WO2021125917A1 - Whep 도메인 융합에 의한 목적 단백질의 수용성 증진 방법 - Google Patents
Whep 도메인 융합에 의한 목적 단백질의 수용성 증진 방법 Download PDFInfo
- Publication number
- WO2021125917A1 WO2021125917A1 PCT/KR2020/018837 KR2020018837W WO2021125917A1 WO 2021125917 A1 WO2021125917 A1 WO 2021125917A1 KR 2020018837 W KR2020018837 W KR 2020018837W WO 2021125917 A1 WO2021125917 A1 WO 2021125917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target protein
- protein
- peptide
- eprs
- trs
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/555—Interferons [IFN]
- C07K14/565—IFN-beta
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y601/00—Ligases forming carbon-oxygen bonds (6.1)
- C12Y601/01—Ligases forming aminoacyl-tRNA and related compounds (6.1.1)
- C12Y601/01015—Proline--tRNA ligase (6.1.1.15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y601/00—Ligases forming carbon-oxygen bonds (6.1)
- C12Y601/01—Ligases forming aminoacyl-tRNA and related compounds (6.1.1)
- C12Y601/01017—Glutamate-tRNA ligase (6.1.1.17)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/35—Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18522—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/18011—Comoviridae
- C12N2770/18022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24111—Flavivirus, e.g. yellow fever virus, dengue, JEV
- C12N2770/24122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- the present invention relates to a fusion protein for enhancing the expression efficiency of a target protein. More specifically, the WHEP domain of hEPRS (Glutamyl-prolyl-tRNA synthetase from human) (WHEP domains TRS-1, TRS-2, TRS-3 located in the middle of the EPRS protein and a linker connecting the three domains) ) is about When the WHEP domain of hEPRS according to the present invention is used as a fusion protein for expression of the target protein in E. coli, the water solubility of the target protein is improved.
- hEPRS Glutamyl-prolyl-tRNA synthetase from human
- Proteins produced by biotechnology can generally be divided into pharmaceutical and research proteins such as immunomodulatory and enzyme inhibitors and hormones, and industrial proteins such as diagnostic proteins or reactive additive enzymes. Development and industrialization are being promoted.
- E. coli which has well-known genetic information, has established various vector systems, and has the advantage of rapidly culturing at high concentrations in a relatively inexpensive medium, is diverse for research or commercial purposes. is being used sparingly.
- E. coli In the production of recombinant proteins in E. coli, various expression vectors with strong inducible promoters have been developed and used for the production of foreign proteins.
- E. coli when E. coli is used as a host cell, the protein to be prepared is degraded by proteolytic enzymes in E. coli in many cases, resulting in a low yield. It is known that this tendency is severe especially in the expression of a small-sized polypeptide with a molecular weight of 10 kDa or less. have.
- E. coli often forms insoluble aggregates (inclusion bodies) when overexpressing recombinant proteins because protein transcription and translation occur almost simultaneously, and in the case of polypeptides expressed as aggregates, they are folded.
- the intermediate is formed with other protein impurities (chaperon, ribosome, initiator, etc.) of the host cell by intermolecular disulfide bond or hydrophobic interaction.
- protein impurities chaperon, ribosome, initiator, etc.
- the purity in the aggregate of the target polypeptide is lowered by non-selective binding.
- a denaturant such as guanidine hychloride or urea
- the present inventors conducted a study to confirm the water solubility enhancing ability of the WHEP domain as a fusion protein.
- TRS-1 and TRS-2 having only one WHEP domain, and multiple WHEP domains comprising three WHEP domains (TRS-1, TRS-2, TRS-3) and a linker (referred to as EPRS) called) was produced.
- EPRS a linker
- TRS-1, TRS-2, and EPRS were used as fusion proteins and Green Fluorescent Protein (GFP) was used as the target protein to compare water solubility.
- GFP Green Fluorescent Protein
- IFN-b Interferon beta
- Tev protease Tev protease
- LTB Heat-labile enterotoxin subunit B
- Another object of the present invention is to provide a configuration of a WHEP domain that can significantly increase the water solubility of a target protein.
- Another object of the present invention is to provide a recombinant microorganism transformed with the expression vector or inserted with a gene construct, and a method for producing a recombinant protein using the same.
- a peptide for enhancing the expression efficiency of a target protein comprising the sequence of a domain isolated from human glutamyl-prolyl tRNA synthetase (hEPRS, human Glutamyl-prolyltRNA synthetase).
- the domain comprises TRS-1 (SEQ ID NO: 1) and TRS-2 (SEQ ID NO: 2), most preferably the domain comprises TRS-1 (SEQ ID NO: 1) and TRS-2 (SEQ ID NO: 2).
- the peptide of the present invention may further include a linker sequence to link the respective sequences of the domains, and the linker sequence may be represented by SEQ ID NO: 3.
- the peptide may further include a tag sequence for enhancing the expression efficiency of the target protein.
- the target protein may be one or more selected from the group consisting of antigens, antibodies, cell receptors, enzymes, structural proteins, serum and cellular proteins, and the antigen is novel coronavirus (SARS-CoV-2), One or more types may be selected from the group consisting of hemagglutinin (HA) of influenza virus, respiratory syncytial virus (RSV), and Nipha virus.
- the antigen is Respiratory Syncytial Virus (RSV).
- the present invention also provides a polynucleotide encoding the peptide.
- a polynucleotide encoding a target protein and a polynucleotide encoding the peptide according to any one of claims 1 to 8 linked to the 5'-end of the polynucleotide encoding the target protein.
- a host cell transformed with the expression vector and the host cell may be E. coli.
- the present invention provides a method for producing a water-soluble target protein, the method comprising: (A) a polynucleotide encoding the target protein and the peptide of any one of claims 1 to 5 linked to the 5'-end of the polynucleotide Preparing an expression vector comprising a nucleotide encoding the; (B) introducing the expression vector into a host cell to prepare a transformant; and (C) culturing the transformant to induce expression of the recombinant target protein and obtaining it.
- the method for producing a recombinant protein using the WHEP domain as a fusion partner according to the present invention is useful for developing and producing various target proteins for medical and industrial use by improving the water solubility and expression rate of the target protein.
- TRS-1 is a plasmid for expression designed to use TRS-1, TRS-2, and EPRS as a fusion protein. It inserts the target protein into the multiple cloning site (MCS), and includes a histidine tag (6X His) for purification, and a Tev protease recognition site (TEV site) for cleavage of the fusion protein and the target protein.
- MCS multiple cloning site
- TSV site Tev protease recognition site
- EPRS 3 is an image measuring the improvement and activity of water-soluble expression of Interferon-beta (IFN-b) by EPRS.
- IFN-b Interferon-beta
- FIG. 5 is an image confirming the improvement of the water-soluble expression of multimeric protein by EPRS.
- the multimeric protein was expressed in E. coli, and the effect of increasing the water-soluble expression rate of the protein by EPRS was additionally confirmed.
- Heat-labile enterotoxin is a protein constituting a pentamer and is known to be difficult to express in E. coli as it is water-soluble.
- the EPRS-fused form significantly increased the water-soluble expression rate than the direct form.
- FIG. 6 is a schematic diagram showing the fusion form of the WHEP domain and ERS.
- the present inventors confirmed that among the fusion proteins including the WHEP domain of hEPRS, EPRS contributed the most to the increase in water solubility, and completed the present invention.
- an expression vector or gene construct for producing a peptide, recombinant protein, or gene construct capable of improving the solubility and folding of a target protein by using the WHEP domain as a fusion partner is provided.
- vector refers to DNA that can be propagated by introducing a desired DNA fragment into a host bacterium in a DNA recombination experiment, and is also referred to as a cloning vehicle. is cleaved with restriction enzymes, etc. to open the ring, and a target DNA fragment is inserted and ligated thereto to be introduced into the host bacteria.
- the vector DNA linking the target DNA fragment is replicated as the host bacteria proliferates, and is distributed to each cystic cell along with the division of the fungus, and the target DNA fragment is maintained from generation to generation.
