodes, the pixel unit correspondingly forms a plurality of different colors, and although there is a gap with the full color display, the types of colors are already rich; for at least two pixel units, When any two of the charged cyan particles, the charged magenta particles, and the charged yellow particles included in different pixel units respectively cover different common electrodes, the at least two pixel units respectively form red, green or blue, and thus can be in two Or color mixing between multiple pixel units, such as CMCMCM or CYCYCY or MY
  • the electrophoretic display device of the present invention corresponds to a common electrode of one display electrode 3 in the prior art, or a charged particle movement between three common electrodes through one display electrode 3 compared to a combination of two or more sub-pixels. Therefore, the minimum number of charged particles can be used in one pixel unit space, the particle concentration is reduced, high-brightness color display of multiple colors is realized, and the refresh rate is improved.
  • one active electrode and two common electrodes have limitations in color mixing mode, and three or two active electrodes correspond to one passive electrode, and the subtractive mixed color display needs to be adjusted on the upper and lower substrates, and the TFT has a large aperture ratio.
  • the effect of the present invention is not obtained by affecting the brightness of the electrophoretic display device.
  • the present invention fully mixes at least four charged pigment particles on at least three common electrodes in a single pixel unit, ensuring display stability and high brightness color reproduction.
  • the display principle of the electrophoretic display device of the present invention is further illustrated by a specific application example.
  • the structure and resolution of the subtractive color mixing are further illustrated.
  • the size of the display device, the type of the substrate, And variations and changes in the setting of the storage capacitor are obvious; specifically, a subtractive color mixing electrophoretic display device has a resolution of 200 ppi, a pixel unit size of 127 x 127 ⁇ m, a microcup layer height of 80 ⁇ m, and an opening of the TFT driving unit 13.
  • the rate is designed according to 72%, and the display electrode 3 is approximately (67x67+60x120) ⁇ m.
  • the common electrodes are designed according to the equal area, and the specific size is Lx40 ⁇ m 2 , where L is the length of the common electrode in the pattern area, which is equal to the number of pixel units multiplied. 127 ⁇ m, the area of each pixel unit is 127 ⁇ 40 ⁇ m 2 ; there are three common electrodes, which are the first electrode 4, the second electrode 5 and the third electrode 6, respectively, and the spacing between the common electrodes is 2.3 ⁇ m, specifically, The distance between the first electrode 4 and the third electrode 6 and the third electrode 6 and the first electrode 4 adjacent to the pixel unit is also 2.3 ⁇ m.
  • each pixel unit is composed of two microcup structures 7, the microcup structure 7 is a zigzag shape, the center size is 127x63.5 ⁇ m, the microcup wall 8 is shared between adjacent pixel units, and the display medium is on the microcup wall 8.
  • the substrate and the resin insulating film are closed; the mixed solution of the electrophoretic liquid 9 and the charged particles is in direct contact with the common electrode, and the axial directions of the first electrode 4, the second electrode 5, and the third electrode 6 are aligned with the direction of the gate electrode lead 14;
  • An example of an edge structure of a common electrode is shown.
  • adjacent edges of different common electrodes are provided with mutually symmetrical irregular structures;
  • the irregular structure has a plurality of inner concave portions and a plurality of outer convex portions, as shown in FIG.
  • the mutually symmetric irregular structures are arranged so that the mixing area is more, the color mixing effect is more balanced, and the optimal subtractive color mixing effect is achieved; the first electrode 4, the second electrode 5, and the third electrode 6 are made of ITO electrode material.
  • display electrodes 3 made of aluminum electrode; set to double-sided transfer electrode, the third electrode 6, an insulating layer 4 of the first electrode and the insulating layer 13 TFT same drive unit may be a SiNx or SiO 2;
  • the microcup layer comprises a microcup wall 8, an electrophoretic fluid 9 and charged particles, each microcup structure 7 having a charged white particle, a charged cyan particle, a charged magenta particle and a charged yellow particle; the above application example utilizes an active
  • the driving electrode and the three or more common electrodes realize subtractive color mixing of at least cyan (C), magenta (M), and yellow (Y) colors, and realize color display together with white charged particles.
  • the present invention provides an electrophoretic display device with low cost, high brightness and high color saturation.

Abstract

一种减法混色电泳型显示装置及其制造方法,所述显示装置包括:具有多个像素单元的像素阵列;相对设置的第一基板(1)和第二基板(2);形成于第一基板(1)下表面的至少三个公共电极;形成于第二基板(2)上表面的显示电极阵列;各显示电极(3)和所述至少三个公共电极相应构成各像素单元的驱动电极;每一所述像素单元包括:设置于所述显示电极(3)与所述公共电极之间的微杯层;所述微杯层包括至少一个微杯结构(7);当微杯结构(7)有多个时,多个微杯结构(7)由微杯壁(8)形成;置于所述微杯结构(7)中的显示介质;所述显示介质包括电泳液(9)和分散于所述电泳液(9)中的带电粒子。实现了多种颜色的高亮度彩色显示,提高刷新速率,保证了显示的稳定性和高亮度的彩色再现。

