WO2015199441A1 - 피키아 파스토리스 균주 유래의 목적단백질 분비생산용 단백질융합인자 및 이의 용도 - Google Patents

피키아 파스토리스 균주 유래의 목적단백질 분비생산용 단백질융합인자 및 이의 용도 Download PDF

Info

Publication number
WO2015199441A1
WO2015199441A1 PCT/KR2015/006429 KR2015006429W WO2015199441A1 WO 2015199441 A1 WO2015199441 A1 WO 2015199441A1 KR 2015006429 W KR2015006429 W KR 2015006429W WO 2015199441 A1 WO2015199441 A1 WO 2015199441A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
hil2
pgapz
ptfp1
pichia pastoris
Prior art date
Application number
PCT/KR2015/006429
Other languages
English (en)
French (fr)
Inventor
손정훈
이초룡
배정훈
성봉현
박순호
임광묵
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2015199441A1 publication Critical patent/WO2015199441A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins

Definitions

  • the present invention is a yeast Pichia pastoris pastoris ) protein fusion factor for protein secretion production, the polynucleotide encoding the protein fusion factor, a recombinant expression vector comprising the same, a transformant comprising the polynucleotide or the recombinant expression vector and the protein fusion factor derived from the strain It relates to a target protein production method used.
  • E. coli and yeast systems are mainly used as a representative microbial gene expression system for the production of recombinant proteins.
  • E. coli has a lot of expression systems and a high expression rate of the protein of interest, when it is desired to recombinantly produce proteins from higher organisms Post-translational modifications, such as glycosylation, are not possible, and cell culture medium is difficult to secrete proteins completely, and folding of proteins with many disulfide bonds is impossible, including inclusion bodies. Disadvantages such as producing insoluble protein forms have been pointed out (Makrides, Microbial Rev., 1996, 60, 512).
  • Eukaryotic microbial yeast Pichia pastoris along with Saccharomyces cerevisiae , is one of the most widely used microorganisms for recombinant protein production. This is easy.
  • recombinantly producing higher cell-derived proteins such as human proteins, they provide the secretion function of secreting proteins out of cells and the post-translational modification of proteins such as sugar chains. do.
  • Secretion production of recombinant proteins is possible through extracellular secretion by artificially fusion of the protein secretion signal and the target protein.
  • Protein secretion process involves the folding of proteins, the formation of disulfide bonds, and the addition of sugar chains. It provides the advantage of producing a recombinant protein with activity. It is also very economical because proteins with biological activity can be obtained directly from the medium and do not require economically inefficient cell grinding or refolding steps (Eckart and Bussineau, Curr. Opin. Biotechnol., 1996, 7, 525).
  • the inventors of the present invention in order to develop a method that can more effectively secrete various target proteins, as a result of careful research, screening protein fusion factors for the production of secreted protein from yeast Pichia pastoris strain ( pichia pastoris ), poor expression
  • yeast Pichia pastoris strain pichia pastoris
  • One object of the present invention is the production of the target protein secretion from the yeast Pichia pastoris strain consisting of at least one amino acid sequence selected from the group consisting of SEQ ID NO: 1, 3, 5, and 13 or fragments thereof It is to provide a protein fusion factor (TFP, translational fusion partner).
  • TFP protein fusion factor
  • Another object of the present invention is to provide an isolated fusion protein with increased secretion capacity in yeast, comprising the protein fusion factor for producing the target protein secretion and the target protein.
  • Still another object of the present invention is to provide a polynucleotide encoding the protein fusion factor.
  • Still another object of the present invention is to provide a transformant comprising the expression vector.
  • Still another object of the present invention is to provide a method for preparing a protein of interest, comprising culturing the yeast into which the expression vector is introduced.
  • the protein fusion factor of the present invention it is possible to produce a large amount of proteins that are difficult to produce in a large amount in yeast by conventional recombination technology, and recombination using a yeast expression system that has not been widely used for recombinant protein expression with low productivity. It can be widely used for the production of proteins.
  • Figure 1 shows a schematic diagram showing the polymerase chain reaction (PCR) and intracellular recombination process for introducing secretory signal genes derived from Pichia pastoris into the pTFP selection vector using an Invertase system.
  • PCR polymerase chain reaction
  • Figure 2 shows a schematic diagram showing the polymerase chain reaction (PCR) and intracellular recombination process for introducing the human secreted interleukin-2 gene, which is a secretory protein into pTFP vectors of various sizes using an Invertase system.
  • PCR polymerase chain reaction
  • Figure 3 shows a schematic diagram showing the polymerase chain reaction (PCR) and intracellular recombination process for introducing the seven selected pTFP-hIL-2 genes to the YGa expression vector for yeast Saccharomyces cerevisiae.
  • PCR polymerase chain reaction
  • FIG. 4 shows YGa / pTFP1-hIL2, YGa / pTFP2-hIL2, YGa / pTFP3-hIL2, YGa / pTFP4-hIL2, YGa / pTFP5-hIL2, YGa / pTFP7-hIL2 and YGa / pTFP8-hIL2 in yeast Y2805 strains, respectively.
  • Fig. 5 shows seven types of commercially available secretion signal pPINK-LC vectors, pGAPZ / MF ⁇ -hIL2, pGAPZ / pTFP1-hIL2, pGAPZ / pTFP2-hIL2, pGAPZ / pTFP3-hIL2, pGAPZ / pTFP4-hIL2, in the yeast Pichia pastoris GS115 strain. And the supernatant of the transformants into which pGAPZ / pTFP8-hIL2 was introduced, respectively, were analyzed by SDS-PAGE.
  • Figure 6 shows saccharomyces cerevisiae and pi with pGAPZ / MF ⁇ -hIL2, pGAPZ / pTFP1-hIL2, pGAPZ / pTFP2-hIL2, pGAPZ / pTFP3-hIL2, pGAPZ / pTFP4-hIL2 and pGAPZ / pTFP8-hIL2, respectively.
  • the degree of expression in chia pastoris was compared by analysis by SDS-PAGE and Western blot.
  • FIG. 7 is a Southern blot for comparing the relative gene copy number of pGAPZ / pTFP1-hIL2 and pGAPZ / pTFP4-hIL2 transformants with high expression of human interleukin-2 protein in pichia (pGAPZ / MF ⁇ -hIL2). Southern blot hybridization analysis results are shown.
  • FIG. 8 shows a schematic diagram of dividing pTFP1 into five types to find an optimal sequence of pTFP1 that can maximize protein expression using pGAPZ / pTFP1-hIL2.
  • Figure 9 shows a schematic diagram showing the polymerase chain reaction (PCR) and intracellular recombination process for introduction into the pGAPZ vector in yeast Pichia pastoris.
  • PCR polymerase chain reaction
  • FIG. 10 is a schematic diagram showing an expression vector of pGAPZ / pTFP1-hIL2 gene that can be expressed in Pichia pastoris.
  • FIG. 11 is a schematic diagram showing an expression vector of pGAPZ / pTFP4-hIL2 gene that can be expressed in Pichia pastoris.
  • FIG. 12 shows pGAPZ / pTFP1-1-hIL2, pGAPZ / pTFP1-2-hIL2, pGAPZ / pTFP1-3-hIL2, pGAPZ / pTFP1-4-hIL2, and pGAPZ / pTFP1-5-divided into five types of pTFP1 moieties
  • the culture supernatant of the hIL2 transformant is shown by SDS-PAGE analysis.
  • Figure 13 shows the results of analyzing the cell growth by measuring the concentration of cells from the medium taken over time by fed-batch fermentation of Pichia pastoris strain transformed with a recombinant vector containing the pGAPZ / pTFP4-hIL2 gene in a 5L fermentor will be.
  • FIG. 14 is a SDS-PAGE analysis of the expression of human interleukin-2 protein from media taken over time by fed-feeding a Pichia pastoris strain transformed with a recombinant vector comprising the pGAPZ / pTFP4-hIL2 gene in a 5L fermentor. The results are shown.
  • 15A and 15B show chromatograms for purifying hIL proteins produced by fermenting a Pichia pastoris strain transformed with a recombinant vector comprising the pGAPZ / pTFP4-hIL2 gene.
  • Figure 16 shows the result of purifying the hIL protein produced by fermenting a strain of Pichia pastoris transformed with a recombinant vector containing the pGAPZ / pTFP4-hIL2 gene.
  • Figure 17 shows the results of confirming the activity of the hIL2 protein produced by fermenting a strain of Pichia pastoris transformed with a recombinant vector containing the pGAPZ / pTFP4-hIL2 gene.
  • the present invention for achieving the above object provides a novel isolated protein fusion factor.
  • the present invention relates to a protein fusion factor that secretes and produces a protein of interest in yeast, consisting of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1, 3, 5, and 13 or fragments thereof.
  • yeast Saccharomyces Saccharomyces
  • Pichia pastoris a protein of interest in yeast, consisting of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1, 3, 5, and 13 or fragments thereof.
  • yeast Saccharomyces Saccharomyces
  • Pichia pastoris but is not limited thereto.
  • Pichia pastoris pastoris together with Saccharomyces cerevisiae are the most widely used microorganisms for the production of recombinant proteins. They are easy to genetically engineer, various expression systems have been developed, and mass culture is easy. Recombinant production of the same higher cell-derived protein provides the advantage of secreting the protein out of the cell and the post-translational modification of the protein such as sugar chains. Unlike Mises cerevisiae, it does not produce ethanol and thus has the advantage of cultivating high concentrations in recombinant protein production, which allows extracellular secretion by artificially fusion of a protein secretion signal with a target protein.
  • the inventors of the present invention confirmed that the newly isolated protein fusion factor derived from Pichia pastoris secretes interleukin-2, which is a representative non-expressing protein, with high efficiency, and thus, provides a novel protein fusion factor.
  • translational fusion partner refers to a gene that is fused with a gene encoding a poorly expressed protein in a recombinant yeast expression system to induce secretion production of the poorly expressed protein, for example SEQ ID NO: It may be one or more amino acid sequences selected from the group consisting of 1, 3, 5, and 13, or fragments thereof, but is not limited thereto, as long as it can improve the secretory and / or expression ability of the protein of interest. Variants may also be included.
  • yeast Pichia pastoris Pichia pastoris strains derived from pTFP-1 (pichia translational fusion partner-1) to pTFP-8 and the like can be listed (Table 2).
  • the present inventors of the pTFP-1 to pTFP-8 particularly in the case of transformants introduced pTFP1-hIL2, pTFP2-hIL2, pTFP3-hIL2, pTFP4-hIL2 or pTFP8-hIL2, as shown in Figure 5, While hIL-2, which was constructed in one of 7 pPINK-LC vectors of Invitrogen, was hardly expressed, the hIL-2 was secreted using Saccharomyces cerevisiae-derived MF ⁇ signal peptide introduced into Pichia.
  • target protein of the present invention means a protein to be produced in a host cell.
  • target protein when it is intended to recombinantly produce a protein derived from the human body or various organisms, it means a protein that is difficult to produce recombinant expression in host cells such as E. coli or yeast due to the characteristics of the protein itself.
  • host cells such as E. coli or yeast due to the characteristics of the protein itself.
  • productivity even if recombinant production is possible in the host cell, although the productivity is low in yeast, it may include a plurality of proteins that are not economical, but is not limited thereto and may include any protein to be produced in the host cell.
  • the target proteins include, but are not limited to, serum proteins (blood factors including factors VII, VIII and IX), immunoglobulins, cytokines (interleukin), ⁇ -, ⁇ - and ⁇ -interferon, colony stimulation Factor (GM-CSF), epidermal growth factor (EGF), platelet induced growth factor (PDGF), phospholipase-activated protein (PLAP), insulin, tumor necrosis factor (TNF), growth factor (e.g.
  • TGF- tissue growth factors such as ⁇ or TGF- ⁇ and endothelial growth factor
  • hormones vesicle-stimulating hormone, thyroid-stimulating hormone, antidiuretic hormone, pigment hormone and parathyroid hormone, luteinizing hormone and its analogs
  • calcitonin calcitonin
  • Calcitonin gene related peptide CGPR
  • enkephalin enkephalin
  • somatomedin erythropoietin
  • hypothalamic secretion factor prolactin
  • chronic gonadotropin tissue plasminogen activator, growth hormone secretion Peptide, and the like
  • TGF thymic humoral factor growth hormone releasing peptide GHPR
  • thymic humoral factor growth hormone releasing peptide GHPR
  • Such proteins will also include enzymes, and examples include carbohydrate-specific enzymes, proteolytic enzymes, redox enzymes, transferases, hydrolases, lyases, isomerases, and ligases.
  • enzymes include carbohydrate-specific enzymes, proteolytic enzymes, redox enzymes, transferases, hydrolases, lyases, isomerases, and ligases.
  • asparaginase arginase, arginine deaminase, adenosine deaminase, peroxide dismutase, endotoxinase, catalase, chymotrypsin, lipase, uricase, adenosine dephosphatase, tyrosinase and bilirubin Oxidase.
  • carbohydrate-specific enzymes can include glucose oxidase, glucosidase, galactosidase, glucocerebrosidase, glucoronidase, and the like. More specifically, it may be Interleukin-2.
  • Another embodiment of the present invention relates to an isolated fusion protein having increased secretion capacity in yeast, including the protein fusion factor for producing the target protein secretion and the target protein.
  • the protein fusion factor and the target protein for secretion production of the target protein may be directly linked by a peptide bond or disulfide bond, etc., may also be linked form through a linker.
  • the term "linker” basically refers to two different fusion partners (e.g., biological polymer, etc.) by hydrogen bonding, electrostatic interaction, van der Waals force, disulfide bond, salt bridge, It refers to a linker that can be linked using hydrophobic interactions, covalent bonds, and the like.