- a plasmid, Phage chromosomes may be used.
- transformation refers to genetically changing the trait of an individual or cell by DNA, which is a genetic material given from the outside.
- Delivery (introduction) of the vector into a host cell may use a delivery method well known in the art.
- the delivery method may include, but is not limited to, microinjection method, calcium phosphate precipitation method, electroporation method, liposome-mediated transfection method, gene bombardment, etc.), chemical treatment methods such as PEG, A gene gun or the like can be used.
- Culture conditions for culturing the transformant may be appropriately selected and used depending on the host cell. In culture, conditions such as temperature, pH of the medium, and incubation time can be appropriately adjusted to be suitable for cell growth and mass production of proteins.
- a host cell in the present invention a host cell commonly used in the art may be used, preferably Escherichia coli.
- a pGE-LysRS expression vector was used as a protein expression vector (Choi SI et al., Protein solubility and folding enhancement by interaction with RNA, PLoS ONE (2008), 3:e2677).
- pGE-LysRS is regulated by the T7 promoter and the LysRS gene is excised using one of the cleavage sites in Nde1 and MCS (Kpn1-BamH1-EcoRV-Sal1-Hind3), and TRS-1, TRS -2, or EPRS was inserted to make pGE-TRS-1, pGE-TRS-2, and pGE-EPRS expression vectors.
- TRS-1, TRS-2, and EPRS were fused to create a target protein expression vector (FIG. 1).
- target proteins GFP, IFN-b, Tev protease, and LTB were used.
- Expression vectors produced in this way were pGE-GFP, pGE-TRS-1-GFP, pGE-TRS-2-GFP, pGE-EPRS-GFP, pGE-IFN-b, pGE-EPRS-IFN-b, pGE-Tev, pGE-EPRS-Tev, pGE-LTB, and pGE-EPRS-LTB.
- the prepared protein expression vector was transformed into BL21(DE3)-pLysS or SHuffle® T7 competent cells and cultured. All transformed E. coli were cultured in LB medium containing 50 ug/ml of ampicillin, and Escherichia coli containing pLysS was cultured in medium containing 34 ug/ml of chloramphenicol. The culture temperature is different for each protein, and cultured at 16 - 37 °C. When the OD600 value of E.
- IPTG is added at a level of 0 uM to 1 mM to activate the T7 promoter, and from the time IPTG is added so that the protein can be sufficiently produced, at 16 - 37°C for 3 hours, Incubated at 25°C for 5 hours and at 16 - 24°C for about 16 hours.
- E. coli cultured sufficiently was centrifuged to remove the supernatant and then stored.
- 0.3 ml of PBS was added to the E. coli harvest corresponding to 5 ml of LB medium and sonicated to prepare a lysate.
- the lysate was centrifuged and divided into a soluble fraction and a pellet fraction, and the total lysate, soluble fraction, and insoluble fraction were analyzed by SDS-PAGE.
- Tev expression vector was transformed into BL21(DE3)-pLysS competent cells and cultured. All transformed E. coli were cultured in LB containing 50 ug/ml of ampicillin and 34 ug/ml of chloramphenicol.
- IPTG was added at a level of 1 mM to activate the T7 promoter, and incubated for about 6 hours at 30° C. after adding IPTG so that the protein could be sufficiently produced. E. coli cultured sufficiently was centrifuged to remove the supernatant and then stored.
- Green fluorescent protein is known as a protein made insoluble when expressed alone in E. coli.
- GFP Green fluorescent protein
- GFP fused with TRS-2 showed a similar level of fluorescence activity to direct GFP, and GFP fused with TRS-1 and EPRS showed a higher level of fluorescence activity. indicated.
- the activity of IFN-beta expressed in E. coli was measured using HEK-Blue TM IFN- ⁇ / ⁇ Cells (InvivoGen). The experiment was carried out according to the seller's protocol, and briefly summarized as follows. 180 ul of modified HEK-Blue TM IFN- ⁇ / ⁇ Cells suspension and 20 ul of IFN-beta sample were placed in a 96-well plate to observe the signaling pathway by IFN-beta, and incubated overnight at 37°C in 5% CO 2 incubate The next day, 20 ul of supernatant reacted in HEK-Blue TM IFN- ⁇ / ⁇ Cells and 180 ul of QuantiBlue TM solution were mixed, and reacted at 37° C. for 30 minutes to 3 hours. When the reaction was completed, the level was measured with a spectrophotometer at a wavelength of 620 - 655 nm (FIG. 3).
- Interferon beta is also a protein that is expressed insoluble in E. coli, and direct IFN-b without a fusion protein shows a very low soluble expression rate in E. coli.
- EPRS was used as a fusion protein, the fusion protein showed a high water-soluble expression rate.
- IFN-b When the activity of purified IFN-b was measured with HEK-BlueTM IFN- ⁇ / ⁇ Cells (InvivoGen), commercial IFN-b expressed and purified in CHO cells showed the highest activity, and EPRS-fused IFN -b fusion protein showed the next highest activity. Direct IFN-b showed the lowest activity.
- the protease of Tobacco Etch Virus is a protein with high commercial demand, and it is a kind of protein that is difficult to obtain as a recombinant protein in E. coli.
- direct Tev protease showed a low water-soluble expression rate in E. coli, and showed an effect of increasing the water-soluble expression rate when EPRS was fused.
- the expression temperature was lowered (20°C) in E. coli culture, the water-soluble expression rates of both direct Tev protease and EPRS-Tev protease increased, and in particular, EPRS-Tev protease showed more than 90% water-soluble expression rate.
- Vectors created using the receptor-binding domain (RBD) of SARS-CoV-2 (COVID-19) and the relatively large spike subunit 1 (S1) as the target protein are pGE-EPRS-RBD, pGE-EPRS-S1 to be.
- the prepared protein expression vector was transformed into BL21 or HMS174 competent cells, respectively, and cultured. All transformed E. coli were cultured in LB medium containing 50 ug/ml of ampicillin. When the OD600 value of E. coli was 0.5 or more, 0.5 mM IPTG was added to activate the T7 promoter, and then incubated at 16°C for about 16 hours. The cultured E. coli was centrifuged to remove the supernatant and then stored at -80°C. Then, 0.3 ml of lysis buffer [50mM Tris-Cl (pH7.5), 300mM NaCl, 10% glycerol, 2mM beta-mercaptoethanol, 0.1% tween-20] was added to the E.
- lysis buffer 50mM Tris-Cl (pH7.5), 300mM NaCl, 10% glycerol, 2mM beta-mercaptoethanol, 0.1% tween-20
- coli harvest corresponding to 5 ml of LB medium and ultrasonicated Grinding to make a lysate. Then, the lysate was centrifuged and divided into a soluble fraction and a pellet fraction, and the total lysate, soluble fraction, and insoluble fraction were analyzed by SDS-PAGE.
- the sizes of RBD and S1 are 27 kDa and 73 kDa, respectively, and the sizes fused with EPRS are 49 kDa and 95 kDa, respectively (see FIG. 7).
- a vector made using Respiratory syncytial virus (RSV) Fusion(F) as a target protein and bacterioferritin as a scaffold protein for nanoparticles is pGE-EPRS-RSV F-bacterioferritin.
- the prepared protein expression vector was transformed into Shuffle T7 competent cells and cultured. All transformed E. coli were cultured in LB medium containing 50 ug/ml of ampicillin. When the OD600 value of E. coli was 0.5 or more, 0.5 mM IPTG was added to activate the T7 promoter, and then incubated at 20°C for about 6 hours. The cultured E. coli was centrifuged to remove the supernatant and then stored at -80°C. Then, 0.3 ml of lysis buffer [50 mM Tris-Cl (pH7.5), 200 mM NaCl, 10% glycerol, 0.1% tween-20] was added to the E.
- lysis buffer 50 mM Tris-Cl (pH7.5), 200 mM NaCl, 10% glycerol, 0.1% tween-20
- the lysate (lysate) was made. Then, the lysate was centrifuged and divided into a soluble fraction and a pellet fraction, and the total lysate, water soluble fraction, and insoluble fraction were separated and analyzed by SDS-PAGE.