Description

一种减法混色电泳型显示装置及其制造方法 技术领域
本发明涉及一种电泳型显示装置,具体为一种减法混色电泳型显示装置及其制造方法。
背景技术
电泳型显示装置(Electrophoretic Display;EPD)的原理是采用通过直流电场使带电颜料粒子定向运动的方式来显示图像。电泳型显示装置的基本结构是在两个电极之间填充显示介质层,其由一定厚度和一定量的带电颜料粒子和电泳液组成;为防止带电粒子凝集,将显示介质层分割成大量的微杯状或微胶囊的亚结构,形成微杯层或微胶囊层。当电压施加在两个电极上形成电场时,粒子将会沿着或逆着电场方向移动,直到基板电极上停止运动。由于带电粒子和电泳液具有相似的密度,可以长时间的停留在某一位置,这是电泳型显示装置具有存储性的理论基础。
电泳型显示装置广泛地应用于传递静态图文信息的领域,例如电子书或电子报纸出版品,是显示性能最接近纸张特性的显示装置;电泳型显示装置具有显示内容存储性,即使不加电显示内容也不消失。电泳型显示装置的粒子具有散射特性,显示图像时是不同颜色的粒子散射或吸收环境光,与纸张油墨的特性相同。与反射型液晶显示装置相比,粒子型的电泳型显示装置是容易实现高反射率的显示装置之一。虽然电泳型显示装置具备上述类纸的优势和高反射率,但是由于高质量彩色的画面不易实现,限制了电泳型显示装置的广泛应用。现有技术中,通过在电泳型显示介质上制作彩色滤光薄膜,并且通过粘着层来将彩色滤波薄膜固定于电泳型显示介质上;此时,电泳型显示装置的色彩呈现是利用外界光通过彩色滤光膜后,电泳液中的白色带电粒子将外界光反射后,再穿透彩色滤光薄膜进行色彩再现而显示。这种彩色画面实现方式具有彩色滤光膜的色彩再现效率低的问题,使得电泳型显示装置在光色彩饱和度和亮度表现上受到影响。另外,使用多种颜色的粒子,也可以实现彩色显示,但是存在多种带电颜料粒子的移动特性难以控制的问题。电泳速度会随着带电粒子的种类、粒径和浓度,外加电场的强弱、分布和方向,以及电泳液(电泳液)的种类等 因素而有不同的行为,因此粒子的运行轨迹难以控制,实现稳定的彩色显示装置十分不易。综上所述,实现具有良好的色彩饱和度和亮度的电泳型彩色显示还有许多技术问题需要克服。
发明内容
本发明针对以上问题的提出,而研制一种减法混色电泳型显示装置及其制造方法。
本发明的技术手段如下:
一种减法混色电泳型显示装置,包括:
具有多个像素单元的像素阵列;
相对设置的第一基板和第二基板;
形成于所述第一基板下表面的至少三个公共电极;
形成于所述第二基板上表面的显示电极阵列;所述显示电极阵列具有多个显示电极;各显示电极和所述至少三个公共电极相应构成各像素单元的驱动电极;
每一所述像素单元包括:
设置于所述显示电极与所述公共电极之间的微杯层;所述微杯层包括至少一个微杯结构;当微杯结构有多个时,多个微杯结构由微杯壁形成;
置于所述微杯结构中的显示介质;所述显示介质包括电泳液和分散于所述电泳液中的带电粒子;所述显示电极与不同的公共电极之间均能够形成电场,所述带电粒子根据电场方向在电泳液中移动;所述带电粒子至少包括4种;
进一步地,当带电粒子有4种时,包括一种带电白色粒子和三种带电颜料粒子;
进一步地,三种带电颜料粒子包括带电青色粒子、带电品红色粒子和带电黄色粒子;
进一步地,所述微杯结构的体积小于107μm3;所述微杯结构的长度方向垂直于所述公共电极的长度方向;所述微杯结构的长度,同各公共电极的宽度和之间的差小于50μm;
进一步地,各显示电极与不同公共电极之间分别形成具有不同方向和强度的电场;
进一步地,所述第二基板上表面还设置有多个与各显示电极分别连接的TFT驱动单元;各公共电极的轴线方向均与所述TFT驱动单元的门电极引线或源电 极引线的方向一致;
所述微杯层与所述显示电极、公共电极直接接触或通过绝缘薄膜隔离;
所述显示电极的长度或宽度,同各公共电极的宽度和之间的差小于50μm;
所述公共电极为矩形,或者不同公共电极的相邻边缘上均设置有相互对称的不规则结构;所述不规则结构具有多个内凹部和多个外凸部;
各公共电极分别转印到形成于所述第二基板上表面的各转印电极上;
进一步地,
当某一像素单元各微杯结构中的带电白色粒子对各公共电极均进行覆盖时,该像素单元形成白色;
当某一像素单元各微杯结构中的带电青色粒子对各公共电极均进行覆盖时,该像素单元形成青色;
当某一像素单元各微杯结构中的带电品红色粒子对各公共电极均进行覆盖时,该像素单元形成品红色;
当某一像素单元各微杯结构中的带电黄色粒子对各公共电极均进行覆盖时,该像素单元形成黄色;
