WO2021125866A1 - 보툴리눔 신경 독소의 안전한 제조 방법 - Google Patents
보툴리눔 신경 독소의 안전한 제조 방법 Download PDFInfo
- Publication number
- WO2021125866A1 WO2021125866A1 PCT/KR2020/018623 KR2020018623W WO2021125866A1 WO 2021125866 A1 WO2021125866 A1 WO 2021125866A1 KR 2020018623 W KR2020018623 W KR 2020018623W WO 2021125866 A1 WO2021125866 A1 WO 2021125866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- botulinum toxin
- heavy chain
- plasmid
- producing
- kit
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/52—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/4886—Metalloendopeptidases (3.4.24), e.g. collagenase
- A61K38/4893—Botulinum neurotoxin (3.4.24.69)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/33—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/24—Metalloendopeptidases (3.4.24)
- C12Y304/24069—Bontoxilysin (3.4.24.69), i.e. botulinum neurotoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/90—Fusion polypeptide containing a motif for post-translational modification
- C07K2319/92—Fusion polypeptide containing a motif for post-translational modification containing an intein ("protein splicing")domain
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/44—Vectors comprising a special translation-regulating system being a specific part of the splice mechanism, e.g. donor, acceptor
- C12N2840/445—Vectors comprising a special translation-regulating system being a specific part of the splice mechanism, e.g. donor, acceptor for trans-splicing, e.g. polypyrimidine tract, branch point splicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to a method for manufacturing botulinum toxin into several fragments and then reassembling them for safe production.
- SNARE soluble n-ethylmaleimide-sensitive-factor attachment receptor
- the fundamental force of membrane fusion exists as a complex of three types of proteins.
- SNARE neurotransmitter release pathway
- the t-SNARE complex which is a complex of Syntaxin 1a protein and SNAP-25 protein, attached to the target membrane, and v-SNARE attached to the vesicle are involved.
- twisted like During the membrane fusion, rearrangement of the lipid bilayer, which is well known in the art, occurs. Since biological membranes physically repel each other strongly, these membranes do not spontaneously fuse, but a strong external force is applied to overcome the repulsive force between the membranes.
- the SNARE protein that creates a strong enough force to overcome the repulsive force between the membranes. That is, the formation of the SNARE complex is a source of power to overcome the transmembrane repulsion and is a key phenomenon of exocytosis, including the release of neurotransmitters (Weber et al., Cell, 92, 759-) 772 (1998)).
- the SNARE splicing and twisting process is not fully completed, the membrane fusion fails and the neurotransmitter release is not achieved, resulting in loss of muscle movement. This process prevents the generation of wrinkles generated by muscles that are used frequently and means that pre-made wrinkles can also be improved.
- SNARE Soluble Nethylameimide-sensitive Factor Attachment Protein Receptor
- SNAP Receptor Soluble Nethylameimide-sensitive Factor Attachment Protein Receptor
- the main role of SNARE proteins is to mediate vesicle fusion. will be. That is, those attached to compartments such as lysosomes mediate the fusion of the vesicle with the target membrane.
- SNARE is involved in the binding (docking) of a presynaptic membrane and a synaptic vesicle in a neuron.
- Botulinum toxin is produced from the anaerobic, gram-positive bacterium Clostridium botulinum and is a potent polypeptide neurotoxin. These neurotoxins cause neuroparalytic diseases in humans and animals. Clostridium botulinum is found in soil, but can be grown in poorly sterilized and sealed food containers. Botulinum toxin has a high affinity for cholinergic motor neurons and is known to enter neurons and inhibit the presynaptic release of acetylcholine.
- botulinum toxin can cause various disorders, such as gait disturbance, dysphagia and speech disturbance, and can lead to death due to paralysis of the respiratory muscles.
- botulinum toxin is 1.8 billion times more lethal than diphtheria, 600 million times that of sodium cyanide, 30 million times that of cobrotoxin, and 12 million times that of cholera. (Singh, Critical Aspects of Bacterial Protein Toxins, page 63-84 (chapter 4) of Natural Toxins II, edited by BRSigh et al., Plenum Press, New York (1976)).
- Clostridium botulinum- derived neurotoxin is a main component of a drug known as "botulinum toxin", and the botulinum toxin is known to be mainly used for cosmetic purposes such as wrinkle removal, but strabismus, blepharospasm, Vocal cord disorders, torticollis, myocardial disorders, ulcers and acid reflux disease, decreased appetite, pancreatic disease, stretch marks, urge incontinence, dentition, polio, myalgia, hip deformity, hyperhidrosis, back pain, neck pain, chronic headache, cranial nerve disorder, etc. It is also used in the secretion of transmitters and/or treatment of muscle-related diseases.
- botulinum toxin blocks the release of neurotransmitters by inhibiting membrane fusion by inhibiting complex formation after a neurotoxin, its main component, specifically acts on SNARE present in neurons. Accordingly, it is known that by inhibiting muscle movement or the sympathetic or parasympathetic nervous system, the therapeutic effect of the above diseases is exhibited.
- the botulinum neurotoxin (BoNT) protein is largely a heavy chain (HC, about 100 kDa) and a light chain (LC, about 50 kDa) having enzymatic activity that cleaves the SNARE complex-forming protein in neurons. ) is divided into two parts, where the heavy chain has a function of recognizing and binding neurons again (receptor binding domain, RBD or H C ) and a part having the function of moving the light chain part into the neurocytoplasm (translocation domain, H) N ).
- RBD or H C receptor binding domain
- H N translocation domain
- the part that moves the BoNT light chain from the vesicle to the cytoplasm is a translocation domain of the heavy chain.
- ⁇ -helices in the translocation domain form a channel in the vesicle membrane, and after the light chain passes through the channel and moves to the cytoplasm, disulfide with the heavy chain due to thioredoxin reductase When the bond is broken, it exists in an activated form in the cytoplasm.
- the toxin protein is released from bacteria as a single chain, it is split into two chains by its own protease, and the two chains are reconnected through a disulfide bond to exist in a size of about 150 kDa. Because the single chain released from the bacteria is broken and a process is required to be continued again, the yield is reduced and the production cost is inevitably increased. In addition, since it is to produce a toxin, the cost of a production license and thus safety equipment is very high. In addition, when it is accidentally or accidentally leaked, it causes enormous damage to the environment and human body because all of the genes encoding the toxin are contained in one cell that can proliferate.
- the present invention devised a method for dividing and producing BoNTs through genetic recombination technology. Fragments of BoNT (ie, some regions) are not known to be toxic on their own. When the gene encoding the fragment proteins of BoNT (ie, a part of the entire BoNT gene) is produced using genetic recombination technology, each recombinant cell and each recombinant protein are both non-toxic and can be safely produced.
- this technique can be applied to the split production method only when there is a method that can efficiently connect the split BoNTs again. If it is not merged back into a full-length toxin, it is present as an inactive fragment, so its function as a toxin cannot be restored.
- a method that can be immediately considered is a method in which a light chain and a heavy chain are split and produced, and then a disulfide bond is formed. After the light chain and the heavy chain are separately expressed in different cells and purified, a disulfide bond between the two chains can be induced and the full length toxin can be purified thereafter.
- this method first, has been very difficult because the heavy chain is not expressed in an active form in E. coli (Zhou Y., Singh BR Protein Expr. Purif. 2004;34:8-16.; Band PA, Blais S ., Neubert TA, Cardozo TJ, Ichtchenko K. Protein Expr. Purif. 2010;71:62-73.).
- Another object of the present invention is to provide a host cell transformed with a plasmid for production of botulinum toxin.
- the present invention provides a plasmid for producing botulinum toxin encoding a fragment of botulinum toxin.
- the present invention provides a host cell transformed with the plasmid.
- the present invention provides a fragment of the botulinum toxin produced using the plasmid for producing the botulinum toxin.
- the present invention provides a full-length botulinum toxin produced by mixing the fragments of the botulinum toxin.
- the present invention provides a pharmaceutical composition for improving or treating a neurological condition comprising the botulinum toxin as an active ingredient.
- the present invention provides a method for producing a botulinum toxin by producing a fragment of the botulinum toxin and mixing them to produce a full-length botulinum toxin.
- the present invention by dividing the light and heavy chains of the botulinum toxin into 2 to 3 fragments, producing each as fragments, and then combining them into a full-length toxin, it is possible to overcome the high complexity, low safety and economic feasibility due to toxicity in production. , it is possible to produce water-soluble using bacteria, which has the effect of significantly shortening the production time compared to the existing production method, and conjugation of the produced fragments with other proteins and nanoparticles is also possible, so that the pharmaceutical extensibility of the toxin is possible. can be raised
- FIG. 1 is a diagram showing fragments of botulinum toxin of the present invention and a full-length botulinum toxin assembly process using the same:
- A part of LC in botulinum toxin, part of TD (H N ) of HC and part of RBD (H C ) of HC;
- FIG. 2 is a diagram showing a plasmid (A) encoding fragments of a botulinum toxin of the present invention and a vector map (B) of the plasmids used in the present invention, and fragments produced using the plasmid (B).
- FIG. 3 is a diagram illustrating a process for producing a full-length botulinum toxin using fragments of the botulinum toxin of the present invention:
- FIG. 4 is a view confirming the expression of fragments (LC, H N and H C ) of the botulinum toxin of the present invention in E. coli.
- FIG. 5 is a view confirming the soluble expression and purification of botulinum toxin fragments of the present invention (TEV-LC, Cfa C -H C and H N -Cfa N , which can be linked to a full length toxin) in E. coli.
- Figure 6 confirms the water-soluble expression and purification in E. coli of the bipartite fragments of the botulinum toxin of the present invention ( three types of LC-H N -Cfa N that can be linked to a full length toxin) and LC-SSH N -Cfa N It is a diagram showing the formation principle of
- FIG. 8 is a diagram confirming the soluble expression and purification in Escherichia coli of a surrogate model replacing the botulinum fragment to confirm intein trans splicing.
- FIG. 9 is a diagram illustrating a comparison and confirmation of reducing conditions and the use of a reducing agent for a protein trans-splicing reaction between inteins at each ratio by setting a molar concentration ratio between split fragments of botulinum toxin and a surrogate model of the present invention.
- Figure 10 is a view confirming whether there is cleavage activity for the SNAP-25 protein by the light chain used in the present invention.
- the present invention relates to a plasmid for the production of botulinum toxin encoding a fragment of botulinum toxin.
- the fragment of the botulinum toxin is a light chain (LC), a translocation domain (H N ) of a heavy chain, a translocation domain of a light and heavy chain (LC-H N ), or a receptor binding domain of a heavy chain (Receptor binding domain) , RBD or H C ).
- LC light chain
- H N translocation domain of a heavy chain
- LC-H N translocation domain of a light and heavy chain
- Receptor binding domain Receptor binding domain
- the botulinum toxin may include botulinum neurotoxin A, B, C, D, E, F or G, more preferably type A2 botulinum neurotoxin.
- botulinum neurotoxin type A Q45894 was used, but it is applicable to all types of botulinum neurotoxin.
- the light chain (LC) of botulinum toxin can comprise an amino acid sequence of SEQ ID NO: 1
- a heavy chain of botulinum toxin H C is an amino acid sequence of SEQ ID NO: 2
- the translocation domain (H N ) of the heavy chain of the botulinum toxin may comprise the amino acid sequence of SEQ ID NO: 3.
- the light chain (LC) of the botulinum toxin of the present invention is a metalloprotease having an active site buried in the center of the structure, and Zn 2+ is attached to the HExxH motif to form VAMP/synaptobrevin, SNAP-25 and syntaxin. It has the activity of recognizing and cleaving the same SNARE protein (chiavo et al., 1992b,c).
- the heavy chain (HC) of the botulinum toxin of the present invention has a size of about 100 kDa and is disulfide-bonded with the light chain to form a full-length toxin, and selectively binds to high-affinity receptors in the synaptic membrane of cholinergic neurons to have endocytosis (endocytosis) allows the toxin to enter the neuron.
- Heavy chain domain of two electric potential of the 50 kDa divided into:: (Receptor binding domain H C ) (H N Translocation domain) and the receptor binding domain.
- the H N domain of the botulinum toxin of the present invention is called a translocation domain and translocates the light chain across the membrane of an inner cell vesicle in the cytosol, and the H C domain strongly binds the toxin with cholinergic nerve endings ( Dolly et al., 1984; Binz and Rummel, 2009; Rossetto et al., 2014).
- the fragments of the botulinum toxin of the present invention are non-toxic, and thus it is possible to overcome the high complexity, low safety and economic feasibility of the existing botulinum toxin production/manufacturing method.
- the present invention relates to a host cell transformed with a plasmid of the present invention.
- the host cell may be E. coli.
- the term "host cell” refers to a eukaryotic or prokaryotic cell into which one or more DNA or vectors are introduced, and should be understood to refer not only to a particular subject cell, but also to its progeny or potential progeny. In fact, the progeny are not identical to the parent cell because certain modifications may occur in subsequent generations due to mutations or environmental influences, but are still included within the scope of the term as used herein.
- LC-SSH N (a two-part complex protein in which LC and H N are linked by a disulfide bond) by co-expressing LC and H N in the same strain using a duet vector ) you may not need a cutting step of the LC-H N using a protein cleavage enzyme naturally formed by a disulfide bond to the expression in which the cleavage site already removed.
- the two-splicing method is a protein trans-splicing method between Cfa N and Cfa C , which are inteins attached to the split-produced LC-H N -Cfa N and Cfa C -H C, respectively.
- the cleavage site between LC-H N -Cfa N is removed using trypsin, etc.
- Cfa C - H C is also a method of producing intact botulinum neurotoxin by the purification process via the back, each LC-H N N -Cfa given and placed in a solution that contained the C Cfa C -H casually let this protein trans-splicing.
- Cfa intein was used for protein transsplicing, but the present invention is not limited thereto.
- the three-part method is a method for dividing and producing TEV-LC, Cfa C -H C and H N -Cfa N , and TEV-LC and Hn-Cfa N are first subjected to disulfide bonds to form LC-H N creating a form, this Cfa C -H then purified C, each LC-H N N -Cfa and natural and mixed to the solution that contained the C Cfa -H C occurs the protein trans-splicing intact botulinum neurotoxin way to produce
- the LC-SSH N complex can be induced by co-expression of LC and H N in one cell using the Duet vector.
- the present invention relates to a fragment of a botulinum toxin produced using the plasmid for producing a botulinum toxin of the present invention.
- the fragment of the botulinum toxin may be a light chain (LC), heavy chain potential domain (H N), the light chain and the potential domain (LC-H N) of the heavy chain, or a heavy chain receptor binding domain (H C)
- the enzymatic cleavage site between the light chain and the heavy chain may be a site cleaved by a specific enzyme such as TEV or trypsin cleavage site, and an intein, affinity tag or sortase recognition sequence may be added to the fragment,
- the conversion tag may include the amino acid sequences of Tables 1 and 2.
- the invention relates to a full-length botulinum toxin produced by mixing fragments of the botulinum toxin of the invention.
- the botulinum toxin of the electrical component can be produced by mixing the fragment of the botulinum toxins, the light chain (LC), heavy chain potential domain (H N) and the receptor binding domain (H C) of the heavy chain or light chain, and It can be generated by mixing the translocation domain of the heavy chain (LC-H N ), and the receptor binding domain of the heavy chain (H C ).
- a full-length botulinum toxin can be assembled by generating a disulfide bond by fragments of the botulinum toxin.
- the botulinum toxin may be a dimer of botulinum toxin.
- the botulinum toxin is a neuropathic pain disorder, an ophthalmic disorder, a movement disorder, an otolaryngological disorder, a gastrointestinal disorder, a genitourinary disorder, a dermatological disorder, a pain disorder, an inflammatory disorder, a secretion disorder, a respiratory disorder, a hypertrophic disorder, a joint disorder. , endocrine disorders, autoimmune diseases, proliferative diseases, traumatic injuries or for veterinary use.