  • it may have at least one cysteine capable of participating in at least one disulfide bond under physiological conditions or other standard peptide conditions (eg, peptide purification conditions, peptide storage conditions) and simply connects each fusion partner.
  • peptide purification conditions e.g, peptide purification conditions, peptide storage conditions
  • the linker may be a non-peptide linker or a peptide linker, but is not limited thereto.
  • human interleukin-2 protein which is a type of poorly expressed protein, is linked to pTFP, transformed into yeast Saccharomyces cerevisiae and Pichia pastoris strain, and interleukin-2.
  • the expression level of was observed, and in particular, it was confirmed that the protein expression in Pichia pastoris was significantly increased (Figs. 4 to 6).
  • polynucleotide encoding the protein fusion factor
  • the polynucleotide is a polynucleotide is one selected from the group consisting of SEQ ID NOs: 2, 6, 8 and 14 It may be composed of the above nucleotide sequence.
  • the polynucleotide may be DNA or RNA, and when the polynucleotide of the present invention is RNA, it can be understood that T (thymine) of DNA is replaced by uracil (U).
  • the polynucleotide can be prepared by known chemical synthesis.
  • Another embodiment of the present invention may be an expression vector comprising the polynucleotide.
  • the expression vector may include a nucleic acid encoding the protein of interest.
  • the term “expression vector” is a vector capable of expressing a target protein or target RNA in a suitable host cell, and includes a gene construct comprising essential regulatory elements operably linked to express a gene insert (the polynucleotide). Means. Once in the host cell, the expression vector can replicate independently of the host chromosomal DNA and the inserted foreign DNA can be expressed.
  • Vectors of the invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like.
  • Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals and enhancers and can be prepared in various ways depending on the purpose.
  • the promoter of the vector may be constitutive or inducible.
  • the expression vector may also include a selection marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, may include a replication origin.
  • the expression level of the non-expressing protein is increased by using the pTFP factor as a signal sequence
  • the expression vector of the present invention is a yeast Pichia pastoris as a signal sequence. pastoris
  • the invention relates to a transformant comprising the polynucleotide or a recombinant vector comprising the polynucleotide.
  • transformation means that DNA is introduced into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • a host cell that can be used for transformation according to the present invention may include both prokaryotic or eukaryotic cells, and a host having high DNA introduction efficiency and a high expression efficiency of introduced DNA may be used.
  • eukaryotic and prokaryotic hosts such as Escherichia, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoptera fruitgifer (SF9), CHO, COS 1, COS 7, BSC 1, BSC 40, animal cells such as BMT 10 and the like can be used, but is not limited thereto.
  • the production of the fusion protein fused to the target protein may be Pichia genus, Saccharomyces genus, Pichia pastoris pastoris ) or Saccharomyces cerevisiae .
  • Transformation includes any method of introducing a polynucleotide, and may be carried out by selecting a suitable standard technique according to the host cell as known in the art. These methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation with silicon carbide fibers, agrobacterial-mediated transformation, polyethylene glycol (PEG), Dextran sulfate, lipofectamine, particle bombardment, and the like.
  • a transformant when transformed into Pichia pastoris , a transformant was prepared, in particular, the expression of hIL-2 protein of pTFP1-hIL2 was improved by 150% compared to MF ⁇ -hIL2, which is a control group. It was confirmed that the protein expression of pTFP4-hIL2 was improved by 280% over the control group MF ⁇ -hIL2 (FIG. 6).
  • the present inventors have introduced a transformant prepared by introducing pGAPZ / pTFP1-hIL2, pGAPZ / pTFP2-hIL2, pGAPZ / pTFP3-hIL2 and pGAPZ / pTFP8-hIL2 into E. coli DH5 ⁇ , respectively. It was deposited with the Korean Collection for Type Culture (KCTC) on June 17, 2014 and was given accession numbers KCTC18301P, KCTC18302P, KCTC18303P, and KCTC18305P, which were awarded to the International Deposit under the Treaty of Budapest on 9 June 2015.
  • KCTC Korean Collection for Type Culture
  • the transformant of the present invention may be specifically, deposit number KCTC12833BP, KCTC12834BP, KCTC12835BP or KCTC12837BP, but is not limited thereto.
  • the E. coli-based transformant may be used for propagation of a protein fusion factor or a vector including the same.
  • Another embodiment of the present invention relates to a method for preparing a protein of interest, comprising culturing the yeast into which the expression vector has been introduced.
  • the yeast may be Pichia pastoris or Saccharomyces cerevisiae, but a host capable of increasing the secretion and / or expression of the protein of interest by operating the protein fusion factor of the present invention may be included without limitation.
  • the target protein may be Interleukin-2.
  • the production of the protein of interest in the present invention may be capable of mass production as the secretion capacity is increased compared to the transformant does not contain a protein fusion factor.
  • the culturing of the transformant may be performed in a medium containing a carbon source and a nitrogen source necessary for cultivation of a conventional yeast or strain, and further, a non-ionic surfactant, polysorbate (trade name tween20). Or a medium containing a poloxamer (trade name Poloxamer 188).
  • the method for producing the target protein in the present invention may further comprise the step of recovering the target protein.
  • the preparation method of the protein of the present invention may further comprise the step of purifying the recovered protein of interest, the purification of the protein of interest affinity chromatography, receptor affinity chromatography, hydrophobic action chromatography, lectin It may be carried out by conventional chromatography methods including affinity chromatography, size exclusion chromatography, cation or anion exchange chromatography, high performance liquid chromatography (HPLC), reverse phase HPLC and the like.
  • the desired protein is a fusion protein having a specific tag, label or chelate moiety so that it can be recognized and purified by a specific binding partner or agent.
  • Purified protein can be cleaved into the desired protein portion or left on its own. Cleavage of the fusion protein may result in the desired protein form having additional amino acids in the cleavage process.
  • the "batch-fed culture” is a culture method for intermittently supplying the medium, which can arbitrarily control the substrate concentration in the culture solution, and because the substrate is added at an appropriate rate and there is no outflow, between the amount of substrate supplied and the consumption by the microorganisms.
  • Means a culture method that can freely control the substrate by maintaining a balance in, is the most common culture method.
  • the fed yeast transformed by introducing pTFP4-hIL-2 was carried out in a fed-batch culture in a 5L fermenter (Example 8), the growth of the transformant is normally made, interleukin-2 is It was confirmed that the secretion at a high concentration (Fig. 14).
  • Example 9 when the fermentation production further comprises the step of adding a washing liquid (detergent) and when the recovery of the target protein when the washing liquid is not added as a result, When added, it was confirmed that the recovery of the protein is high (Figs. 15A, 15B and 16).
  • the purified hIL-2 protein was added to EL-4 cell lines by concentration to confirm lymphocyte proliferation.
  • the hIL-2 protein overexpressed using pTFP4 was EL-4 cell line. It was confirmed to have an activity for promoting the proliferation of (Fig. 17).
  • Pichia pastoris pastoris GS115 strains were purchased from Invitron, USA and were treated with YPD (1% yeast extract, 2% bacto peptone, 2% glucose) medium or YPDS (1% yeast extract, 2% bacto peptone, 1% glucose, 1% sorbitol) was incubated at 30 ° C. for 3 days.
  • Invertase transformants in Saccharomyces cerevisiae also contained YPSGA medium (1% yeast extract, 2% bactopeptone, 2% sucrose, 0.3% galactose, 2ug / ml antimycin, 17ug /).
  • Genomic DNA was extracted from Pichia pastoris GS115 according to the method used by Connie Holm and Douglas W. Meeks-wagnerd (Gene. 42, 169-173, 1986), and Gietz (Yeast 11, 355-360). , 1995) and the yeast transformation was performed according to the method described. E. coli transformation was performed using Inoue (Gene 96, 23-28, 1990). Gene sequencing was performed using Applied Biosystems Model 373A, and primers for polymerase chain reaction were synthesized by Genotech.
  • Pichia pastoris GS115 Pichia pastoris GS115
  • 69 proteins from the secretory protein genomes of Pichia pastoris were known to be secreted out of the cell or present in the cell membrane. 1 is shown.
  • Picchia pastoris genomic DNA was recovered by the method described in Examples 1 and 2, and the sense / antisense primer for each gene sequence was obtained so as to obtain about 1 kb including 69 secretory signal sequences as a template.
  • Polymerase chain reaction (PCR) was carried out using pairs (Table 1) (once for 4 minutes at 94 ° C; 25 times for 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 1 minute; at 72 ° C) Once every 7 minutes). Then, each amplified gene was recovered by agarose gel electrophoresis, and the recovered polymerase chain reaction products were quantified using nanodrops (thermo scientific, USA) and mixed at the same concentrations. Each gene amplified by this method has a structure having the same 5 'sequence required for unidirectional PCR.
  • the recovered DNA was then amplified once again with a sense GalSfi I (SEQ ID NO: 15) / antisense SfiB3 '(SEQ ID NO: 17) primers to recover 0.2 to 0.8 kb of DNA in an agarose gel.
  • Saccharomyces cerevisiae Y2805 ⁇ gal1 ⁇ suc2 (Mat a ura3 suc2 :: Tcl90 pep4: : HIS3 gall canl) strain (Korea Patent No. 975,596) was transformed after in vivo recombination (in vivo recombination).
  • the PCR reaction and recombination process are shown in a schematic diagram in FIG.
  • Transformed cells were plated in YPSGA medium (1% yeast extract, 2% bacto peptone, 2% sucrose, 0.3% galactose, 1 ⁇ g / ml antimycin A and 2% agar) and incubated for 5 days.
  • a vector containing an appropriate Pichia Translational Fusion Partner (pTFP) derived from an appropriate Pichia pastoris may secrete an invertase that is active only if the target gene is linked in-frame through intracellular recombination. It is possible to grow in YPSGA medium using sugar as a carbon source. This method was used to preferentially select 1500 optimal pTFPs that induce secretion of invertase proteins. All transformants were recovered using sterile distilled water and fused genomic library plasmids overexpressing invertase were obtained from the cells using the whole plasmid extraction kit (Bionia, Korea).
  • the recovered plasmids were transformed into DH5 ⁇ , plated in 2YP medium (1.6% bacto tryptone, 1% yeast extract, 0.5% NaCl, 100 ⁇ g / ml) containing empicillin, and then cultured at 37 ° C. for one day.
  • 2YP medium (1.6% bacto tryptone, 1% yeast extract, 0.5% NaCl, 100 ⁇ g / ml
  • a transformant library of 2 ⁇ 10 cells was obtained and sequenced from plasmids randomly selected from the library after DNA plasmid extraction showed that all analyzed pTFPs were derived from Pichia pastoris encoding different secreted proteins. It was confirmed that the gene.
  • YGadV45 vector removes 45 amino acids at the end of the invertase amino acid by linking approximately 1,500 pTFP capable of overexpressing invertase with mature human interleukin-2 gene known as a representative egg expression protein (Korea) Patent No. 975,596).
  • 1,500 pTFP plasmids were used as a template, and the polymerase chain reaction (once for 5 minutes at 94 ° C. for 5 seconds; 95 ° C. for 20 seconds) was performed using the sense primers Gal100 (SEQ ID NO: 18) and the antisense primer LDKR42 (SEQ ID NO: 19). The reaction was performed 25 times at 53 ° C. for 30 seconds and 72 ° C.
  • the 5 'end of the PCR product is complementary to the 3' end of the Gal10 promoter of the YGadV45 vector to be introduced, and the 3 'end of this product is complementary to the 5' end of the human interleukin-2 gene, the protein of interest.
  • the human interleukin-2 gene used in Korean Patent No.975,596 to amplify the human interleukin-2 gene to be linked to pTFP was polymerized using the sense primer LNK39 (SEQ ID NO: 20) and the antisense primer CR139 (SEQ ID NO: 21) as a template.
  • Enzyme chain reaction (once at 94 ° C. for 5 minutes; 25 reactions at 94 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C. for 30 seconds; once at 72 ° C. for 7 minutes), the 5 ′ end of the product was 3 ′ of pTFP. A product about 440 bp in size having a terminal complementary sequence was obtained.
  • the polymerase chain reaction was performed using a sense primer CR138 (SEQ ID NO: 22) and an antisense primer CR142 (SEQ ID NO: 23) to amplify 45 amino acids lacking in the invertase 5 'end in the YGadV45 vector (94 ° C).
  • the three PCR products obtained were recombined into three different fragments in a Y2805 ⁇ gal1 ⁇ suc2 (Mat a ura3 suc2 :: Tcl90 pep4 :: HIS3 gall canl) strain (Korean Patent No.975,596) with a SfiI-treated YGadV45 vector. Let's transform by in vivo recombination method. The PCR reaction and recombination process are shown in a schematic diagram in FIG.
  • the transformed cells were treated with uracil free medium UD (0.67% amino acid free yeast nitrogen base, 0.77 g / L amino acid mixture, 2% glucose, 2% agar) medium and YPSGA medium (1% yeast extract, 2% bactopeptone, 2% sucrose, 0.3% galactose, 1 ⁇ g / ml antimycin A, 2% agar), respectively, and incubated for 5-7 days. From this, about 2 ⁇ 10 4 of transformants were formed in UD, but about 150 transformants were formed in YPSGA medium. Among them, 15 transformants having large colonies formed by secreting invertase were selected.