进一步地,当所述公共电极的数量为3个时,分别为第一电极、第二电极和第三电极;
当某一像素单元各微杯结构中的带电青色粒子覆盖3个所述公共电极的其中一个,带电品红色粒子和带电黄色粒子分别覆盖另外两个公共电极时,该像素单元形成黑色;
各微杯结构中的带电青色粒子的透光率与其覆盖的公共电极的面积之积、带电品红色粒子的透光率与其覆盖的公共电极的面积之积、以及带电黄色粒子的透光率与其覆盖的公共电极的面积之积均相等;
当某一像素单元各微杯结构中的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种,与带电白色粒子分别覆盖不同公共电极时,则该像素单元相应形成红色、绿色或蓝色;
当某一像素单元各微杯结构中的带电白色粒子、带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种或三种分别覆盖不同公共电极时,则该像素单元相应形成多种不同颜色;
针对至少两个像素单元,通过不同像素单元所包括的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种分别覆盖不同公共电极时,所述至少两 个像素单元相应形成红色、绿色或蓝色。
一种如上任一项所述的一种减法混色电泳型显示装置的制造方法,包括如下步骤:
在第二基板上表面形成显示电极阵列和与至少三个公共电极相对位的第一对位标识;
在第一基板下表面形成至少三个公共电极和与显示电极阵列相对位的第二对位标识;
在至少三个公共电极的下表面上形成微杯壁和微杯结构,并在微杯结构中填充电泳液和带电粒子;每一像素单元的各微杯结构横跨至少3个公共电极形成微杯层;
利用第一对位标识和第二对位标识,将第一对位标识与至少三个公共电极对位,将第二对位标识与显示电极阵列对位,进而将第一基板和第二基板对位贴合层压;
进一步地,在第二基板上表面形成显示电极阵列后,还在第二基板上表面形成多个与各显示电极分别连接的TFT驱动单元,以及形成至少3个转印电极,并在至少3个转印电极上印刷各向异性导电膜或者异方向性导电胶。
由于采用了上述技术方案,本发明提供的一种减法混色电泳型显示装置及其制造方法,通过一个显示电极对应三个公共电极之间的带电粒子移动,使得一个像素单元空间内可以使用最少的带电粒子数,降低了粒子浓度,实现多种颜色的高亮度彩色显示,提高刷新速率。本发明在单一像素单元内的至少三个公共电极上,至少4种带电颜料粒子充分混色,保证了显示的稳定性和高亮度的彩色再现。
附图说明
图1是本发明所述电泳型显示装置的分层次示意图;
图2是本发明所述电泳显示装置的俯视示意图;
图3、图4和图5是本发明所述微杯结构的剖面示意图;
图6是本发明所述公共电极的边缘结构示例图。
图中:1、第一基板,2、第二基板,3、显示电极,4、第一电极,5、第二电极,6、第三电极,7、微杯结构,8、微杯壁,9、电泳液,10、第一转印电极,11、第二转印电极,12、第三转印电极,13、TFT驱动单元,14、门电极引线,15、源电极引线,16、绝缘薄膜,17、密封胶。
具体实施方式
如图1、图2、图3、图4、图5和图6示出的一种减法混色电泳型显示装置,包括:具有多个像素单元的像素阵列;相对设置的第一基板1和第二基板2;形成于所述第一基板1下表面的至少三个公共电极;形成于所述第二基板2上表面的显示电极阵列;所述显示电极阵列具有多个显示电极3;各显示电极3和所述至少三个公共电极相应构成各像素单元的驱动电极;每一所述像素单元包括:设置于所述显示电极3与所述公共电极之间的微杯层;所述微杯层包括至少一个微杯结构7;当微杯结构7有多个时,多个微杯结构7由微杯壁8形成;置于所述微杯结构7中的显示介质;所述显示介质包括电泳液9和分散于所述电泳液9中的带电粒子;所述显示电极3与不同的公共电极之间均能够形成电场,所述带电粒子根据电场方向在电泳液9中移动;所述带电粒子至少包括4种;进一步地,当带电粒子有4种时,包括一种带电白色粒子和三种带电颜料粒子;进一步地,三种带电颜料粒子包括带电青色粒子、带电品红色粒子和带电黄色粒子;进一步地,所述微杯结构7的体积小于107μm3;所述微杯结构7的长度方向垂直于所述公共电极的长度方向;所述微杯结构7的长度,同各公共电极的宽度和之间的差小于50μm;进一步地,各显示电极3与不同公共电极之间分别形成具有不同方向和强度的电场;进一步地,所述第二基板2上表面还设置有多个与各显示电极3分别连接的TFT驱动单元13;各公共电极的轴线方向均与所述TFT驱动