- the present invention relates to a pharmaceutical composition for ameliorating or treating a neurological disease comprising botulinum toxin as an active ingredient.
- the neurological related condition is cranial neuropathy, blepharospasm, strabismus, hyperhidrosis, torticollis, neck pain, polio, facial spasm, epigenetic neuralgia, diabetic neuropathy, complex regional pain syndrome, trigeminal neuralgia, phantom limb pain, spinal cord It may be injury-induced neuropathic pain and post-central stroke pain, and may be a veterinary neuropathic condition.
- the botulinum toxin according to the present invention may be used in the form of a salt, preferably a pharmaceutically acceptable salt.
- the salt is preferably an acid addition salt formed with a pharmaceutically acceptable free acid, and an organic acid and an inorganic acid may be used as the free acid.
- the organic acid is not limited thereto, but citric acid, acetic acid, lactic acid, tartaric acid, maleic acid, fumaric acid, formic acid, propionic acid, oxalic acid, trifluoroacetic acid, benzoic acid, gluconic acid, metasulfonic acid, glycolic acid, succinic acid, 4-toluenesulfonic acid, glutamic acid and aspartic acid.
- the inorganic acid includes, but is not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid and phosphoric acid.
- the pharmaceutical composition of the present invention may further include an adjuvant.
- the adjuvant may be used without limitation as long as it is known in the art, and for example, Freund's complete adjuvant or incomplete adjuvant may be further included to increase the immunity thereof.
- treatment means, unless otherwise stated, the disease or condition to which the term applies, or one or more symptoms of the disease or disorder, which reverses, ameliorates, inhibits the progression, or means to prevent.
- mammal refers to a mammal that is the subject of treatment, observation or experimentation, preferably a human.
- a composition is indicated to be "pharmaceutically or physiologically acceptable” if the recipient animal can tolerate administration of the composition, or if administration of the composition to that animal is suitable.
- the agent can be said to have been administered in a "therapeutically effective amount”.
- An agent is physiologically meaningful if the presence of the agent results in a physiologically detectable change in the recipient patient.
- the therapeutically effective amount of the composition of the present invention may vary depending on several factors, for example, the administration method, the target site, the condition of the patient, and the like. Therefore, when used in the human body, the dosage should be determined as an appropriate amount in consideration of both safety and efficiency. It is also possible to estimate the amount used in humans from the effective amount determined through animal experiments. These considerations in determining effective amounts are found, for example, in Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. (2001), Pergamon Press; and E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed. (1990), Mack Publishing Co.
- the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
- pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment and not to cause side effects, and the effective dose level is determined by the patient's Health status, disease type, severity, drug activity, drug sensitivity, administration method, administration time, administration route and excretion rate, treatment period, factors including drugs used in combination or concurrently, and other factors well known in the medical field can be determined according to
- the composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be administered singly or multiple times. In consideration of all of the above factors, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, which can be easily determined by those skilled in the art.
- compositions of the present invention may also include carriers, diluents, excipients or combinations of two or more commonly used in biological agents.
- the pharmaceutically acceptable carrier is not particularly limited as long as it is suitable for in vivo delivery of the composition, for example, Merck Index, 13th ed., Merck & Co. Inc.
- Compounds described in , saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components can be mixed and used, and if necessary, other antioxidants, buffers, bacteriostats, etc. Conventional additives may be added.
- diluents such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets.
- injectable formulations such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets.
- injectable formulations such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets.
- it can be preferably formulated according to each disease or component using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).
- the pharmaceutical composition of the present invention may be formulated in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, or sterile injection solutions according to conventional methods, respectively. have.
- the term “pharmaceutically acceptable” refers to exhibiting non-toxic properties to cells or humans exposed to the composition.
- the pharmaceutical composition of the present invention may further include a pharmaceutically acceptable additive, wherein the pharmaceutically acceptable additive includes starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, calcium hydrogen phosphate. , lactose, mannitol, syrup, gum arabic, pregelatinized starch, corn starch, powdered cellulose, hydroxypropyl cellulose, Opadry, sodium starch glycolate, lead carnauba, synthetic aluminum silicate, stearic acid, magnesium stearate, aluminum stearate, Calcium stearate, sucrose, dextrose, sorbitol and talc and the like can be used.
- the pharmaceutically acceptable additive according to the present invention is preferably included in an amount of 0.1 to 90 parts by weight based on the composition, but is not limited thereto.
- the term "administration” means providing a predetermined substance to a patient by any suitable method, and parenteral administration (eg, intravenous, subcutaneous, intraperitoneal or topical administration according to a desired method) ) or oral administration, and the dosage varies according to the patient's weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of disease.
- parenteral administration eg, intravenous, subcutaneous, intraperitoneal or topical administration according to a desired method
- oral administration varies according to the patient's weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of disease.
- composition of the present invention may be administered parenterally (eg, intravenously, subcutaneously, intraperitoneally or topically) or orally according to a desired method, and the dosage may vary depending on the subject's age, weight, sex, physical condition, etc. is selected taking into account.
- concentration of the active ingredient included in the pharmaceutical composition can be variously selected depending on the subject, and is preferably included in the pharmaceutical composition at a concentration of 0.01 to 5,000 ⁇ g/ml. If the concentration is less than 0.01 ⁇ g/ml, pharmaceutical activity may not appear, and if it exceeds 5,000 ⁇ g/ml, it may be toxic to the human body.
- compositions of the present invention may be formulated in various oral or parenteral dosage forms.
- Formulations for oral administration include, for example, tablets, pills, hard, soft capsules, solutions, suspensions, emulsifiers, syrups, granules, etc., and these formulations include diluents (eg, lactose, dextrose, water crose, mannitol, sorbitol, cellulose and/or glycine), lubricants (eg silica, talc, stearic acid and its magnesium or calcium salts and/or polyethylene glycol).
- diluents eg, lactose, dextrose, water crose, mannitol, sorbitol, cellulose and/or glycine
- lubricants eg silica, talc, stearic acid and its magnesium or calcium salts and/or polyethylene glycol.
- the tablet may contain a binder such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidine, and optionally starch, agar, alginic acid. or disintegrants such as sodium salts thereof or effervescent mixtures and/or absorbents, coloring, flavoring and sweetening agents.
- the formulation may be prepared by conventional mixing, granulating or coating methods.
- a representative formulation for parenteral administration is an injection formulation, and water, Ringer's solution, isotonic saline, or suspension may be mentioned as a solvent for the injection formulation.
- the sterile, fixed oil of the injectable preparation may be used as a solvent or suspending medium, and any non-irritating fixed oil including mono- and di-glycerides may be used for this purpose.
- the injection preparation may use a fatty acid such as oleic acid.
- the present invention produces a fragment of a botulinum toxin, the light chain (LC), the translocation domain of the heavy chain (H N ) and the receptor binding domain of the heavy chain (H C ), respectively; and mixing a fragment of the botulinum toxin, the light chain (LC), the translocation domain of the heavy chain (H N ) and the receptor binding domain of the heavy chain (H C ) to produce the full-length botulinum toxin.
- the present invention produces a fragment of the light chain and heavy chain domain potential (LC-H N) and the receptor binding domain (H C) of the heavy chain of a botulinum toxin, respectively; enzymatically cleaves the translocation domains of light and heavy chains (LC-H N ) into light (LC), heavy chain translocation domains (H N ); and mixing a fragment of the botulinum toxin, the light chain (LC), the translocation domain of the heavy chain (H N ) and the receptor binding domain of the heavy chain (H C ) to produce the full-length botulinum toxin.
- LC-H N light chain and heavy chain domain potential
- H C receptor binding domain
- non-covalent affinity binding such as a coiled coil as shown in Tables 1 and 2 below
- non-covalent binding, or binding by sorting botulinum toxin Toxins can be produced:
- fragments of the botulinum toxin of the present invention can be reconjugated (covalently linked) to a full-length botulinum toxin using the following method:
- saltase A It is an irreversible binding reaction by saltase A, a transpeptidase derived from bacteria, where saltase A recognizes a specific amino acid sequence of LPXTG and threonine (threonine) ) and glycine are cut and bound to the cell surface. This property is a useful method widely used in protein engineering, and by making two proteins to be bound each have an LPXTG sequence and two or more consecutive glycine sequences, a desired binding can be easily created.
- Solte applied to protein engineering rise may result from Sulfobacillus, Rubrobacter, Peptoniphilus, Shewanella, Faecalibaculum, Colwellia, Staphylococcus, Methylorubrum, Gaiella, Bacillus, Clostridium, Blautia, Enterococcus, Streptococcus, Streptomyces, Lactobacillus, Listeria, Pediococcus or Corynebacterium and but not limited to; and
- trans-intein splicing A protein domain or peptide fragment necessary for linking to the C-terminus and the N-terminus of the membrane-structured protein was added together with a linker, among which the protein domain was Cfa, Trans-inteins belonging to the genus DnaE or DnaB corresponding to Tables 3 and 4 below, such as Npu, Ssp, Rma, and Ppu, were applied, but not limited thereto. These trans-inteins are expressed in separate forms when expressed, but the N-terminal domain (Int-C) and the C-terminal domain (Int-N) meet and bind to form a complete intein. When it becomes a conjugate, the intein conjugate is spliced away, and at this time, the extein domains outside the intein conjugate are connected by a peptide bond, leading to a single protein.
- a linker among which the protein domain was Cfa
- a full-length botulinum toxin was prepared by covalent bonding through the trans splicing. Specifically, each botulinum toxin fragment was linked using a mechanism in which intein is removed during a protein splicing process.
- the concensus DnaE intein (cfa) protein used is a self-splicing protein that intervenes in autoprocessing after transcription in the splicing process. It consists of an N-terminal part (Cfa N ) and a C-terminal part (Cfa C ). The sequence in which it is located is called an extein. These inteins also exist naturally isolated.
- N-terminal and C-terminal inteins exist separately until they meet each other in the cell, then fold and trans-splice to have the ability to bond the extains from both ends to each other. There is (Shah, N. H et al., 2014).
- botulinum toxin With respect to the production/production of botulinum toxin, traditionally, the production of botulinum toxin has been performed by culturing Clostridium botulinum bacteria and then purifying the botulinum toxin complex through isolation and ion exchange chromatography, but it is inefficient and low protein yield I had this low problem.
- C. botulinum is a spore-forming bacterium, it requires special culture equipment and equipment that are not required for culturing bacteria such as Escherichia coli, and has a corresponding safety rating because botulinum toxin is a very lethal toxin. Accordingly, there are also known attempts to produce recombinant botulinum toxin in commercial strains such as E. coli , but since this is also a neurotoxin production, safety equipment is required.
- the method for production in recombinant E. coli has the following problems:
- the botulinum toxin protein is produced by dividing the translocation domain complex of the light chain-heavy chain portion and the receptor binding domain portion of the heavy chain portion. It can be made non-toxic.
- a protein complex in a form that can be reconjugated through an intein protein or an affinity tag at the end of each protein, the activity similar to that of the existing botulinum toxin is simply mixed without any special process after each protein is produced.
- botulinum toxin extraction method using a conventional Clostridium botulinum strain but this disadvantage need to create an anaerobic environment, and jammed the incubation time over 100 hours is very time consuming, using a transgenic strain haejueo substitution in E. coli
- the incubation time is greatly reduced to less than 24 hours.
- most reactions in which inactive fragments are produced and mixed in advance occur within 5 minutes, and affinity membrane centrifugation This has the effect that the production time of botulinum toxin can be shortened to 30 minutes because the whole length toxin can be easily purified. That is, it is not necessary to do everything in one production space from start to finish, and it can be assembled from raw materials that can be quickly assembled.
- LC light chain, the light chain
- HC heavy chain
- H N Translocation domain, the potential domain
- H C Receptor binding domain or RBD, receptor binding domain
- pET 28b, duet and pCola duet were cloned using a vector and T4 DNA polymerase to prepare plasmids for producing botulinum toxin splitting protein (4 and 3 in FIG. 2) consisting of two fragments of did.
- PCR was performed using primers designed so that 15 bp of both ends of the pET 28b vector and the LC-H N -Cfa N insert were complementary to each other.
- PCR was performed using primers designed to complement each other by 15 bp at both ends of the LC at the RBS 1 site and the H N -Cfa N insert at the RBS 2 site.
- the construction of the pET 28b vector and Cfa C -Hc insert was also performed.
- Dpn1 solution was treated at 37°C for 1 hour to prevent self-ligation, and PCR products other than DNA were removed.
- PCR composition forward primer 1 ⁇ L, backward primer 1 ⁇ L, vector 1 ⁇ L, dNTP 4 ⁇ L, 10X reaction buffer 5 ⁇ L, Pfu DNA polymerase 0.5 ⁇ L and distilled water 37.5 ⁇ L;
- T4 DNA polymerase treatment 1 ⁇ L (vector solution) + 7 ⁇ L (insert solution) + 1 ⁇ L (10X reaction buffer2.1) + 1 ⁇ L (T4 DNA polymerase solution).
- ⁇ PCR composition and Dpn1 treatment conditions are the same as the above plasmid production method
- LC plasmids for producing a potential domain (H N) and the receptor binding domain of botulinum toxin division protein (1, 2, and 3 in Fig. 2) composed of three pieces of (Receptor binding domain, H C) of the H C of the HC
- H N -Cfa N , Cfa C -H C inserts and pET 28b, duet, and pCola duet were prepared by PCR and LC, H N -Cfa N and Cfa C -H C were ligated.
- Each plasmid was prepared by cloning in the same manner as in Example 1-1.
- a botulinum toxin splitting protein was produced using the plasmids prepared in Example 1. Specifically, the E. coli BL21 (DE3) strain transformed into competent cells was subjected to heat shock at 42° C. for 45 seconds, then stabilized on ice and transduced with the plasmids prepared above. The transduced E. coli was plated on LB ampicillin solid selective medium and then cultured at 37°C for one day. One colony grown in selective medium was placed in 10 mL of liquid LB medium, 10 ⁇ L of kanamycin was added, and pre-incubated at 37°C for 12 hours.
- the pre-cultured recombinant strain was again inoculated in 50 mL LB medium supplemented with kanamycin at 1%, and cultured at 37° C. until the OD (wavelength: 600 nm) value became 0.5. Thereafter, 0.1 mM IPTG was added and incubated at 16° C. for 24 hours. The culture medium was centrifuged at 5,000 rpm at 4° C. for 10 minutes to remove the medium, and strains were obtained.
- the strains were resuspended in 10 mL of PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 , pH 7.4) and then sonicated at an interval of 1 second for 1 minute 45 seconds ( sonication), and then divided into total, soluble and insoluble parts to confirm whether soluble expression occurred.
- PBS 137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 , pH 7.4
- Example 2 Each fragment was produced as in Example 2 using the plasmid prepared in Example 1. Specifically, the E. coli BL21 (DE3) strain transformed into competent cells was subjected to heat shock at 42° C. for 45 seconds, then stabilized on ice and transduced with the plasmids prepared above. The transduced E. coli was plated on LB ampicillin solid selective medium and then cultured at 37°C for one day. One colony grown in the selective medium was placed in 10 mL of liquid LB medium, 10 ⁇ L of ampicillin was added, and then pre-incubated at 37°C for 12 hours.
- the pre-cultured recombinant strain was again inoculated in 50 mL LB medium supplemented with ampicillin at 1%, and incubated at 37° C. until the OD (wavelength: 600 nm) value became 0.5. Thereafter, 0.1 mM IPTG was added and incubated at 18° C. for 24 hours. The culture medium was centrifuged at 5,000 rpm at 4° C. for 10 minutes to remove the medium, and strains were obtained.
- the strains were resuspended in 10 mL of PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 ) and then sonicated for 1 minute 45 seconds at an interval of 1 second. After the cells were disrupted, the precipitate was removed by centrifugation again at 4° C. at 13,000 rpm for 10 minutes. In order to separate the expressed botulinum toxin cleavage proteins suspended in the lysate from which the precipitate was removed, LC-Hn-Cfa N was subjected to nutation in a column containing Ni-NTA beads at 4° C. for 2 hours.