- the size of RSV F-bacterioferritin is 70 kDa, and the size fused with EPRS is 92 kDa (see FIG. 8).
- ED3 domain III
- LLB heat-labile toxin B subunit
- the prepared protein expression vector was transformed into Shuffle T7 competent cells and cultured. All transformed E. coli were cultured in LB medium containing 50 ug/ml of ampicillin. When the OD600 value of E. coli was 0.5 or higher, 1 mM IPTG was added to activate the T7 promoter, and then incubated at 20° C. for about 6 hours. The cultured E. coli was centrifuged to remove the supernatant and then stored at -80°C. Then, 0.3 ml of lysis buffer [50mM Tris-Cl (pH7.5), 300mM NaCl, 10% glycerol] was added to the E.
- lysis buffer 50mM Tris-Cl (pH7.5), 300mM NaCl, 10% glycerol
- LTB-JEVED3 is 24 kDa
- EPRS is 46 kDa
- Example 2-2 protein purification
- the pGE-EPRS-LTB and pGE-EPRS-LTB-JEVED3 expression vectors transformed into Shuffle T7 competent cells were cultured in LB medium containing 50 ug/ml of ampicillin. When the OD600 value of E. coli was 0.5 or higher, IPTG was added at a level of 1 mM, and then incubated at 20° C. for about 6 hours. After sufficiently cultured E. coli was centrifuged to remove the supernatant, it was stored at -80°C.
- a buffer [50mM Tris-Cl (pH7.5), 300mM NaCl, 10% glycerol, 5mM imidazole] was added to the harvested E. coli, followed by sonication to prepare a lysate. Then, the lysate was centrifuged to obtain only an aqueous fraction, and then purified using nickel chromatography. The purified protein was dialyzed into a storage buffer [50mM Tris-Cl (pH7.5), 300mM NaCl, 0.1mM EDTA] ( dialysis) and concentrated using amicon.
- each protein showed a peak in the predicted size of the pentamer (see FIGS. 10 to 12, left panel), and the fraction of the peak was converted to a reduced state with DTT and a non-reduced state without DTT on SDS-PAGE.
- a band appeared in a similar size (see FIGS. 10 to 12, right panel).
- each size is about 60 kDa for LTB, about 230 kDa for EPRS-LTB-JEVED3, and about 125 kDa for LTB-JEVED3. Therefore, it was confirmed that the fusion of EPRS could not only increase the solubility of the target protein in E. coli, but also induce proper folding of the protein, thereby enabling assembly into a multimer.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Virology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 목적 단백질의 발현 효율을 증진시키기 위한 융합 단백질에 관한것이다. 보다 상세하게는, hEPRS(Glutamyl-prolyl-tRNA synthetase from human)의 WHEP 도메인(EPRS 단백질의 중간 부분에 위치한 WHEP 도메인 TRS-1, TRS-2, TRS-3와 세 도메인을 연결하는 링커를 포함함)이다. 본 발명에 따른 hEPRS의 WHEP 도메인은 목적 단백질의 대장균에서의 발현을 위해 융합 단백질로 사용될 때, 목적 단백질의 수용성이 향상되었다.
Description
본 발명은 목적 단백질의 발현 효율을 증진시키기 위한 융합 단백질 에 관한 것이다. 보다 상세하게는, hEPRS(Glutamyl-prolyl-tRNA synthetase from human)의 WHEP 도메인(EPRS 단백질의 중간 부분에 위치한 WHEP 도메인 TRS-1, TRS-2, TRS-3와 세 도메인을 연결하는 링커를 포함함)에 관한 것이다. 본 발명에 따른 hEPRS의 WHEP 도메인은 목적 단백질의 대장균에서의 발현을 위해 융합 단백질로 사용될 때, 목적 단백질의 수용성이 향상되었다.
생명공학 기술에 의해 생산되는 단백질에는 일반적으로 면역 조절 및 효소 저해제 및 호르몬 같은 의약 및 연구용 단백질과 진단용 단백질이나 반응 첨가 효소와 같은 산업용 단백질로 대별될 수 있으며, 이 두 가지 단백질들을 중심으로 생산 공정 기술 개발 및 산업화가 추진되고 있다. 특히 재조합 미생물 기술을 이용하여 유용한 재조합 단백질을 생산할 때, 유전정보가 잘 알려져 있으며 다양한 벡터 시스템을 구축하고 있고, 비교적 값싼 배지에서 빠르게 고농도로 배양할 수 있는 장점을 갖는 대장균이 연구 또는 상업적 목적으로 다양하게 사용되고 있다.
대장균에서 재조합 단백질을 생산함에 있어, 강력한 유도성(inducible) 프로모터를 갖춘 다양한 발현벡터가 개발되어 외래단백질의 생산에 이용되어 왔다. 그러나 숙주세포로 대장균을 이용하는 경우 제조하고자 하는 단백질이 대장균 내의 단백질 분해효소에 의해 분해되어 수율이 낮아지는 경우가 많으며, 특히 분자량이 10kDa 이하의 작은 크기의 폴리펩타이드의 발현에서 이러한 경향이 심한 것으로 알려져 있다. 뿐만 아니라 일반적으로 대장균은 단백질의 전사(transcription)와 전이(translation)가 거의 동시에 일어나기 때문에 재조합 단백질의 과다 발현시 불용성 응집체(inclusion body)를 형성하는 경우가 많으며, 응집체로 발현된 폴리펩타이드의 경우 접힘(folding) 중간체가 분자 상호간의 다이설파이드 결합(intermolecular disulfide bond) 또는 소수성 상호작용(hydrophobic interaction)에 의해 숙주세포의 다른 단백질 불순물들[샤페론(chaperon), 라이보좀(ribosome), 초기인자 등]과 비선택적으로 결합함으로써 목적 폴리펩타이드의 응집체 내 순도가 떨어지는 단점이 있다. 또한 이렇게 발현된 단백질을 활성형으로 만들기 위해서는 구아니딘-하이드로클로라이드(Guanidine hychloride)나 우레아(urea) 같은 변성체를 사용하여 용해시킨 후 희석하는 재접힘(refolding) 과정을 거쳐야하는데 이때 단백질이 활성형으로 접히지 않는 등 생산 수율이 감소하는 문제점이 있다 (Marston FA et al., Biochem J 240(1):1-12, 1986).
본 발명자들은 WHEP 도메인의 융합 단백질로서의 수용성 증진 능력을 확인하는 연구를 진행하였다. 우선적으로, 하나의 WHEP 도메인만을 갖는 TRS-1, TRS-2와, 3개의 WHEP 도메인 (TRS-1, TRS-2, TRS-3) 및 링커를 포함하는 다중 WHEP 도메인 (multiple WHEP domain; EPRS라고 칭함)을 제작하였다. 그리고 세 종류의 융합 단 백질들의 목적 단백질 수용성 증진 능력을 확인해 보았다. 세 융합 단백질들 중 다중 WHEP 도메인의 수용성 증진 능력이 가장 월등함을 확인하게 되었고 본 발명을 완성하게 되었다.
기존에 알려진 대장균에서 수용성 발현이 어려운 단백질들을 발현하기 위하여, 융합 단백질로 TRS-1, TRS-2, EPRS을 사용하고 목적 단백질로 Green Fluorescent Protein (GFP)를 사용하여 수용성을 비교하였다. 확인 결과, hEPRS의 WHEP 도메인을 포함하는 융합 단백질 중에서는 EPRS가 수용성 상승에 가장 크게 기여하는 것으로 확인되었다. EPRS에 의한 수용성 증진 효과는 다른 목적 단백질인 Interferon beta (IFN-b), Tev protease, Heat-labile enterotoxin subunit B (LTB) 을 사용하여 추가적으로 확인되었다.
본 발명의 목적은 WHEP 도메인을 융합파트너로 이용하여 목적 단백질의 수용성 및 접힘을 향상시킬 수 있는 펩타이드, 재조합 단백질 생산용 발현벡터 또는 유전자 구조체(gene construct)를 제공하는데 있다.