  • UD 0.67% amino acid free yeast nitrogen base, 0.77 g / L amino acid mixture, 2% glucose, 2% agar
  • YPSGA medium 1% yeast extract, 2% bactopeptone, 2% sucrose, 0.3% galactose, 1 ⁇ g / ml antimycin A, 2% agar
  • pTFP1 The pTFP moiety of each transformant was sequenced to confirm the sequence of seven new human interleukin-2 overexpressing pTFP moieties of different genes or different amino acid numbers, and are shown in Table 2 below.
  • pTFP1, 4, and 7 were identical genes, but were identified with different sizes.
  • the expression vector secured in the above embodiment is expressed by interleukin-2 and invertase
  • the invertase gene was removed and the interleukin-2 was expressed only in order to compare the expression level of interleukin-2.
  • the pTFP-hIL2 moiety of the seven obtained vectors was subjected to polymerase chain reaction (once at 94 ° C. for 5 minutes; 94 ° C. for 30 seconds and 55 ° C.) with the sense primers Gal100 (SEQ ID NO: 18) and the antisense primer CR143 (SEQ ID NO: 24). 25 seconds at 72 ° C. for 1 minute; 25 minutes at 72 ° C.
  • FIG. 3 shows a schematic diagram illustrating a polymerase chain reaction (PCR) and intracellular recombination process for introducing the seven selected pTFP-hIL2 genes into the YGa vector for yeast Saccharomyces cerevisiae.
  • PCR polymerase chain reaction
  • PCR products contain more than 40 bp of the same sequence as the vector, when introduced into the yeast cell together with the linearized vector, the crossover occurred in the cells to form a circular plasmid vector.
  • Transformants formed through intracellular recombination grew in UD medium (yield substrate lacking 0.67% amino acid, nutrient supplement lacking 0.77% uracil, 2% glucose, 2% agar). Were screened.
  • the yeast Y2805 strains were YGa / pTFP1-hIL2, YGa / pTFP2-hIL2, YGa / pTFP3-hIL2, YGa / pTFP4-hIL2, YGa / pTFP5-hIL2, 4 shows the results of SDS-PAGE analysis of the culture supernatants of two single transformants formed by introducing YGa / pTFP7-hIL2 and YGa / pTFP8-hIL2.
  • pTFP5 showed no expression of hIL-2 protein.
  • pTFP1 expression was the least, and pTFP4 expression of hIL-2 protein was the highest.
  • pTFP1, 4, and 7 are identical genes differing only in amino acid length, but their ability to secrete hIL-2 protein as a protein secretion fusion factor was different. Therefore, even if the same gene in different sizes it can be seen that it acts as a different protein secretion fusion factor (Fig. 4).
  • Example 6 Yeast P. pastoris Expression of pTFP-interleukin-2
  • Example 4 seven novel protein secretion fusion factors selected from yeast Saccharomyces cerevisiae were constructed from the genes derived from Pichia pastoris, and therefore, to determine the effect of Pichia pastoris It was.
  • Polymerase chain reaction was carried out using primer CR182 (SEQ ID NO: 27) to introduce EcoR I at each 5 'end and Sac II site at 3' end (once for 94 ° C for 5 minutes; 94 ° C for 30 seconds, and 55 ° C for 30 ° C. 25 reactions for 1 minute at 72 ° C .; once for 7 minutes at 72 ° C.).
  • fragments of about 1 kb, 650 bp, 600 bp, 700 bp, 800 bp, 780 bp and 650 bp were recovered, and treated with restriction enzymes EcoR I and Sac II and then ligated to Takara (TaKaRa, Japan) with the same restriction enzyme-treated pGAPZ vector.
  • the ligation mix was used to connect at 16 ° C. for 12 hours.
  • Each linked vector was transformed into DH5 ⁇ and plated in LB medium (1% bacto tryptone, 0.5% yeast extract, 0.5% NaCl, Zeocin 25 ⁇ g / ml, 2% agar) containing zeocin and 37 ° C. After culturing for one day at DNA plasmid extraction and analyzing the sequence of each plasmid, it was confirmed that the target protein was introduced into the pGAPZ vector without any problem on the sequence.
  • the seven types of pGAPZ vectors (pGAPZ / pTFP1-IL2, -pGAPZ / pTFP7-IL2) constructed above were linearized with restriction enzyme BlnI and electroporated to GAPDH (glyceraldehyde-3-phosphate dehydrogenase) region of Pichia pastoris.
  • YPDS medium 1% yeast extract, 2% bactopeptone, 1% glucose, 1% sorbitol
  • YPDZ 1% yeast extract, 2% Bakto peptone, 2% glucose, 100ug / ml zeocin, 2% agar
  • hIL-2 transformants were constructed for the pPINK-LC vector, a signal peptide kit that can induce protein overexpression in Pastoris, as recommended by invitrogen (UST).
  • the experimental group and the control group were compared with the expression level of human interleukin protein by SDS-PAGE analysis.
  • hIL-2 constructed in seven types of pPINK-LC vectors of Invitrogen, one of the controls, was hardly expressed, it was derived from Saccharomyces cerevisiae introduced into Pichia.
  • the expression of hIL-2 protein was observed in all cases of hIL-2 expression using MF ⁇ protein secretion fusion factor and pTFP.
  • the present inventors have introduced a transformant prepared by introducing pGAPZ / pTFP1-hIL2, pGAPZ / pTFP2-hIL2, pGAPZ / pTFP3-hIL2 and pGAPZ / pTFP8-hIL2 into E. coli DH5 ⁇ , respectively. It was deposited with the Korean Collection for Type Culture (KCTC) on June 17, 2014 and was given accession numbers KCTC18301P, KCTC18302P, KCTC18303P, and KCTC18305P, which were converted to an international deposit under the Treaty of Budapest on 9 June 2015. By doing so, accession numbers KCTC12833BP, KCTC12834BP, KCTC12834BP, and KCTC12837BP were respectively given.
  • KCTC12833BP, KCTC12834BP, KCTC12834BP, and KCTC12837BP were respectively given.
  • a GAP gene fragment having a size of about 300bp was recovered from agarose gel to prepare a probe labeled with DIG using a Roche kit.
  • Three genome DNAs recovered from pGAPZ / pTFP1-hIL2, pGAPZ / pTFP4-hIL2, and pGAPZ / MF ⁇ -hIL2 transformants were then treated with three sets of restriction enzymes BamHI, EcoRI and SalI, three sets each, 0.9% agarose. Each restriction enzyme treatment product was separated from the gel by 100V for 30 minutes.
  • the isolated agarose gel was carried out using a Sudge Experiment (DIG-labeled southern hybridization) method using Roche DIG, twice with 15 minutes of denaturalization solution (0.5M NaOH, 1.5M NaCl) and neutralization (neutralization). solution; 1M Tris-HCl, pH7.5, 1.5M NaCl) After 15 min treatment twice, dilute the SSC buffer purchased from LPS (LPS, Korea) to 10X and then agarose gel to nitrocellulose membrane. Capillary action was used to move all DNA during the day.
  • the DNA transferred to the membrane was fixed with UV and prehybridization buffer (5X SSC, 2% (w / v), 0.1% (w / v) N-laurylsarcosine, 0.02% (w / v) SDS). 30 minutes at 42 ° C. to evenly treat each membrane, and add boiled and cooled DIG-labeled hIL-2 probe and GAPDH probe to 100ng / ml. It was reacted with nitrocellulose membrane at 42 ° C. for 6 hours.
  • UV and prehybridization buffer 5X SSC, 2% (w / v), 0.1% (w / v) N-laurylsarcosine, 0.02% (w / v) SDS. 30 minutes at 42 ° C. to evenly treat each membrane, and add boiled and cooled DIG-labeled hIL-2 probe and GAPDH probe to 100ng / ml. It was reacted with nitrocellulose membrane at 42 ° C. for 6 hours
  • washing buffer (washing buffer: 0.1M maleic acid, 0.15M NaCl, 0.3% (w / v) Tween 20) twice for 15 minutes was stained and visualized by NBT / BCIP staining of the combination of the probe and the target protein.
  • Genomic DNA recovered from pGAPZ / pTFP1-hIL2, pGAPZ / pTFP4-hIL2 and pGAPZ / MF ⁇ -hIL2 transformants treated with restriction enzymes BamHI, EcoRI and SalI, respectively, using DIG labeled hIL-2 and GAP probes. The detection result is shown in FIG.
  • pTFP1 and pTFP4 are the same gene, but because the base sequence length is 567bp and 234bp, respectively, it was confirmed that they act as different protein secretion fusion factors. Therefore, the present inventors attempted to confirm whether there is a difference in the expression level of human interleukin-2 when the pTFP1 nucleotide sequence is expressed in different lengths according to the characteristics in the nucleotide sequence.
  • pTFP1 was divided into five types, which are shown in FIG. 8.
  • PCR polymerase chain reaction
  • FIG. 8 a schematic diagram showing the polymerase chain reaction (PCR) and intracellular recombination process for introduction into the pGAPZ vector into yeast Pichia pastoris is shown in FIG.
  • PTFP1-2 of 48 total amino acids were synthesized using the CR278 (SEQ ID NO: 26) / CR351 (SEQ ID NO: 34) primers, and then the signal peptide, O-glycosylation, and 1 N-glycosylation and linker A total of 77 pTFP1-3 amino acids, including the signal peptide moiety, O-glycosylation dense moiety sequentially from the 5 ′ end using the CR278 (SEQ ID NO: 26) / CR352 (SEQ ID NO: 35) primers Minutes, 2 N-glycosylation moieties and a total of 101 pTFP1-4 amino acids containing linker, using the CR278 (SEQ ID NO: 26) / CR353 (SEQ ID NO: 36) primers sequentially from the 5 'end with the signal peptide moiety, O pTFP1-5 of 138 amino acids containing -glycosylation dense moiety, two N-glycosylation moieties, hydropho
  • an intact pGAPZ / pTFP1-hIL2 plasmid was PCR as a template using a CR354 (SEQ ID NO: 37) / CR334 (SEQ ID NO: 38) primer (94 ° C 5 Once for min; 25 reactions for 94 ° C 30 seconds, 55 ° C for 30 seconds, 72 ° C for 30 seconds; once for 7 minutes at 72 ° C.
  • Each pTFP1-1, 1-2, 1-3, 1-4 and 1-5 PCR product and the amplified hIL-2 PCR product were used as templates, and the CR278 (SEQ ID NO: 26) / CR334 (SEQ ID NO: 38) primers were used as templates.
  • the overlap extension PCR was used to obtain a PCR product linking the five types of pTFP1 variants with the human interleukin-2 gene (once at 94 ° C for 5 minutes; 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 25 times reaction for 1 min; once for 7 minutes at 72 ° C).
  • pTFP1-1-hIL2, pTFP1-2-hIL2, pTFP1-3-hIL2, pTFP1-4-hIL2, and pTFP1-5-hIL2 PCR products have EcoR I site at the 5 'end and Sac II site at the 3' end. It was constructed and treated with each restriction enzyme and then linked with the same restriction enzyme treated pGAPZ vector (FIG. 9).
  • the constructed vectors were transformed into DH5 ⁇ , and only plasmids were recovered, and five types of vectors (pGAPZ / pTFP1-1-hIL2, pGAPZ / pTFP1-2-hIL2 pGAPZ / pTFP1-3-hIL2 pGAPZ / pTFP1-4-hIL2 were obtained. , And pGAPZ / pTFP1-5-hIL2) were sequenced and linearized with BlnI restriction enzymes and integrated into Pichia pastoris by electroporation (2mm cuvette, 2000V voltage, 25 ⁇ F capacitance, 200 ⁇ resistance).
  • YPDS medium 1% yeast extract, 2% bacterium peptone, 1% glucose, 1% sorbitol
  • YPDZ 1% yeast extract, 2% bactopeptone, 2.
  • 25 pTFP1-1, 96 pTFP1-2, 180 pTFP1-3, 670 pTFP1-4 and 159 pTFP1-5 159 transformants were obtained, and three single transformants per type were obtained in YPD medium.
  • 1% yeast extract, 2% bacterium peptone, 2% glucose was incubated for 40 hours, and the expression level of hIL-2 was observed using SDS-PAGE.
  • the fed-batch culture was performed in a 5L fermenter in order to mass produce human interleukin-2 using the pGAPZ / pTFP4-hIL2 transformant whose overexpression was confirmed in Example 6 above.
  • the cells were initially incubated in 50 ml of YNB (0.67% amino acid-free yeast substrate, 0.5% casamino acid, and 2% glucose) medium, and then cultured in 150 ml of YEPD liquid medium to be activated and inoculated into the culture medium. Incubated at 30 ° C. for 67 hours.
  • FIG. 13 The cell growth of the samples taken by fed-feed fermentation of the Pichia pastoris GS115 strain transformed with the pGAPZ / pTFP4-hIL-2 vector in a 5L fermenter over time is shown graphically in FIG. 13. The results of PAGE analysis are shown in FIG. 14. pGAPZ / pTFP4-hIL2 transformants were normally established, and as shown in FIG. 14, it was confirmed that even in high concentration fermentation, intact form of human interleukin-2 was secreted and expressed in high concentration similarly to the results of flask culture.
  • the present inventors compared and purified pTFP4-hIL-2 protein fermentation solution produced by adding 0.2% tween20 and fermentation solution produced without adding tween20 under the same conditions.
  • Protein fermentation broth under each condition was concentrated using ultrafiltration (molecular weight 10 kDa cut-off) with 20 mM sodium acetate (pH5.0), and 20 mM sodium acetate (pH5.0) for purification by ion exchange chromatography.
  • the enzyme concentrate was adsorbed onto a HiPrap SP FF column and the enzyme was eluted with a NaCl (pH5.0) rising concentration gradient from 0 to 1M (FIGS. 15A and 15B).
  • Figure 15a is a diagram showing the ion exchange chromatography profile of the purified pTFP4-hIL-2 protein and the SDS-PAGE analysis of the eluate after fermentation without adding 0.2% tween20.
  • Figure 15b shows the result of the purification of hIL-2 protein by adding 0.2% tween20.
  • Fig. 16B shows the result of protein SDS-PAGE analysis comparing the fermentation broth with and without tween20 before and after purification. As a result of the purification process, as shown in Table 3, it was confirmed that the recovery rate of the hIL-2 protein was higher than when the purity was not added when 0.2% tween20 was added.
  • the purified fractions were desalted and subjected to two gel filtration (2nd GF) column chromatography using a superdex 75 prep grade column (16 x 600 mm), and the eluate was subjected to SDS. -PAGE analysis (FIG. 16B).
  • Example 9 In order to confirm the bioactivity of the hIL-2 purified protein purified in Example 9, the growth promoting activity of the EL-4 cell line was measured.
  • hIL-2 protein in the kit was used as a control, and after adding hIL-2 purified protein to be analyzed to EL-4 cell line by concentration, lymphocyte proliferation was confirmed.
  • hIL-2 protein overexpressed with pTFP4 in Pichia pastoris has a biological activity that promotes the proliferation of EL-4 cell line.
  • the pTFP signal peptide of the present invention induces the expression of the gene much more strongly than the conventional MF ⁇ signal peptide, and the gene encoding the secretory protein such as interleukin-2 in the expression vector comprising the same It was found that the expression can be strongly induced by insertion.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