- Hn-Cfa N -His6 and His6-Cfa C -HC prepared by dividing into three parts, they were attached to the beads without enzymatic treatment as described above. Thereafter, each botulinum toxin split protein was obtained by treating the washed column with a 150 mM imidazole solution to drop the protein from the beads.
- Cfa N and Trans splicing between Cfa C was induced, so that the intein at the N-terminus of Hn and the C-terminus of Hc were bound to each other and separated, so that an intact botulinum toxin was synthesized.
- Proteins that have undergone transsplicing are present in the final form of LC-Hn-HC, that is, an aqueous solution containing botulinum toxin. Pure botulinum toxin was obtained by attaching the remaining His 6 -Cfa C -Hc fragment to the beads.
- Western blot analysis confirmed that LC-HN-CfaN and CfaC-Hc actually undergo protein trans-splicing, and as a result, 150 kDa full-length toxin was bound after 1 hour ( FIG. 7 ).
- Reconjugation of the botulinum toxin fragment was performed using a leucine zipper.
- EE1234L was cloned into the pET vector in the plasmid construction step of Example 1 to produce a leucine zipper, respectively, at the end of Hn, and EE1234L was cloned at the C-terminus of Hc.
- each plasmid was obtained using the plasmid miniprep method. Thereafter, fragments were produced and purified as in Examples 2 and 3-1, and then each purified fragments were reacted to obtain a final form of botulinum toxin.
- SpyTag is a peptide that binds to SpyCatcher to form an isopeptide bond, and is found in CnaB1 or CnaB2 domains in pilin and adhesion molecules of Gram-positive bacteria.
- Cnab2 domain was split into SpyTag and SpyCatcher from FbaB, a protein binding to fibronectin of Streptococcus pyogenes (spy), respectively.
- CnaB2 was split into a 13-residue peptide (SpyTag) and a 116-residue domain (SpyCatcher). These two parts have the property of spontaneously forming isopeptide bonds even at a temperature of 4-37 ° C, a pH between 5 and 8, a wide range of buffers and non-ionic detergents (Zakeri, B., Fierer, 2012), this peptide bond exhibits a function whether bound to either the N-terminus or the C-terminus.
- Example 2 SDS-PAGE and SEC (Size Exclusion Chromatography) were used to confirm whether LC-H N -H C forms a dimer between LC-H N -H C due to the disulfide bond in the cysteine newly generated in the splicing process of Example 3-1. did. Specifically, as in Example 2, electrophoresis was performed using SDS-PAGE. At this time, a 6X SDS solution containing DTT, which serves to separate disulfide bonds, and a solution not containing DTT were divided and compared. In addition, the presence or absence of disulfide bonds was confirmed by comparing the size of the full-length toxin after making a graph using SEC.
- SEC Size Exclusion Chromatography
- an ultra-low diffusion type botulinum toxin in which the half-life of the protein and the diffusion is decreased by modifying the toxin with fatty acids or cholesterol was manufactured.
- any one or more fatty acids selected from Caprylic acid (C8), Capric acid (C10), Lauric acid (C12), Myristic acid (C14), Palmitic acid (C16) and Stearic acid (C18) (preparation of two fatty acids) PDP-PE (using 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate]) reactivity) was added to the lysine or cysteine residues of the prepared full-length botulinum toxin. or attached to a cysteine newly created in the splicing process of Example 3-1. In particular, attachment to the newly generated cysteine can minimize the effect on the structure of the toxin.
- a cholesterol transfer substance such as cysteine-reactive 2-bromoacetyl moiety was used to modify cholesterol into botulinum toxin.
- coli BL21 (DE3) strain transformed into competent cells was subjected to heat shock at 42° C. for 45 seconds, then stabilized on ice and transduced with the plasmids prepared above.
- the transduced E. coli was plated on LB kanamycin solid selective medium and then cultured at 37°C for one day.
- One colony grown in selective medium was placed in 10 mL of liquid LB medium, 10 ⁇ L of kanamycin was added, and pre-incubated at 37°C for 12 hours.
- the pre-cultured recombinant strain was again inoculated at 1% in 600 mL LB medium supplemented with kanamycin, and cultured at 37° C. until the OD (wavelength: 600 nm) value became 0.5.
- IPTG IPTG
- the culture medium was centrifuged at 5,000 rpm at 4° C. for 10 minutes to remove the medium, and strains were obtained.
- a buffer solution 500 mM NaCl, 20 mM Tris-HCl, 10 mM imidazole, pH 8.0
- the cells were disrupted by sonication at an interval of 1 second for 1 minute 45 seconds, The precipitate was removed by centrifugation again at 4° C. at 12,000 rpm for 30 minutes.
- mCherry-Cfa N -His6 by nutation for 2 hours in a column containing Ni-NTA beads at 4° C. to separate the expressed botulinum toxin split proteins suspended in the lysate from which the precipitate was removed. and His6-Cfa C- eGFP-RGD botulinum toxin cleavage proteins were allowed to attach to the beads via His-tag. After the bowel movement, it was washed with a buffer solution (500 mM NaCl, 20 mM Tris-HCl, 30 mM imidazole, pH 8.0) to remove impurities except for fluorescent proteins.
- a buffer solution 500 mM NaCl, 20 mM Tris-HCl, 30 mM imidazole, pH 8.0
- each fluorescent protein was obtained by treating the washed column with a 250 mM imidazole solution to drop the protein from the beads.
- mCherry-Cfa N -His was 91.07 ⁇ M
- His-Cfa C -H C was 8.23 ⁇ M
- LCH N -Cfa N -His was 3.98 ⁇ M
- His-Cfa C - eGFP was measured to be 59.1 ⁇ M.
- LCH N -Cfa N -His with PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 , pH 7.4) was 1,2, 4 times His-Cfa C - eGFP was diluted 1, 2, 4, 8, 16, and 32 times, respectively, and 6X SDS sample buffer was added to confirm the predicted size of 12% SDS PAGE (FIG. 8).
- the two purified fluorescent proteins were reacted with a botulinum split toxin having an intein end corresponding to each intein end.
- LCH N -Cfa N -His6 and His6-Cfa C -eGFP-RGD, mCherry-cfa N -His6 and His6-Cfa C -H C were used, respectively, and 2 mM TCEP was added, incubated at 37° C. for 30 minutes, and molar Cfa N : Cfa C was reacted by adjusting the concentration ratio of 1:1, 2:1, and 1:2. Molarity was measured by DC assay in a spectrometer. Each pair reacted for 0 minutes, 5 minutes, 10 minutes, 30 minutes, and 1 hour, and samples were taken every hour and subjected to SDS electrophoresis.
- SNAP-25 was purified in order to check whether the split fragments of the botulinum toxin prepared in the present invention or the full-length botulinum toxin prepared by splicing them have cleavage activity against the SNAP-25 protein.
- E. coli BL21 (DE3) strain transformed into competent cells was subjected to heat shock at 42° C. for 45 seconds, then stabilized on ice and transduced with the plasmids prepared above.
- the transduced E. coli was plated on LB kanamycin solid selective medium and then cultured at 37°C for one day.
- the strains were resuspended in 10 mL of PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 , pH 7.4) and then sonicated at an interval of 1 second for 1 minute 45 seconds ( sonication), and then centrifuged again at 4°C at 12,000 rpm for 40 minutes to remove the precipitate.
- PBS 137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 , pH 7.4
- Example 2 After the bowel movement, it was washed with a solution of PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 , 30 mM imidazole, pH 7.4) to remove impurities except SNAP-25. Thereafter, the washed column was treated with a 250 mM imidazole solution to drop the protein from the beads to obtain only SNAP-25. At this time, as in Example 2, the expression and concentration of purified SNAP-25 were measured by electrophoresis using SDS PAGE, and the concentration of the botulinum toxin light chain (LC) and full length toxin was diluted by dilution, respectively.
- PBS 137 mM NaCl, 2.7 mM KCl, 2.55 mM Na 2 HPO 4 and 1.47 mM KH 2 PO 4 , 30 mM imidazole, pH 7.4
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
본 발명은 보툴리눔 독소를 안전하게 생산하기 위해 여러 단편으로 제조한 뒤 재조립하는 방법에 관한 것으로, 본 발명에서는 보툴리눔 독소의 경쇄와 중쇄를 2 내지 3 조각으로 분할하여 단편으로서 각각 생산한 다음 전장 독소로 조합하는 방법을 고안함으로써 생산상의 독성으로 의한 높은 복잡성과, 낮은 안전성 및 경제성을 극복할 수 있으며, 박테리아를 이용하여 수용성으로 생산이 가능하여 기존의 생산 방법에 비해 생산 시간이 현저하게 단축되는 효과가 있고, 생산된 단편들의 다른 단백질 및 나노입자 등과의 접합도 가능하므로 독소의 의약학적인 확장성을 높일 수 있다.
Description
본 발명은 보툴리눔 독소를 안전하게 생산하기 위해 여러 단편으로 제조한 뒤 재조립하는 방법에 관한 것이다.
근육의 이완과 수축을 조절하기 위하여 근육의 상층에는 신경근육 접합부(neuromuscular junction)가 있으며, 이 신경 말단(nerve terminal)에는 시냅스 소포가 장전되어 있다. 근육들은 일종의 신경소포 내부에서 전달되는 신경전달물질의 메시지를 받아 수축하게 되며, 이와 같이 신경전달물질들이 방출되려면, SNARE(soluble n-ethylmaleimide-sensitive-factor attachment receptor) 단백질들이 복합체를 형성함으로써 신경물질들이 근육과 도킹해야 된다. 구체적으로, 신경전달물질의 배출 시에 신경전달물질을 담고 있는 시냅스 소포는 시냅스전막과 융합되어야 두 경계 간의 통로가 형성될 수 있으며, 이 때 막 융합의 근원적인 힘은 3종의 단백질 복합체로 존재하는 SNARE에 의해 제공된다. 특히, 시냅스 소포와 시냅스전막 간의 융합에 의해 신경전달물질 배출 통로가 열리게 된다. 표적 막(target membrane)에 부착되어 있는, 신탁신(Syntaxin) 1a 단백질과 SNAP-25 단백질의 복합체인 t-SNARE 복합체와, 소포에 부착되어 있는 v-SNARE가 관여하게 되는데, 이들 SNARE 단백질은 꽈배기처럼 꼬여 있게 된다. 상기 막 융합 시에는 당 분야에 널리 공지되어 있는 지질이중층(lipid bilayer)의 재배열이 일어나게 된다. 생체막들은 물리적으로 서로 강하게 밀어내고 있으므로 이들 막은 자발적으로 융합되지 않고 외부에서 강한 힘이 주어져 막들 간의 반발력을 극복하여야 하는데, 이때 막들 간의 반발력을 이겨낼 정도의 강한 힘을 만들어 내는 것이 SNARE 단백질이다. 즉 SNARE 복합체의 형성은 막 간 반발력을 극복하는 힘의 원천이며, 신경전달물질의 배출을 포함하는 세포 외 배출작용(exocytosis)의 핵심 현상인 것이다 (Weber et al.., Cell, 92, 759-772(1998)). 반면 SNARE 접합과 꼬임 과정이 완전히 완료되지 않으면 막 융합이 실패하고 그에 따라 신경전달물질 방출이 이뤄지지 않아 결국 근육의 움직임이 없어진다. 이 과정은 자주 사용하는 근육에 의하여 생성되는 주름의 생성을 예방하고 미리 만들어진 주름도 개선할 수 있음을 의미한다. 즉, SNARE 형성 억제 효능에 의하여 근육의 운동에 의한 주름의 생성을 억제하고 생성된 주름을 개선할 수 있다. 한편 땀샘 주위를 감싸고 있는 근세포의 수축은 땀샘을 자극하여 땀이 방출되도록 하는 역할을 하고 있다. 이러한 땀샘 주위 근세포의 수축 또한 신경세포로부터의 신경전달물질 방출로부터 비롯된다. 근세포-신경접합부 상에서 과도한 신경전달물질의 방출은 과다한 땀 분비를 유발하게 되는데, 이러한 병증을 다한증(hyperhidrosis)이라 한다. 따라서 상기 근세포-신경접합부 상에 존재하는 뉴런 내의 SNARE 복합체 형성 저해는 다한증의 병증을 치료 또는 완화할 수 있다. SNARE(Soluble Nethylameimide-sensitive factor Attachment Protein Receptor; SNAP Receptor) 단백질은 효모 및 포유류 세포에 존재하는 60개 이상의 멤버로 구성된 거대 단백질 수퍼패밀리로, SNARE 단백질의 주된 역할은 소포 융합(vesicle fusion)을 매개하는 것이다. 즉, 리소좀과 같은 기관(compartments)에 부착된 이들은 표적 막과 소포의 융합을 매개한다. 구체적인 예로서, SNARE는 신경세포에서 시냅스전막(presynaptic membrane)과 시냅스소포(synaptic vesicle)의 결합(docking)에 관여한다.
상기 SNARE를 표적으로 하는 대표적인 물질로는 보툴리눔 식중독(botulism) 및 파상풍(tetanus)을 유발하는 박테리아 신경독소(bacterial neurotoxin) 등이 있다. 보툴리눔 독소는 혐기성, 그램양성 박테리아인 클로스트리디움 보툴리눔 (Clostridium botulinum)으로부터 생성되며, 강력한 폴리펩티드 신경독이다. 이러한 신경독은 사람 및 동물에서 신경마비 질환을 유발한다. 클로스트리디움 보툴리눔은 토양에서 발견되나, 제대로 살균처리 되지 않고 밀봉된 식품용기 중에서 배양될 수 있다. 보툴리눔 독소는 콜린성 운동뉴런에 대해 높은 친화도가 있으며, 뉴런으로 들어가 아세틸콜린의 시냅스 전 방출을 억제하는 것으로 알려졌다. 보툴리눔 독을 섭취하면, 여러 장애, 예를 들어, 보행장애, 연하장애 및 언어장애 증상이 나타나고, 호흡근육의 마비로 인해 죽음에 이를 수 있다. 몰량을 기준으로, 보툴리눔 독소는 디프테리아 (diphtheria)의 18억배, 시안화나트륨 (Sodium cyanide)의 6억배, 코브로톡신 (cobrotoxin)의 3천만 배, 및 콜레라 (cholera)의 1천2백만 배 정도로 치명적이다 (Singh, Critical Aspects of Bacterial Protein Toxins, page 63-84(chapter 4) of Natural Toxins II, edited by B.R.Sigh et al., Plenum Press, New York(1976)). 예컨대, 클로스트리디움 보툴리눔(Clostridium botulinum) 유래의 신경독소는 "보툴리눔 독소"로 알려진 약물의 주성분으로, 상기 보툴리눔 독소는 주름 제거 등 주로 미용 목적의 시술에 사용되는 것으로 알려져 있으나, 사시, 안검경련, 성대 장애, 사경, 심근 장애, 궤양 및 위산 역류 질환, 식욕감소, 췌장질환, 튼 살, 절박성 요실금, 치열, 소아마비, 근육통, 엉덩이 기형, 다한증, 허리통증, 경부통, 만성두통, 뇌신경장애 등 많은 신경전달물질의 분비 및/또는 근육 관련 질환의 치료에도 사용되고 있다. 구체적으로, 보툴리눔 독소는 그 주성분인 신경독소가 신경세포에 존재하는 SNARE에 특이적으로 작용 후 복합체 형성을 저해하여 막 융합을 억제함으로써 신경전달물질의 방출을 차단한다. 이에 따라 근육의 움직임이나 교감 또는 부교감 신경계를 억제함으로써 상기와 같은 질환의 치료 효과를 나타내는 것으로 알려져 있다.