单元13的门电极引线14或源电极引线15的方向一致;所述微杯层与所述显示电极3、公共电极直接接触或通过绝缘薄膜16隔离;所述显示电极3的长度或宽度,同各公共电极的宽度和之间的差小于50μm;所述公共电极为矩形,或者不同公共电极的相邻边缘上均设置有相互对称的不规则结构;所述不规则结构具有多个内凹部和多个外凸部;各公共电极分别转印到形成于所述第二基板2上表面的各转印电极上;进一步地,当某一像素单元各微杯结构7中的带电白色粒子对各公共电极均进行覆盖时,该像素单元形成白色;当某一像素单元各微杯结构7中的带电青色粒子对各公共电极均进行覆盖时,该像素单元形成青色;当某一像素单元各微杯结构7中的带电品红色粒子对各公共电极均进行覆盖时,该像素单元形成品红色;当某一像素单元各微杯结构7中的带电黄色粒子对各公共电极均进行覆盖时,该像素单元形成黄色;进一步地,当所述公共电极的数量为3个时,分别为第一电极4、第二电极5和第三电极6;当某一像素单元各微杯结构7中的带电青色粒子覆盖3个所述公共 电极的其中一个,带电品红色粒子和带电黄色粒子分别覆盖另外两个公共电极时,该像素单元形成黑色;各微杯结构7中的带电青色粒子的透光率与其覆盖的公共电极的面积之积、带电品红色粒子的透光率与其覆盖的公共电极的面积之积、以及带电黄色粒子的透光率与其覆盖的公共电极的面积之积均相等;当某一像素单元各微杯结构7中的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种,与带电白色粒子分别覆盖不同公共电极时,则该像素单元相应形成红色、绿色或蓝色;当某一像素单元各微杯结构7中的带电白色粒子、带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种或三种分别覆盖不同公共电极时,则该像素单元相应形成多种不同颜色;针对至少两个像素单元,通过不同像素单元所包括的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种分别覆盖不同公共电极时,所述至少两个像素单元相应形成红色、绿色或蓝色。
一种如上任一项所述的一种减法混色电泳型显示装置的制造方法,包括如下步骤:在第二基板2上表面形成显示电极阵列和与至少三个公共电极相对位的第一对位标识;在第一基板1下表面形成至少三个公共电极和与显示电极阵列相对位的第二对位标识;在至少三个公共电极的下表面上形成微杯壁8和微杯结构7,并在微杯结构7中填充电泳液9和带电粒子;每一像素单元的各微杯结构7横跨至少3个公共电极形成微杯层;利用第一对位标识和第二对位标识,将第一对位标识与至少三个公共电极对位,将第二对位标识与显示电极阵列对位,进而将第一基板1和第二基板2对位贴合层压;进一步地,在第二基板2上表面形成显示电极阵列后,还在第二基板2上表面形成多个与各显示电极3分别连接的TFT驱动单元13,以及形成至少3个转印电极,并在至少3个转印电极上印刷各向异性导电膜或者异方向性导电胶。
本发明所述微杯结构7与第一基板1、第二基板2之间构成的空间能够保证所述带电粒子不凝集;当电泳液9在107μm3以上的空间内自由移动后,长时间放置会发生带电粒子凝集的现象;基于这种原因,当像素单元过大时,要使得该像素单元所包括的微杯结构7为多个相互平行的多个微杯结构7,各微杯结构7的长度方向垂直于所述公共电极的长度方向;所述微杯结构7的长度,同各公共电极的宽度和之间的差小于50μm,既不影响带电粒子自由移动,又能防止凝集现象发生。
本发明显示电极3与不同公共电极之间分别形成具有不同方向和强度的电 场;当某一像素单元的公共电极的数量为3个时,显示电极3与第一电极4之间、显示电极3与第二电极5之间、以及显示电极3与第三电极6之间分别形成具有不同方向和强度的电场;每对电极可以形成正负两种电场,每种极性的电场又可以有不同的电场强度,因此本发明所述电泳型显示装置能够设置多种电场环境来驱动粒子移动;带电粒子的亮度与其所在微杯结构7上端的公共电极的面积成反比,以实现充分和均衡的减法混色。
本发明在一个像素单元内,显示电极3的面积与各公共电极的面积和相等或相近;不同公共电极的面积可以相等也可以不相等;所述公共电极的形状可以为矩形,不同公共电极的相邻边缘设置有相互对称的不规则结构;所述不规则结构具有多个内凹部和多个外凸部,如锯齿形、彼此间隔的半圆形或矩形等;所述电泳型显示装置还包括置于第一基板1和第二基板2边缘位置的密封胶17,所述密封胶17用于将第一基板1和第二基板2进行密封;所述公共电极为透明电极,这样附着于公共电极上的带电粒子,对环境光进行反射,进而实现图像显示;公共电极的透过率越高,显示装置的反射率越高;公共电极可以由ITO材料、PEDOT材料、石墨烯或纳米银线材料等制成;显示电极3是透明电极或非透明电极均可,当与有源器件相连时,使用金属电极可以降低成本,减少光刻次数,并降低生产工艺的复杂程度;各微杯结构7中的任一种带电粒子均能自由的在显示电极3与不同公共电极之间移动,具体地,如在显示电极3和第一电极4之间、显示电极3和第二电极5之间、以及显示电极3和第三电极6之间移动;各公共电极分别转印到形成于所述第二基板2上表面的各转印电极上;具体地,第一电极4转印到形成于所述第二基板2上表面的第一转印电极10上,第二电极5转印到形成于所述第二基板2上表面的第二转印电极11上,第三电极6转印到形成于所述第二基板2上表面的第三转印电极12上,这里可以通过各向异性导电膜、异方向性导电胶、或添加有金属球状粒子的环氧树脂胶进行转印,进而实现微细电极在第一基板1和第二基板2之间转移;所述第一电极4与第二转印电极11、第三转印电极12之间通过至少一个绝缘薄膜16隔离;所述第二电极5与第一转印电极10、第三转印电极12之间通过至少一个绝缘薄膜16隔离;所述第三电极6与第一转印电极10、第二转印电极11之间通过至少一个绝缘薄膜16隔离;重复排列的公共电极和转印电极,相互正交是最方便的转印方式;当第一转印电极10、第二转印电极11、第三转印电极12均位于显示区一侧时,需要在其中两个转印电极上形成绝缘薄膜16,以隔离该 两个转印电极非对应的公共电极;具体地,可以将第一电极4延伸到最外侧,与第一转印电极10通过各向异性导电膜实现导电连接,第一电极4跨越第二转印电极11、第三转印电极12时产生交叉点,需要隔离避免相互干扰,在第二转印电极11、第三转印电极12上形成绝缘膜;同样地,第二电极5延伸到第一电极4、第三电极6之间,第二电极5跨越第三转印电极12时也产生交叉点,同样需要隔离避免相互干扰,在第三转印电极12上形成绝缘膜;当第一转印电极10、第二转印电极11、第三转印电极12分别位于显示区两侧时,需要在一个转印电极上形成绝缘膜,隔离该转印电极非对应的公共电极,具体地,可以把第一电极4延伸到最外侧,与第一转印电极10通过各向异性导电膜实现导电连接,第一电极4一侧跨越第二转印电极11、第三转印电极12时产生一个交叉点,需要隔离避免相互干扰,在第二转印电极11、第三转印电极12上形成绝缘膜,另一侧无非对应电极相交,不产生交叉点;当第一转印电极10、第二转印电极11、第三转印电极12分别位于显示区域三侧时,形成阵列的公共电极走线复杂,也有交叉点,效果明显差于单侧或双侧的情形;图1示出了本发明所述电泳型显示装置的分层次示意图,其中Ⅰ表示公共电极所在层次,如第一电极4、第二电极5和第三电极6,Ⅱ表示微杯结构7、电泳液9和带电粒子所在层次,Ⅲ、Ⅳ和Ⅴ表示转印电极、显示电极3、TFT驱动单元13、源电极引线15、以及门电极引线14所在层次,其中Ⅲ表示转印电极,Ⅳ表示显示电极3,Ⅴ表示TFT驱动单元13、源电极引线15、以及门电极引线14;图3和图4中示出的C表示青色、M表示品红色、Y表示黄色、W表示白色;图5示出的箭头用于示意显示电极3与不同公共电极之间的电场方向。
本发明显示介质的电泳速度与带电粒子的种类和浓度有关,在有限的空间内,粒子可以在显示电极3和公共电极之间移动,可以提高每个粒子对显示反射的贡献,降低粒子的浓度,改进电泳速度,进一步提高电泳型显示装置的刷新速率;在多个像素单元均为黑色的情况下,要保证各像素单元的带电颜料粒子的排列顺序相同,以达到最后的减法混色效果;各微杯结构7中的带电青色粒子的透光率与其覆盖的公共电极的面积之积、带电品红色粒子的透光率与其覆盖的公共电极的面积之积、以及带电黄色粒子的透光率与其覆盖的公共电极的面积之积均相等,形成最佳的减法混色效果,达到纯黑的显示特性,提高显示装置对比度;
当某一像素单元各微杯结构7中的带电白色粒子对各公共电极均进行覆盖 时,该像素单元形成白色;当某一像素单元各微杯结构7中的带电青色粒子对各公共电极均进行覆盖时,该像素单元形成青色;当某一像素单元各微杯结构7中的带电品红色粒子对各公共电极均进行覆盖时,该像素单元形成品红色;当某一像素单元各微杯结构7中的带电黄色粒子对各公共电极均进行覆盖时,该像素单元形成黄色;上述每种颜色可以覆盖整个像素单元,在相同浓度和分辨率的条件下,色彩饱和度和色彩亮度实现最优化;