본 발명은 효모 피키아 파스토리스(Pichia pastoris) 균주 유래의 목적단백질 분비생산용 단백질융합인자, 상기 단백질융합인자를 코딩하는 폴리뉴클레오티드, 이를 포함하는 재조합 발현벡터, 상기 폴리뉴클레오티드 또는 재조합 발현벡터를 포함하는 형질전환체 및 상기 단백질융합인자를 이용한 목적단백질 생산 방법에 관한 것이다.

Description

피키아 파스토리스 균주 유래의 목적단백질 분비생산용 단백질융합인자 및 이의 용도
본 발명은 효모 피키아 파스토리스(Pichia pastoris) 균주 유래의 목적단백질 분비생산용 단백질융합인자, 상기 단백질융합인자를 코딩하는 폴리뉴클레오티드, 이를 포함하는 재조합 발현벡터, 상기 폴리뉴클레오티드 또는 재조합 발현벡터를 포함하는 형질전환체 및 상기 단백질융합인자를 이용한 목적단백질 생산 방법에 관한 것이다.
인체 게놈 프로젝트에서 확보된 유전체 염기서열 정보와 유전체 단위에서 밝혀지는 다양한 단백질의 기능을 분석하고 인체 의약학적으로 중요한 단백질 제품생산을 위해서는 재조합 미생물을 이용하는 고효율 단백질 생산 시스템 개발이 필요하다. 인체와 같은 고등생물 유래의 재조합단백질을 생산하기 위해서 발현시스템을 선정할 때 숙주세포의 성장특성, 단백질 발현정도, 세포내외 발현가능성, 번역 후 수식(post-translational modification) 가능성, 발현된 단백질의 생물학적 활성 및 발현단백질의 용도 등과 같은 다양한 요인들이 고려되어야 한다.
재조합 단백질 생산을 위한 대표적 미생물 유전자 발현시스템으로 대장균 및 효모 시스템이 주로 이용되고 있는데 대장균은 많은 발현시스템이 개발되어 있고 목적단백질의 발현율이 매우 높은 장점이 있지만 고등생물 유래의 단백질을 재조합 생산하고자 할 때 당쇄부가(glycosylation)와 같은 번역 후 수식 과정이 불가능하며 세포의 배양배지로 단백질의 완전한 분비가 어렵고 이황화 결합(disulfide bond)이 많은 단백질의 접힘(folding)이 불가능하며 봉합체(inclusion body) 등의 불용성 단백질 형태로 생산하는 등의 단점이 지적되고 있다 (Makrides, Microbial Rev., 1996, 60, 512).
진핵 미생물인 효모 피키아 파스토리스(Pichia pastoris)는 사카로마이세스 세레비시애(Saccharomyces cerevisiae)와 함께 재조합 단백질 생산에 가장 널리 활용되는 미생물로서 유전자 조작이 용이하며 다양한 발현시스템이 개발되어 있고 대량배양이 용이하다. 뿐만 아니라 인체단백질과 같은 고등세포 유래의 단백질을 재조합 생산할 때 단백질을 세포 밖으로 분비할 수 있는 분비기능과 당쇄부가 등과 같은 단백질의 번역 후 수식(post-translational modification) 기능을 수행할 수 있는 장점을 제공한다. 재조합 단백질의 분비 생산은 단백질 분비시그날과 목표단백질을 인위적으로 융합(fusion)함으로써 세포외 분비가 가능한데 단백질의 분비과정을 통해서 단백질의 폴딩이나 이황화 결합의 형성 및 당쇄부가 과정이 진행되며 따라서 생물학적으로 완전한 활성을 갖는 재조합단백질을 생산할 수 있는 장점을 제공한다. 이는 또한 생물학적 활성을 갖는 단백질을 배지로부터 직접 얻을 수 있기 때문에 경제적으로 효율이 낮은 세포의 분쇄나 재접힘(refolding) 단계를 필요로 하지 않아 매우 경제적이다 (Eckart and Bussineau, Curr. Opin. Biotechnol., 1996, 7, 525).
오랫동안 피키아 파스토리스 균주에서 재조합 단백질을 분비발현하기 위한 연구가 진행되었음에도 불구하고 현재까지 재조합 단백질 생산에 적용 가능한 시그널 펩티드는 수개에 지나지 않는다. 그 중 주로 이용되는 효모 시스템인 사카로마이세스 세레비시애 유래의 MFα(mating factor alpha)의 시그널 펩티드는 피키아 파스토리스와 사카로 마이세스 균주에서 공통적으로 가장 많이 사용되는 강력한 시그널 펩티드이다. 그러나 MFα 시그널 펩티드의 뛰어난 분비발현 유도능에도 불구하고 모든 단백질에서 동일한 효과를 기대할 수는 없으며 MFα 시그널 펩티드를 이용해도 분비발현이 되지 않는 경우에는 마땅한 대안이 없는 상태이다.
본 발명자들은 다양한 목적단백질을 보다 효과적으로 분비생산할 수 있는 방법을 개발하기 위하여, 예의 연구노력한 결과, 효모 피키아 파스토리스(Pichia pastoris) 균주 유래의 목적단백질 분비생산용 단백질융합인자를 선별하고, 난발현성 단백질의 일종인 인터루킨-2의 발현이 증가하는 것을 확인함으로써 목적단백질을 보다 용이하게 분비생산할 수 있음을 확인하여, 본 발명을 완성하였다.
본 발명의 하나의 목적은 서열번호 1, 3, 5, 및 13으로 이루어진 군에서 선택되는 1종 이상의 아미노산 서열 또는 이의 단편으로 이루어진, 효모 피키아 파스토리스(Pichia pastoris) 균주 유래의 목적단백질 분비생산용 단백질융합인자(TFP, translational fusion partner)를 제공하는 것이다.
본 발명의 다른 목적은 상기 목적단백질 분비생산용 단백질융합인자 및 목적단백질을 포함하는, 효모에서 분비능이 증가된 분리된 융합단백질을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 단백질융합인자를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는, 발현 벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발현 벡터를 포함하는, 형질전환체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발현 벡터가 도입된 효모를 배양하는 단계를 포함하는, 목적단백질 제조방법을 제공하는 것이다.
본 발명의 단백질 융합인자를 이용하여, 종래의 재조합 기술에 의하여 효모에서 대량으로 생산하기 어려운 단백질을 대량으로 생산할 수 있으며, 기존에 낮은 생산성으로 재조합 단백질 발현에 널리 사용되지 못한 효모 발현 시스템을 이용한 재조합 단백질의 생산에 널리 활용될 수 있다.
도 1은 인버테이즈 시스템을 이용하여 피키아 파스토리스 유래의 분비시그널 유전자들을 pTFP 선별용 벡터에 도입하기 위한 중합효소 연쇄반응(PCR) 및 세포 내 재조합과정을 나타내는 모식도를 나타낸 것이다.
도 2는 인버테이즈 시스템을 이용하여 다양한 크기의 pTFP 벡터에 난분비성 단백질인 인간 인터루킨-2 유전자를 함께 도입하기 위한 중합효소 연쇄반응(PCR) 및 세포 내 재조합과정을 나타내는 모식도를 나타낸 것이다.
도 3은 선별한 7종의 pTFP-hIL-2 유전자를 효모 사카로마이세스 세레비시애용 YGa 발현 벡터에 도입하기 위한 중합효소 연쇄반응(PCR) 및 세포 내 재조합과정을 나타내는 모식도를 나타낸 것이다.
도 4는 효모 Y2805균주에 YGa/pTFP1-hIL2, YGa/pTFP2-hIL2, YGa/pTFP3-hIL2, YGa/pTFP4-hIL2, YGa/pTFP5-hIL2, YGa/pTFP7-hIL2 및 YGa/pTFP8-hIL2을 각각 도입하여 형성한 단일 형질전환체들 각 3개씩의 배양 상등액을 SDS-PAGE로 분석한 결과를 나타내는 것이다.
도 5는 효모 피키아 파스토리스 GS115 균주에 상용화 분비시그널 pPINK-LC 벡터 7종류, pGAPZ/MFα-hIL2, pGAPZ/pTFP1-hIL2, pGAPZ/pTFP2-hIL2, pGAPZ/pTFP3-hIL2, pGAPZ/pTFP4-hIL2 및 pGAPZ/pTFP8-hIL2를 각각 도입한 형질전환체의 배양 상등액을 SDS-PAGE를 통해 분석한 결과를 나타낸 것이다.
도 6은 pGAPZ/MFα-hIL2, pGAPZ/pTFP1-hIL2, pGAPZ/pTFP2-hIL2, pGAPZ/pTFP3-hIL2, pGAPZ/pTFP4-hIL2 및 pGAPZ/pTFP8-hIL2를 각각 도입한 사카로 마이세스 세레비시애와 피키아 파스토리스에서의 발현 정도를 SDS-PAGE 및 웨스턴 블롯으로 분석하여 비교한 것이다.
도 7은 피키아에서 인간 인터루킨-2 단백질의 발현이 높았던 형질전환체인 pGAPZ/pTFP1-hIL2 및 pGAPZ/pTFP4-hIL2를 pGAPZ/MFα-hIL2와 상대적인 유전자 카피(copy) 수를 비교하기 위해 서던 블럿(Southern blot hybridization) 분석한 결과를 나타낸 것이다.
도 8은 pGAPZ/pTFP1-hIL2를 이용하여 단백질 발현을 극대화 시킬 수 있는 pTFP1의 최적 서열을 찾고자, pTFP1 부분을 다섯 종류 특징별로 나눈 모식도를 나타낸 것이다.
도 9는 효모 피키아 파스토리스 내에 pGAPZ 벡터로 도입하기 위한 중합효소 연쇄반응(PCR) 및 세포 내 재조합과정을 나타내는 모식도를 나타낸 것이다.
도 10은 피키아 파스토리스에서 발현 가능한 pGAPZ/pTFP1-hIL2 유전자의 발현 벡터를 나타낸 모식도이다.
도 11은 피키아 파스토리스에서 발현 가능한 pGAPZ/pTFP4-hIL2 유전자의 발현 벡터를 나타낸 모식도이다.
도 12는 pTFP1 부분을 다섯 종류 특징별로 나눈, pGAPZ/pTFP1-1-hIL2, pGAPZ/pTFP1-2-hIL2, pGAPZ/pTFP1-3-hIL2, pGAPZ/pTFP1-4-hIL2 및 pGAPZ/pTFP1-5-hIL2 형질전환체의 배양 상등액을 SDS-PAGE로 분석한 결과를 나타낸 것이다.
도 13은 pGAPZ/pTFP4-hIL2 유전자를 포함하는 재조합 벡터로 형질전환된 피키아 파스토리스 균주를 5L 발효조에서 유가식 발효하여 시간별로 취한 배지로부터 시간별 세포 농도 측정을 통해 세포 성장을 분석한 결과를 나타낸 것이다.
도 14는 pGAPZ/pTFP4-hIL2 유전자를 포함하는 재조합 벡터로 형질전환된 피키아 파스토리스 균주를 5L 발효조에서 유가식 발효하여 시간별로 취한 배지로부터 인간 인터루킨-2 단백질의 발현을 SDS-PAGE로 분석한 결과를 나타낸 것이다.
도 15a 및 도 15b는 pGAPZ/pTFP4-hIL2 유전자를 포함하는 재조합 벡터로 형질전환된 피키아 파스토리스 균주를 발효하여 생산된 hIL 단백질을 정제하기 위한 크로마토그램을 나타낸 것이다.
도 16은 pGAPZ/pTFP4-hIL2 유전자를 포함하는 재조합 벡터로 형질전환된 피키아 파스토리스 균주를 발효하여 생산된 hIL 단백질을 정제한 결과를 나타낸 것이다.
도 17은 pGAPZ/pTFP4-hIL2 유전자를 포함하는 재조합 벡터로 형질전환된 피키아 파스토리스 균주를 발효하여 생산된 hIL2 단백질의 활성을 확인한 결과를 나타낸 것이다.
상기 목적을 달성하기 위한 본 발명의 일구현예는 신규하게 분리된 단백질 융합인자를 제공한다. 구체적으로, 서열번호 1, 3, 5, 및 13으로 이루어진 군에서 선택되는 1종 이상의 아미노산 서열 또는 이의 단편으로 이루어진, 효모에서 목적단백질을 분비생산하는 단백질융합인자에 관한 것이다. 구체적으로, 상기 효모는 사카로마이세스 세레비시애(Saccharomyces cerevisiae) 혹은 피키아 파스토리스 (Pichia pastoris)일 수 있으나, 이에 제한되지 않는다.
본 발명의 효모, "피키아 파스토리스(Pichia pastoris)"는 사카로마이세스 세레비시애(Saccharomyces cerevisiae)와 함께 재조합 단백질 생산에 가장 널리 활용되는 미생물로서 유전자 조작이 용이하며 다양한 발현 시스템이 개발되어 있고 대량배양이 용이하다. 뿐만 아니라 인체단백질과 같은 고등세포 유래의 단백질을 재조합 생산할 때 단백질을 세포 밖으로 분비할 수 있는 분비기능과 당쇄부가 등과 같은 단백질의 번역 후 수식(post-translational modification) 기능을 수행할 수 있는 장점을 제공한다. 또한 사카로마이세스 세레비시애와는 달리 에탄올을 생산하지 않기 때문에 재조합 단백질 생산시 고농도 배양이 가능한 장점이 있다. 재조합 단백질의 분비 생산은 단백질 분비시그날과 목표단백질을 인위적으로 융합(fusion)함으로써 세포외 분비가 가능한 것으로, 단백질의 분비과정을 통해서 단백질의 접힘이나 이황화 결합의 형성 및 당쇄부가 과정이 진행되며 따라서 생물학적으로 완전한 활성을 갖는 재조합단백질을 생산할 수 있는 장점이 있다. 또한, 생물학적 활성을 갖는 단백질을 배지로부터 직접 얻을 수 있기 때문에 경제적으로 효율이 낮은 세포의 분쇄나 재접힘 단계를 필요로 하지 않아 매우 경제적이다. 그러나, 이와 같은 피키아 파스토리스 등 단백질 의약품 등의 생산 숙주로 이용되는 효모 등에서 목적단백질을 높은 분비능으로 발현시킬 수 있는 적합한 단백질 분비 시그날이 부족한 단점이 있었다.
이에, 본 발명자들은 신규하게 분리한 피키아 파스토리스 유래의 단백질융합인자가 대표적인 난발현성 단백질인 인터루킨-2를 높은 효율로 분비하는 것을 확인하고, 신규한 단백질융합인자를 제공하기에 이르렀다.
본 발명의 용어 "단백질 융합인자(translational fusion partner, TFP)"는 재조합 효모 발현 시스템에서 난발현성 단백질을 코딩하는 유전자와 융합되어 난발현성 단백질의 분비생산을 유도하는 유전자를 의미하며, 그 예로 서열번호 1, 3, 5, 및 13으로 이루어진 군에서 선택되는 1종 이상의 아미노산 서열 또는 이의 단편일 수 있으나, 이에 제한되지 않고 목적단백질의 분비능 및/또는 발현능을 향상시킬 수 있는 것이면 상기 서열 또는 단편의 변이체도 포함될 수 있다. 
구체적으로, 효모 피키아 파스토리스(Pichia pastoris) 균주 유래로서 pTFP-1(pichia translational fusion partner-1) 내지 pTFP-8 등을 열거할 수 있다(표 2). 본 발명자들은 상기 pTFP-1 내지 pTFP-8 중 특히 pTFP1-hIL2, pTFP2-hIL2, pTFP3-hIL2, pTFP4-hIL2 또는 pTFP8-hIL2를 도입한 형질전환체의 경우, 도 5에 나타난 바와 같이, 대조군 중 하나인 인비트로젠사의 pPINK-LC 벡터 7 종류에 구축된 hIL-2는 거의 발현이 되지 않은 반면, 피키아에 도입한 사카로마이세스 세레비시애 유래 MFα 시그널 펩티드를 이용하여 hIL-2를 분비발현하는 형질전환체 및 pTFP1-hIL2, pTFP2-hIL2, pTFP3-hIL2, pTFP4-hIL2 또는 pTFP8-hIL2를 도입한 형질전환체의 경우, 난발현성 단백질인 인터루킨-2의 의 발현이 나타남을 확인하였다.
본 발명의 용어 "목적단백질"은, 숙주세포에서 생산하고자 하는 단백질을 의미한다. 본 발명에서는 인체 또는 다양한 생명체 유래의 단백질을 재조합 생산하고자 할 때 단백질 자체의 특성으로 인해서 대장균이나 효모 등의 숙주세포에서 재조합 발현 생산이 어려운 단백질을 의미한다. 또한, 숙주세포에서 재조합 생산이 가능하더라도 효모에서는 생산성이 낮아 경제성이 없는 다수의 단백질을 포함할 수 있으나, 이에 제한되지 않고 숙주세포에서 생산하고자 하는 단백질이면 모두 포함할 수 있다. 
구체적으로, 상기 목적단백들은, 이에 제한되는 것은 아니나, 혈청단백질(인자 VII, VIII 및 IX를 포함한 혈액인자), 면역글로불린, 사이토카인(인터류킨), α-, β- 및 γ-인터페론, 콜로니자극인자(GM-CSF), 상피세포성장인자 (EGF), 혈소판 유도된 성장 인자(PDGF), 포스포리파제-활성화 단백질(PLAP), 인슐린, 종양 괴사 인자(TNF), 성장 인자(예, TGF-α 또는 TGF-β와 같은 조직 성장 인자 및 내피 성장 인자), 호르몬(소낭-자극 호르몬, 갑상선-자극 호르몬, 항이뇨 호르몬, 색소성 호르몬 및 부갑상선 호르몬, 황체분비호르몬 및 이의 유사체), 칼시토닌(calcitonin), 칼시토닌 유전자 관련 펩타이드(Calcitonin Gene Related Peptide,CGPR), 엔케팔린(enkephalin), 소마토메딘, 에리스로포이에틴, 시상하부 분비 인자, 프롤락틴, 만성 고나도트로핀, 조직 플라스미노겐 활성화제, 성장호르몬 분비 펩타이드(growth hormone releasing peptide; GHPR), 흉선 체액성 인자(thymic humoral factor; THF) 등이 포함된다. 또한, 이러한 단백질에는 효소를 포함할 것이며, 예로는 탄수화물-특이적 효소, 단백질분해 효소, 산화환원 효소, 트랜스퍼라제, 하이드롤라제, 라이아제, 이소머라제 및 리가제가 포함된다.구체적인 효소로는 이들로 한정하는 것은 아니지만 아스파라기나제, 아르기나제, 아르기닌 데아미나제, 아데노신 데아미나제, 과산화물 디스뮤타제, 엔도톡시나제, 카탈라제, 키모트립신, 리파제, 우리카제, 아데노신 디포스파타제, 티로시나제 및 빌리루빈 옥시다제를 들 수 있다. 탄수화물-특이적 효소의 예로는 글루코즈 옥시다제, 글루코다제, 갈락토시다제, 글루코세레브로시다제, 글루코우로니다제 등이 포함될 수 있다. 더욱 구체적으로 인터루킨-2(Interleukin-2)일 수 있다.