상기 보툴리눔 신경독소(botulinum neurotoxin, BoNT) 단백질은 크게 중쇄(heavy chain, HC, 약 100 kDa) 와 신경세포 내에서 SNARE 복합체 형성 단백질을 절단하는 효소 활성을 지니는 경쇄(light chain, LC, 약 50 kDa) 두 부분으로 나뉘며, 여기서 중쇄는 또다시 신경세포를 인식하여 결합하는 기능을 가진 부분(receptor binding domain, RBD 또는 HC) 과 경쇄부분을 신경세포질로 이동시키는 기능을 가진 부분(translocation domain, HN) 으로 나뉜다. BoNT가 시냅스 전막에 부착되어 세포내로 함입되어 흡수될 때는 시냅스 전막으로부터 소포를 형성하여 흡수된다. BoNT가 SNARE 복합체 형성을 저해하기 위해서는 소포 내강으로부터 세포질로 탈출하는 과정이 필요하다. 이때 소포로부터 세포질로 BoNT 경쇄를 이동시키는 부분이 중쇄의 전위 도메인(translocation domain)이다. 소포 내 pH가 감소하면 상기 전위 도메인 내 α-헬릭스(helices)가 소포 막에 채널을 형성하게 되며, 경쇄가 상기 채널을 통과하여 세포질 방향으로 이동한 후 티오레독신 환원효소로 인해 중쇄와의 이황화결합이 끊어지면서 세포질 내에서 활성화된 형태로 존재하게 된다. 또한, 상기 독소 단백질은 단일 사슬로 박테리아에서 방출된 이후, 자체 프로테아제에 의해 두 사슬로 나눠지고 두 사슬은 이황화 결합을 통해 다시 연결되어 약 150 kDa 크기로 존재한다. 박테리아로부터 방출된 단일 사슬이 끊어지고 다시 이어지는 과정이 필요하기 때문에 수율이 떨어지고 생산단가가 상승할 수밖에 없다. 또한 독소를 생산하는 것이기 때문에 생산 허가 및 이에 따른 안전 설비에 들어가는 비용이 매우 크다. 또한 사고 또는 실수로 유출되었을 때 환경 및 인체에 피해가 막대한데 이는 증식 가능한 하나의 세포 내에 독소를 코딩하는 유전자가 모두 들어있기 때문이다.
한편, BoNT를 생산하는 균주를 자연계에서 스크리닝하는 것은 매우 어려운 과정이다. 원하는 타입의 독소를 생산하는 균주를 탐색하여야 하며 충분한 생산성을 갖춘 균주여야 한다. 전장 독소를 클로스트리디움 보툴리눔이 아닌 재조합 대장균에서 생산하는 방법 또한 매우 어렵다. 우선, 150 kDa의 큰 단백질을 대장균 세포 내에서 수용성으로 발현하는 것이 어렵다. 많은 단백질들이 대장균에서 발현 시 불용성의 내포체로 발현된다. 또한, BoNT에는 interchain 및 intrachain 이황결합이 존재하는데 대장균의 세포 내에서는 이황결합이 이루어지지 않는 것으로 알려져 있다. 아울러, 경쇄와 중쇄를 정확하게 절단하여야 하는데 그렇지 않으면 다른 부위가 절단되어 불활성화된 독소가 생산된다.
이러한 문제들을 해결하기 위해서 본 발명에서는 유전자 재조합 기술을 통해 BoNT를 분할하여 생산하는 방법을 고안하였다. BoNT의 조각들(즉, 일부 영역들)은 그 자체로는 독성이 없는 것으로 알려져 있다. BoNT의 조각 단백질들을 코딩하는 유전자(즉, 전체 BoNT 유전자의 일부)를 유전자 재조합 기술을 이용하여 생산하면 각각의 재조합 세포와 각각의 재조합 단백질은 모두 독성이 없고 안전하게 생산 가능하다. 그러나, 이러한 기술은 분할된 BoNT를 다시 효율적으로 연결할 수 있는 방법이 있을 때만 분할 생산법의 적용이 가능하다. 다시 전장독소로 합쳐지지 않으면 불활성의 절편으로 존재하기 때문에 독소로서의 기능성을 회복하지 못한다. 이를 위해서 즉각적으로 고려할 수 있는 방법은 경쇄와 중쇄를 분할하여 생산한 다음 이황결합을 형성하여 주는 방법이다. 경쇄와 중쇄를 서로 다른 세포에서 별도로 발현하고, 정제한 이후에 두 사슬 사이의 이황결합을 유도하고 이후 전장독소를 정제할 수 있다. 그러나 이 방법은 첫째, 중쇄가 대장균내에서 활성형으로 발현되지 않기 때문에 매우 큰 어려움이 있어 왔다 (Zhou Y., Singh B.R. Protein Expr. Purif. 2004;34:8-16.; Band P.A., Blais S., Neubert T.A., Cardozo T.J., Ichtchenko K. Protein Expr. Purif. 2010;71:62-73.). 또한, 경쇄와 중쇄 사이에 이황결합을 시험관 내에서 빠르고 정확하게 형성시켜 주기가 어렵기 때문에 수율이 낮고 추가적인 정제 공정이 수행되어야 해서 경제적으로 이롭지 않다. 더 중요하게는, 이황결합 형성의 어려움으로 인하여 분할 생산의 가장 큰 장점이었던 안전 시설에 대한 의존도가 다시 발생하게 된다는 것이다. 따라서 분할된 절편의 독소 단백질을 효율적으로 전장 독소로 재접합시키는 기술의 도입 또한 매우 중요하다.
이에, 본 발명에서는 독소 단백질의 효율적인 분할 생산 방법을 제안하고, 효율적인 절편 접합 과정을 결합함으로써 경제적이고 안전한 BoNT 생산에 관한 본 발명을 완성하고자 하였다.
본 발명의 목적은 보툴리눔 독소 생산용 플라스미드를 제공하는 것이다.
또한, 본 발명의 목적은 보툴리눔 독소 생산용 플라스미드로 형질전환된 숙주 세포를 제공하는 것이다.
또한, 본 발명의 목적은 보툴리눔 독소의 단편을 제공하는 것이다.
또한, 본 발명의 목적은 전장의 보툴리눔 독소를 제공하는 것이다.
또한, 본 발명의 목적은 신경관련 병증의 개선 또는 치료용 약학적 조성물을 제공하는 것이다.
아울러, 본 발명의 목적은 보툴리눔 독소의 생산 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 보툴리눔 독소의 단편을 암호화하는 보툴리눔 독소 생산용 플라스미드를 제공한다.
또한, 본 발명은 상기 플라스미드로 형질전환된 숙주세포를 제공한다.
또한, 본 발명은 상기 보툴리눔 독소 생산용 플라스미드를 이용하여 생산된 보툴리눔 독소의 단편을 제공한다.
또한, 본 발명은 상기 보툴리눔 독소의 단편을 혼합하여 생성된 전장의 보툴리눔 독소를 제공한다.
또한, 본 발명은 상기 보툴리눔 독소를 유효성분으로 포함하는 신경관련 병증의 개선 또는 치료용 약학적 조성물을 제공한다.
아울러, 본 발명은 보툴리눔 독소의 단편을 생산하고 이들을 혼합하여 전장의 보툴리눔 독소를 생성하는 보툴리눔 독소의 생산 방법을 제공한다.
본 발명에서는 보툴리눔 독소의 경쇄와 중쇄를 2 내지 3 조각으로 분할하여 단편으로서 각각 생산한 다음 전장 독소로 조합하는 방법을 고안함으로써 생산 상의 독성으로 의한 높은 복잡성과, 낮은 안전성 및 경제성을 극복할 수 있으며, 박테리아를 이용하여 수용성으로 생산이 가능하여 기존의 생산 방법에 비해 생산 시간이 현저하게 단축되는 효과가 있고, 생산된 단편들의 다른 단백질 및 나노입자 등과의 접합도 가능하므로 독소의 의약학적인 확장성을 높일 수 있다.
도 1은 본 발명의 보툴리눔 독소의 단편들 및 이를 이용한 전장의 보툴리눔 독소 조립 과정을 나타낸 도이다:
A: 보툴리눔 독소에서 LC, HC의 TD (HN) 및 HC의 RBD (HC)의 부분;의 부분; 및
B: 기존의 보툴리눔 독소 생산 방법과, 본 발명의 보툴리눔 독소 단편 (2 단편/3 단편)의 생산 과정의 비교.
도 2는 본 발명의 보툴리눔 독소의 단편들을 암호화하는 플라스미드 (A) 및 본 발명에 사용된 플라스미드들의 벡터 맵 (B)과 이를 이용하여 생산한 단편들을 나타낸 도이다.
도 3은 본 발명의 보툴리눔 독소의 단편들을 이용하여 전장의 보툴리눔 독소를 생산하는 과정을 나타낸 도이다:
좌: 2 분할법; 및
우: 3 분할법.
도 4는 본 발명의 보툴리눔 독소의 단편들 (LC, HN 및 HC)의 대장균에서의 발현을 확인한 도이다.
도 5는 본 발명의 보툴리눔 독소의 단편들 (전장독소로 연결될 수 있는 TEV-LC, CfaC-HC 및 HN-CfaN)의 대장균에서의 수용성 발현 및 정제를 확인한 도이다.
도 6은 본 발명의 보툴리눔 독소의 2분할 단편들 (전장독소로 연결될 수 있는 LC-HN-CfaN의 3가지 종류)의 대장균에서의 수용성 발현 및 정제를 확인 및 LC-S-S-HN-CfaN의 형성 원리를 나타낸 도이다.
도 7은 분할 단편들이 다시 전장 독소로 결합되는 것을 확인한 도이다.
도 8은 인테인 트랜스 스플라이싱을 확인하기 위해 보툴리눔 분할 단편을 대체하는 서로게이트 모델 (Surrogate model)의 대장균에서의 수용성 발현 및 정제를 확인한 도이다.
도 9는 본 발명의 보툴리눔 독소의 분할 단편들과 서로게이트 모델 사이 몰농도 비율을 설정해주고 각 비율에서의 인테인 간의 단백질 트랜스 스플라이싱 반응을 환원 조건 및 환원제 사용 유무를 비교 및 확인한 도이다.
도 10은 본 발명에 사용된 경쇄에 의해서 SNAP-25 단백질에 대해 절단 활성이 있는지를 확인한 도이다.
이하, 첨부된 도면을 참조하여 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 통합된다.
일 측면에서, 본 발명은 보툴리눔 독소의 단편을 암호화하는 보툴리눔 독소 생산용 플라스미드에 관한 것이다.
일 구현예에서, 보툴리눔 독소의 단편은 경쇄 (LC), 중쇄의 전위 도메인 (Translocation domain, HN), 경쇄 및 중쇄의 전위 도메인 (LC-HN), 또는 중쇄의 수용체 결합 도메인 (Receptor binding domain, RBD 또는 HC)일 수 있다.
일 구현예에서, 보툴리눔 독소는 보툴리눔 신경독소 A, B, C, D, E, F 또는 G형을 포함할 수 있으며, A2 형 보툴리눔 신경독소인 것이 더욱 바람직하다. 본 발명의 일 실시예에서는 보툴리눔 신경독소 A형 Q45894을 사용하였으나, 다양한 형(Type)의 보툴리눔 신경독소 모두에 적용이 가능하다.
일 구현예에서, 보툴리눔 독소의 경쇄(LC)는 서열번호 1의 아미노산 서열을 포함할 수 있으며, 보툴리눔 독소의 중쇄의 HC(receptor binding domain, RBD 또는 HC)은 서열번호 2의 아미노산 서열을 포함할 수 있고, 보툴리눔 독소의 중쇄의 전위 도메인(HN)은 서열번호 3의 아미노산 서열을 포함할 수 있다.
본 발명의 보툴리눔 독소의 경쇄(light chain, LC)는 구조의 중심에 활성부위가 묻혀있는 금속단백질분해효소(metalloprotease)로서, HExxH 모티프에 Zn2+이 붙어 VAMP/synaptobrevin, SNAP-25 및 syntaxin과 같은 SNARE 단백질을 인식하여 자르는 활성이 있다 (chiavo et al., 1992b,c).
본 발명의 보툴리눔 독소의 중쇄(heavy chain, HC)는 약 100 kDa의 크기로 경쇄와 이황화결합하여 전장 독소를 구성하며, 콜린성 뉴런의 시냅스 막에 있는 높은 친화도의 수용기에 선택적으로 결합하여 내포작용(endocytosis)을 통해 독소가 뉴런 안에 들어가게 한다. 중쇄는 두 가지의 50 kDa의 전위 도메인 (HN: Translocation domain) 및 수용체결합 도메인 (HC: Receptor binding domain)으로 나뉜다.
본 발명의 보툴리눔 독소의 HN 도메인은 전위 도메인(Translocation domain)이라 불리고 경쇄를 세포기질 안에서 내세포 소포(vesicle)의 막을 지나 전위시키며, HC 도메인은 콜린성의 신경말단과 독소를 강하게 결합시킨다 (Dolly et al., 1984; Binz and Rummel, 2009; Rossetto et al., 2014).
본 발명의 상기 보툴리눔 독소의 단편들은 독성이 없어, 기존의 보툴리눔 독소 생산/제조 방법상의 높은 복잡성과, 낮은 안전성 및 경제성을 극복할 수 있다.
일 측면에서, 본 발명은 본 발명의 플라스미드로 형질전환된 숙주 세포에 관한 것이다.
일 구현예에서, 숙주 세포는 대장균일 수 있다.
본 명세서에서 사용되는 용어 "숙주 세포"는 하나 이상의 DNA 또는 벡터가 도입되는 진핵 또는 원핵 세포를 가리키며, 특정 대상 세포만이 아니라 그 자손 혹은 잠재적 자손까지도 가리키는 것으로 이해되어야 한다. 어떤 변형이 돌연변이 혹은 환경적 영향 때문에 후속 세대에 일어날 수 있기 때문에 사실 상기 자손은 부모 세포와 동일하지는 않지만, 본 명세서에서 사용된 바와 같이 상기 용어의 범주 내에서 여전히 포함된다.
종래에 경쇄의 수용성 발현에 대한 보고는 많았으나, 중쇄는 수용성으로 발현되지 못해, 중쇄의 경우 재접힘 공정을 통하여 재생하고 계면활성제 등을 첨가하여 안정화하는 과정이 필요했다. 재접힘 공정은 느리고 수율이 매우 낮으며, 이렇게 생산된 중쇄는 경쇄와 이황결합을 형성하여야만 전장 독소가 만들어진다. 이황결합을 생성하는 과정 또한 느리고, 부정확하다. 보툴리눔 독소에는 여러 개의 시스테인 잔기가 있어서 정확한 이황결합의 형성을 방해하므로, 매우 낮은 수율로 천천히 만들어지는 전장 독소에 대한 부가적인 정제 공정이 필요하다. 따라서, 본 발명에서는 재조합 대장균에서 수용성으로 발현되는 독소 절편의 분할 방법으로서, 보툴리눔 독소의 경쇄 부분과 중쇄 부분의 전위 도메인(translocation domain, HN)이 합쳐진 단백질 복합체 "LC-HN"을 하나의 단편 (제 1 단편)으로 하고 중쇄부분의 HC(receptor binding domain, RBD 또는 HC) 부분을 다른 하나의 단편 (제 2 단편)으로 분리하는 방법 (2 분할법)을 고안함으로써, 각각의 단편들을 대장균에서 수용성으로 생산할 수 있었다. 또한, LC, HnN 및 HC를 모두 따로 정제한 다음 재접합을 통하여 전장 독소를 생산하는 방법 (3 분할법)을 고안함으로써, 단백질 절단 효소를 사용하지 않을 수 있었다. 또한, 2분할법과 3분할법의 장점을 동시에 구현하기 위해서 duet 벡터를 이용하여 LC, HN을 동일 균 내에서 동시 발현함으로써 LC-S-S-HN (LC와 HN이 이황결합으로 연결된 2절편의 복합체 단백질) 절단부위가 이미 제거된 상태에서 발현하여 자연스럽게 이황화결합을 이루게 해 단백질 절단 효소를 이용한 LC-HN의 절단 공정이 필요가 없게 할 수 있다.