본 발명의 다른 목적은 목적단백질의 수용성을 유의적으로 증가시킬 수 있는 WHEP 도메인의 구성을 제공함에 있다.
본 발명의 다른 목적은 상기 발현벡터로 형질전환 되거나 또는 유전자 구조체(gene construct)가 삽입된 재조합 미생물 및 이를 이용한 재조합 단백질의 제조방법을 제공하는데 있다.
본 발명에 따르면 사람 유래 글루타밀-프롤릴 tRNA 합성효소(hEPRS, human Glutamyl-prolyltRNA synthetase)로부터 분리한 도메인의 서열을 포함하는 것을 특징으로 하는 목적 단백질의 발현 효율을 증진시키기 위한 펩타이드가 제공된다.
본 발명의 바람직한 일 실시예에 따르면, 상기 도메인은 TRS-1(서열번호 1) 및 TRS-2(서열번호 2)을 포함하며, 가장 바람직하게는 상기 도메인은 TRS-1(서열번호 1) 및 TRS-2(서열번호 2)을 포함할 수 있다.
본 발명의 상기 펩타이드는 상기 도메인 각각의 서열을 연결하기 위해 링커(Linker) 서열을 더 포함할 수 있으며, 상기 링커 서열은 서열번호 3으로 표시될 수 있다.
또한, 상기 펩타이드는 목적 단백질의 발현 효율을 증진시키기 위한 태그(tag) 서열을 더 포함할 수 있다.
본 발명에서, 상기 목적 단백질은 항원, 항체, 세포수용체, 효소, 구조 단백질, 혈청 및 세포 단백질로 이루어진 군으로부터 1종 이상 선택될 수 있으며, 상기 항원은 신종 코로나바이러스(SARS-CoV-2), 인플루엔자 바이러스의 헤마글루티닌(HA), 호흡기세포융합바이러스(RSV, Respiratory Syncytial Virus) 및 니파바이러스(Nipha virus)로 이루어진 군에서 1종 이상 선택될 수 있다. 본 발명의 가장 바람직한 실시예에 따르면, 상기 항원은 호흡기세포융합바이러스(RSV, Respiratory Syncytial Virus이다.
본 발명은 또한, 상기 펩타이드를 코딩하는 폴리뉴클레오티드를 제공한다.
본 발명의 일 실시예에 따르면, 목적 단백질을 코딩하는 폴리뉴클레오티드; 및 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 5`-말단에 결합된 제1항 내지 제8항 중 어느 한 항에 따른 펩타이드를 코딩하는 폴리뉴클레오티드;를 포함하는 발현벡터가 제공된다.
본 발명의 다른 실시예에 따르면, 상기 발현벡터로 형질전환된 숙주세포가 제공되며, 상기 숙주세포는 대장균(E. coli)일 수 있다.
본 발명은 수용성 목적 단백질의 생산 방법을 제공하며, 해당 방법은 (A) 목적 단백질을 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드의5'-말단에 결합된 제1항 내지 제5항 중 어느 한 항의 펩타이드를 코딩하는 뉴클레오티드를 포함하는 발현 벡터를 제조하는 단계; (B) 상기 발현 벡터를 숙주세포에 도입하여 형질전환체를 제조하는 단계: 및 (C) 상기 형질전환체를 배양하여 재조합 목적 단백질의 발현을 유도하고, 이를 수득하는 단계를 포함할 수 있다.
본 발명에 따른 WHEP 도메인을 융합파트너로 이용한 재조합 단백질의 제조방법은 목적 단백질의 수용성 및 발현율을 향상시켜, 다양한 목적 단백질의 의료용 및 산업용으로 개발 및 생산하는데 유용하다.
도 1은 TRS-1, TRS-2, EPRS를 융합 단백질로 사용하도록 디자인한 발현용 플라스미드. Multiple cloning site (MCS)로 목적 단백질을 삽입하고, 정제를 위한 histidine tag (6X His), 융합 단백질과 목적 단백질의 절단을 위한 Tev protease recognition site (TEV site)를 포함한다.
도 2는 EPRS에 의한 GFP의 수용성 발현 향상 및 활성을 측정한 이미지이다.
도 3은 EPRS에 의한 Interferon-beta (IFN-b)의 수용성 발현 향상 및 활성 측정한 이미지이다.
도 4는 EPRS에 의한 Tev protease의 수용성 발현 향상 및 활성 측정한 이미지이다.
도 5는 EPRS에 의한 multimeric protein의 수용성 발현 향상을 확인한 이미지이다. 그 외에, multimeric 단백질을 대장균 내에서 발현하여, EPRS에 의한 단백질의 수용성 발현율 증가 효과를 추가적으로 확인하였다. Heat-labile enterotoxin은 pentamer를 이루는 단백질로, 마찬가지로 대장균에서 수용성으로 발현이 어려운 것으로 알려져 있다. 이 단백질은 EPRS와 융합하여 발현 확인한 결과, direct form보다 EPRS가 융합된 form이 훨씬 더 수용성 발현율을 증가시키는 것을 확인하였다.
도 6은 WHEP 도메인과 ERS의 융합 형태를 보여주는 모식도이다.
도 7은 본 발명의 일 실시예에 따라 COVID-19의 RBD와 S1과의 EPRS 융합 발현을 확인한 이미지이다.
도 8은 본 발명의 일 실시예에 따라 RSV F-bacterioferritin과의 EPRS 융합 발현을 확인한 이미지이다.
도 9는 본 발명의 일 실시예에 따라 LTB-JEVED3와의 EPRS 융합 발현을 확인한 이미지이다.
도 10은 TEV protease를 처리한 EPRS-LTB의 크기배제 크로마토그래피를 나타낸다.
도 11은 EPRS-LTB-JEVED3의 크기배제 크로마토그래피를 나타낸다.
도 12는 TEV protease를 처리한 EPRS-LTB-JEVED3의 크기배제 크로마토그래피를 나타낸다.
본 발명자들은 hEPRS의 WHEP 도메인을 포함하는 융합 단백질 중에서는 EPRS가 수용성 상승에 가장 크게 기여하는 것으로 확인하고, 본 발명을 완성하였다.
본 발명에 따르면 WHEP 도메인을 융합파트너로 이용하여 목적 단백질의 수용성 및 접힘을 향상시킬 수 있는 펩타이드, 재조합 단백질 생산용 발현벡터 또는 유전자 구조체(gene construct)가 제공된다.
본 발명에서 "벡터(vector)"란, DNA 재조합 실험에 있어서 목적하는 DNA 단편을 숙주균 등에 도입시켜 주고 증식할 수 있는 DNA를 지칭하며, 클로닝 운반체 (cloning vehicle)라고도 하는데, 벡터(vector) DNA는 제한효소 등으로 절단하여 개환하고, 여기에 목적으로 하는 DNA 단편을 삽입하여 연결해 숙주균에 도입시킨다. 목적으로 하는 DNA 단편을 연결한 벡터 DNA는 숙주균이 증식됨에 따라 복제하여 균의 분열과 더불어 각 낭세포로 분배되어 목적으로 하는 DNA 단편을 대대로 유지하여 이어져 나가며, 예를 들어, 플라스미드(plasmid), 파지 염색체를 사용할 수 있다.
상기한 벡터의 선택, 제작, 형질전환 및 재조합 단백질의 발현 등의 방법은, 본원발명이 속하는 기술분야의 당업자라면 용이하게 실시할 수 있으며, 통상의 방법에서 일부의 변형도 본 발명에 포함된다.
본 발명에서 "형질전환(transformation)"이란, 외부로부터 주어진 유전물질인 DNA에 의해 개체 또는 세포의 형질이 유전적으로 변화하는 것을 의미한다.
상기 벡터의 숙주 세포 내로의 운반(도입)은, 당업계에 널리 알려진 운반 방법을 사용할 수 있다. 상기 운반 방법은 예컨대, 미세 주입법, 칼슘 포스페이트 침전법, 전기 천공법, 리포좀-매개 형질감염법, 유전자 밤바드먼트 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.), PEG 등의 화학적 처리 방법, 유전자총(gene gun) 등을 이용할 수 있다.
상기 형질전환체 배양 시의 배양조건은 숙주세포에 따라 관용되는 것을 적당히 선택하여 이용할 수 있다. 배양 시 세포의 생육과 단백질의 대량 생산에 적합하도록 온도, 배지의 pH 및 배양시간 등의 조건들을 적절하게 조절할 수 있다.
본 발명에서 숙주세포는 당업계에서 통상적으로 이용되는 숙주세포를 이용할 수 있으며, 바람직하게는 대장균을 이용할 수 있다.
이하, 본 발명의 도면을 참조하여 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 게시가 완전하도록하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
[실시예 1]
실시예 1-1. 단백질 발현 벡터의 제작
단백질 발현 벡터로 pGE-LysRS 발현 벡터를 사용하였다(Choi SI et al., Protein solubility and folding enhancement by interaction with RNA, PLoS ONE (2008), 3:e2677). pGE-LysRS는 T7 promoter에 의해 발현이 조절되고, LysRS 유전자를 Nde1과 MCS(Kpn1-BamH1-EcoRV-Sal1-Hind3)에 있는 절단 위치 중 하나를 사용하여 잘라 내고, 그 위치에 TRS-1, TRS-2, 또는 EPRS를 삽입하여 pGE-TRS-1, pGE-TRS-2, pGE-EPRS 발현 벡터를 만들었다. 그리고, 각 발현 벡터의 C-말단 위치 에 목적 단백질을 삽입하여, TRS-1, TRS-2, EPRS가 융합된 목적 단백질 발현 벡터를 만들었다 (도 1). 목적 단백질로는 GFP, IFN-b, Tev 프로테아제, LTB가 사용되었다. 이렇게 하여 만들어진 발현 벡터는 pGE-GFP, pGE-TRS-1-GFP, pGE-TRS-2- GFP, pGE-EPRS-GFP, pGE-IFN-b, pGE-EPRS-IFN-b, pGE-Tev, pGE-EPRS-Tev, pGE-LTB, pGE-EPRS-LTB 이다.
실시예 1-2. 단백질 발현 및 SDS-PAGE를 통한 정제 양상 확인
제조된 단백질 발현 벡터를 BL21(DE3)-pLysS 또는 SHuffle® T7 competent cell에 형질전환 시켜 배양하였다. 모든 형질전환 된 대장균은 50 ug/ml 의 암피실린이 포함된 LB 배지에서 배양하였으며, pLysS가 포함된 대장균은 34 ug/ml의 클로람페니콜이 추가되어 있는 배지에서 배양하였다. 배양 온도는 단백질 마다 다르며, 16 - 37℃의 조건에서 배양하였다. 대장균의 OD600 값이 0.5 이상이 되면, T7 프로모터를 활성화 시키기 위해서 IPTG를 0 uM ~ 1 mM 수준으로 넣어주고, 단백질이 충분히 생산될 수 있도록, IPTG를 넣어 준 이후부터 16 - 37℃에서는 3시간, 25℃에서는 5시간, 16 - 24℃에서는 16시간 정도를 배양하였다. 충분히 배양된 대장균은 원심분리하여 상등액을 제거한 후에 보관하였다. 그 다음, LB 배지의 5 ml에 해당되는 대장균 수확물에 PBS 0.3 ml을 넣고 초음파분쇄를 하여, 용해 물(lysate)을 만들었다. 그리고 용해물을 원심분리 하여 수용성 분획(soluble fraction)과 불용성 분획(pellet fraction)으로 나누었고, 총 용해물, 수용성 분획, 불용성 분획을 구분하여 SDS-PAGE로 분석하였다.
실시예 1-3. 단백질 발현 및 정제
제조된 pGE-GFP, pGE-TRS-1-GFP, pGE-TRS-2-GFP, pGE-EPRS-GFP, pGE-IFN-b, pGE-EPRS-IFN-b, pGE-Tev, pGE-EPRS-Tev 발현 벡터를 BL21(DE3)-pLysS 수용성 세포(competent cell)에 형질전환 시켜 배양하였다. 모든 형질전환된 대장균은 50 ug/ml의 암피실린과 34 ug/ml의 클로람페니콜이 포함된 LB에서 배양하였다. 대장균의 OD600 값이 0.5 이상이 되면, T7 프로모터를 활성화시키기 위해서 IPTG를 1 mM 수준으로 넣어 주고, 단백질이 충분히 생산될 수 있도록, IPTG 를 넣어준 이후부터 30℃에서 6시간 정도를 배양하였다. 충분히 배양된 대장균은 원심분리하여 상등액을 제거한 후에 보관하였다.
수확된 대장균에 수확물에 PBS를 넣고 초음파 분쇄를 하여, 용해물을 만들었다. 그리고 용해물을 원심분리를 하여 수용성 분획만을 얻어낸 다음, Ni2+-크로마토그래피법을 이용해 정제하였고, 정제된 단백질은 PBS에 투석 (dialysis)을 하고, Centriprep을 활용해 농축시켰다.
실시예 1-4. GFP 활성 측정
단위 세포당 만들어진 GFP 단백질의 활성을 측정하기 위한 실험을 진행하였다. 단백질 발현 완료 후 원심분리하여 상등액이 제거된 대장균 배양체를 PBS를 넣고 초음파 분쇄하여 용해물을 만들었다. 그 후 용해물을 원심분리하여 수용성 분획만을 얻어낸 다음 분광 광도계로 형광을 측정하여 GFP의 실제 활성을 측정하였다 (도 2).
Green fluorescent protein (GFP)는 대장균 내에서 단독 발현 시 불용성으로 만들어 지는 단백질로 알려져 있다. 융합 단백질이 없이 단독 발현된 direct GFP와 TRS-1, TRS-2, EPRS가 융합된 융합 단백질들을 대장균에서 발현 후 발현 양상을 확인한 결과, 모든 융합 단백질들에서 direct GFP보다 수용성 발현율이 증가되는 양상을 보였고, 특히 EPRS가 융합된 GFP의 수용성 발현율이 매우 높게 증가하는 결과를 확인하였다.
배양 용량 당 발현된 GFP의 활성을 측정한 결과, TRS-2가 융합된 GFP는 direct GFP와 유사한 수준의 형광 활성을 보였으며, TRS-1, EPRS가 융합된 GFP는 더 높은 수준의 형광 활성을 나타내었다.
이를 통해 TRS-1, TRS-2, EPRS에 의해 목적 단백질인 GFP의 수용성 발현량이 증가함을 확인하였고, 만들어진 단백질들의 활성이 있음을 확인했다.
실시예 1-5. IFN-beta 활성 측정
대장균에서 발현된 IFN-beta의 활성은 HEK-BlueTM IFN-α/β Cells (InvivoGen)을 이용하여 측정되었다. 실험은 판매자의 protocol에 맞추어 진행하였 으며, 간단히 정리하면 다음과 같다. 96-well plate에 IFN-beta에 의한 signaling pathway를 관찰할 수 있도록 변형된 HEK-BlueTM IFN-α/β Cells 부유액 180 ul와 IFN-beta sample 20 ul을 넣고 37℃ 5% CO2 배양기에서 overnight 배양한다. 다음 날 HEK-BlueTM IFN-α/β Cells에서 반응이 나타난 supernatant 20ul와 QuantiBlueTM solution 180 ul을 섞고, 37℃에서 30분 ~ 3시간 가량 반응시켰다. 반응이 완료되면 620 - 655 nm의 파장에서 spectrophotometer로 레벨을 측정하였다 (도 3).
Interferon beta(IFN-b) 역시 대장균에서 불용성으로 발현되는 단백질로, 융합 단백질이 없는 direct IFN-b는 대장균에서 수용성 발현율이 매우 낮은 특징을 보인다. EPRS를 융합 단백질로 사용하였을 때, 융합 단백질은 높은 수용성 발현율을 보였다.
정제된 IFN-b의 활성을 HEK-BlueTM IFN-α/β Cells (InvivoGen)로 측정하였을 때, CHO cell에서 발현 및 정제된 commercial IFN-b가 가장 활성이 높게 나타났으며, EPRS가 융합된 IFN-b 융합 단백질의 활성이 그 다음으로 높게 나타났다. Direct IFN-b의 경우 가장 낮은 활성을 보였다.
이를 통해, EPRS에 의해 IFN-b의 수용성 및 활성형 발현이 촉진됨을 확인하였다.
실시예 1-6. Tev protease 활성 측정
대장균에서 발현된 Tev 프로테아제의 활성 측정을 위하여 SensoLyte ® 520 TEV Activity Assay Kit *Fluorimetric* 키트를 사용하였다. 실험은 판매자의 프로토콜에 맞추어 진행하였으며, 간단히 정리하면 다음과 같다. 실험용 Tev 프로테아제와 5-FAM/QXL® 520 TEV 기질을 96 well에 넣고, 형광을 1분마다 측정하였다. 이때 측정하는 형광은 Ex/Em = 490/520 nm로 한다. Tev 프로테아제에 의해 기질이 잘려지면서 형광이 증가하게 되는데, 이를 이용하여 Tev 프로테아제의 활성을 측정하였다 (도 4).
Tobacco Etch Virus (TEV)의 프로테아제는 상업적 수요가 높은 단백질로, 대장균 내에서 재조합 단백질로 얻기 어려운 단백질의 일종이다. 융합 단백질이 없을 때, direct Tev 프로테아제는 대장균에서 낮은 수용성 발현율을 보이고, EPRS를 융합하였을 때 수용성 발현율 상승 효과를 나타내었다. 대장균 배양 시 발 현 온도를 낮추었을 때 (20℃) direct Tev 프로테아제와 EPRS-Tev 프로테아제 모두 수용성 발현율이 증가했고, 특히 EPRS-Tev 프로테아제의 경우 90% 이상의 수용성 발현율을 보였다.
정제한 Tev 프로테아제들의 활성을 Tev 프로테아제 활성 분석 키트 (SensoLyte ® 520 TEV Activity Assay Kit) 로 확인한 결과, direct Tev 프로테아제는 동량임에도 활성이 낮게 측정되었고, 가장 가파르게 효소 활성을 보이는 구조 는 EPRS가 융합된 EPRS-TEV였다.
이를 통해, EPRS에 의한 Tev 프로테아제의 수용성 및 활성형 발현을 확인하였다.
[실시예 2]
실시예 2-1. 단백질 발현 및 SDS-PAGE를 통한 수용성 확인
목적단백질로 SARS-CoV-2(COVID-19)의 receptor-binding domain (RBD)와 상대적으로 크기가 큰 spike subunit 1 (S1)을 사용하여 만들어진 벡터는 pGE-EPRS-RBD, pGE-EPRS-S1이다.
제조된 단백질 발현 벡터를 각각 BL21 또는 HMS174 competent cell에 형질전환 시켜 배양하였다. 모든 형질전환 된 대장균은 50 ug/ml의 암피실린이 포함된 LB 배지에서 배양하였다. 대장균의 OD600 값이 0.5 이상이 되면, T7 프로모터를 활성화 시키기 위해서 IPTG를 0.5 mM로 넣어준 뒤, 16℃에서 16시간 정도를 배양하였다. 배양된 대장균은 원심분리하여 상등액을 제거한 후에 -80℃에 보관하였다. 그 다음, LB 배지의 5 ml에 해당되는 대장균 수확물에 lysis buffer[50mM Tris-Cl(pH7.5), 300mM NaCl, 10% glycerol, 2mM beta-mercaptoethanol, 0.1% tween-20] 0.3 ml을 넣고 초음파분쇄하여, 용해물(lysate)을 만들었다. 그리고 용해물을 원심분리 하여 수용성 분획(soluble fraction)과 불용성 분획(pellet fraction)으로 나누었고, 총 용해물, 수용성 분획, 불용성 분획을 구분하여 SDS-PAGE로 분석하였다. RBD와 S1의 크기는 각각 27 kDa과 73 kDa 이며, EPRS와 융합된 크기는 각각 49 kDa과 95 kDa 이다(도 7 참조).
목적단백질로 Respiratory syncytial virus(RSV) Fusion(F)와 nanoparticle을 위한 scaffold 단백질로서 bacterioferritin을 사용하여 만들어진 벡터는 pGE-EPRS-RSV F-bacterioferritin이다.
제조된 단백질 발현 벡터를 Shuffle T7 competent cell에 형질전환 시켜 배양하였다. 모든 형질전환 된 대장균은 50 ug/ml의 암피실린이 포함된 LB 배지에서 배양하였다. 대장균의 OD600 값이 0.5 이상이 되면, T7 프로모터를 활성화 시키기 위해서 IPTG를 0.5 mM로 넣어준 뒤, 20℃에서 6시간 정도를 배양하였다. 배양된 대장균은 원심분리하여 상등액을 제거한 후에 -80℃에 보관하였다. 그 다음, LB 배지의 5 ml에 해당되는 대장균 수확물에 lysis buffer[50mM Tris-Cl(pH7.5), 200mM NaCl, 10% glycerol, 0.1% tween-20] 0.3 ml을 넣고 초음파분쇄 하여, 용해물(lysate)을 만들었다. 그리고 용해물을 원심분리하여 수용성 분획(soluble fraction)과 불용성 분획(pellet fraction)으로 나누었고, 총 용해물, 수용성 분획, 불용성 분획을 구분하여 SDS-PAGE로 분석하였다. RSV F-bacterioferritin의 크기는 70 kDa 이며, EPRS와 융합된 크기는 92 kDa이다(도 8 참조).
목적단백질로 일본뇌염 바이러스 구조 내 5배축에 pentamer로 존재하며 면역유도에 중요한 역할을 하는 것으로 알려진 envelope protein의 domain III (ED3)와 pentameric scaffold로서 heat-labile toxin B subunit(LTB)를 사용하여 만들어진 벡터는 pGE-EPRS-LTB-JEVED3이다.
제조된 단백질 발현 벡터를 Shuffle T7 competent cell에 형질전환 시켜 배양하였다. 모든 형질전환 된 대장균은 50 ug/ml의 암피실린이 포함된 LB 배지에서 배양하였다. 대장균의 OD600 값이 0.5 이상이 되면, T7 프로모터를 활성화 시키기 위해서 IPTG를 1 mM로 넣어준 뒤, 20℃에서 6시간 정도를 배양하였다. 배양된 대장균은 원심분리하여 상등액을 제거한 후에 -80℃에 보관하였다. 그 다음, LB 배지의 5 ml에 해당되는 대장균 수확물에 lysis buffer[50mM Tris-Cl(pH7.5), 300mM NaCl, 10% glycerol] 0.3 ml을 넣고 초음파분쇄 하여, 용해물(lysate)을 만들었다. 그리고 용해물을 원심분리하여 수용성 분획(soluble fraction)과 불용성 분획(pellet fraction)으로 나누었고, 총 용해물, 수용성 분획, 불용성 분획을 구분하여 SDS-PAGE로 분석하였다. LTB-JEVED3의 크기는 24 kDa이며, EPRS와 융합된 크기는 46 kDa 이다(도 9 참조).
실시예 2-2. 단백질의 정제
Shuffle T7 competent cell에 형질 전환된 pGE-EPRS-LTB, pGE-EPRS-LTB-JEVED3 발현 벡터는 50 ug/ml의 암피실린이 포함된 LB 배지에서 배양하였다. 대장균의 OD600값이 0.5 이상이 되면, IPTG를 1mM 수준으로 넣어준 뒤, 20℃에서 6시간 정도를 배양하였다. 충분히 배양된 대장균은 원심분리 하여 상등액을 제거한 후에 -80℃에 보관하였다.
수확된 대장균에 A buffer [50mM Tris-Cl(pH7.5), 300mM NaCl, 10% glycerol, 5mM imidazole]을 넣고 초음파 분쇄를 하여, 용해물을 만들었다. 그리고 용해물을 원심분리 하여 수용성 분획만을 얻어낸 다음, 니켈 크로마토그래피법을 이용하여 정제하였고, 정제된 단백질은 storage buffer [50mM Tris-Cl(pH7.5), 300mM NaCl, 0.1mM EDTA]에 투석(dialysis)하고, amicon을 활용해 농축하였다.
실시예 2-3. 크기배제 크로마토그래피를 통한 오량체 확인
정제된 EPRS-LTB와 EPRS-LTB-JEVED3 단백질이 오량체 구조 형성을 하는지 검증하기 위하여 Superdex200 increase 10/300 column(GE healthcare)를 이용한 크기배제 크로마토그래피(size-exclusion chromatography; SEC)를 진행하였으며, 크기를 알고 있는 마커 단백질로 calibration을 하여 단백질의 사이즈를 측정하였다. 이 때 사용된 버퍼의 조성은 [50mM Tris-Cl(pH7.5), 300mM NaCl]이다. 단백질은 EPRS가 융합된 것과 TEV protease를 처리하여 EPRS와 목적 단백질 사이에 있는 tev cleavage site가 절단되어 EPRS가 제거된 단백질을 모두 검증하였다. 오량체 크기에서 피크(peak)가 뜬 분획은 SDS-PAGE로 다시 한번 검증하였다.
그 결과, 각각의 단백질은 오량체 예측 사이즈에서 피크를 보였으며(도 10 내지 12 참조, 왼쪽패널), 그 피크의 분획을 SDS-PAGE에 DTT가 있는 reduced 상태와 DTT가 없는 non-reduced 상태로 내려보았을 때, 비슷한 사이즈에서 밴드가 나타남을 확인하였다(도 10 내지 12 참조, 오른쪽패널). 오량체를 이루었을 때 각각의 사이즈는 LTB는 약 60 kDa, EPRS-LTB-JEVED3는 약 230 kDa, LTB-JEVED3는 약 125 kDa이다. 따라서, EPRS의 융합으로 대장균에서 목적 단백질의 수용성을 높일 수 있을 뿐만 아니라, 단백질의 적절한 접힘을 유도함으로써 다량체로의 조립이 가능함을 확인하였다.
서열 번호 1
TRS1
LYNRVAVQGDVVRELKAKKAPKEDVDAAVKQLLSLKAEYKEKTGQEYKPGNPP
서열 번호 2
TRS1
LYDEVAAQGEVVRKLKAEKSPKAKINEAVECLLSLKAQYKEKTGKEYIPGQPP
서열번호 3
TRS3
LFDKVASQGEVVRKLKTEKAPKDQVDIAVQELLQLKAQYKSLIGVEYKP
서열번호 4
AEIGQNISSNSSASILESKS
서열번호 5
LSQSSDSSPTRNSEPAGLETPEAKV
서열번호 6
EPRS sequence
LYNRVAVQGDVVRELKAKKAPKEDVDAAVKQLLSLKAEYKEKTGQEYKPGNPPAEIGQNISSNSSASILESKSLYDEVAAQGEVVRKLKAEKSPKAKINEAVECLLSLKAQYKEKTGKEYIPGQPPLSQSSDSSPTRNSEPAGLETPEAKVLFDKVASQGEVVRKLKTEKAPKDQVDIAVQELLQLKAQYKSLIGVEYKP
서열번호 7
COVID-19 RBD
FTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNF
서열번호 8
COVID-19 S1
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIG
서열번호 9
Heat-labile toxin B subunit(LTB)
APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGETFQVEVPGSQHIDSQKKAIERMKDTLRITYLTETKIDKLCVWNNKTPNSIAAISMKN
서열번호 10
Bacterioferritin
MKGDTKVINYLNKLLGNELVAINQYFLHARMFKNWGLKRLNDVEYHESIDEMKHADRYIERILFLEGLPNLQDLGKLNIGEDVEEMLRSDLALELDGAKNLREAIGYADSVHDYVSRDMMIEILRDEEGHIDWLETELDLIQKMGLQNYLQAQIREEG
서열번호 11
RSV F
QNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPPTNNRARRGGSGGSGGSGFLGFLLGVGSAIASGVAVCKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTFKVLDLKNYIDKQLLPILNKQSCSISNIETVIEFQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMCIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEINLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGMDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL
서열번호 12
JEV Envelope domain III(ED3)
KGTTYGMCTEKFSFAKNPADTGHGTVVIELSYSGSDGPCKIPIVSVASLNDMTPVGRLVTVNPFVATSSANSKVLVEMEPPFGDSYIVVGRGDKQINHHWHKAG
Claims (13)
- 사람 유래 글루타밀-프롤릴 tRNA 합성효소(hEPRS, human Glutamyl-prolyltRNA synthetase)로부터 분리한 도메인의 서열을 포함하는 것을 특징으로 하는 목적 단백질의 발현 효율을 증진시키기 위한 펩타이드.
- 제1 항에 있어서,상기 도메인은 TRS-1(서열번호 1) 및 TRS-2(서열번호 2)을 포함하는 것을 특징으로 하는 펩타이드.
- 제2 항에 있어서,상기 도메인은, TRS-3(서열번호 3)을 더 포함하는, 펩타이드.
- 제1 항에 있어서,상기 펩타이드는 상기 도메인 각각의 서열을 연결하기 위한 링커(Linker) 서열을 더 포함하는 펩타이드.
- 제4 항에 있어서, 상기 링커 서열은 서열번호 4 또는 5로 표시되는 것인, 펩타이드.
- 제1 항에 있어서, 상기 펩타이드는 목적 단백질의 발현 효율을 증진시키기 위한 태그(tag) 서열을 더 포함하는 것을 특징으로 하는 펩타이드.
- 제1 항에 있어서,상기 목적 단백질은 항원, 항체, 세포수용체, 효소, 구조 단백질, 혈청 및 세포 단백질로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 펩타이드.
- 제7 항에 있어서,상기 항원은 신종 코로나바이러스(SARS-CoV-2), 인플루엔자 바이러스의 헤마글루티닌(HA), 호흡기세포융합바이러스(RSV, Respiratory Syncytial Virus) 및 니파바이러스(Nipha virus)로 이루어진 군에서 1종 이상 선택되는 것을 특징으로 하는 펩타이드.
- 제1 항 내지 제8 항 중 어느 한 항에 따른 펩타이드를 코딩하는 폴리뉴클레오티드.
- 목적 단백질을 코딩하는 폴리뉴클레오티드; 및상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 5`-말단에 결합된 제1항내지 제8항 중 어느 한 항에 따른 펩타이드를 코딩하는 폴리뉴클레오티드;를 포함하는 발현벡터.
- 제10 항에 따른 발현벡터로 형질전환된 숙주세포.
- 제11 항에 있어서, 상기 숙주세포는 대장균(E. coli)인 것을 특징으로 하는 숙주세포.
- (A) 목적 단백질을 코딩하는 폴리뉴클레오티드 및 상기 폴리뉴클레오티드의5'-말단에 결합된 제1항 내지 제5항 중 어느 한 항의 펩타이드를 코딩하는 뉴클레오티드를 포함하는 발현 벡터를 제조하는 단계;(B) 상기 발현 벡터를 숙주세포에 도입하여 형질전환체를 제조하는 단계: 및(C) 상기 형질전환체를 배양하여 재조합 목적 단백질의 발현을 유도하고, 이를 수득하는 단계를 포함하는 수용성 목적 단백질의 생산 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/787,277 US20230041904A1 (en) | 2019-12-19 | 2020-12-21 | Method for enhancing water solubility of target protein by whep domain fusion |
CN202080088097.XA CN114829590A (zh) | 2019-12-19 | 2020-12-21 | 通过融合whep结构域来提高靶蛋白的水溶性的方法 |
JP2022537446A JP2023508893A (ja) | 2019-12-19 | 2020-12-21 | Whepドメイン融合による目的タンパク質の水溶性増進方法 |
EP20903722.5A EP4079845A1 (en) | 2019-12-19 | 2020-12-21 | Method for enhancing water solubility of target protein by whep domain fusion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0171057 | 2019-12-19 | ||
KR20190171057 | 2019-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021125917A1 true WO2021125917A1 (ko) | 2021-06-24 |
Family
ID=76478452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/018837 WO2021125917A1 (ko) | 2019-12-19 | 2020-12-21 | Whep 도메인 융합에 의한 목적 단백질의 수용성 증진 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230041904A1 (ko) |
EP (1) | EP4079845A1 (ko) |
JP (1) | JP2023508893A (ko) |
KR (1) | KR20210079235A (ko) |
CN (1) | CN114829590A (ko) |
WO (1) | WO2021125917A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130243745A1 (en) * | 2010-06-01 | 2013-09-19 | Pangu Biopharma Limited | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of lysyl-trna synthetases |
KR20170093731A (ko) * | 2016-02-05 | 2017-08-16 | (주)피앤피바이오팜 | Arsntd를 융합파트너로 이용한 수용성 및 활성형 재조합단백질의 생산방법 및 그 생산물 |
KR20170108880A (ko) * | 2016-03-18 | 2017-09-27 | 연세대학교 산학협력단 | 목적 단백질의 발현 효율을 증진시키기 위한 신규한 펩타이드 및 이를 포함하는 융합 단백질 |
KR20190060024A (ko) * | 2017-11-23 | 2019-06-03 | (주)인테라 | 목적 단백질의 발현 효율을 증진시키기 위한 신규한 펩타이드 및 이를 포함하는 융합 단백질 |
KR102038876B1 (ko) * | 2018-04-24 | 2019-11-01 | (주)인테라 | 목적 단백질의 수용성 발현을 증진시키기 위한 신규한 펩타이드 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011248100B2 (en) * | 2010-05-04 | 2017-01-19 | Pangu Biopharma Limited | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutamyl-prolyl-tRNA synthetases |
-
2020
- 2020-12-21 EP EP20903722.5A patent/EP4079845A1/en active Pending
- 2020-12-21 US US17/787,277 patent/US20230041904A1/en active Pending
- 2020-12-21 CN CN202080088097.XA patent/CN114829590A/zh active Pending
- 2020-12-21 KR KR1020200180321A patent/KR20210079235A/ko not_active Application Discontinuation
- 2020-12-21 JP JP2022537446A patent/JP2023508893A/ja active Pending
- 2020-12-21 WO PCT/KR2020/018837 patent/WO2021125917A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130243745A1 (en) * | 2010-06-01 | 2013-09-19 | Pangu Biopharma Limited | Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of lysyl-trna synthetases |
KR20170093731A (ko) * | 2016-02-05 | 2017-08-16 | (주)피앤피바이오팜 | Arsntd를 융합파트너로 이용한 수용성 및 활성형 재조합단백질의 생산방법 및 그 생산물 |
KR20170108880A (ko) * | 2016-03-18 | 2017-09-27 | 연세대학교 산학협력단 | 목적 단백질의 발현 효율을 증진시키기 위한 신규한 펩타이드 및 이를 포함하는 융합 단백질 |
KR20190060024A (ko) * | 2017-11-23 | 2019-06-03 | (주)인테라 | 목적 단백질의 발현 효율을 증진시키기 위한 신규한 펩타이드 및 이를 포함하는 융합 단백질 |
KR102038876B1 (ko) * | 2018-04-24 | 2019-11-01 | (주)인테라 | 목적 단백질의 수용성 발현을 증진시키기 위한 신규한 펩타이드 |
Non-Patent Citations (3)
Title |
---|
DATABASE Protein GenBank; ANONYMOUS: "EPRS protein, partial [Homo sapiens]", XP055822016, retrieved from NCBI * |
MARSTON FA ET AL., BIOCHEM J, vol. 240, no. 1, 1986, pages 1 - 12 |
SEONG IL CHOI, KYOUNG SIM HAN, CHUL WOO KIM, KI-SUN RYU, BYUNG HEE KIM, KYUN-HWAN KIM, SEO-IL KIM, TAE HYUN KANG, HANG-CHEOL SHIN,: "Protein Solubility and Folding Enhancement by Interaction with RNA", PLOS ONE, vol. 3, no. 7, pages e2677, XP055106439, DOI: 10.1371/journal.pone.0002677 * |
Also Published As
Publication number | Publication date |
---|---|
EP4079845A1 (en) | 2022-10-26 |
KR20210079235A (ko) | 2021-06-29 |
JP2023508893A (ja) | 2023-03-06 |
CN114829590A (zh) | 2022-07-29 |
US20230041904A1 (en) | 2023-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107532190B (zh) | 用于肽生产的融合伴侣 | |
JP4243104B2 (ja) | 重要なタンパク質の細菌培養上清中への分泌のための融合タンパク質 | |
CA2232234A1 (en) | Methods for production of recombinant plasmids | |
EP2075336B1 (en) | Purification of recombinant proteins fused to multiple epitopes | |
KR910007573B1 (ko) | 재조합 유전자 기술에 의한 에라스타제 억제 폴리펩티드 제조방법 및 에라스타제 억제 폴리펩티드 | |
WO2021125917A1 (ko) | Whep 도메인 융합에 의한 목적 단백질의 수용성 증진 방법 | |
EP3301106B1 (en) | Strong secretory signal peptide enhancing small peptide motif and use thereof | |
US20110092424A1 (en) | Production of glucagon like peptide 2 and analogs | |
JPH01160998A (ja) | ポリペプチド | |
US8003348B2 (en) | Method for the mass expression of an antimicrobial peptide by co-expression of a basic antimicrobial peptide and an acidic peptide using a translational coupling system | |
WO2021125866A1 (ko) | 보툴리눔 신경 독소의 안전한 제조 방법 | |
WO2015199441A1 (ko) | 피키아 파스토리스 균주 유래의 목적단백질 분비생산용 단백질융합인자 및 이의 용도 | |
WO2021054774A1 (ko) | 목적 단백질의 수용성 및 열안정성을 증가시키기 위한 태그 단백질 및 이를 포함하는 융합 단백질 | |
WO2020138951A1 (ko) | N-말단의 메티오닌이 절단된 목적 단백질 발현용 유전자 발현 카세트 및 이를 이용하여 n-말단의 메티오닌이 절단된 목적 단백질을 생산하는 방법 | |
WO2021187883A1 (ko) | 인비트로 트랜스크립트 mrna 및 이를 함유하는 약학조성물 | |
WO2020139031A1 (ko) | Crispr-cas를 기반으로 하는 유전자 교정용 조성물 | |
WO2020256372A1 (ko) | 아프리카 돼지열병의 진단을 위한 항원 생산용 재조합 벡터 및 이의 용도 | |
WO2021201405A1 (ko) | 반응성 및 안정성 그리고 항체회수가 향상된 z-도메인 및 칼시퀘스트린 융합단백질 및 이를 이용한 항체의 분리 및 정제 방법 | |
CN111607004B (zh) | 一种在胰蛋白酶酶切过程中选择性保护酶切位点的方法 | |
WO2012033382A2 (ko) | 신규한 rna 결합 단백질 및 이를 이용한 무표지 마이크로 rna 검출방법 | |
JPS63185385A (ja) | プラスミドベクタ− | |
WO2023128639A1 (ko) | 목적 단백질의 발현 방법 | |
WO2023229328A1 (ko) | 바이러스 뉴클레오캡시드를 이용한 목적 단백질 발현 플랫폼 | |
WO2019103512A9 (ko) | 목적 단백질의 발현 효율을 증진시키기 위한 신규한 펩타이드 및 이를 포함하는 융합 단백질 | |
WO2021045292A1 (ko) | Crm197 단백질 발현 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20903722 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022537446 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020903722 Country of ref document: EP Effective date: 20220719 |