본 발명의 또 다른 일구현예는 상기 목적단백질 분비생산용 단백질융합인자 및 목적단백질을 포함하는, 효모에서 분비능이 증가된 분리된 융합단백질에 관한 것이다. 상기 목적단백질 분비생산용 단백질융합인자 및 목적단백질은 펩타이드 결합 또는 이황화결합 등으로 직접적으로 연결될 수 있으며, 또한 링커를 통하여 연결된 형태일 수 있다.
본 발명에서 용어, "링커(linker)"란 기본적으로는 두 개의 서로 다른 융합파트너(예를 들어, 생물학적 고분자 등)를 수소결합, 정전기적 상호작용, 반데르발스력, 이황화 결합, 염 브릿지, 소수성 상호작용, 공유결합 등을 이용하여 연결할 수 있는 연결체를 의미한다. 바람직하게는 생리학적 조건 또는 다른 표준 펩타이드 조건(예를 들면, 펩타이드 정제 조건, 펩타이드 저장 조건)하에서 적어도 하나의 이황화 결합에 참여할 수 있는 적어도 하나의 시스테인을 가질 수 있으며, 단순히 각각의 융합 파트너를 연결하는 역할 이외에도, 융합 파트너 사이에 일정한 크기의 간격을 부여하는 역할을 수행하거나 또는 결합체에 유연성 또는 강직성을 제공하는 힌지(hinge)의 역할을 수행할 수도 있다. 또한 생체 내 효소 등에 의해 분리될 수 있는 부위를 포함하며, 목적단백질의 분리 및 정제를 용이 하게 할 수 있다. 상기 링커는 비펩타이드 링커 또는 펩타이드 링커일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 실시예에서는, 상기 목적단백질로서 난발현성 단백질의 일종인 인간 인터루킨-2 단백질을 pTFP와 연결하여, 효모 사카로마이세스 세리비시애 및 피키아 파스토리스 균주에 형질전환시키고 인터루킨-2의 발현량을 관찰하였으며, 특히 피키아 파스토리스에서의 단백질 발현이 현저히 증가되었음을 확인하였다(도 4 내지 도 6).
본 발명의 또 다른 일구현예는, 상기 단백질융합인자를 코딩하는 폴리뉴클레오티드 일 수 있으며, 구체적으로, 상기 폴리뉴클레오티드는 폴리뉴클레오티드는 서열번호 2, 6, 8 및 14로 이루어진 군에서 선택되는 1종 이상의 염기서열로 이루어진 것일 수 있다. 상기 폴리뉴클레오티드는 DNA 또는 RNA일 수 있으며, 본 발명의 폴리뉴클레오티드가 RNA인 경우 DNA의 T(티민)이 우라실(U)로 대체되는 것으로 이해할 수 있다. 상기 폴리뉴클레오티드는 공지된 화학적 합성법에 의해 제조할 수 있다.
본 발명의 또 다른 일구현예는 상기 폴리뉴클레오티드를 포함하는 발현 벡터일 수 있다. 구체적으로 상기 발현 벡터는 목적단백질을 코딩하는 핵산이 포함된 것일 수 있다.
본 발명에서 용어,“발현 벡터”란 적당한 숙주세포에서 목적 단백질 또는 목적 RNA을 발현할 수 있는 벡터로서, 유전자 삽입물(상기 폴리뉴클레오티드)이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다. 발현 벡터는 일단 숙주 세포 내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 삽입된 외래 DNA가 발현될 수 있다.
본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함할 수 있다. 특히 본 발명에서는 시그널 서열로서 pTFP 인자를 사용함으로써 난발현성 단백질의 발현량이 증가하는 것을 확인하였는바, 본 발명의 발현벡터는 시그널 서열로서 특히 효모 피키아 파스토리스(Pichia pastoris) 균주 유래의 목적단백질 분비생산용 단백질융합인자를 포함할 수 있다.
본 발명의 또 다른 일구현예는, 발명은 상기 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 포함하는 형질전환체에 관한 것이다.
본 발명의 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본 발명에 따른 형질전환에 사용될 수 있는 숙주 세포는 원핵 또는 진핵 세포 모두를 포함할 수 있으며, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 사용될 수 있다. 예를 들어, 에스케리키아, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO, COS 1, COS 7, BSC 1, BSC 40, BMT 10 등의 동물 세포 등이 사용될 수 있으며, 이에 제한되는 것은 아니다. 더욱 구체적으로 본 발명의 목적상 상기 목적단백질이 융합된 융합단백질의 생산을 위해서는 피키아속, 사카로마이세스 속 일 수 있으며, 피키아 파스토리스(Pichia pastoris) 또는 사카로마이세스 세레비시애(Saccharomyces cerevisiae)를 포함하는 효모일 수 있다.
형질전환은 폴리뉴클레오티드를 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산 칼슘(CaPO4) 침전, 염화 칼슘(CaCl2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로박테리아-매개 형질전환, PEG(polyethylene glycol), 덱스트란 설페이트, 리포펙타민, 입자 충격법(particle bombardment) 등이 포함되나 이로 제한되지 않는다.
본 발명의 일 실시예에서는 피키아 파스토리스(Pichia pastoris)에 형질전환하여, 형질전환체를 제조하였을 때, 특히 pTFP1-hIL2의 hIL-2 단백질 발현의 경우, 대조군인 MFα-hIL2 보다 150% 향상되었으며, pTFP4-hIL2의 단백질 발현은 대조군인 MFα-hIL2 보다 280% 향상되었음을 확인할 수 있었다(도 6).
또한, 본 발명자들은 대장균 DH5α에 pGAPZ/pTFP1-hIL2, pGAPZ/pTFP2-hIL2, pGAPZ/pTFP3-hIL2및 pGAPZ/pTFP8-hIL2을 각각 도입하여 제조한 형질전환체를 부다페스트 조약하의 국제기탁기관인 한국생명공학연구원 생물자원센터(Korean Collection for Type Culture; KCTC)에 2014년 6월 17일자로 기탁하여 기탁번호 KCTC18301P, KCTC18302P, KCTC18303P, 및 KCTC18305P를 부여받았으며, 이를 2015년 6월 9일 부다페스트 조약 하의 국제기탁으로 전환청구 하여, 기탁번호 KCTC12833BP, KCTC12834BP, KCTC12835BP, 및 KCTC12837BP를 각각 부여받았다. 이에 따라 본 발명의 형질전환체는 구체적으로 기탁번호 KCTC12833BP, KCTC12834BP, KCTC12835BP 또는 KCTC12837BP인 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 대장균을 숙주로 하는 형질전환체는, 단백질융합인자 또는 이를 포함하는 벡터의 증식을 위해 이용될 수 있다.
본 발명의 또 다른 일구현예는, 상기 발현 벡터가 도입된 효모를 배지에 배양하는 단계를 포함하는, 목적단백질 제조방법에 관한 것이다. 구체적으로 상기 효모는 피키아 파스토리스 또는 사카로마이세스 세레비시애 일 수 있으나, 본 발명의 단백질융합인자가 작동하여 목적단백질의 분비 및/또는 발현양을 증대시킬 수 있는 숙주는 제한없이 포함될 수 있으며, 상기 목적단백질은 인터루킨-2(Interleukin-2)일 수 있다. 또한, 본 발명에서 상기 목적단백질의 제조는 단백질융합인자를 포함하지 않는 형질전환체에 비하여 분비능이 증가되어 대량생산이 가능한 것일 수 있다.
구체적으로, 상기 형질전환체의 배양은 통상의 효모 또는 균주의 배양에 필요한 탄소원 및 질소원을 포함하는 배지에서 이루어질 수 있으며, 추가로 비-이온성 계면활성제, 폴리소르베이트(Polysorbate)(상표명 tween20) 또는 폴록사머(poloxamer)(상표명 폴록사머 188)를 포함하는 배지를 이용하여 수행할 수 있다.
또한, 구체적으로 본 발명에서 상기 목적단백질을 제조하는 방법은 상기 목적단백질을 회수하는 단계를 추가로 포함할 수 있다.
본 발명의 목적단백질의 제조 방법은 상기 회수한 목적단백질을 정제하는 단계를 추가로 포함할 수 있으며, 상기 목적단백질의 정제는 면역친화성 크로마토그래피, 수용체친화성 크로마토그래피, 소수성 작용 크로마토그래피, 렉틴 친화성 크로마토그래피, 크기배제 크로마토그래피, 양이온 또는 음이온 교환 크로마토그래피, 고성능 액체 크로마토그래피(HPLC) 및 역상 HPLC 등을 포함하는 종래의 크로마토그래피 방법에 의해 수행될 수 있다. 또한, 원하는 단백질이 특이적 태그, 라벨 또는 킬레이트 모이어티를 가지는 융합 단백질이어서 특이적 결합 파트너 또는 제제에 의해 인식하여 정제하는 방법이 있다. 정제된 단백질은 원하는 단백질 부분으로 절단되거나 그 자체로 남아있을 수 있다. 융합 단백질의 절단으로 절단 과정에서 부가적인 아미노산을 가지는 원하는 단백질 형태가 만들어질 수 있다.
본 발명에서 "유가식 배양"은 배지를 간헐적으로 공급하는 배양방법으로서 배양액 중의 기질농도를 임의로 제어할 수 있으며, 기질은 적당한 속도로 첨가되며 유출이 없기 때문에 공급되는 기질의 양과 미생물에 의한 소비량 사이에 균형을 유지함으로써 기질을 자유롭게 제어할 수 있는 배양방법을 의미하며, 가장 보편화되어 있는 배양방법이다.
본 발명의 일 실시예에서는 pTFP4-hIL-2를 도입하여 형질전환시킨 효모를 5L 발효조에서 유가식 배양을 수행하였으며(실시예 8), 상기 형질전환체의 성장이 정상적으로 이루어지며, 인터루킨-2가 고농도로 분비되는 것을 확인하였다(도 14).
본 발명의 다른 실시예(실시예 9)에서는 발효 생산시에 세척액(detergent)을 첨가하는 단계를 추가로 포함하는 경우와 상기 세척액을 첨가하지 않는 경우의 목적단백질의 회수율을 비교한 결과, 세척액을 첨가한 경우 단백질의 회수율이 높은 것을 확인하였다(도 15a, 도 15b 및 도 16).
본 발명의 또 다른 실시예(실시예 10)에서는 정제된 hIL-2 단백질을 EL-4 세포주에 농도별로 첨가하여 림프구 증식을 확인한 결과, pTFP4를 이용하여 과발현시킨 hIL-2 단백질이 EL-4 세포주의 증식을 촉진하는 활성을 가지는 것을 확인하였다(도 17).
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1. 사용 균주 및 실험재료
피키아 파스토리스(Pichia pastoris GS115) 균주를 인비트론사(Invitron, USA)에서 구입하고 YPD(1% 효모 추출물, 2% 박토 펩톤, 2% 글루코오스) 배지 또는 YPDS(1% 효모 추출물, 2% 박토 펩톤, 1% 글루코오스, 1% 솔비톨)를 사용하여 30℃에서 3일 동안 배양하였다. 또한, 사카로마이세스 세레비시애(Saccharomyces cerevisiae)에 인버테이즈 형질전환체는 YPSGA 배지(1% 효모 추출물, 2% 박토 펩톤, 2% 수크로오스, 0.3% 갈락토오스, 2ug/㎖ 안티마이신, 17ug/㎖ 클로람페니콜)에서 선별하였으며, 인버테이즈 제거된 형질전환제는 SD Ura- 배지(0.67% 아미노산이 결여된 효모 질소 베이스, 2% 글루코오스, 0.5% 카사미노산)에서 선별한 후 YPDG(1% 효모 추출물, 2% 박토 펩톤, 1% 글루코오스, 1% 갈락토오스) 배지에서 40시간 동안 배양하여 상등액 0.6 ㎖을 0.4 ㎖의 아세톤으로 침전시킨 후 SDS-PAGE 분석하여 선별하였다. 선별한 형질전환체의 일반적인 유전자 조작에는 대장균 DH5α를 사용하였다.
실시예 2. 유전자 조작 및 염기서열 분석 방법
일반적인 유전자 조작은 Sambrook(Molecular cloning: a laboratory manual, 2nd ed, 1989) 등의 기술에 따라서 수행하였고, 아가로스 겔로부터 유전자를 회수할 경우는 겔 추출 키트(Viogene사)를 사용하였다. Connie Holm 및 Douglas W. Meeks-wagnerd(Gene. 42, 169-173, 1986)가 사용한 방법에 따라 피키아 파스토리스 GS115(Pichia pastoris GS115)로부터 게놈 DNA를 추출하였으며, Gietz (Yeast 11, 355-360, 1995)등이 기술한 방법에 따라 효모 형질전환을 수행하였다. 대장균의 형질전환은 Inoue(Gene 96, 23-28, 1990) 등의 방법을 사용하였다. 유전자의 염기서열분석은 Applied Biosystems사의 Model 373A를 사용하여 분석하였으며, 중합효소 연쇄반응에 사용할 프라이머는 Genotech사에서 합성하였다.
실시예 3. 피키아 파스토리스 유래의 단백질분비융합인자(pTFP)용 라이브러리 제작
피키아 파스토리스 GS115 (Pichia pastoris GS115) 게놈 DNA로부터 단백질융합인자 라이브러리를 구축하기 위해서 피키아 파스토리스의 분비 단백질 유전체 서열 중 세포 밖으로 분비되거나 세포막에 존재한다고 알려진 69개의 단백질을 선정하였고 각각의 유전자를 증폭하기 위한 프라이머 서열을 표 1에 나타내었다.
Figure PCTKR2015006429-appb-T000001
Figure PCTKR2015006429-appb-I000001
Figure PCTKR2015006429-appb-I000002
Figure PCTKR2015006429-appb-I000003
Figure PCTKR2015006429-appb-I000004
상기 실시예 1 및 2에 개시한 방법으로 피키아 파스토리스 게놈 DNA를 회수하였고, 이를 주형으로 69개 각각 분비신호서열을 포함하여 약 1kb 내외로 확보할 수 있도록 각 유전자 서열에 맞는 센스/안티센스 프라이머 쌍(표 1)을 이용하여 중합효소연쇄반응(PCR)을 진행하였다(94℃에서 4분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 1분간 반응을 25회; 72℃에서 7분간 1회). 이후, 증폭된 각각의 유전자를 아가로스젤 전기영동을 통해 회수하였고, 회수한 중합효소연쇄반응 산물들을 나노드롭(thermo scientific, USA)을 이용하여 정량하고 각각 동일한 농도로 혼합하였다. 이러한 방법으로 증폭한 각각의 유전자는 단일방향성 중합효소 연쇄반응(unidirectional PCR)에 필요한 동일한 5'서열을 가지는 구조이다.
상기 혼합한 산물 100ng을 주형으로 센스 프라이머(서열번호 15의 GalSfiⅠ)만을 사용하여 단일방향성 중합효소 연쇄반응을 수행(95℃에서 20초간, 65℃에서 10초간, 72℃에서 30초간 반응을 70회)하여 단일가닥의 유전자만을 증폭하였다. 이로부터 다양한 크기의 이중가닥 유전자를 제작하기 위하여 정제 과정 없이 PCR 산물을 주형으로 랜덤 프라이머(서열번호 16의 SfiB3’N6)와 dNTP, 클레나우 단편(klenow fragment, exo)을 사용하여 37℃에서 반응하였다. 1시간 반응 후 아가로스 젤에서 0.3 내지 0.6kb의 DNA를 회수하였다. 그 다음, 회수한 DNA를 주형으로 센스 GalSfiⅠ(서열번호 15)/안티센스 SfiB3’(서열번호 17) 프라이머로 또 한 번 증폭하여 아가로스 젤에서 0.2에서 0.8kb 크기의 DNA를 회수하였다.