본 발명에서 2 분할법은 분할 생산된 LC-HN-CfaN 및 CfaC-HC를 각각에 붙어 있는 인테인(intein)인 CfaN과 CfaC 간의 단백질 트랜스 스플라이싱(protein trans-splicing)을 이용하여 접합시키는 방법으로서, LC-HN-CfaN 사이의 절단 부위(cleavage site)를 트립신 등을 이용하여 제거하여 독소를 활성화시키고 효소를 제거하고 용리(elution)을 해주며, CfaC-HC도 정제 과정을 거친 뒤, 각각 LC-HN-CfaN 및 CfaC-HC가 담겨있는 용액에 넣어 주어 자연스럽게 단백질 트랜스 스플라이싱이 일어나게 함으로써 온전한 보툴리눔 신경독소를 생산하는 방법이다. 본 발명에서는 단백질 트랜스 스플라이싱을 위해서 Cfa 인테인을 이용하였으나, 이에 한정되지 않는다.
본 발명에서 3 분할법은 TEV-LC, CfaC-HC 및 HN-CfaN를 분할 생산하여 합치는 방법으로서, TEV-LC 및 Hn-CfaN를 먼저 이황화 결합이 일어나게 하여 LC-HN의 형태를 만들어 내고, 이와 CfaC-HC를 정제한 뒤, 각각 LC-HN-CfaN 및 CfaC-HC가 담겨있는 용액을 섞어 주어 자연스럽게 단백질 트랜스 스플라이싱이 일어나게 하여 온전한 보툴리눔 신경독소를 생산하는 방법이다. 이때 Duet 벡터를 이용하여 LC와 HN을 한 세포 내에서 동시발현함으로써 LC-S-S-HN 복합체의 생성을 유도할 수 있다.
일 측면에서, 본 발명은 본 발명의 보툴리눔 독소 생산용 플라스미드를 이용하여 생산된 보툴리눔 독소의 단편에 관한 것이다.
일 구현예에서, 보툴리눔 독소의 단편은 경쇄 (LC), 중쇄의 전위 도메인 (HN), 경쇄 및 중쇄의 전위 도메인 (LC-HN), 또는 중쇄의 수용체 결합 도메인 (HC)일 수 있으며, 경쇄와 중쇄 사이에 효소절단 부위는 TEV 혹은 트립신 (Trypsin) 절단 부위 등 특정 효소에 의해 절단되는 부위일 수 있으며, 단편에 인테인, 친화성 태그 또는 소테이즈 인식 서열이 부가될 수 있으며, 친화성 태그는 표1 및 표 2의 아미노산 서열을 포함할 수 있다.
일 측면에서, 본 발명은 본 발명의 보툴리눔 독소의 단편들을 혼합함으로써 생성된 전장의 보툴리눔 독소에 관한 것이다.
일 구현예에서, 전장의 보툴리눔 독소가 상기 보툴리눔 독소의 단편들을 혼합함으로써 생성될 수 있으며, 경쇄 (LC), 중쇄의 전위 도메인 (HN) 및 중쇄의 수용체 결합 도메인 (HC), 또는 경쇄 및 중쇄의 전위 도메인 (LC-HN), 및 중쇄의 수용체 결합 도메인 (HC)을 혼합함으로써 생성될 수 있다.
일 구현예에서, 상기 보툴리눔 독소의 단편들이 이황화 결합을 생성함으로써 전장의 보툴리눔 독소가 조립될 수 있다.
일 구현예에서, 상기 보툴리눔 독소는 이량체(dimer)의 보툴리눔 독소일 수 있다.
일 구현예에서, 상기 보툴리눔 독소는 신경병성 통증 장애, 안과 장애, 운동 장애, 이비인후과 장애, 위장 장애, 비뇨생식 장애, 피부과 장애, 통증 장애, 염증성 장애, 분비 장애, 호흡기 장애, 비대성 장애, 관절 장애, 내분비 장애, 자가면역 질환, 증식성 질환, 외상성 손상의 치료 또는 수의학적 용도로 사용될 수 있다.
일 측면에서, 본 발명은 보툴리눔 독소를 유효성분으로 포함하는 신경 관련 병증의 개선 또는 치료용 약학적 조성물에 관한 것이다.
일 구현예에서, 신경 관련 병증은 뇌신경장애, 안검경련, 사시, 다한증, 사경, 경부통, 소아마비, 안면연축, 후생학적 신경통, 당뇨병성 신경 병증, 복잡한 국소 통증 증후군, 삼차 신경통, 팬텀 사지 통증, 척수 손상 유발 신경 병증 통증 및 중추 후 뇌졸중 통증일 수 있으며, 수의학적 신경 관련 병증일 수 있다.
본 발명에 따른 상기 보툴리눔 독소는 염, 바람직하게는 약학적으로 허용 가능한 염의 형태로 사용될 수 있다. 상기 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염이 바람직하며, 상기 유리산으로는 유기산과 무기산을 사용할 수 있다. 상기 유기산은 이에 제한되는 것은 아니나, 구연산, 초산, 젖산, 주석산, 말레인산, 푸마르산, 포름산, 프로피온산, 옥살산, 트리플로오로아세트산, 벤조산, 글루콘산, 메타술폰산, 글리콜산, 숙신산, 4-톨루엔술폰산, 글루탐산 및 아스파르트산을 포함한다. 또한 상기 무기산은 이에 제한되는 것은 아니나, 염산, 브롬산, 황산 및 인산을 포함한다.
본 발명의 약학적 조성물에는 보조제(adjuvant)를 추가로 포함할 수 있다. 상기 보조제는 당해 기술분야에 알려진 것이라면 어느 것이나 제한 없이 사용할 수 있으나, 예를 들어 프로인트(Freund)의 완전 보조제 또는 불완전 보조제를 더 포함하여 그 면역성을 증가시킬 수 있다.
본 발명의 용어, "치료"란, 달리 언급되지 않는 한, 상기 용어가 적용되는 질환 또는 질병, 또는 상기 질환 또는 질병의 하나 이상의 증상을 역전시키거나, 완화시키거나, 그 진행을 억제하거나, 또는 예방하는 것을 의미한다.
여기에서 사용된 용어 "포유동물"은 치료, 관찰 또는 실험의 대상인 포유동물을 말하며, 바람직하게는 인간을 말한다.
만약, 수혜동물이 조성물의 투여에 견딜 수 있거나, 조성물의 그 동물에의 투여가 적합한 경우라면, 조성물은 "약학적으로 또는 생리학적으로 허용가능함"을 나타낸다. 투여된 양이 생리학적으로 중요한 경우에는 상기 제제는 "치료학적으로 유효량"으로 투여되었다고 말할 수 있다. 상기 제제의 존재가 수혜 환자의 생리학적으로 검출가능한 변화를 초래한 경우라면 상기 제제는 생리학적으로 의미가 있다.
본 발명의 조성물의 치료적으로 유효한 양은 여러 요소, 예를 들면 투여방법, 목적부위, 환자의 상태 등에 따라 달라질 수 있다. 따라서, 인체에 사용 시 투여량은 안전성 및 효율성을 함께 고려하여 적정량으로 결정되어야 한다. 동물실험을 통해 결정한 유효량으로부터 인간에 사용되는 양을 추정하는 것도 가능하다. 유효한 양의 결정시 고려할 이러한 사항은, 예를 들면 Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.(2001), Pergamon Press; 및 E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed.(1990), Mack Publishing Co.에 기술되어있다.
본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에서 사용되는 용어, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효용량 수준은 환자의 건강상태, 질병의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여, 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 조성물은 또한 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 약학적으로 허용 가능한 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주이용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
본 발명의 약학적 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀전, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
본 발명에서 사용되는 용어, "약학적으로 허용가능한"이란 상기 조성물에 노출되는 세포나 인간에게 독성이 없는 특성을 나타내는 것을 의미한다.
본 발명의 약학적 조성물은 약학적으로 허용 가능한 첨가제를 더 포함할 수 있으며, 이때 약학적으로 허용 가능한 첨가제로는 전분, 젤라틴화 전분, 미결정셀룰로오스, 유당, 포비돈, 콜로이달실리콘디옥사이드, 인산수소칼슘, 락토스, 만니톨, 엿, 아라비아고무, 전호화전분, 옥수수전분, 분말셀룰로오스, 히드록시프로필셀룰로오스, 오파드라이, 전분글리콜산나트륨, 카르나우바 납, 합성규산알루미늄, 스테아린산, 스테아린산마그네슘, 스테아린산알루미늄, 스테아린산칼슘, 백당, 덱스트로스, 소르비톨 및 탈크 등이 사용될 수 있다. 본 발명에 따른 약학적으로 허용 가능한 첨가제는 상기 조성물에 대해 0.1 중량부 내지 90 중량부 포함되는 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 용어, "투여"란, 임의의 적절한 방법으로 환자에게 소정의 물질을 제공하는 것을 의미하며, 목적하는 방법에 따라 비 경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 주사 제형으로 적용)하거나 경구 투여할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 다양하다.
본 발명의 조성물은 목적하는 방법에 따라 비 경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 적용)하거나 경구 투여할 수 있으며, 투여량은 개체의 연령, 체중, 성별, 신체 상태 등을 고려하여 선택된다. 상기 약학적 조성물 중 포함되는 유효성분의 농도는 대상에 따라 다양하게 선택할 수 있음은 자명하며, 바람직하게는 약학적 조성물에 0.01 ~ 5,000 ㎍/ml의 농도로 포함되는 것이다. 그 농도가 0.01 ㎍/ml 미만일 경우에는 약학 활성이 나타나지 않을 수 있고, 5,000 ㎍/ml를 초과할 경우에는 인체에 독성을 나타낼 수 있다.
본 발명의 약학적 조성물은 다양한 경구 또는 비경구 투여 형태로 제형화될 수 있다. 경구 투여용 제형으로는 예를 들면 정제, 환제, 경질, 연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제 등이 있는데, 이들 제형은 유효성분 이외에 희석제(예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및/또는 글리신), 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/ 또는 폴리에틸렌 글리콜)를 추가로 포함할 수 있다. 또한, 상기 정제는 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제 또는 비등 혼합물 및/또는 흡수제, 착색제, 향미제 및 감미제를 함유할 수 있다. 상기 제형은 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다. 또한, 비경구 투여용 제형의 대표적인 것은 주사용 제제이며, 주사용 제제의 용매로서 물, 링거액, 등장성 생리식염수 또는 현탁액을 들 수 있다. 상기 주사용 제제의 멸균 고정 오일은 용매 또는 현탁 매질로서 사용할 수 있으며 모노-, 디-글리세라이드를 포함하여 어떠한 무자극성 고정오일도 이러한 목적으로 사용될 수 있다. 또한, 상기 주사용 제제는 올레산과 같은 지방산을 사용할 수 있다.
일 측면에서, 본 발명은 보툴리눔 독소의 단편인 경쇄 (LC), 중쇄의 전위 도메인 (HN) 및 중쇄의 수용체 결합 도메인 (HC)를 각각 생산하고; 및 보툴리눔 독소의 단편인 경쇄 (LC), 중쇄의 전위 도메인 (HN) 및 중쇄의 수용체 결합 도메인 (HC)을 혼합하여 전장의 보툴리눔 독소를 생성하는 것을 포함하는, 보툴리눔 독소의 생산 방법에 관한 것이다.
일 측면에서, 본 발명은 보툴리눔 독소의 단편인 경쇄 및 중쇄의 전위 도메인 (LC-HN) 및 중쇄의 수용체 결합 도메인 (HC)를 각각 생산하고; 효소로 경쇄 및 중쇄의 전위 도메인 (LC-HN)을 경쇄 (LC), 중쇄의 전위 도메인 (HN)으로 절단하며; 및 보툴리눔 독소의 단편인 경쇄 (LC), 중쇄의 전위 도메인 (HN) 및 중쇄의 수용체 결합 도메인 (HC)을 혼합하여 전장의 보툴리눔 독소를 생성하는 것을 포함하는, 보툴리눔 독소의 생산 방법에 관한 것이다.
일 구현예에서, 보툴리눔 독소의 단편들을 트랜스 스플라이싱 방법, 하기의 표 1 및 2와 같은 코일드 코일(coiled coil) 등의 비공유 친화성 결합, 비공유 결합 또는 소테이즈에 의한 결합으로 접합함으로써 보툴리눔 독소를 생산할 수 있다:
일 구현예에서, 본 발명의 보툴리눔 독소의 단편들을 하기의 방법을 이용하여 전장의 보툴리눔 독소로 재접합 (공유결합)할 수 있다:
1) 솔테이즈 A(sortase A)에 의한 단백질 결합: 박테리아 유래의 트랜스펩티데이스(transpeptidase)인 솔테이즈 A에 의한 비가역적 결합 반응으로, 솔테이즈 A가 LPXTG의 특정 아미노산 서열을 인식하여 트레오닌(threonine)과 글라이신(glycine) 사이를 잘라내 세포 표면에 결합시킨다. 이러한 특성은 단백질 공학에서 널리 이용되는 유용한 방법이며, 결합시키고자 하는 두 단백질에 각각 LPXTG 서열과 두 개 이상의 연속된 글라이신 서열을 갖도록 하여 쉽게 원하는 결합을 만들어낼 수 있다. 단백질 공학에 적용되는 솔테이즈는 Sulfobacillus, Rubrobacter, Peptoniphilus, Shewanella, Faecalibaculum, Colwellia, Staphylococcus, Methylorubrum, Gaiella, Bacillus, Clostridium, Blautia, Enterococcus, Streptococcus, Streptomyces, Lactobacillus, Listeria, Pediococcus 또는 Corynebacterium에서 유래할 수 있으며 이에 한정되지 않는다; 및
2) 트랜스-인테인 스플라이싱(trans-intein splicing): 막구조화 단백질 C-말단과 N-말단에 연결에 필요한 단백질 도메인 혹은 펩티드 조각을 링커와 함께 추가하였으며, 그 중, 단백질 도메인은 Cfa, Npu, Ssp, Rma, Ppu 등 하기 표 3 및 표 4에 해당하는 DnaE 또는 DnaB 속에 속하는 트랜스-인테인을 적용하였으나, 이에 한정되지 않는다. 이러한 트랜스-인테인들은 발현이 될 시에는 각기 분리된 형태로 발현되나 N-말단의 도메인(Int-C)과 C-말단의 도메인(Int-N)이 만나 결합되어 하나의 완전한 형태의 인테인 결합체가 되면 인테인 결합체는 스플라이싱되어 떨어져 나가게 되고 이 때, 인테인 결합체 외곽에 있던 익스테인 도메인들을 펩티드 결합으로 연결하여 하나의 단백질로 이어지게 된다.
본 발명의 일 실시예에서는 상기 트랜스 스플라이싱을 통해 공유결합함으로써 전장의 보툴리눔 독소를 제작하였다. 구체적으로, 각각의 보툴리눔 독소 단편들을 프로테인 스플라이싱(protein splicing) 과정 중에 인테인(intein)이 제거되는 기작을 이용하여 연결하였다. 사용된 concensus DnaE intein(cfa) 단백질은 스플라이싱 과정에서 전사후에 autoprocessing에 개입하는 자기스플라이싱 단백질로써 N-말단부(CfaN) 및 C-말단부(CfaC)로 구성되며, 각각의 측단에 위치하는 시퀀스를 엑스테인(extein)이라 한다. 이러한 인테인은 자연적으로 분리되어 존재하기도 한다. 이 두 N-말단부과 C-말단부의 인테인은 세포 내에서 서로 만나기 전까지는 분리되어 존재하다가 만난 이후에 폴딩을 이루며 트랜스-스플라이싱을 하여 양 말단 측부의 엑스테인을 서로 접합하는 능력을 가지고 있다 (Shah, N. H et al., 2014).