当某一像素单元各微杯结构7中的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种,与带电白色粒子分别覆盖不同公共电极时,则该像素单元相应形成红色、绿色或蓝色;通过白色调整红色、绿色和蓝色的灰度,实现更丰富的色彩表现;当某一像素单元各微杯结构7中的带电白色粒子、带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种或三种分别覆盖不同公共电极时,则该像素单元相应形成多种不同颜色,尽管与全彩色显示有差距,但是色彩的种类已经很丰富;针对至少两个像素单元,通过不同像素单元所包括的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种分别覆盖不同公共电极时,所述至少两个像素单元相应形成红色、绿色或蓝色,进而能在两个或多个像素单元之间混色,如CMCMCM或CYCYCY或MYMYMY,其中C表示青色、M表示品红色、Y表示黄色,进而MY形成红色、CY形成绿色、CM形成蓝色,这样能实现更高的色彩饱和度和亮度,例如,其中CMCMCM的情况是其中一个像素单元各微杯结构7的第一电极4和第二电极5被带电青色粒子所覆盖,第三电极6被带电品红色粒子所覆盖,另外一个像素单元各微杯结构7的第一电极4和第三电极6被带电品红色粒子所覆盖,第二电极5被带电青色粒子所覆盖。
本发明所述电泳型显示装置与现有技术中的一个显示电极3对应一个公共电极,或两个以上子像素的组合相比,通过一个显示电极3对应三个公共电极之间的带电粒子移动,使得一个像素单元空间内可以使用最少的带电粒子数,降低了粒子浓度,实现多种颜色的高亮度彩色显示,提高刷新速率。其中,一个有源电极和两个公共电极在混色方式上有局限性,三个或两个有源电极对应一个无源电极,为减法混色显示需要将电极在上下基板对调,TFT的开口率严重的影响电泳型显示装置的亮度,无法获得本发明的有益效果。本发明在单一像素单元内的至少三个公共电极上,至少4种带电颜料粒子充分混色,保证了显示的稳定性和高亮度的彩色再现。
下面通过具体的应用示例来进一步说明本发明所述电泳型显示装置的显示原理,针对减法混色的结构和解析度进一步举例说明,对于本领域一般技术人员而言,显示装置的尺寸、基板类型、以及存储电容的设置等诸多变异与改变为显而易见的;具体地,一个减法混色电泳型显示装置,解析度为200ppi,像素单元的尺寸为127x127μm,微杯层高度为80μm,TFT驱动单元13的开口率按照72%设计,显示电极3大约为(67x67+60x120)μm,各公共电极按照等面积设计,具体尺寸为Lx40μm2,其中L是公共电极在图形区的长度,等于像素单元的个数乘以127μm,每个像素单元的面积是127x40μm2;设置公共电极有3个,分别为第一电极4、第二电极5和第三电极6,公共电极之间的间距为2.3μm,具体地,第一电极4与第三电极6,同邻接像素单元的第三电极6和第一电极4的间距也是2.3μm,依次类推;每个像素单元由两个微杯结构7组成,微杯结构7为日字形,中心尺寸为127x63.5μm,相邻像素单元之间共用微杯壁8,显示介质被微杯壁8上基板和树脂绝缘膜封闭;电泳液9和带电粒子的混合液与公共电极直接接触,第一电极4、第二电极5和第三电极6的轴线方向与门电极引线14的方向一致;图6示出了公共电极的边缘结构示例图,具体地,不同公共电极的相邻边缘设置有相互对称的不规则结构;所述不规则结构具有多个内凹部和多个外凸部,如图6示出的锯齿形,单个像素单元的锯齿个数可以灵活设计,第一电极4和第三电极6可以单侧边缘具有锯齿,第二电极5的双侧边缘具有锯齿,通过公共电极相邻边缘设置的相互对称的不规则结构,使得混合区域更多,混色效果更均衡,以达到最佳的减法混色效果;第一电极4、第二电极5和第三电极6采用ITO电极材料制成;显示电极3采用铝电极制成;转印电极设为双侧,第三电极6、第一电极4的绝缘层与TFT驱动单元13中的绝缘层相同,可以是SiNx或SiO2;微杯层包括微杯壁8、电泳液9和带电粒子,每个微杯结构7中具有一种带电白色粒子、带电青色粒子、带电品红色粒子和带电黄色粒子;上述应用实例利用一个有源驱动电极和3个以上公共电极,实现至少由青色(C)、品红色(M)、黄色(Y)色系的减法混色,与白色带电粒子一起实现彩色显示。本发明提供了一种低成本、高亮度和高色彩饱和度的电泳型显示装置。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护 范围之内。