효모와 대장균 셔틀 벡터이면서 SUC2 성숙 서열(513개 아미노산)을 갖는 YGaINV 벡터를 SfiⅠ 처리 후 회수한 DNA 산물과 함께 사카로마이세스 세레비시애(Saccharomyces cerevisiae) Y2805Δgal1Δsuc2 (Mat a ura3 suc2::Tcl90 pep4::HIS3 gall canl) 균주(한국등록특허 제975,596호)에 세포 내 재조합(in vivo recombination) 후 형질전환 시켰다. 상기 PCR 반응 및 재조합 과정은 도 1에 모식도로 나타내었다. 형질전환시킨 세포를 YPSGA 배지 (1% 효모추출물, 2% 박토 펩톤, 2% 수크로즈, 0.3% 갈락토즈, 1 ㎍/㎖ 안티마이신 A 및 2% 아가)에 각각 도말하고 5일간 배양하였다.
적절한 피키아 파스토리스 유래의 단백질융합인자(Pichia Translational Fusion Partner; pTFP)를 포함하는 벡터에 목적 유전자가 세포 내 재조합을 통해 in-frame으로 연결한 경우에만 활성을 가진 인버테이즈를 배지로 분비할 수 있기 때문에 탄소원으로 설탕을 사용하는 YPSGA 배지에서 성장이 가능하다. 이러한 방법을 사용하여 인버테이즈 단백질의 분비를 유도하는 최적의 pTFP 1500개를 우선적으로 선별하였다. 모든 형질전환체는 멸균증류수를 사용하여 회수하였고, 균체로부터 전체 플라스미드 추출 키트(바이오니아, 한국)를 이용하여 인버테이즈를 과발현하는 융합된 게놈 라이브러리 플라스미드를 획득하였다. 회수한 플라스미드들을 DH5α에 형질전환하고 엠피실린이 포함된 2YP 배지(1.6% 박토 트립톤, 1% 효모 추출물, 0.5% NaCl, 엠피실린 100㎍/㎖)에 도말한 후 37℃에서 하루 배양하여 약 2 X 10 세포의 형질전환체 라이브러리를 확보하였고, DNA 플라스미드 추출 후 라이브러리로부터 무작위적으로 선별된 플라스미드의 서열을 분석한 결과, 분석된 모든 pTFP가 서로 다른 분비 단백질을 코딩하는 피키아 파스토리스 유래의 유전자임을 확인하였다.
실시예 4. 인터루킨-2를 과발현 시키는 신규단백질 융합인자 제조
인버테이즈를 과발현시킬 수 있는 약 1,500개의 pTFP와 대표적인 난발현 단백질로 알려진 성숙 인간 인터루킨-2 (mature hIL-2) 유전자를 연결하여 인버테이즈 아미노 말단의 45개 아미노산이 제거된 YGadV45 벡터(한국등록특허 제975,596호)에 도입하고자 하였다. 이를 위해 먼저 1,500개의 pTFP 플라스미드를 주형으로하여, 센스 프라이머 Gal100 (서열번호 18)과 안티센스 프라이머 LDKR42 (서열번호 19)를 이용하여 중합효소 연쇄반응(94℃ 5분 동안 1회; 95℃ 20초간, 53℃ 30초간, 72℃ 30초간 반응을 25회; 72℃에서 7분간 1회)을 진행하여 0.2 내지 0.8kb의 PCR 산물을 아가로스겔로부터 획득하였다. 상기 PCR 산물의 5' 말단은 도입하고자 하는 YGadV45 벡터의 Gal10 프로모터의 3’ 말단과 상보적이며, 이 산물의 3' 말단은 목적단백질인 인간 인터루킨-2 유전자의 5’ 말단과 상보적이다. pTFP에 연결할 인간 인터루킨-2 유전자를 증폭하기 위해 한국등록특허 제975,596호에서 사용했던 인간 인터루킨-2 유전자를 주형으로 센스 프라이머 LNK39 (서열번호 20) 와 안티센스 프라이머 CR139 (서열번호 21) 를 이용하여 중합효소 연쇄반응(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 30초간 반응을 25회; 72℃에서 7분간 1회)하여 산물의 5' 말단이 pTFP의 3’ 말단과 상보적인 서열을 갖는 약 440bp 크기의 산물을 획득하였다. 또한, YGadV45 벡터 내 부족한 인버테이즈 5' 말단의 45개 아미노산을 증폭하기 위해 센스 프라이머 CR138 (서열번호 22)와 안티센스 프라이머 CR142 (서열번호 23)를 이용하여 중합효소 연쇄반응을 진행하였고(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 30초간 반응을 25회; 72℃에서 7분간 1회), 그로부터 인간 인터루킨-2의 3’ 말단과 상보적인 서열을 갖는 인버테이즈 5' 말단 서열크기 약 170bp의 산물을 수득하였다.
수득한 세 PCR 산물을 SfiⅠ 처리한 YGadV45 벡터와 함께 Y2805Δgal1Δsuc2(Mat a ura3 suc2::Tcl90 pep4::HIS3 gall canl) 균주(한국등록특허 제975,596호)에 세 종류 절편으로 세포 내 재조합 (Three piece in vivo recombination) 방법을 통해 형질전환시다. 상기 PCR 반응 및 재조합 과정은 도 2에 모식도로 나타내었다. 형질전환시킨 세포를 우라실(Uracil)이 없는 선택배지 UD(0.67% 아미노산이 없는 효모 나이트로젠 베이스, 0.77 g/ℓ 아미노산 혼합물, 2% 글루코스, 2% 아가) 배지와 YPSGA 배지 (1% 효모추출물, 2% 박토 펩톤, 2% 수크로즈, 0.3% 갈락토즈, 1 ㎍/㎖ 안티마이신 A, 2% 아가)에 각각 도말하고 5 내지 7일동안 배양하였다. 이로부터 UD에서는 약 2 X 10⁴개의 형질전환체가 형성되었으나, YPSGA 배지에서는 약 150 개의 형질전환체가 형성되었고, 이 중 인버테이즈를 잘 분비하여 큰 콜로니를 형성한 형질전환체 15개를 선택하였다. 각 형질전환체의 pTFP 부분을 서열 분석하여 유전자의 종류가 다르거나, 아미노산 개수가 다른 신규한 7종류의 인간 인터루킨-2 과발현 pTFP 부분의 서열을 확인하여 하기 표 2에 나타내었다. pTFP1, 4, 7은 동일한 유전자 였지만 서로 다른 크기로 확인되었으며 3'말단에는 hIL-2와의 사이에 Kex2 인식서열을 포함하는 15개 내외의 아미노산으로 이루어진 링커 부위가 존재하였다.
Figure PCTKR2015006429-appb-T000002
실시예 5. 효모 S. cerevisiae 에서의 pTFP-인터루킨-2의 발현확인
상기 실시예에서 확보한 발현벡터는 인터류킨-2와 인버테이즈가 연결되어서 발현되기 때문에 인터류킨-2의 발현량을 비교하기 위해서 인버테이즈 유전자를 제거하고 인터류킨-2만 발현하고자 하였다. 확보한 7종의 벡터에서 pTFP-hIL2 부분을 센스 프라이머 Gal100 (서열번호 18)와 안티센스 프라이머 CR143 (서열번호 24)로 중합효소 연쇄반응(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 1분간 반응을 25회; 72℃에서 7분간 1회)하였고, 1차로 회수한 절편들을 주형으로 인버테이즈 유전자가 없는 YGa 벡터 말단과 상보적인 서열을 도입하기 위한 센스 프라이머 Gal100 (서열번호 18) 및 안티센스 프라이머 GT50R (서열번호 25)를 이용하여 2차 중합효소 연쇄반응을 수행하여(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 1분간 반응을 25회; 72℃에서 7분간 1회) 효모에서 벡터와 세포 내 재조합(in vivo recombination)이 가능한 유전자를 제작하였다. 이러한 방법으로 증폭한 유전자는 인버테이즈 유전자가 제거되고 hIL-2 유전자 말단에 단백질합성 종결코돈이 도입된 구조이다. 상기 선별한 7종의 pTFP-hIL2 유전자를 효모 사카로마이세스 세레비시애용 YGa 벡터에 도입하기 위한 중합효소 연쇄반응(PCR) 및 세포 내 재조합과정을 나타내는 모식도를 도 3에 나타내었다.
PCR 산물은 벡터와 동일한 서열을 40bp 이상 포함하고 있기 때문에 선형화된 벡터와 함께 효모세포로 도입하면 세포 내에서 교차가 일어나서 원형의 플라스미드 벡터가 만들어졌다. 세포 내 재조합을 통해 형성된 형질전환체는 UD 배지 (0.67% 아미노산이 결여된 효모기질, 0.77% 우라실이 결핍된 영양보충물, 2% 포도당, 2% 아가)에서 성장함에 따라, 이를 통해 형질전환체를 선별하였다.
이후, YPDG(1% 효모추출물, 2% 펩톤, 1% 포도당, 1%갈락토오스)배지에서 40시간 배양 후 상등액 0.6 ㎖에 0.4 ㎖의 아세톤을 첨가한 후 -20℃에서 2시간 방치하고, 단백질을 13,000rpm으로 15분간 원심분리하여 회수한 뒤 12% 트라이신이 포함된 SDS-PAGE 겔을 사용하여 80V로 약 3시간 정도 전개하여 전기 영동한 후, 한 시간 동안 염색 후 탈색 버퍼(10% Acetic acid, 30% Methanol)을 이용하여 탈색하고, 그 결과를 분석하였으며, 효모 Y2805균주에 YGa/pTFP1-hIL2, YGa/pTFP2-hIL2, YGa/pTFP3-hIL2, YGa/pTFP4-hIL2, YGa/pTFP5-hIL2, YGa/pTFP7-hIL2, YGa/pTFP8-hIL2이 도입되어 형성된 단일 형질전환체들 각 두 개씩의 배양 상등액을 SDS-PAGE로 분석한 결과를 도 4에 나타내었다.
pTFP 종류 별로 각 형질전환체의 단일 콜로니를 각 두 개씩을 YPDG 배지에서 40시간 배양하여 hIL-2의 상대적인 발현량을 SDS-PAGE로 비교하였으며, 그 결과 pTFP5번은 hIL-2 단백질의 발현은 나타나지 않았고, pTFP1번의 발현량이 가장 적었으며 pTFP4번의 hIL-2 단백질 발현량이 가장 높은 것을 확인할 수 있었다. pTFP1, 4, 7은 아미노산 길이만 다른 동일한 유전자이지만 단백질분비융합인자로서 hIL-2 단백질을 분비시키는 능력은 서로 달랐다. 따라서 동일한 유전자일지라도 다른 크기일 경우에는 다른 단백질분비융합인자로 작용함을 알 수 있다(도 4).
실시예 6. 효모 P. pastoris 에서 pTFP-인터루킨-2의 발현확인
상기 실시예 4를 통해 효모 사카로마이세스 세레비시애에서 선별한 7종류의 신규한 단백질분비융합인자는 피키아 파스토리스 유래의 유전자로부터 구축한 것이므로, 피키아 파스토리스에서는 어떠한 효과를 보이는지 확인하고자 하였다.
사카로마이세스 세레비시애에서 작동했던 YGa 벡터 내 pTFP-hIL2의 7종류 목적 단백질을 피키아 파스토리스 내에 도입하기 위하여, 상시 작동하는 pGAPZ(인비트로젠, USA) 벡터로 옮기는 작업을 수행하였다. 우선 YGa/pTFP1-hIL2 플라스미드를 주형으로 센스 프라이머 CR278(서열번호 26)와 안티센스 프라이머 CR182(서열번호 27)를, YGa/pTFP2-hIL2 플라스미드를 주형으로 센스 프라이머 CR279(서열번호 28)와 안티센스 프라이머 CR182(서열번호 27)를, YGa/pTFP3-hIL2 플라스미드를 주형으로 센스 프라이머 CR280(서열번호 30)와 안티센스 프라이머 CR182(서열번호 27)를, YGa/pTFP4-hIL2 플라스미드를 주형으로 센스 프라이머 CR278(서열번호 26)와 안티센스 프라이머 CR182(서열번호 27)를, YGa/pTFP5-hIL2 플라스미드를 주형으로 센스 프라이머 CR281(서열번호 30)와 안티센스 프라이머 CR182(서열번호 27)를, YGa/pTFP7-hIL2 플라스미드를 주형으로 센스 프라이머 CR278(서열번호 26)와 안티센스 프라이머 CR182(서열번호 27)를, 마지막으로 YGa/pTFP8-hIL2 플라스미드를 주형으로 센스 프라이머 CR282(서열번호 31)와 안티센스 프라이머 CR182(서열번호 27)를 이용하여 각각의 5’ 말단에는 EcoRⅠ , 3'말단에는 SacⅡ 사이트가 도입되도록 중합효소 연쇄반응 하였다(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 1분간 반응을 25회; 72℃에서 7분간 1회).
이로부터 순서대로 약 1kb, 650bp, 600bp, 700bp, 800bp, 780bp 및 650bp의 절편을 회수하였고, 제한효소 EcoRⅠ과 SacⅡ로 처리한 후 동일한 제한효소 처리한 pGAPZ 벡터와 함께 다카라(TaKaRa, Japan) 라이게이션 믹스(ligation mix)를 사용하여 16℃에서 12시간 연결하였다. 각 연결한 벡터는 DH5α에 형질전환하고 제오신이 포함된 LB 배지(1% 박토 트립톤, 0.5% 효모 추출물, 0.5% NaCl, 제오신 25㎍/㎖, 2% 아가)에 도말한 후 37℃에서 하루 배양하여 DNA 플라스미드 추출 후 각각 플라스미드의 서열을 분석하여 서열상의 문제없이 pGAPZ 벡터에 목적 단백질이 도입되었음을 확인하였다.
상기의 구축한 pGAPZ 벡터 7종류(pGAPZ/pTFP1-IL2, - pGAPZ/pTFP7-IL2)는 제한효소 BlnⅠ으로 선형화한 뒤 피키아 파스토리스의 GAPDH(glyceraldehyde-3-phosphate dehydrogenase) 영역에 전기천공법(electroporation; 2㎜ cuvette, 2000V voltage, 25㎌ capacitance, 200Ω resistance)으로 삽입(integration)하여 YPDS 배지(1% 효모 추출물, 2% 박토 펩톤, 1% 글루코오스, 1% 솔비톨) 1㎖을 첨가하여 2시간 정도 균주의 회복 배양을 한 뒤 YPDZ(1% 효모 추출물, 2% 박토 펩톤, 2% 글루코오스, 100ug/㎖ 제오신, 2% 아가) 배지에서 30℃로 3일에서 4일 정도 배양하였다.
pGAPZ/pTFP5-hIL2와 pGAPZ/pTFP7-hIL2로 형질전환한 경우 YPDZ 배지에서 약 200개의 피키아 파스토리스 형질전환체를 획득하였으나 목적단백질 확인을 위한 효모 콜로니 PCR 상에서 서열 확인이 되지 않았기 때문에 이 후 실험에서 다른 pGAPZ/pTFP-hIL-2의 발현률과 비교 불가능하였다.
나머지 pGAPZ/pTFP1-hIL2, pGAPZ/pTFP2-hIL2, pGAPZ/pTFP3-hIL2, pGAPZ/pTFP4-hIL2 또는 pGAPZ/pTFP8-hIL2를 도입한 형질전환체의 경우, 각각 세 개씩의 단일 콜로니를 YPD배지에서 30℃로 40시간 동안 배양하고, 대조군으로는 상기의 pTFP 시리즈와 동일한 방법으로 피키아에 도입한 사카로마이세스 세레비시애 유래 MFα 단백질분비융합인자로 hIL-2를 발현하는 형질전환체 및 피키아 파스토리스 내에서 단백질 과발현을 유도할 수 있는 시그널 펩타이드 kit인 pPINK-LC 벡터에 인비트로젠(invitrogen, UST)에서 권유한 방법대로 구축한 hIL-2 형질전환체 총 7종류를 사용하였다. 상기 실험군 및 대조군을 SDS-PAGE 분석을 통해 인간 인터루킨 단백질의 발현 정도를 비교하였다.
그 결과 도 5에 나타난 바와 같이, 대조군 중 하나인 인비트로젠사의 pPINK-LC 벡터 7 종류에 구축된 hIL-2는 거의 발현이 되지 않은 반면, 피키아에 도입한 사카로마이세스 세레비시애 유래 MFα 단백질분비융합인자와 pTFP를 사용하여 hIL-2를 발현한 모든 경우에서는 hIL-2 단백질의 발현이 나타남을 확인할 수 있었다.
또한, 도 5에서 확인된 pTFP의 기능을 사카로마이세스 세레비지애와 피키아 파스토리스에서 SDS-PAGE와 Western blot으로 비교하였다. 도 6에 나타난 바와 같이 Western blot으로 확인된 hIL-2 단백질 밴드의 진한정도를 비교한 결과, 사카로마이세스 세레비시애에서 가장 발현이 적었던 pTFP1-hIL-2의 hIL-2 단백질 발현의 경우, 피키아 파스토리스에서는 대조군인 MFα-hIL-2 보다 150% 향상되었으며, pTFP4-hIL-2의 단백질 발현은 대조군인 MFα-hIL-2 보다 280% 향상되었음을 확인할 수 있었다. 따라서 동일한 단백질분비 융합인자일지라도 단백질 발현에 사용하는 균주에 따라서 목적단백질의 분비 유도능이 달라짐을 알 수 있었다.
본 발명자들은 대장균 DH5α에 pGAPZ/pTFP1-hIL2, pGAPZ/pTFP2-hIL2, pGAPZ/pTFP3-hIL2 및 pGAPZ/pTFP8-hIL2을 각각 도입하여 제조한 형질전환체를 부다페스트 조약하의 국제기탁기관인 한국생명공학연구원 생물자원센터(Korean Collection for Type Culture; KCTC)에 2014년 6월 17일자로 기탁하여 기탁번호 KCTC18301P, KCTC18302P, KCTC18303P, 및 KCTC18305P를 부여받았으며, 이를 2015년 6월 9일 부다페스트 조약 하의 국제기탁으로 전환청구를 하여, 기탁번호 KCTC12833BP, KCTC12834BP, KCTC12834BP, 및 KCTC12837BP를 각각 부여받았다.
실시예 7. P. pastoris 에서 pTFP-인터루킨-2의 copy 수 확인
상기의 실시예 6에서 대조군 대비 과발현이 확인된 pGAPZ/pTFP1-hIL2, pGAPZ/pTFP4-hIL2 및 대조군인 pGAPZ/MFα-hIL2의 세 종류 형질전환체의 발현이 대등한 조건에서 이루어졌는지 확인하기 위해서 각 형질전환체의 게놈 DNA 상에 삽입된 유전자의 카피(copy)수를 확인하였다.
이를 위해 YPD에서 24시간 정도 배양한 각 균체만을 회수하여 상기 명시한 방법대로 게놈 DNA를 회수하였고, 중합효소 연쇄반응(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 30초간 반응을 25회; 72℃에서 7분간 1회)으로 증폭한 약 400bp의 hIL-2 절편을 로슈(Roche, Germany)의 DIG 표지(label) 키트를 이용하여 DIG으로 표지한 프로브(probe)를 제작하였다. 또한 pGAPZ 벡터 플라스미드를 제한효소 BlnⅠ및 EcoRⅠ으로 자른 후 약 300bp 크기의 GAP 유전자 단편을 아가로스겔로부터 회수하여 로슈 키트를 이용하여 DIG으로 표지된 프로브(probe)를 제작하였다. 그런 다음, pGAPZ/pTFP1-hIL2, pGAPZ/pTFP4-hIL2 및 pGAPZ/MFα-hIL2 형질전환체로부터 회수한 세 종류 게놈 DNA를 제한효소 BamHⅠ, EcoRⅠ및 SalⅠ으로 각 3세트씩 처리하였고, 0.9% 아가로스겔에서 100V, 30분 정도 각 제한효소 처리 산물들을 분리하였다. 분리한 아가로스겔은 로슈 DIG을 이용한 서든 실험(DIG-labeled southern hybridization)방법을 이용하여 진행하였으며, 변성액(denaturalization solution; 0.5M NaOH, 1.5M NaCl) 15분 씩 두 번, 중화액(neutralization solution; 1M Tris-HCl, pH7.5, 1.5M NaCl) 15분씩 두 번 처리 후 엘피에스(LPS, Korea)에서 구입한 SSC 버퍼를 10X로 희석하여 아가로스겔에서 니트로셀룰로오스막(nitrocellulose membrane)으로 모세관 현상을 이용하여 하루 동안 모든 DNA를 이동시켰다. 막으로 이동한 DNA를 UV로 고정시키고, 프리하이브리다이제이션 버퍼(prehybridization buffer; 5X SSC, 2%(w/v), 0.1%(w/v) N-laurylsarcosine, 0.02% (w/v) SDS)를 각 막에 골고루 처리 될 수 있도록 42℃에서 30분 반응한 뒤 하이브리다이제이션 버퍼에 미리 끓여서 차갑게 식혀둔 (denaturated) DIG 라벨 된 hIL-2 프로브와 GAPDH 프로브를 각각 100ng/㎖이 되도록 첨가하여 42℃에서 6시간 동안 니트로셀룰로오스 막과 반응시켰다. 2X 워싱 버퍼(2X SSC, 0.1%(w/v) SDS)로 15분씩 두 번, 0.5X 워싱 버퍼(0.5X SSC, 0.1%(w/v) SDS)로 15분씩 두 번 처리하고 블락킹 버퍼(Blocking buffer: 0.1M maleic acid, 0.15M NaCl, 1%(w/v) blocking reagent) 1시간 처리 후 블락킹 버퍼에 1:50,000 비율로 항-다이곡시제닌-AP(anti-digoxigenin-AP)을 첨가한 용액을 hIL-2와 GAPDH 두 종류 프로브와 면역적탐지 반응 유도를 위해 30분 처리하였다. 마지막으로 15분씩 두 번 워싱 버퍼(washing buffer: 0.1M maleic acid, 0.15M NaCl, 0.3%(w/v) Tween 20)를 처리하고 NBT/BCIP로 프로브와 목적단백질이 결합한 부분을 염색하여 시각화하였으며, 제한효소 BamHⅠ, EcoRⅠ및 SalⅠ으로 각각 처리한 pGAPZ/pTFP1-hIL2, pGAPZ/pTFP4-hIL2 및 pGAPZ/MFα-hIL2 형질전환체로부터 회수한 게놈 DNA를 DIG 표지된 hIL-2와 GAP 프로브를 이용하여 탐지한 결과를 도 7에 나타내었다. 이로부터 pGAPZ/pTFP1-hIL2, pGAPZ/pTFP4-hIL2 및 pGAPZ/MFα-hIL2 형질전환체는 각 게놈의 GAPDH 유전자가 아닌 비상동영역(nonhomologous region)의 게놈 DNA에 삽입(integration) 된 것을 알 수 있었으며, 특히, pGAPZ/pTFP4-hIL2 형질전환체의 경우 3 종류의 제한효소 처리 후 탐지된 신호가 동일한 위치에서 나타났는데, 이는 삽입 시 사용한 벡터 크기와 동일한 위치이므로 앞뒤로 나란히 두 카피(copy)가 존재함으로써 생기는 현상으로 파악되었다. 상기 결과로부터 대조군 대비 pGAPZ/pTFP4-hIL2 형질전환체의 hIL-2의 발현량이 280%까지 증가한 이유는 카피 수가 한 카피 더 많았기 때문인 것으로 확인되었다.
실시예 8. pTFP1의 길이에 따른 인간 인터루킨-2의 발현 비교
pTFP1 및 pTFP4는 동일한 유전자이지만 염기서열 길이가 각각 567bp 및 234bp로다르기 때문에 서로 다른 단백질분비 융합인자로 작용하는 것을 확인하였다. 이에 본 발명자들은 pTFP1 염기서열을 염기서열 내의 특징에 따라 길이를 다르게 구축하여 발현했을 때 인간 인터루킨-2의 발현량에 차이가 있는지에 대해 확인하고자 하였다.
우선, pGAPZ/pTFP1-hIL2를 이용하여 단백질 발현을 극대화 시킬 수 있는 pTFP1의 최적 서열을 찾고자, pTFP1 부분을 다섯 종류 특징별로 나누었으며, 이를 도 8에 나타내었다. 또한, 효모 피키아 파스토리스 내에 pGAPZ 벡터로 도입하기 위한 중합효소 연쇄반응(PCR) 및 세포 내 재조합과정을 나타내는 모식도를 도 9에 나타내었다.
도 10에 모식도로 나타낸 pGAPZ/pTFP1-hIL2 플라스미드를 주형으로 CR278 (서열번호 26)/CR349(서열번호 32) 프라이머를 사용하여 pTFP1 염기서열 5' 말단부터 아미노산 20개의 시그널 펩타이드 부분과 링커 아미노산 12개로 이루어진 총 아미노산 32개의 pTFP1-1을, CR278 (서열번호 26)/CR350(서열번호 33) 프라이머를 사용하여 5’ 말단부터 시그널 펩타이드 부분과 O-glycosylation site가 밀집해 있는 부분, 그리고 링커 부분이 포함된 총 아미노산 48개의 pTFP1-2를, CR278 (서열번호 26)/CR351(서열번호 34) 프라이머를 사용하여 5' 말단부터 시그널 펩타이드 부분, O-glycosylation 밀집 부분, 1개의 N-glycosylation 부분 및 링커를 포함한 총 아미노산 77개의 pTFP1-3을, 또한 CR278 (서열번호 26)/CR352(서열번호 35) 프라이머를 사용하여 5’ 말단부터 순차적으로 시그널 펩타이드 부분, O-glycosylation 밀집 부분, 2개의 N-glycosylation 부분 및 링커가 포함된 총 아미노산 101개의 pTFP1-4를, CR278 (서열번호 26)/CR353(서열번호 36) 프라이머를 사용하여 5’ 말단부터 순차적으로 시그널 펩타이드 부분, O-glycosylation 밀집 부분, 2개의 N-glycosylation 부분, 소수성(hydrophobic) 부분 및 링커가 포함된 총 아미노산 138개의 pTFP1-5를 PCR하였다(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 1분간 반응을 25회; 72℃에서 7분간 1회). 상기 다섯 종류의 PCR 단편과 함께 연결할 hIL-2 유전자를 증폭하기 위해 온전한 pGAPZ/pTFP1-hIL2 플라스미드를 주형으로 CR354(서열번호 37)/CR334(서열번호 38) 프라이머를 사용하여 PCR하였다(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 30초간 반응을 25회; 72℃에서 7분간 1회).
각 pTFP1-1, 1-2, 1-3, 1-4 및 1-5 PCR 산물과 증폭한 hIL-2 PCR 산물을 주형으로 하고, CR278(서열번호 26)/CR334(서열번호 38) 프라이머를 이용하는 겹침연장(overlap extension) PCR을 수행하여 다섯 종류의 pTFP1 변이체와 인간 인터루킨-2 유전자를 연결한 PCR 산물을 수득하였다(94℃ 5분 동안 1회; 94℃ 30초간, 55℃ 30초간, 72℃ 1분간 반응을 25회; 72℃에서 7분간 1회).
pTFP1-1-hIL2, pTFP1-2-hIL2, pTFP1-3-hIL2, pTFP1-4-hIL2 및 pTFP1-5-hIL2 PCR 산물은 5'말단에 EcoRⅠ 사이트가 존재하고 3’ 말단에는 SacⅡ 사이트가 존재하도록 구축하였고, 각 제한효소로 처리한 뒤 동일한 제한효소 처리한 pGAPZ 벡터와 함께 연결하였다(도 9). 구축한 벡터들은 DH5α에 형질전환한 뒤 플라스미드만 회수하였고, 획득한 다섯 종류 벡터(pGAPZ/pTFP1-1-hIL2, pGAPZ/pTFP1-2-hIL2 pGAPZ/pTFP1-3-hIL2 pGAPZ/pTFP1-4-hIL2, 및 pGAPZ/pTFP1-5-hIL2)는 서열 확인 후 BlnⅠ 제한효소로 선형화하고 피키아 파스토리스에 전기천공법(electroporation; 2㎜ cuvette, 2000V voltage, 25㎌ capacitance, 200Ω resistance)으로 삽입(integration)하여 YPDS 배지(1% 효모 추출물, 2% 박토 펩톤, 1% 글루코오스, 1% 솔비톨) 1㎖을 첨가하여 2시간 정도 균주의 회복 배양을 한 뒤 YPDZ(1% 효모 추출물, 2% 박토 펩톤, 2% 글루코오스, 100ug/㎖ 제오신, 2% 아가) 배지에서 30℃로 3일에서 4일 정도 배양하였다. 이로부터 pTFP1-1 25개, pTFP1-2 96개, pTFP1-3 180개, pTFP1-4 670개 및 pTFP1-5 159개의 형질전환체를 획득하였고, 종류마다 3개씩의 단일 형질전환체를 YPD 배지(1% 효모 추출물, 2% 박토 펩톤, 2% 글루코오스)에서 40시간 배양하고, SDS-PAGE를 이용하여 hIL-2의 발현정도를 관찰하였다.
도 12에 나타난 바와 같이, 대조군인 pGAPZ/MFα-hIL2, pGAPZ/pTFP1-hIL2 형질전환체 및 상기 5종류의 형질전환체들의 hIL-2 발현량을 확인하였다. 그 결과 pTFP1-1과 같이 시그널 펩타이드만 포함하는 경우는 인간 인터루킨-2를 분비시키지 못하였으며, pTFP1-2에서 pTFP1-5까지의 서열이 존재할 경우 인간 인터루킨-2의 발현이 서서히 증가하여 pTFP1-5에서는 본래의 pTFP1-hIL-2 발현량과 유사하게 발현됨을 확인하였다. 또한, pTFP1-1을 제외한 모든 경우에서 MFα 시그널 펩티드를 사용한 경우보다 많은 양의 인간 인터루킨-2 단백질이 분비됨을 확인하였으며, 특히 pTFP4-hIL-2에서 대조군 대비 과발현이 나타남을 확인할 수 있었다.
실시예 9. pTFP4-인터루킨-2의 대량 생산 및 정제
상기 실시예 6에서 대조군 대비 과발현이 확인된 pGAPZ/pTFP4-hIL2 형질전환체를 이용하여 인간 인터루킨-2를 대량생산하기 위하여 5L 발효조에서 유가식 배양을 수행하였다. 본 배양에 들어가기 전에 50 ㎖ YNB(0.67% 아미노산이 결여된 효모기질, 0.5% 카사미노산, 및 2% 글루코오스) 배지에 초기 배양한 후 다시 150 ㎖의 YEPD 액체배지에서 배양하여 활성화하고 본 배양액에 접종하여 30℃에서 67시간 동안 배양하였다.
pGAPZ/pTFP4-hIL-2 벡터로 형질전환된 피키아 파스토리스 GS115 균주를 5L 발효조에서 유가식 발효하여 시간별로 취한 시료의 세포 성장을 도 13에 그래프로 나타내었으며, 또한, 시료배지 10ul씩을 SDS-PAGE로 분석한 결과를 도 14에 나타내었다. pGAPZ/pTFP4-hIL2 형질전환체는 정상적으로 성정하였으며 도 14에 나타난 바와 같이, 고농도 발효에서도 플라스크 배양 결과와 유사하게 온전한 형태의 인간 인터루킨-2 가 고농도로 분비 및 발현되는 것을 확인하였다.
재조합 단백질을 발현하는 경우 발현된 단백질의 접힘과정을 늦춰주는 비-이온성 계면활성제를 소량 사용할 경우 단백질 발현이 증가되는 경우가 있다. 이에, 본 발명자들은 발효 생산 시 tween20을 0.2 % 첨가하여 생산한 pTFP4-hIL-2 단백질 발효액과 tween20을 첨가하지 않고 생산한 pTFP4-hIL-2 단백질 발효액을 동일한 조건으로 정제하여 비교하였다.
각 조건의 단백질 발효액은 20 mM sodium acetate (pH5.0)로 한외여과(분자량 10 kDa cut-off)를 이용하여 농축하였고, 이온 교환 크로마토그래피 방법으로 정제하기 위하여 20 mM sodium acetate (pH5.0)로 효소농축액을 HiPrap SP FF 컬럼에 흡착시킨 뒤 0에서 1M까지의 NaCl (pH5.0) 상승 농도 기울기로 효소를 용출시켰다(도 15a 및 도 15b).
도 15a는 0.2 %의 tween20을 첨가하지 않고 발효시킨 후 pTFP4-hIL-2 단백질을 정제한 이온 교환 크로마토그래피 프로파일 및 용출액의 SDS-PAGE 분석 결과를 나타낸 도이다. 반면, 도 15b는 0.2 %의 tween20을 첨가하여 hIL-2 단백질을 정제한 결과를 나타낸다.
도 16B는 tween20을 첨가한 경우와 첨가하지 않은 경우의 발효 배양액을 정제 전후로 비교한 단백질 SDS-PAGE 분석 결과를 나타낸다. 정제 과정의 결과, 하기 표 3 에서 보는 바와 같이 0.2% tween20을 첨가한 경우의 정제도가 첨가하지 않았을 때보다 hIL-2 단백질의 회수율이 더 높음을 확인하였다.
Figure PCTKR2015006429-appb-T000003
더 나아가, 정제한 hIL-2 단백질의 순도를 높이기 위하여 정제분획을 탈염하고 superdex 75 prep grade 컬럼 (16 x 600mm)을 이용하여 2회의 gel filtration (2nd GF) 컬럼 크로마토그래피를 진행하였고 그 용출액을 SDS-PAGE 분석하였다(도 16B).
2차 GF 결과로부터 총 1.71mg의 단백질을 확보하였고 이 중 일부를 hIL-2 Quantikine ELISA kit (R & D system)를 사용하여 생물활성 분석에 이용하였다.
실시예 10. hIL -2 정제 단백질에 의한 EL-4 세포주의 증식 확인
상기 실시예 9에서 정제한 hIL-2 정제 단백질의 생물활성을 확인하기 위하여, EL-4 세포주의 증식 촉진 활성을 측정하였다.
그 결과, 도 17에서 보는 바와 같이 kit 내의 hIL-2 단백질을 대조구로 사용하였고 EL-4 cell line에 분석하고자 하는 hIL-2 정제 단백질을 농도별로 첨가한 뒤 림프구 증식을 확인하였다.
즉, 피키아 파스토리스에서 pTFP4를 이용하여 과발현한 hIL-2 단백질이 EL-4 cell line의 증식을 촉진하는 생물활성을 갖는 것을 확인하였다.
상기 결과들로부터, 종래의 MFα 시그널 펩타이드에 비해 본 발명의 pTFP 시그널 펩타이드의 경우 유전자의 발현을 훨씬 강하게 유도하는 것을 확인하였으며, 이를 포함하는 발현 벡터에 인터루킨-2 등 난분비성 단백질을 암호화하는 유전자를 삽입하여 강하게 발현을 유도할 수 있음을 알 수 있었다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2015006429-appb-I000005
Figure PCTKR2015006429-appb-I000006
Figure PCTKR2015006429-appb-I000007
Figure PCTKR2015006429-appb-I000008

Claims (11)

  1. 서열번호 1, 3, 5 및 13으로 이루어진 군에서 선택되는 1종 이상의 아미노산 서열 또는 이의 단편으로 이루어진, 효모에서 목적단백질을 분비생산하는 단백질융합인자.
  2. 제1항에 있어서, 상기 효모는 사카로마이세스 세레비시애(Saccharomyces cerevisiae) 혹은 피키아 파스토리스 (Pichia pastoris) 인 것인, 단백질융합인자.
  3. 제1항에 있어서, 상기 목적 단백질은 인터루킨-2(Interleukin-2)인 것인, 단백질융합인자.
  4. 제1항의 단백질융합인자를 코딩하는 폴리뉴클레오티드.
  5. 제4항에 있어서, 상기 폴리뉴클레오티드는 서열번호 2, 4, 6 및 14로 이루어진 군에서 선택되는 1종 이상의 염기서열로 이루어진 것인, 폴리뉴클레오티드.
  6. 제4항의 폴리뉴클레오티드를 포함하는, 발현 벡터.
  7. 제6항에 있어서, 상기 벡터는 목적단백질을 코딩하는 핵산이 포함된 것인, 발현 벡터.
  8. 제6항의 발현 벡터를 포함하는, 형질전환체.
  9. 제8항에 있어서, 상기 형질전환체는 기탁번호 KCTC12833BP, KCTC12834BP, KCTC12835BP, 또는 KCTC12837BP인, 형질전환체.
  10. 제7항의 벡터가 도입된 효모를 배지에 배양하는 단계를 포함하는, 목적단백질 제조방법.
  11. 제10항에 있어서, 상기 효모는 사카로마이세스 세레비시애 혹은 피키아 파스토리스인 것인, 방법.
PCT/KR2015/006429 2014-06-24 2015-06-24 피키아 파스토리스 균주 유래의 목적단백질 분비생산용 단백질융합인자 및 이의 용도 WO2015199441A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140077554 2014-06-24
KR10-2014-0077554 2014-06-24

Publications (1)

Publication Number Publication Date
WO2015199441A1 true WO2015199441A1 (ko) 2015-12-30

Family

ID=54938444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006429 WO2015199441A1 (ko) 2014-06-24 2015-06-24 피키아 파스토리스 균주 유래의 목적단백질 분비생산용 단백질융합인자 및 이의 용도

Country Status (2)

Country Link
KR (1) KR101802980B1 (ko)
WO (1) WO2015199441A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766876B1 (ko) * 2016-10-14 2017-08-14 한국생산기술연구원 카퍼펩타이드 제조용 발현 카세트 및 이의 이용
KR102553825B1 (ko) * 2018-05-04 2023-07-13 (주)메디톡스 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물로부터 유래한 세포외 소낭 및 그의 용도
KR102015116B1 (ko) * 2018-05-04 2019-10-21 (주)메디톡스 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 미생물로부터 유래한 세포외 소낭 및 그의 용도

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101190A (ko) * 2004-01-19 2007-10-16 한국생명공학연구원 재조합단백질 생산용 단백질융합인자
KR100975596B1 (ko) * 2005-07-15 2010-08-13 한국생명공학연구원 재조합단백질 생산용 단백질융합인자 라이브러리 및이로부터 획득된 단백질융합인자
KR20130141001A (ko) * 2012-06-15 2013-12-26 한국표준과학연구원 목적 단백질의 분리 및 정제를 위한 신규한 벡터 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796840B2 (ja) 2005-12-27 2011-10-19 Bio−energy株式会社 糸状菌においてタンパク質を分泌生産する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101190A (ko) * 2004-01-19 2007-10-16 한국생명공학연구원 재조합단백질 생산용 단백질융합인자
KR100975596B1 (ko) * 2005-07-15 2010-08-13 한국생명공학연구원 재조합단백질 생산용 단백질융합인자 라이브러리 및이로부터 획득된 단백질융합인자
KR20130141001A (ko) * 2012-06-15 2013-12-26 한국표준과학연구원 목적 단백질의 분리 및 정제를 위한 신규한 벡터 시스템

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHA ET AL.: "Comparative production of human interleukin-2 fused with green fluorescent protein in several recombinant expression systems", BIOCHEMICAL ENGINEERING JOURNAL, vol. 24, no. 3, 2005, pages 225 - 233, XP027849060 *
DEMAIN ET AL.: "Production of recombinant proteins by microbes and higher organisms", BIOTECHNOLOGY ADVANCES, vol. 27, no. 3, 2009, pages 297 - 306, XP025994508 *

Also Published As

Publication number Publication date
KR20160000444A (ko) 2016-01-04
KR101802980B1 (ko) 2017-12-01

Similar Documents

Publication Publication Date Title
KR102353262B1 (ko) 펩티드 생산용 융합 파트너
RU2206611C2 (ru) ФРАГМЕНТ ДНК, ПЛАЗМИДНЫЙ ВЕКТОР, СПОСОБ ПОЛУЧЕНИЯ ПОЛИПЕПТИДА И ПОЛИПЕПТИД, ОБЛАДАЮЩИЙ IL-1β ПРОТЕАЗНОЙ АКТИВНОСТЬЮ
CN111278852B (zh) 重组欧氏杆菌天冬酰胺酶的生产方法
NO810986L (no) Bakteriell polypeptid-ekspresjon under anvendelse av tryptofon-promoter-operator
KR20070009269A (ko) 재조합단백질 생산용 단백질융합인자 라이브러리 및이로부터 획득된 단백질융합인자
WO2015199441A1 (ko) 피키아 파스토리스 균주 유래의 목적단백질 분비생산용 단백질융합인자 및 이의 용도
EP0326046A2 (en) Production of human epidermal growth factor
US9012367B2 (en) Rapid screening method of translational fusion partners for producing recombinant proteins and translational fusion partners screened therefrom
WO2010085012A1 (ko) 대장균에서 외래단백질을 분비 생산하는 방법
WO2012060666A2 (ko) 효모에서 인체 상피세포 성장인자를 대량 생산하는 방법
Welsh et al. Localization of genes for the double-stranded RNA killer virus of yeast.
EP3301106B1 (en) Strong secretory signal peptide enhancing small peptide motif and use thereof
EP0259891B1 (en) [Leu 13] motilin, DNAs coding for same and methods for producing same
GB2184126A (en) Enhanced extracellular production of a protein by transformed bacillus subtilis
US4960704A (en) Modified antibiotic resistance gene
EP0135291B1 (en) A modified antibiotic resistance gene
JPH02150285A (ja) バシルス・コアグランスのアミラーゼ遺伝子に基づくバシルス発現ベクター
EP0113372A1 (en) Vector
WO2020138951A1 (ko) N-말단의 메티오닌이 절단된 목적 단백질 발현용 유전자 발현 카세트 및 이를 이용하여 n-말단의 메티오닌이 절단된 목적 단백질을 생산하는 방법
KR100246932B1 (ko) Yap3 유전자가 결손된 신규한 효모균주 및 그를 이용한 재조합 인체 부갑상선호르몬의 생산
WO2023128639A1 (ko) 목적 단백질의 발현 방법
JP2524693B2 (ja) 蛋白質の製造法
WO2024085674A1 (ko) Cas 단백질 및 박테리아 톡신을 포함하는 융합 단백질 및 이의 용도
JP3489865B2 (ja) ヒト成長ホルモンの製造法
WO2021045292A1 (ko) Crm197 단백질 발현 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811427

Country of ref document: EP

Kind code of ref document: A1