보툴리눔 독소의 제조/생산과 관련하여, 전통적으로, 보툴리눔 독소의 생산은 Clostridium botulinum 박테리아를 배양한 다음, 보툴리눔 독소 복합체를 단리 및 이온 교환 크로마토그래피를 통해 정제하는 방식으로 수행되었으나, 비효율적이며 낮은 단백질 수율이 낮은 문제점이 있었다. 또한, C. botulinum 은 포자-형성성 박테리아이므로, Escherichia coli 와 같은 박테리아의 배양에는 요구되지 않는 특수 배양 장비와 설비가 필요하며, 보툴리눔 독소가 매우 치명적인 독소이기 때문에 이에 상응하는 안전 등급을 갖추어야 한다. 이에 따라 재조합 보툴리눔 독소를 E. coli 와 같은 상업적인 균주에서 생산하고자 하는 시도들도 알려져 있으나, 이 또한 신경독 생산이기 때문에 안전 설비를 갖추어야 하는 것에는 변함이 없다. 재조합 대장균에서 생산하는 방법은 하기와 같은 문제점들이 있다:
1) 150 kDa의 큰 단백질을 대장균 세포 내에서 수용성으로 발현하는 것이 어려운 문제점 (단백질들이 대장균에서 발현 시 불용성의 내포체로 발현됨);
2) BoNT에는 interchain 및 intrachain 이황결합이 존재하는데 대장균의 세포 내에서는 이황결합이 이루어지지 않는 문제점; 및
3) 경쇄와 중쇄를 정확하게 절단하지 않으면 불활성화된 독소가 생산되는 문제점.
또한, 어떠한 균주를 사용하더라도 전체 독소 유전자가 하나의 세포에 들어 있는 경우, 세포가 환경 및 작업장에 유출될 경우 자가 번식하고 이로 인해 환경 오염과 치명적 문제를 일으킬 수 있다. 예를 들어, Clostridium botulinum 은 혐기성 세균이기는 하지만 포자를 만들어서 공기 중으로 전파되고, 오랫동안 사멸되지 않고, 대장균은 호기적인 조건에서 매우 빠르게 자라고 쉽게 증식이 가능하다는 측면에서 오히려 생산 균주로서는 훨씬 더 부적합한 측면이 있다.
이에, 본 발명에서는 이러한 제조 방법상의 높은 복잡성과, 낮은 안전성, 경제성을 극복할 대안으로서, 독소 단백질을 분할하여 각각의 단편/절편을 생산한 후에 시험관에서 합치는 방안을 고안하였다. 이에 따르면, Clostridium botulinum 이든 대장균이든 독소 유전자의 일부만 가지고 있으면 환경과 작업장에 유출된다고 하더라도 불활성의 단백질 조각만이 발현되므로 환경에 대한 위해가 전무하다. 또한, SNARE를 절단하는 효소 활성은 경쇄에 존재하지만 경쇄만으로는 신경독성이 수억분의 일로 떨어지며 신경 세포에 대한 부착능이 없고, 세포질로의 투과능이 소실되기 때문에 동물에 대한 독성은 거의 상실된다 (Fernandez-Salas E et al., PLoS ONE, 7(11): e49516 (2012)). 또한, 활성 부위가 제거되었기 때문에 중쇄만으로는 아무런 독성을 나타내지 않는다. 당연히 중쇄의 일부 또는 경쇄의 일부가 소실된 형태 또한 독성이 나타나지 않는다. 즉, 독소 단백질의 분할 생산 기술은 보툴리눔 독소의 안전하고 경제적인 생산을 가능하게 한다. 다만, 개개의 절편 단백질들이 분할된 형태로 잘 생산되어야 하며, 이들이 활성을 가진 형태로 잘 결합될 수 있어야 한다는 전제가 필요하다.
본 발명에서 고안한 방법은 보툴리눔 독소 단백질을 경쇄-중쇄부의 전위 도메인 복합체, 및 중쇄부의 수용체 결합 도메인 부분으로 나누어 생산함으로써, 세포에 침투할 수가 없고, 실제 활성을 나타내는 경쇄 부분이 없기 때문에 생산 과정 중에는 독성이 없게 할 수 있다. 또한, 각각의 단백질 말단에 인테인 단백질 또는 친화성 태그 등을 통하여 재접합이 가능한 형태의 단백질 복합체를 설계함으로써, 각각의 단백질을 생산한 이후에 별다른 공정 없이 섞기만 하면 기존의 보툴리눔 독소와 같은 활성을 나타낼 수 있는 장점이 있다. 또한, 기존의 Clostridium botulinum 균주를 이용한 보툴리눔 독소 추출 방법은 혐기성 환경을 만들어주어야 하고 배양시간이 100시간 이상이 걸려 매우 시간이 오래 걸리는 단점이 있으나, 균주를 E. coli로 교체해주어 형질 전환을 이용하여 플라스미드에 보툴리눔 독소를 분할 생산하게 되면 배양 시간이 24시간 이내로 매우 줄어들며, 특히, 본 발명의 방법에 따르면, 불활성의 분할 단편을 미리 생산하여 섞어주는 대부분의 반응이 5분 이내에 일어나고, 친화성막 원심분리를 통하여 전장독소를 손쉽게 정제할 수 있기 때문에 보툴리눔 독소의 생산 시간이 30분으로 단축될 수 있는 효과가 있다. 즉, 처음부터 끝까지 하나의 생산 공간에서 다 이루어져야 할 필요가 없고, 빠르게 조립 가능한 부품 원료로부터 조립 가능하다.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1. 보툴리눔 독소 분할 단편 생산용 플라스미드 제조
1-1. 2 분할 단편 생산용 플라스미드
LC (light chain, 경쇄) 및 HC (heavy chain, 중쇄)의 HN (Translocation domain, 전위 도메인) [LC-HN]과 HC의 HC (Receptor binding domain 또는 RBD, 수용체결합 도메인) [HC]의 2 개의 단편으로 이루어진 보툴리눔 독소 분할 단백질 (도 2의 4 및 3)을 생산하기 위한 플라스미드들을 제조하기 위해, pET 28b, duet 및 pCola duet을 벡터 및 T4 DNA 중합효소(polymerase)를 이용하여 클로닝하였다. 구체적으로, pET 28b 벡터와 LC-HN-CfaN 인서트(insert)의 양 말단 15 bp가 상호간 상보적(complementary)이게 디자인된 프라이머들을 이용해 PCR을 수행하였다. pETduet, pCola duet 벡터에는 RBS 1 부위에 LC, RBS 2 부위에 HN-CfaN 인서트의 양 말단 15 bp가 상호간 상보적이게 디자인된 프라이머들을 이용해 PCR을 수행하였다. 또한, pET 28b 벡터와 CfaC-Hc 인서트의 제작도 함께 진행하였다. PCR 완료 후 self-ligation 방지를 위해 37℃에서 1시간 동안 Dpn1 용액을 처리하였고, DNA 외의 PCR 산물이 제거되었다. 이렇게 생성된 pET 28b, duet 및 pCola duet 벡터와 LC-HN-CfaN 인서트, pET 28b 벡터 및 CfaC-HC 인서트를 라이게이션하기 위해 T4 DNA 중합효소를 넣고 상온에서 2분 30초, 얼음에서 10분 동안 반응시켜 pET 28b, duet 및 pCola duet 벡터와 LC-HN-CfaN 간의 안정적인 수소결합을 유도하였다. 상기 클로닝과정을 통해 얻어진 각각의 DNA용액 4 μL를 수용성 세포(competent cell) E. coli TOP10 용액 100 μL에 넣고 얼음에서 30분 인큐베이션 후 42℃에서 45초간 열처리하였다. 상기 반응 액에 LB(Luria-Bertani) 액체배지 900 μL를 넣어 37℃에서 1시간 동안 배양한 후 원심분리 (13,000 rpm, 10분)를 통해 세포를 수집하였다. 수집된 세포용액 (0.1 mL)을 카나마이신 LB 고체배지에 도말 및 배양한 (37℃) 뒤, 형성된 콜로니 중 하나를 0.1% 카나마이신이 함유된 10 mL LB 액체배지에 넣어 18시간 동안 37℃에서 배양하였고, 배양액을 초음파 처리 및 정제하여 각 플라스미드를 얻었다. 상기의 플라스미드의 시퀀스는 업체 (바이오닉스, 한국)를 통해 확인하였다. 보툴리눔 독소 생산에서, His-tag에 해당하는 각각의 서열은 비교적 짧기 때문에 T4 DNA 중합효소를 이용한 방법이 아닌 부위 특이적 변이(site-directed mutagenesis) 방법으로 특정 DNA에 상기의 짧은 특정서열이 삽입되도록 하였다. 그 결과로 경쇄(LC)-중쇄의 HN(translocation domain)-CfaN-His6 형태의 보툴리눔 독소 분할단백질, His6-CfaC-중쇄의 HC(receptor binding domain) 형태의 보툴리눔 독소 분할단백질이 생산되도록 디자인하였다 (도 3의 LCHN-CfaN-His6 및 His6-CfaC-HC). 상기 과정에서 사용된 프라이머의 서열 (표 5), 자세한 조성 및 반응 조건은 하기과 같다:
○ PCR 조성: forward primer 1 μL, backward primer 1 μL, 벡터 1 μL, dNTP 4 μL, 10X reaction buffer 5 μL, Pfu DNA polymerase 0.5 μL 및 증류수 37.5 μL;
○ 벡터의 PCR 조건:
① 최초 denaturation (95℃, 3분),
② 30 사이클: denaturation (95℃, 3초), annealing (61℃, 3초) 및 extension (72℃, 6분), 및
③ 마지막 extension (72℃, 3분);
○ 인서트의 PCR 조건
① 최초 denaturation (95℃, 3분),
② 30 사이클: denaturation (95℃, 3초), annealing (61℃, 3초) 및 extension (72℃, 1분), 및
③ 마지막 extension (72℃, 3분);
○ Dpn1 처리조건 (37℃, 1시간): 5 μL (10X reaction buffer4) + 44 μL (벡터 또는 인서트의 PCR 산물) + 1 μL (Dpn1 용액); 및
○ T4 DNA 중합효소 처리: 1 μL (벡터 용액) + 7 μL (insert 용액) + 1 μL (10X reaction buffer2.1) + 1 μL (T4 DNA polymerase 용액).
※ 모든 프라이머들의 T
m값은 65℃;
※ PCR 조성 및 Dpn1 처리조건은 상기 플라스미드 제작방법과 상동;
※ Dpn1, 10X reaction buffer, 10X reaction buffer4, 10X reaction buffer2.1, Pfu DNA polymerase T4 DNA polymerase 및 dNTP(2.5mM)의 구입처: ELPIS BIOTECH, 한국; 및
※ PCR 산물의 정제법 및 플라스미드의 제조법: Dokdo-prep Gel extraction kit spintype 200 (ELPIS)에 내장된 프로토콜에 따름.
1-2. 3 분할 단편 생산용 플라스미드
LC, HC의 전위 도메인 (HN) 및 HC의 수용체 결합 도메인(Receptor binding domain, HC)의 3개의 단편으로 이루어진 보툴리눔 독소 분할 단백질 (도 2의 1, 2 및 3)을 생산하기 위한 플라스미드를 제조하기 위해, LC, HN-CfaN, CfaC-HC 인서트 및 pET 28b, duet, pCola duet을 PCR로 제작하고 LC, HN-CfaN 및 CfaC-HC를 라이게이션하였다. 상기 실시예 1-1에서와 동일하게 클로닝하여 각각의 플라스미드를 제조하였다.
실시예 2. 보툴리눔 독소 분할 단편의 수용성 발현 확인
상기 실시예 1에서 제조한 플라스미드들을 이용하여 보툴리눔 독소 분할 단백질을 생산하였다. 구체적으로, 수용성 세포(competent cell)로 변환된 E. coli BL21(DE3) 균주에 열 충격을 42℃에서 45초 동안 가한 후 얼음에서 안정화시키고 상기에서 제조한 플라스미드들을 형질도입시켰다. 형질 도입된 E. coli를 LB 엠피실린 고체 선택배지에 도말 한 후 37℃에서 하루 동안 배양하였다. 선택배지에서 자란 1개의 콜로니를 액체 LB 배지 10 mL에 넣고 카나마이신 10 μL을 첨가한 후 12시간 동안 37℃에서 전 배양하였다. 전 배양한 재조합 균주를 다시 카나마이신이 첨가된 50 mL LB 배지에 1%로 접종하고, O.D.(파장: 600 nm) 값이 0.5가 될 때까지 37℃에서 배양하였다. 이 후 0.1mM IPTG를 넣어주고, 16℃에서 24시간 동안 배양하였다. 상기 배양액을 5,000 rpm으로 4℃에서 10분 동안 원심분리하여 배지를 제거하고 균주들을 수득하였다. 상기 균주들을 10 mL의 PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na2HPO4 및 1.47 mM KH2PO4, pH 7.4)에 재부유 시킨 후 1초의 간격으로 1분 45초 간 초음파처리(sonication)하여 세포를 파쇄한 뒤, 전체(Total), 수용성(Soluble) 및 불용성(Insoluble) 부분으로 나누어 담아 수용성 발현이 일어났는지를 확인하였다. 수용성 부분과 불용성 부분을 나누기 위해, 다시 4℃에서 13,000 rpm으로 10분간 원심분리하여 상층액은 수용성 부분으로 수득하고, 불용성 부분은 재부유시켰다. 각각의 표본에 6X SDS 용액 (6X SDS loading buffer 10ml 기준 : 0.5 M Tris-HCl (pH 6.8) 7mL, 100 % Glycerol 2.6mL, DTT 1g, 10 % Bromophenol blue 60μL 및 10 % SDS 400μL)를 넣은 뒤, 열충격을 95℃에서 10분 동안 가하여 식힌 다음, 12% SDS 젤에 80V로 20분, 140V로 1시간 20분의 총 1시간 40분 동안 SDS PAGE를 전기영동하여 확인하였다. 로딩 순서는 전체, 수용성, 불용성의 순으로 진행하였다.
그 결과, LC는 전체, 수용성, 불용성에서 발현이 확인되었다. HC 경우에도 전체, 수용성, 불용성으로 단백질이 발현되었다. HN의 경우에는 SDS PAGE로 판별이 어려워 히스 태그(Histag) 항체를 이용한 웨스턴 블롯팅 (Western blotting) 분석 방법을 이용하였고 밴드가 전체 및 불용성에만 나타나 발현을 확인하였다 (도 4).