Claims (10)

  1. 一种减法混色电泳型显示装置,其特征在于所述显示装置包括:
    具有多个像素单元的像素阵列;
    相对设置的第一基板和第二基板;
    形成于所述第一基板下表面的至少三个公共电极;
    形成于所述第二基板上表面的显示电极阵列;所述显示电极阵列具有多个显示电极;各显示电极和所述至少三个公共电极相应构成各像素单元的驱动电极;
    每一所述像素单元包括:
    设置于所述显示电极与所述公共电极之间的微杯层;所述微杯层包括至少一个微杯结构;当微杯结构有多个时,多个微杯结构由微杯壁形成;
    置于所述微杯结构中的显示介质;所述显示介质包括电泳液和分散于所述电泳液中的带电粒子;所述显示电极与不同的公共电极之间均能够形成电场,所述带电粒子根据电场方向在电泳液中移动;所述带电粒子至少包括4种。
  2. 根据权利要求1所述的一种减法混色电泳型显示装置,其特征在于当带电粒子有4种时,包括一种带电白色粒子和三种带电颜料粒子。
  3. 根据权利要求2所述的一种减法混色电泳型显示装置,其特征在于三种带电颜料粒子包括带电青色粒子、带电品红色粒子和带电黄色粒子。
  4. 根据权利要求1所述的一种减法混色电泳型显示装置,其特征在于所述微杯结构的体积小于107μm3;所述微杯结构的长度方向垂直于所述公共电极的长度方向;所述微杯结构的长度,同各公共电极的宽度和之间的差小于50μm。
  5. 根据权利要求1所述的一种减法混色电泳型显示装置,其特征在于各显示电极与不同公共电极之间分别形成具有不同方向和强度的电场。
  6. 根据权利要求1所述的一种减法混色电泳型显示装置,其特征在于所述第二基板上表面还设置有多个与各显示电极分别连接的TFT驱动单元;各公共电极的轴线方向均与所述TFT驱动单元的门电极引线或源电极引线的方向一致;
    所述微杯层与所述显示电极、公共电极直接接触或通过绝缘薄膜隔离;
    所述显示电极的长度或宽度,同各公共电极的宽度和之间的差小于50μm;
    所述公共电极为矩形,或者不同公共电极的相邻边缘上均设置有相互对称 的不规则结构;所述不规则结构具有多个内凹部和多个外凸部;
    各公共电极分别转印到形成于所述第二基板上表面的各转印电极上。
  7. 根据权利要求3所述的一种减法混色电泳型显示装置,其特征在于,
    当某一像素单元各微杯结构中的带电白色粒子对各公共电极均进行覆盖时,该像素单元形成白色;
    当某一像素单元各微杯结构中的带电青色粒子对各公共电极均进行覆盖时,该像素单元形成青色;
    当某一像素单元各微杯结构中的带电品红色粒子对各公共电极均进行覆盖时,该像素单元形成品红色;
    当某一像素单元各微杯结构中的带电黄色粒子对各公共电极均进行覆盖时,该像素单元形成黄色。
  8. 根据权利要求3所述的一种减法混色电泳型显示装置,其特征在于当所述公共电极的数量为3个时,分别为第一电极、第二电极和第三电极;
    当某一像素单元各微杯结构中的带电青色粒子覆盖3个所述公共电极的其中一个,带电品红色粒子和带电黄色粒子分别覆盖另外两个公共电极时,该像素单元形成黑色;
    各微杯结构中的带电青色粒子的透光率与其覆盖的公共电极的面积之积、带电品红色粒子的透光率与其覆盖的公共电极的面积之积、以及带电黄色粒子的透光率与其覆盖的公共电极的面积之积均相等;
    当某一像素单元各微杯结构中的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种,与带电白色粒子分别覆盖不同公共电极时,则该像素单元相应形成红色、绿色或蓝色;
    当某一像素单元各微杯结构中的带电白色粒子、带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种或三种分别覆盖不同公共电极时,则该像素单元相应形成多种不同颜色;
    针对至少两个像素单元,通过不同像素单元所包括的带电青色粒子、带电品红色粒子和带电黄色粒子的任意两种分别覆盖不同公共电极时,所述至少两个像素单元相应形成红色、绿色或蓝色。
  9. 一种如权利要求1至8任一项所述的一种减法混色电泳型显示装置的制造方法,其特征在于所述制造方法包括如下步骤:
    在第二基板上表面形成显示电极阵列和与至少三个公共电极相对位的第一 对位标识;
    在第一基板下表面形成至少三个公共电极和与显示电极阵列相对位的第二对位标识;
    在至少三个公共电极的下表面上形成微杯壁和微杯结构,并在微杯结构中填充电泳液和带电粒子;每一像素单元的各微杯结构横跨至少3个公共电极形成微杯层;
    利用第一对位标识和第二对位标识,将第一对位标识与至少三个公共电极对位,将第二对位标识与显示电极阵列对位,进而将第一基板和第二基板对位贴合层压。
  10. 根据权利要求9所述的一种减法混色电泳型显示装置的制造方法,其特征在于在第二基板上表面形成显示电极阵列后,还在第二基板上表面形成多个与各显示电极分别连接的TFT驱动单元,以及形成至少3个转印电极,并在至少3个转印电极上印刷各向异性导电膜或者异方向性导电胶。
PCT/CN2016/108988 2016-04-20 2016-12-08 一种减法混色电泳型显示装置及其制造方法 WO2017181694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187033322A KR102088385B1 (ko) 2016-04-20 2016-12-08 감법 혼색 전기영동형 표시장치 및 그의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201620335114.6 2016-04-20
CN201610247573.3A CN105785686A (zh) 2016-04-20 2016-04-20 一种减法混色电泳型显示装置及其制造方法
CN201610247573.3 2016-04-20
CN201620335114.6U CN205563034U (zh) 2016-04-20 2016-04-20 一种减法混色电泳型显示装置

Publications (1)

Publication Number Publication Date
WO2017181694A1 true WO2017181694A1 (zh) 2017-10-26

Family

ID=60115597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108988 WO2017181694A1 (zh) 2016-04-20 2016-12-08 一种减法混色电泳型显示装置及其制造方法

Country Status (2)

Country Link
KR (1) KR102088385B1 (zh)
WO (1) WO2017181694A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050976A1 (en) * 2000-11-02 2002-05-02 Fuji Xerox Co., Ltd. Image display medium, Image display device, and image display method
CN101002129A (zh) * 2004-07-27 2007-07-18 伊英克公司 电光显示器
CN103309115A (zh) * 2013-05-30 2013-09-18 京东方科技集团股份有限公司 彩色电泳显示面板及其制造方法、显示装置
US20140078576A1 (en) * 2010-03-02 2014-03-20 Sipix Imaging, Inc. Electrophoretic display device
TW201541171A (zh) * 2014-01-14 2015-11-01 電子墨水加利福尼亞有限責任公司 全彩顯示裝置
CN105785686A (zh) * 2016-04-20 2016-07-20 大连东方科脉电子股份有限公司 一种减法混色电泳型显示装置及其制造方法
CN205563034U (zh) * 2016-04-20 2016-09-07 大连东方科脉电子股份有限公司 一种减法混色电泳型显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW556044B (en) * 2001-02-15 2003-10-01 Sipix Imaging Inc Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
JP5083095B2 (ja) * 2007-08-10 2012-11-28 富士ゼロックス株式会社 画像表示媒体及び画像表示装置
US20140293398A1 (en) * 2013-03-29 2014-10-02 Sipix Imaging, Inc. Electrophoretic display device
EP2987024B1 (en) * 2013-04-18 2018-01-31 E Ink California, LLC Color display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050976A1 (en) * 2000-11-02 2002-05-02 Fuji Xerox Co., Ltd. Image display medium, Image display device, and image display method
CN101002129A (zh) * 2004-07-27 2007-07-18 伊英克公司 电光显示器
US20140078576A1 (en) * 2010-03-02 2014-03-20 Sipix Imaging, Inc. Electrophoretic display device
CN103309115A (zh) * 2013-05-30 2013-09-18 京东方科技集团股份有限公司 彩色电泳显示面板及其制造方法、显示装置
TW201541171A (zh) * 2014-01-14 2015-11-01 電子墨水加利福尼亞有限責任公司 全彩顯示裝置
CN105785686A (zh) * 2016-04-20 2016-07-20 大连东方科脉电子股份有限公司 一种减法混色电泳型显示装置及其制造方法
CN205563034U (zh) * 2016-04-20 2016-09-07 大连东方科脉电子股份有限公司 一种减法混色电泳型显示装置

Also Published As

Publication number Publication date
KR20180132899A (ko) 2018-12-12
KR102088385B1 (ko) 2020-03-12

Similar Documents

Publication Publication Date Title
TWI589976B (zh) 彩色顯示裝置
US8077374B2 (en) Display devices using electrochromism and polymer dispersed liquid crystal and methods of driving the same
KR101232146B1 (ko) 전기영동 표시장치
WO2011058725A1 (ja) 表示装置及びその製造方法
US20030214479A1 (en) Display device employing electrophoretic migration
WO2019161642A1 (zh) 一种彩色显示器件
US20110304652A1 (en) Electronic display
US20150160526A1 (en) Color electrophoretic display panel and fabricating method thereof, and display device
KR20090073903A (ko) 컬러 epd 장치의 화소배치방법
CN106154639A (zh) 一种液晶显示面板及液晶显示装置
WO2021136008A1 (zh) 液晶盒及电子设备
JP2002214650A (ja) 電気泳動表示装置
CN101246292B (zh) 电子纸装置及其制造方法
CN205563034U (zh) 一种减法混色电泳型显示装置
CN105785686A (zh) 一种减法混色电泳型显示装置及其制造方法
US11442327B2 (en) Display panel
WO2023226712A1 (zh) 显示面板及其制备方法、电子设备
JP5593207B2 (ja) カラー表示装置
US6952305B2 (en) Electrophoretic display
WO2017181694A1 (zh) 一种减法混色电泳型显示装置及其制造方法
KR101865803B1 (ko) 전기 영동 표시 장치 및 이의 구동 방법
JP3931550B2 (ja) 電気泳動表示装置
CN208044270U (zh) 一种彩色显示器件
KR20090020239A (ko) 전기 영동 장치 및 그 제조방법
CN210051987U (zh) 一种区块型多色显示电泳显示装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187033322

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899274

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16899274

Country of ref document: EP

Kind code of ref document: A1