실시예 3. 보툴리눔 독소 분할 단편의 재접합을 통한 전장의 보툴리눔 독소 생산
3-1. 보툴리눔 독소 분할 단편의 정제 및 단백질 트랜스 스플라이싱 방법을 이용한 재접합
실시예 1에서 제조된 플라스미드를 이용하여 상기 실시예 2에서와 같이 각 단편들을 생산하였다. 구체적으로, 수용성 세포(competent cell)로 변환된 E. coli BL21(DE3) 균주에 열 충격을 42℃에서 45초 동안 가한 후 얼음에서 안정화시키고 상기에서 제조한 플라스미드들을 형질도입시켰다. 형질 도입된 E. coli를 LB 엠피실린 고체 선택배지에 도말 한 후 37℃에서 하루 동안 배양하였다. 선택배지에서 자란 1개의 콜로니를 액체 LB 배지 10 mL에 넣고 엠피실린 10 μL을 첨가한 후 12시간 동안 37℃에서 전 배양하였다. 전 배양한 재조합 균주를 다시 엠피실린이 첨가된 50 mL LB 배지에 1%로 접종하고, O.D.(파장: 600 nm) 값이 0.5이 될 때까지 37℃에서 배양하였다. 이 후 0.1mM IPTG를 넣어주고, 18℃에서 24시간 동안 배양하였다. 상기 배양액을 5,000 rpm으로 4℃에서 10분 동안 원심분리하여 배지를 제거하고 균주들을 수득하였다. 상기 균주들을 10 mL의 PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na2HPO4 및 1.47 mM KH2PO4)에 재부유 시킨 후 1초의 간격으로 1분 45초 간 초음파처리(sonication)하여 세포를 파쇄한 후, 다시 4℃에서 13,000 rpm으로 10분간 원심분리하여 침전물을 제거하였다. 침전물이 제거된 용해물 내에 부유하는 발현된 보툴리눔 독소 분할 단백질들을 분리하기 위해, Ni-NTA 비드(bead)가 담긴 4℃ 컬럼 내에서 2시간 동안 장동(nutation) 운동시킴으로써, LC-Hn-CfaN-His6 및 His6-CfaC-Hc 보툴리눔 독소 분할 단백질들이 His-tag을 통해 비드에 부착되도록 하였다. 상기 장동 운동 후, PBS로 세척하여 보툴리눔 독소를 제외한 불순물을 제거하였다 (도 5, 6). 이 때, LC-Hn-CfaN-His6 단백질 복합체의 경우 트립신과 같은 인위적인 효소를 처리하여 LC와 Hn 사이에 존재하는 절단 위치를 잘라 2개의 단위체로 나누어 줌으로써 전독소가 최종적으로 활성을 띄게 만들었다. 3 분할하여 제조한 LC, Hn-CfaN-His6 및 His6-CfaC-HC의 경우 상기와 같은 효소 처리 과정 없이 비드에 부착하였다. 이 후, 상기 세척된 컬럼에 150 mM의 이미다졸(imidazole) 용액을 처리하여 단백질을 비드에서 떨어뜨림으로써 각각의 보툴리눔 독소 분할단백질을 얻었다. 정제한 상기 분할 단백질들을 섞어주어 CfaN 및 CfaC 간의 트랜스 스플라이싱(trans splicing)을 유도하여 Hn의 N-말단과 Hc의 C-말단의 인테인이 서로 결합해 떨어져 나감으로 온전한 형태의 보툴리눔 독소가 합성되도록 하였다. 트랜스 스플라이싱이 일어난 단백질들은 최종적인 형태의 LC-Hn-HC, 즉 보툴리눔 톡신이 포함된 수용액 내에 존재하며, 여기에 섞여있는 비반응 물질들을 제거하기 위해 Ni-NTA 비드에 한번 더 수용액을 흘려주어 남아있는 His6-CfaC-Hc 단편을 비드에 붙임으로써 순수한 보툴리눔 톡신을 얻었다. LC-HN-CfaN 및 CfaC-Hc가 단백질 트랜스 스플라이싱이 실제로 일어나는지 웨스턴 블롯 분석으로 확인한 결과, 150kDa의 전장 독소가 1시간이 지나자 결합되는 것으로 나타났다 (도 7).
3-2. 류신 지퍼를 이용한 재접합
류신 지퍼를 이용하여 보툴리눔 독소 분할 단편의 재접합을 시행하였다. 구체적으로, 류신지퍼를 생산하기 위해 상기 실시예 1의 플라스미드 제작 단계에서 pET 벡터에 각각 EE1234L은 Hn의 말단에 클로닝하고, EE1234L은 Hc의 C-말단에 클로닝하였다. 이를 각각 E. coli Top10 세포에 형질전환한 뒤 플라스미드 미니프렙 방법을 이용하여 각각의 플라스미드를 얻어냈다. 이 후 상기 실시예 2 및 3-1에서와 같이 분할 단편들을 생산하고 정제한 뒤, 정제한 각각의 분할 단편들을 반응시켜 최종 형태인 보툴리눔 톡신을 수득하였다.
3-3. 친화성 태그를 이용한 재접합
상기 실시예 1의 플라스미드 제작 단계에서 SpyTag 또는 SpyCatcher를 HN의 -C 말단이나 HC의 -N 말단에 각각 클로닝하여 제작한 뒤, 각각 E. coli Top10에 형질전환하여 플라스미드를 수득하고, 이 후 상기 실시예 2 및 3-1에서와 같이 각각의 분할 단편들을 생산하고 정제한 뒤, 정제한 각각의 분할단백질을 4-37℃의 온도에서 반응시켜 최종 형태인 보툴리눔 톡신을 수득하였다. 여기에서, SpyTag는 SpyCatcher와 결합해 이소펩타이드 결합을 이루는 펩타이드로, 그람양성균의 필린(pilin)과 부착분자(adhesin)에서 CnaB1 혹은 CnaB2 도메인에서 발견된다. 이를 얻기 위해 Streptococcus pyogenes (spy)의 파이브로넥틴과 결합하는 단백질인 FbaB로부터 Cnab2 도메인을 각각 SpyTag와 SpyCatcher로 분할하였다. CnaB2는 13개 잔기 펩타이드(SpyTag)와 116개 잔기 도메인 (SpyCatcher)으로 분할하였다. 이 두 부분은 4-37℃의 온도, 5 내지 8사이의 pH, 넓은 범위의 버퍼 및 비이온세제 (non-ionic detergents)에서도 자발적으로 이소펩타이드본드를 형성하는 특성이 있으며 (Zakeri, B., Fierer, 2012), 이 펩타이드 결합은 N-말단 또는 C-말단 어느 쪽으로 결합해도 기능을 나타낸다.
실시예 4. 트랜스-인테인 스플라이싱 후의 시스테인으로 생성된 이황화결합을 통한 이합체 생성 확인
상기 실시예 3-1의 스플라이싱 과정에서 새로 생성된 시스테인에서의 이황화결합으로 인해 LC-HN-HC 끼리 이합체를 이루는 지 확인하기 위해, SDS-PAGE 및 SEC(Size Exclusion Chromatography)를 사용하였다. 구체적으로, 상기 실시예2처럼 SDS-PAGE를 사용하여 전기영동을 하였다. 이 때, 이황화결합을 분리시켜주는 역할을 하는 DTT를 포함한 6X SDS 용액과 포함하지 않은 용액을 나누어서 비교를 하였다. 또한, SEC를 이용하여 그래프를 작성 후 어떤 크기의 전장독소가 나오는지 비교하여 이황화결합의 유무를 확인하였다.
그 결과, DTT가 포함된 용액을 이용한 샘플을 전기영동한 젤과 SEC의 그래프에서 150 kDa에서 밴드가 형성되는 반면에 DTT가 포함되지 않은 용액을 이용했을 때는 300 kDa에서 밴드가 형성되었음을 확인하였다. 이는 독소가 트랜스-인테인 스플라이싱을 통해 생성된 시스테인에서, 이황화결합이 형성되어 이량체를 형성한다는 것을 확인하였다.
실시예 5. 콜레스테롤 또는 지방산 수식된 전장의 보툴리눔 독소 제작
보툴리눔 독소가 주변부로 확산되거나 혈액을 통하여 순환됨으로써 발생하는 부작용을 감소시키기 위해, 지방산 또는 콜레스테롤을 독소에 수식함으로써 단백질의 반감기를 증가시키고 확산도를 감소시킨 초저확산형 보툴리눔 독소를 제작하였다. 구체적으로, Caprylic acid (C8), Capric acid (C10), Lauric acid (C12), Myristic acid (C14), Palmitic acid (C16) 및 Stearic acid (C18)으로부터 선택되는 어느 하나 이상의 지방산 (2개의 지방산 제조시 PDP-PE(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate]) 반응성을 이용함)을 상기 제작된 전장의 보툴리눔 독소의 리신 또는 시스테인 잔기에 부착하거나, 상기 실시예 3-1의 스플라이싱 과정에서 새로 생성된 시스테인에 부착하였다. 특히, 새로 생성된 시스테인에 부착하는 것이 독소의 구조에 미치는 영향을 최소화할 수 있다. 여기에서, 콜레스테롤을 보툴리눔 독소에 수식하기 위해서는 cysteine-reactive 2-bromoacetyl moiety와 같은 콜레스테롤 전이 물질을 이용하였다.
실시예 6. 형광단백질을 이용한 대체제를 사용한 단백질 트랜스 스플라이싱
Cfa 인테인이 단백질 트랜스 스플라이싱을 발생시키는 현상이 얼마나 신속한지와 효율을 측정하기 위해 LCHN-CfaN-His6과 His6-CfaC-HC의 대체제 (Surrogate model)를 이용하였다. 대체제는 mCherry-cfaN-His, His-CfaC-eGFP-RGD로 각각 LCHN-CfaN-His6 및 His6-CfaC-HC를 대체하였다. 위 대체제를 만들기 위해 실시예 1의 방법으로 pET 28b 플라스미드에 형광단백질을 삽입하고, 상기 실시예 2에서와 같이 각 단편들을 생산하였다. 구체적으로, 수용성 세포(competent cell)로 변환된 E. coli BL21(DE3) 균주에 열 충격을 42℃에서 45초 동안 가한 후 얼음에서 안정화시키고 상기에서 제조한 플라스미드들을 형질도입시켰다. 형질 도입된 E. coli를 LB 카나마이신 고체 선택배지에 도말 한 후 37℃에서 하루 동안 배양하였다. 선택배지에서 자란 1개의 콜로니를 액체 LB 배지 10 mL에 넣고 카나마이신 10 μL을 첨가한 후 12시간 동안 37℃에서 전 배양하였다. 전 배양한 재조합 균주를 다시 카나마이신이 첨가된 600 mL LB 배지에 1%로 접종하고, O.D.(파장: 600 nm) 값이 0.5이 될 때까지 37℃에서 배양하였다. 이 후 0.1mM IPTG를 넣어주고, 16℃에서 24시간 동안 배양하였다. 상기 배양액을 5,000 rpm으로 4℃에서 10분 동안 원심분리하여 배지를 제거하고 균주들을 수득하였다. 상기 균주들을 25 mL의 완충용액 (500 mM NaCl, 20mM Tris-HCl, 10mM imidazole, pH 8.0)에 재부유 시킨 후 1초의 간격으로 1분 45초 간 초음파처리(sonication)하여 세포를 파쇄한 후, 다시 4℃에서 12,000 rpm으로 30분간 원심분리하여 침전물을 제거하였다. 침전물이 제거된 용해물 내에 부유하는 발현된 보툴리눔 독소 분할 단백질들을 분리하기 위해, Ni-NTA 비드(bead)가 담긴 4℃ 컬럼 내에서 2시간 동안 장동(nutation) 운동시킴으로써, mCherry-CfaN-His6 및 His6-CfaC-eGFP-RGD 보툴리눔 독소 분할 단백질들이 His-tag을 통해 비드에 부착되도록 하였다. 상기 장동 운동 후, 완충용액 (500 mM NaCl, 20mM Tris-HCl, 30mM imidazole, pH 8.0)로 세척하여 형광 단백질을 제외한 불순물을 제거하였다. 이 후, 상기 세척된 컬럼에 250 mM의 이미다졸(imidazole) 용액을 처리하여 단백질을 비드에서 떨어뜨림으로써 각각의 형광단백질을 얻었다. 정제된 단백질들의 농도를 DC protein assay로 측정한 결과 mCherry-CfaN-His는 91.07 μM, His-CfaC-HC는 8.23 μM, LCHN-CfaN-His는 3.98 μM, His-CfaC-eGFP는 59.1 μM로 측정되었다. PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na2HPO4 및 1.47 mM KH2PO4, pH 7.4) 완충용액으로 mCherry-CfaN-His, His-CfaC-HC를 1, 5, 10, 20, 40 배로 희석을 하였다. 또한, PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na2HPO4 및 1.47 mM KH2PO4, pH 7.4)로 LCHN-CfaN-His는 1, 2, 4배로, His-CfaC-eGFP는 1, 2, 4 , 8, 16, 32배로 각각 희석 후 6X SDS sample buffer를 넣고 12% SDS PAGE를 예측한 사이즈를 확인하였다 (도 8).
정제한 두 형광단백질에 각 인테인 말단에 대응하는 인테인 말단을 가진 보툴리눔 분할 독소와 반응시켰다. 각각 LCHN-CfaN-His6과 His6-CfaC-eGFP-RGD, mCherry-cfaN-His6과 His6-CfaC-HC를 이용하였고, 2 mM TCEP을 넣고 37℃에서 30분 동안 인큐베이션하고 몰농도의 비율로 CfaN : CfaC가 1:1, 2:1, 1:2로 맞추어 반응을 시켜주었다. 몰농도는 스펙트로미터에서 DC assay를 통해 측정되었다. 각각의 쌍은 0분, 5분, 10분, 30분, 1시간 동안 반응하였고, 시간마다 샘플을 채취하여 SDS 전기영동을 시행하였다.
LCHN-CfaN-His6과 His6-CfaC-eGFP-RGD를 결합하여 LCHN-eGFP-RGD이 5분이 경과했을 때부터 반응이 일어나는 것을 1:1, 2:1, 1:2, 3;1, 1:3 모두에서 확인할 수 있으며 1:1의 비율에서 가장 효율 좋게 반응하는 것을 보았다. 또한, mCherry-cfaN-His6과 His6-CfaC-HC를 결합하여 mCherry-HC가 5분이 경과하자마자 예측한 사이즈에서 나타나는 것을 1:1, 2:1, 1:2 모두에서 확인하였다. LCHN-eGFP-RGD과 mCherry-HC에서 모두 CfaN : CfaC가 1:1일 때 효율이 가장 좋았다. (도 9)
실시예 7. 보툴리눔 독소의 SNAP-25 단백질 절단 활성 확인
본 발명에서 제조한 보툴리눔 독소의 분할 단편들 또는 이들을 접합하여 제작한 전장의 보툴리눔 독소가 SNAP-25 단백질에 대해 절단 활성이 있는지 확인하기 위하여 SNAP-25를 정제하였다. 구체적으로, 수용성 세포(competent cell)로 변환된 E. coli BL21(DE3) 균주에 열 충격을 42℃에서 45초 동안 가한 후 얼음에서 안정화시키고 상기에서 제조한 플라스미드들을 형질도입시켰다. 형질 도입된 E. coli를 LB 카나마이신 고체 선택배지에 도말 한 후 37 ℃에서 하루 동안 배양하였다. 선택배지에서 자란 1개의 콜로니를 액체 LB 배지 10 mL에 넣고 카나마이신 10 μL을 첨가한 후 12시간 동안 37 ℃에서 전 배양하였다. 전 배양한 재조합 균주를 다시 카나마이신이 첨가된 600 mL LB 배지에 1%로 접종하고, O.D.(파장: 600 nm) 값이 0.5이 될 때까지 37℃에서 배양하였다. 이 후 0.1 mM IPTG를 넣어주고, 16℃에서 12시간 동안 배양하였다. 상기 배양액을 8,000 rpm으로 4℃에서 10분 동안 원심분리하여 배지를 제거하고 균주들을 수득하였다. 상기 균주들을 10 mL의 PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na2HPO4 및 1.47 mM KH2PO4, pH 7.4)에 재부유 시킨 후 1초의 간격으로 1분 45초 간 초음파처리(sonication)하여 세포를 파쇄한 후, 다시 4℃에서 12,000 rpm으로 40분간 원심분리하여 침전물을 제거하였다. 침전물이 제거된 용해물 내에 부유하는 발현된 SNAP-25를 분리하기 위해, Ni-NTA 비드(bead)가 담긴 4℃ 컬럼 내에서 2시간 동안 장동(nutation) 운동시킴으로써, His-tag을 통해 비드에 부착되도록 하였다. 상기 장동 운동 후, PBS (137 mM NaCl, 2.7 mM KCl, 2.55 mM Na2HPO4 및 1.47 mM KH2PO4, 30mM imidazole, pH 7.4) 용액으로 세척하여 SNAP-25를 제외한 불순물을 제거하였다. 이 후, 상기 세척된 컬럼에 250 mM의 이미다졸(imidazole) 용액을 처리하여 단백질을 비드에서 떨어뜨림으로써 SNAP-25만을 수득하였다. 이 때, 상기 실시예 2에서와 같이 SDS PAGE를 이용하여 전기영동을 실시하여서 정제된 SNAP-25의 발현 및 농도를 측정하였고, 이를 희석하여 각각 보툴리눔 독소의 경쇄(LC) 및 전장 독소를 농도가 일정하게 투여해 주고 1시간 동안 반응시켰다. 대조군으로 독소를 넣지 않은 SNAP-25를 이용하였고, SDS-PAGE를 통해 SNAP-25가 in vitro 상에서 보툴리눔 독소에 의해 절단되는지를 확인하였다.(도 10) 그 결과, SNAP-25가 LC의 활성에 의해 절단되는 것을 확인하였다.
Claims (24)
- (1)보툴리눔 독소의 경쇄 (LC)를 암호화하는 서열을 포함하는 플라스미드;(2)보툴리눔 독소의 중쇄의 전위 도메인(Translocation domain, HN)을 암호화하는 서열을 포함하는 플라스미드; 및(3)보툴리눔 독소의 중쇄의 수용체 결합 도메인 (Receptor binding domain, RBD 또는 HC)을 암호화하는 서열을 포함하는 플라스미드;를 포함하는 보툴리눔 독소 생산용 키트로서,상기 (2)의 플라스미드에서 발현된 전위 도메인과 상기 (3)에서 발현된 수용체 결합 도메인이 접합되는 것인, 보툴리눔 독소 생산용 키트.
- 제 1항에 있어서, 상기 접합은 트랜스 스플라이싱 방법, 비공유 친화성 결합, 비공유 결합 또는 소테이즈에 의한 결합으로 접합하는 것인, 보툴리눔 독소 생산용 키트.
- 제 1항에 있어서, 상기 (1)의 플라스미드에서 발현된 보툴리눔 독소의 경쇄와 상기 (2)의 플라스미드에서 발현된 중쇄의 전위 도메인이 이황화 결합으로 연결되는 것인, 보툴리눔 독소 생산용 키트.
- 제 1항에 있어서, 상기 (2)의 플라스미드는 인테인을 암호화하는 서열을 더 포함하고 있고, 상기 (3)의 플라스미드도 인테인을 암호화하는 서열을 더 포함하되, 상기 (2)의 플라스미드에서 발현된 인테인과 상기 (3)의 플라스미드에서 발현된 인테인은 트랜스 스플라이싱이 유도되어 제거되는 것인, 보툴리눔 독소 생산용 키트.
- 제 4항에 있어서, 상기 (2)의 플라스미드가 발현시키는 것은 중쇄의 전위 도메인-IntN(Intein N)이고, 상기 (3)의 플라스미드가 발현시키는 것은 IntC(Intein C)-중쇄의 수용체 결합 도메인인 것인, 보툴리눔 독소 생산용 키트.
- 제 1항 내지 제 5항 중 어느 한 항의 보툴리눔 독소 생산용 키트로 형질전환된 세포.
- 제 1항 내지 제 5항 중 어느 한 항의 보툴리눔 독소 생산용 키트를 이용하여 생산된 보툴리눔 독소의 단편 및 상기 단편을 혼합하여 생산된 전장의 보툴리눔 독소.
- 제 7항에 있어서, 지방산, 콜레스테롤, N-에틸말레이미드(N-ethylmaleimide) 또는 PEG가 부착된 전장의 보툴리눔 독소.
- 제 7항에 있어서, 상기 전장의 보툴리눔 독소는 이합체(dimer)인 전장의 보툴리눔 독소.
- 1) 보툴리눔 독소의 단편인 경쇄 (LC), 중쇄의 전위 도메인 (HN) 및 중쇄의 수용체 결합 도메인 (HC)를 각각 생산하고; 및2) 보툴리눔 독소의 단편인 경쇄 (LC), 중쇄의 전위 도메인 (HN) 및 중쇄의 수용체 결합 도메인 (HC)을 혼합하여 전장의 보툴리눔 독소를 생성하는 것을 포함하는, 보툴리눔 독소의 생산 방법으로서,상기 중쇄의 전위 도메인 및 중쇄의 수용체 결합 도메인은 접합되는 것인, 방법.
- 제 10항에 있어서, 상기 접합은 상기 중쇄의 전위 도메인에 IntN을 부가하고, 상기 경쇄의 수용체 결합 도메인에 IntC를 부가하여 접합시키는 것인, 방법.
- 제 10항에 있어서, 상기 경쇄와 중쇄의 전위 도메인은 이황화 결합되는 것인, 방법.
- 제 10항에 있어서, 상기 경쇄와 중쇄의 전위 도메인은 하나의 세포에서 생산되어, 세포 내에서 이황화 결합이 일어나는 것인, 방법.
- (1)보툴리눔 독소의 경쇄 (LC)를 암호화하는 서열 및 보툴리눔 독소의 중쇄의 전위 도메인(Translocation domain, HN)을 암호화하는 서열을 순차적으로 포함하는 플라스미드; 및(2)보툴리눔 독소의 중쇄의 수용체 결합 도메인 (Receptor binding domain, RBD 또는 HC)을 암호화하는 서열을 포함하는 플라스미드;를 포함하는 보툴리눔 독소 생산용 키트로서,상기 (1)의 플라스미드에서 발현된 전위 도메인과 상기 (2)의 플라스미드에서 발현된 수용체 결합 도메인의 접합이 되는 것인, 보툴리눔 독소 생산용 키트.
- 제 14항에 있어서, 상기 접합은 트랜스 스플라이싱 방법, 비공유 친화성 결합, 비공유 결합 또는 소테이즈에 의한 결합으로 접합되는 것인, 보툴리눔 독소 생산용 키트.
- 제 14항에 있어서, 상기 (1)의 플라스미드는 인테인을 암호화하는 서열을 더 포함하고, 상기 (2)의 플라스미드도 인테인을 암호화하는 서열을 더 포함하되, 상기 (1)의 플라스미드에서 발현된 인테인과 상기 (2)의 플라스미드에서 발현된 인테인은 트랜스 스플라이싱이 유도되어 제거되는 것인, 보툴리눔 독소 생산용 키트.
- 제 16항에 있어서, 상기 (1)의 플라스미드가 발현시키는 것은 경쇄-중쇄의 전위 도메인-IntN(Intein N)이고, 상기 (3)의 플라스미드가 발현시키는 것은 IntC(Intein C)-중쇄의 수용체 결합 도메인인 것인, 보툴리눔 독소 생산용 키트.
- 제 14항 내지 제 17항 중 어느 한 항의 보톨리눔 독소 생산용 키트로 형질정환된 세포.
- 제 14항 내지 제 17항 중 어느 한 항의 보툴리눔 독소 생산용 키트를 이용하여 생산된 보툴리눔 독소의 단편 및 상기 단편을 혼합하여 생산된 전장의 보툴리눔 독소.
- 제 19항에 있어서, 지방산, 콜레스테롤, N-에틸말레이미드(N-ethylmaleimide) 또는 PEG가 부착된 전장의 보툴리눔 독소.
- 제 19항에 있어서, 상기 전장의 보툴리눔 독소는 이합체(dimer)인 전장의 보툴리눔 독소.
- 1) 보툴리눔 독소의 단편인 경쇄 및 중쇄의 전위 도메인 (LC-HN) 및 중쇄의 수용체 결합 도메인 (HC)를 각각 생산하고;2) 효소로 경쇄 및 중쇄의 전위 도메인 (LC-HN)을 경쇄 (LC), 중쇄의 전위 도메인 (HN)으로 절단하며; 및3) 보툴리눔 독소의 단편인 경쇄 (LC), 중쇄의 전위 도메인 (HN) 및 중쇄의 수용체 결합 도메인 (HC)을 혼합하여 전장의 보툴리눔 독소를 생성하는 것을 포함하는, 보툴리눔 독소의 생산 방법으로서,상기 중쇄의 전위 도메인 및 중쇄의 수용체 결합 도메인은 접합되는 것인, 보툴리눔 독소의 생산 방법.
- 제 22항에 있어서, 상기 접합은 상기 중쇄의 전위 도메인에 IntN을 부가하고, 상기 경쇄의 수용체 결합 도메인에 IntC를 부가하여 접합시키는 것인, 방법.
- 제 22항에 있어서, 상기 경쇄와 중쇄의 전위 도메인은 이황화 결합되는 것인, 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/637,338 US20220280617A1 (en) | 2019-12-18 | 2020-12-18 | Method for safely producing botulinum neurotoxin |
CN202080059073.1A CN114269932B (zh) | 2019-12-18 | 2020-12-18 | 肉毒神经毒素的安全制备方法 |
EP20900935.6A EP4006158A4 (en) | 2019-12-18 | 2020-12-18 | METHOD FOR THE SAFE PRODUCTION OF BOTULINUM NEUROTOXIN |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20190169553 | 2019-12-18 | ||
KR10-2019-0169553 | 2019-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021125866A1 true WO2021125866A1 (ko) | 2021-06-24 |
Family
ID=76477974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/018623 WO2021125866A1 (ko) | 2019-12-18 | 2020-12-18 | 보툴리눔 신경 독소의 안전한 제조 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220280617A1 (ko) |
EP (1) | EP4006158A4 (ko) |
KR (2) | KR102610179B1 (ko) |
CN (1) | CN114269932B (ko) |
WO (1) | WO2021125866A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115785237B (zh) * | 2022-09-01 | 2023-06-16 | 上海蓝晶生物科技有限公司 | 一种重组肉毒杆菌毒素及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060024794A1 (en) * | 2004-07-30 | 2006-02-02 | Shengwen Li | Novel methods for production of di-chain botulinum toxin |
US20100196421A1 (en) * | 2004-11-22 | 2010-08-05 | New York University | Genetically engineered clostridial genes, proteins encoded by the engineered genes, and uses thereof |
US20130345398A1 (en) * | 1993-09-21 | 2013-12-26 | Leonard A Smith | Recombinant light chains of botulinum neurotoxins and light chain fusion proteins for use in research and clinical therapy |
WO2014110393A1 (en) * | 2013-01-11 | 2014-07-17 | The Texas A&M University System | Intein mediated purification of protein |
KR20180130452A (ko) * | 2017-05-29 | 2018-12-07 | 바이오위더스 주식회사 | 고용해성 녹색형광 단백질과 보툴리늄 독소 단백질의 융합단백질 구성을 통한 재조합 보툴리늄 독소 단백질의 대량생산 기술 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7192596B2 (en) * | 1996-08-23 | 2007-03-20 | The Health Protection Agency Ipsen Limited | Recombinant toxin fragments |
GB0426397D0 (en) * | 2004-12-01 | 2005-01-05 | Health Prot Agency | Fusion proteins |
DE102005002978B4 (de) * | 2005-01-21 | 2013-04-25 | Merz Pharma Gmbh & Co. Kgaa | Rekombinante Expression von Proteinen in einer disulfidverbrückten, zweikettigen Form |
FI3481852T3 (fi) * | 2016-07-08 | 2023-03-19 | Childrens Medical Center | Uusi botulinum-neurotoksiini ja sen johdannaisia |
-
2020
- 2020-12-18 EP EP20900935.6A patent/EP4006158A4/en active Pending
- 2020-12-18 KR KR1020200178099A patent/KR102610179B1/ko active IP Right Grant
- 2020-12-18 WO PCT/KR2020/018623 patent/WO2021125866A1/ko unknown
- 2020-12-18 CN CN202080059073.1A patent/CN114269932B/zh active Active
- 2020-12-18 US US17/637,338 patent/US20220280617A1/en active Pending
-
2023
- 2023-02-28 KR KR1020230027285A patent/KR102597062B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130345398A1 (en) * | 1993-09-21 | 2013-12-26 | Leonard A Smith | Recombinant light chains of botulinum neurotoxins and light chain fusion proteins for use in research and clinical therapy |
US20060024794A1 (en) * | 2004-07-30 | 2006-02-02 | Shengwen Li | Novel methods for production of di-chain botulinum toxin |
US20100196421A1 (en) * | 2004-11-22 | 2010-08-05 | New York University | Genetically engineered clostridial genes, proteins encoded by the engineered genes, and uses thereof |
WO2014110393A1 (en) * | 2013-01-11 | 2014-07-17 | The Texas A&M University System | Intein mediated purification of protein |
KR20180130452A (ko) * | 2017-05-29 | 2018-12-07 | 바이오위더스 주식회사 | 고용해성 녹색형광 단백질과 보툴리늄 독소 단백질의 융합단백질 구성을 통한 재조합 보툴리늄 독소 단백질의 대량생산 기술 |
Non-Patent Citations (8)
Title |
---|
"Goodman and Gilman's The Pharmacological Basis of Therapeutics", 2001, PERGAMON PRESS |
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING COMPANY |
BAND P.A.BLAIS S.NEUBERT T.A.CARDOZO T.J.ICHTCHENKO K., PROTEIN EXPR. PURIF., vol. 71, 2010, pages 62 - 73 |
FERNANDEZ-SALAS E ET AL., PLOS ONE, vol. 7, no. 11, 2012, pages e49516 |
See also references of EP4006158A4 |
SINGH ET AL.: "Natural Toxins", vol. II, 1976, PLENUM PRESS, article "Critical Aspects of Bacterial Protein Toxins", pages: 63 - 84 |
WEBER ET AL., CELL, vol. 92, 1998, pages 759 - 772 |
ZHOU Y.SINGH B.R., PROTEIN EXPR. PURIF., vol. 34, 2004, pages 8 - 16 |
Also Published As
Publication number | Publication date |
---|---|
KR102597062B1 (ko) | 2023-11-02 |
KR102610179B1 (ko) | 2023-12-05 |
CN114269932B (zh) | 2024-08-06 |
US20220280617A1 (en) | 2022-09-08 |
KR20210078433A (ko) | 2021-06-28 |
EP4006158A1 (en) | 2022-06-01 |
EP4006158A4 (en) | 2023-01-04 |
KR20230054615A (ko) | 2023-04-25 |
CN114269932A (zh) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7402916B2 (ja) | 新規ボツリヌスニューロトキシンおよびその誘導体 | |
US8071110B2 (en) | Activatable clostridial toxins | |
US7740868B2 (en) | Activatable clostridial toxins | |
US20080032931A1 (en) | Activatable clostridial toxins | |
EP2938363B1 (en) | Methods and compositions relating to crm197 | |
US20090018081A1 (en) | Activatable clostridial toxins | |
Chaddock et al. | Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A | |
US11897921B2 (en) | Propeptide fusion comprising a mutated clostridium botulinum neurotoxin and a VHH domain | |
WO2021125866A1 (ko) | 보툴리눔 신경 독소의 안전한 제조 방법 | |
US11118170B2 (en) | Engineered clostridium botulinum toxin adapted to deliver molecules into selected cells | |
Li et al. | High-level expression, purification, and characterization of recombinant type A botulinum neurotoxin light chain | |
US6545126B1 (en) | Chimeric toxins | |
Vazquez-Boland et al. | Purification and characterization of two Listeria ivanovii cytolysins, a sphingomyelinase C and a thiol-activated toxin (ivanolysin O) | |
Lux et al. | Overproduced Salmonella typhimurium flagellar motor switch complexes | |
Letourneur et al. | Molecular cloning, overexpression in Escherichia coli, and purification of 6× his-tagged C-terminal domain of Clostridium difficile toxins A and B | |
US20240131127A1 (en) | Modified neurotoxin single-chain polypeptide and use thereof | |
WO2021125917A1 (ko) | Whep 도메인 융합에 의한 목적 단백질의 수용성 증진 방법 | |
Elsabbagh et al. | Nucleotide sequence of attP and cos sites of phage CTX and expression of cytotoxin in Pseudomonas aeruginosa PA158 | |
Mousavi et al. | Cloning, expression and purification of Clostridium botulinum neurotoxin type E binding domain | |
Beard et al. | Clostridium botulinum and Associated Neurotoxins | |
Pappenheimer Jr | Neuronal-glial Cell Interrelationships, ed. TA Sears, pp. 229-250. Dahlem Konferenzen 1982. Berlin, Heidelberg, New York: Springer-Verlag. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900935 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020900935 Country of ref document: EP Effective date: 20220222 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |