WO2021125861A2 - 이방향성 전기강판 및 그의 제조방법 - Google Patents

이방향성 전기강판 및 그의 제조방법 Download PDF

Info

Publication number
WO2021125861A2
WO2021125861A2 PCT/KR2020/018615 KR2020018615W WO2021125861A2 WO 2021125861 A2 WO2021125861 A2 WO 2021125861A2 KR 2020018615 W KR2020018615 W KR 2020018615W WO 2021125861 A2 WO2021125861 A2 WO 2021125861A2
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
electrical steel
steel sheet
manufacturing
cold
Prior art date
Application number
PCT/KR2020/018615
Other languages
English (en)
French (fr)
Other versions
WO2021125861A3 (ko
Inventor
문현우
이세일
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP20901862.1A priority Critical patent/EP4079890A4/en
Priority to JP2022537582A priority patent/JP2023508295A/ja
Priority to US17/785,240 priority patent/US20230035269A1/en
Priority to CN202080097275.5A priority patent/CN115151674B/zh
Publication of WO2021125861A2 publication Critical patent/WO2021125861A2/ko
Publication of WO2021125861A3 publication Critical patent/WO2021125861A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • One embodiment of the present invention relates to a bidirectional electrical steel sheet and a method for manufacturing the same. Specifically, an embodiment of the present invention adjusts the reduction ratio and the final annealing time in the secondary cold rolling to increase the fraction of crystal grains having a 100b ⁇ 001> orientation, so that the magnetism in the rolling direction and the rolling vertical direction is It is very excellent and relates to a bidirectional electrical steel sheet having a very small magnetic deviation and a method for manufacturing the same.
  • Electrical steel sheet is divided into grain-oriented electrical steel sheet having excellent magnetic properties in one direction and non-oriented electrical steel sheet showing uniform magnetic properties in all directions. Considering the magnetic anisotropy of BCC-structured iron, the magnetic properties are controlled and changed by controlling the arrangement of atoms according to the use of the steel sheet.
  • the grain-oriented electrical steel sheet uses the secondary recrystallization phenomenon and has only a Goss texture of ⁇ 110 ⁇ 001>, but other textures other than the Goss texture have never been commercialized using the secondary recrystallization phenomenon.
  • the ⁇ 100 ⁇ 001> orientation that is, the Cube orientation, has a ⁇ 001> axis, which is easy to magnetize, not only in the RD direction but also in the TD direction, unlike the Goss orientation.
  • Cube bearings have been recognized for their usefulness in the past, but only methods of manufacturing them through tools that are impossible for actual large-scale industrial production, such as cross rolling or vacuum annealing, are known.
  • the cross rolling method cannot be utilized due to the impossibility of continuous production of materials.
  • a cylindrical core with a diameter of several meters must be manufactured, so the core is divided into several to tens on the plate surface and assembled. It cannot be applied to the process to be made in the form that is used, and the productivity is also extremely low.
  • An embodiment of the present invention is to provide a bidirectional electrical steel sheet and a method for manufacturing the same. Specifically, in one embodiment of the present invention, by adjusting the reduction ratio and the final annealing time in the secondary cold rolling to increase the fraction of crystal grains having the orientation ⁇ 100 ⁇ 001>, the magnetism in the rolling direction and the rolling vertical direction is An object of the present invention is to provide a bidirectional electrical steel sheet having very good and very small magnetic deviation and a method for manufacturing the same.
  • the bi-directional electrical steel sheet according to an embodiment of the present invention has a fraction of grains having an orientation within 15° from ⁇ 100 ⁇ 001> of 50 to 75%, and an orientation within 15° from ⁇ 100 ⁇ 380>.
  • the fraction of grains having crystal grains is 50 to 75%.
  • the fraction of grains having an orientation within 10° from ⁇ 100 ⁇ 001> is 20 to 50%, and an orientation within 10° from ⁇ 100 ⁇ 380>.
  • the fraction of crystal grains having is 20 to 50%.
  • Bi-oriented electrical steel sheet according to an embodiment of the present invention by weight, Si: 1.0% to 7.0%, Al: 0.02% or less (excluding 0%), Mn: 0.02 to 0.50%, C: 0.004% or less (excluding 0%) and S: 0.0005 to 0.005%, and the balance may contain Fe and other unavoidable impurities.
  • the average particle diameter of the crystal grains may be 2000 ⁇ m or more.
  • the deviation of the magnetic flux density (B50) in the rolling direction (L direction) and the magnetic flux density (B50) in the rolling direction (C direction) is defined by Equation 1 below. It can be 3 or less.
  • B L 50 and B C 50 are the magnetic flux densities in the rolling direction and the rolling vertical direction (B50), respectively, and MAX(B L 50 , B C 50 ) is the magnetic flux density in the rolling direction and the rolling vertical direction ( B50) indicates the larger value.
  • a bidirectional electrical steel sheet comprises the steps of: preparing a hot-rolled sheet by hot rolling a slab; manufacturing a primary cold-rolled sheet by first cold rolling the hot-rolled sheet; intermediate annealing of the primary cold-rolled sheet; It includes the steps of manufacturing a secondary cold-rolled sheet by secondary cold rolling of the intermediate annealed sheet and final annealing of the secondary cold-rolled sheet.
  • the rolling reduction may be 55 to 85%.
  • the final annealing may be annealed for 6 to 60 hours.
  • the step of annealing the hot-rolled sheet may be further included.
  • the step of manufacturing the primary cold-rolled sheet may include one cold rolling or two or more cold rolling with intermediate annealing therebetween.
  • the first cold-rolled sheet and the step of manufacturing the second cold-rolled sheet it may be rolled in the same direction.
  • the intermediate annealing may be annealed in a reducing atmosphere.
  • the step of applying an annealing separator may be further included.
  • the final annealing may be annealed in a reducing atmosphere.
  • the final annealing may be annealed at a temperature of 1000 to 1200°C.
  • the bidirectional electrical steel sheet according to an embodiment of the present invention has similar magnetic values in the rolling direction and the direction perpendicular to the rolling regardless of the direction, and exhibits excellent magnetic properties such as high magnetic flux density and low iron loss.
  • first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • % means weight %, and 1 ppm is 0.0001 weight %.
  • the meaning of further including the additional element means that the remaining iron (Fe) is included by replacing the additional amount of the additional element.
  • the bi-directional electrical steel sheet according to an embodiment of the present invention has a fraction of grains having an orientation within 15° from ⁇ 100 ⁇ 001> of 50 to 75%, and an orientation within 15° from ⁇ 100 ⁇ 380>.
  • the fraction of grains having crystal grains is 50 to 75%.
  • the crystal grains having an orientation within 15° from the above-described ⁇ 100 ⁇ ⁇ 001> are also called Cube orientation grains, and in an embodiment of the present invention, the area fraction of the Cube orientation grains is 50 to 75%, and at the same time ⁇ 100 ⁇
  • the area fraction of crystal grains having an orientation within 15° from ⁇ 380> to 50 to 75% it is possible to provide a bidirectional electrical steel sheet having very excellent magnetism in the rolling direction and the rolling perpendicular direction, and having a very small magnetic deviation. have.
  • the ⁇ 100 ⁇ 001> orientation and the ⁇ 100 ⁇ 380> orientation have overlapping portions within 15°, and in an embodiment of the present invention, crystal grains having an orientation within 15° from ⁇ 100 ⁇ 001> and Crystal grains simultaneously corresponding to grains having an orientation within 15° from ⁇ 100 ⁇ 380> are each calculated in duplicate. Accordingly, the sum of the fractions of grains having an orientation within 15° from ⁇ 100 ⁇ 001> and grains having an orientation within 15° from ⁇ 100 ⁇ 380> may exceed 100%.
  • the fraction of grains having an orientation within 15° from ⁇ 100 ⁇ 001> is 50 to 65%, and the fraction of grains having an orientation within 15° from ⁇ 100 ⁇ 380> is 55 to 75%.
  • the fraction of grains having an orientation within 15° from ⁇ 100 ⁇ ⁇ 001> is 60 to 65%, and the fraction of grains having an orientation within 15° from ⁇ 100 ⁇ 380> is 55 to 60%. .
  • the grain fraction may be evaluated as an area fraction for a specific surface.
  • the area fraction may be a grain area fraction measured based on a plane parallel to the rolling plane (a plane perpendicular to the ND direction).
  • the fraction of grains having an orientation within 10° from ⁇ 100 ⁇ 001> is 20 to 50%, and an orientation within 10° from ⁇ 100 ⁇ 380>.
  • the fraction of crystal grains having is 20 to 50%.
  • the fraction of grains having an orientation within 10° from ⁇ 100 ⁇ ⁇ 001> is 25 to 45%, and the fraction of grains having an orientation within 10° from ⁇ 100 ⁇ 380> is 20 to 45%. . More specifically, the fraction of grains having an orientation within 10° from ⁇ 100 ⁇ 001> is 40 to 45%, and the fraction of grains having an orientation within 10° from ⁇ 100 ⁇ 380> is 30 to 35%. .
  • the sum of the fraction of grains having an orientation within 10° from ⁇ 100 ⁇ 001> and grains having an orientation within 10° from ⁇ 100 ⁇ 380> may be less than 100%, and the remainder may be less than 100% in the aforementioned orientation range. It is a grain with an orientation deviating from .
  • Bi-oriented electrical steel sheet according to an embodiment of the present invention by weight, Si: 1.0% to 7.0%, Al: 0.02% or less (excluding 0%), Mn: 0.02 to 0.50%, C: 0.004% or less (excluding 0%) and S: 0.0005 to 0.005%, and the balance may contain Fe and other unavoidable impurities.
  • Silicon (Si) is an element that forms austenite in hot rolling. In order to have an austenite fraction of about 10% by volume in the vicinity of the slab heating temperature and the hot-rolled sheet annealing temperature, it is necessary to limit the amount of addition. In addition, in the final annealing, it is necessary to limit the composition to a single ferrite phase because the formation of a recrystallized microstructure during annealing can occur smoothly only in a single ferrite phase. In pure iron, when 1.0 wt% or more is added, a ferrite single phase is formed, and since the austenite fraction can be adjusted through the addition of C, the lower limit of the Si content can be limited to 1.0 wt%.
  • Si may be included in an amount of 2.0 to 4.0 wt%. More specifically, in order to obtain a steel sheet having a high magnetic flux density, Si may be included in an amount of 2.5 to 3.5 wt%.
  • Aluminum (Al) may serve to increase Al resistivity.
  • Al 2 O 3 is formed on the steel sheet surface during heat treatment of a steel sheet to which a large amount of Al is added. Al 2 O 3 can penetrate from the surface to the grain boundary, which inhibits the growth of grains and becomes a factor hindering secondary recrystallization. Therefore, 0.02 wt% or less of Al is suitable. More specifically, Al may be included in 0.01 wt% or less. More specifically, Al may be included in an amount of 0.005 wt% or less.
  • Manganese (Mn) is an element that increases resistivity. However, if the addition of Mn is excessive, the austenite region may be excessive during heat treatment, and there is a possibility of causing a phase transformation. In addition, excess Mn has the effect of preventing the diffusion of element S by trapping sulfur more than necessary. An appropriate amount of Mn precipitates fine MnS to hold the grain boundaries with weak force, and at an appropriate temperature, MnS melts away and causes secondary recrystallization. Since the speed of volatilized S can also be controlled to some extent with Mn, it can be seen that an appropriate amount of Mn plays a certain role in secondary recrystallization. More specifically, it may contain 0.05 to 0.30 wt% of Mn.
  • carbon (C) is not substituted with Fe atoms and is an element that invades the interstitial site. Due to its properties, when C is introduced in a large amount, the movement of dislocations is inhibited and the growth of crystal grains is disturbed. More specifically, C may be included in an amount of 0.003% by weight or less.
  • the surface energy of sulfur (S) varies according to the content of S segregated on the surface, and the recrystallization phenomenon of grains in a specific orientation may occur due to the changed surface energy.
  • the ⁇ 110 ⁇ plane is stable on a surface without S at all
  • the ⁇ 100 ⁇ plane is stable on a surface with weak S segregation
  • the ⁇ 111 ⁇ plane is stable on a surface with a lot of S segregation.
  • Mn also acts as an additional trap for S, helping to weakly segregate S on the surface. More specifically, S may be included in an amount of 0.0010 to 0.0040 wt%.
  • the balance other than the above-mentioned components is Fe and unavoidable impurities.
  • containing of another element is not excluded.
  • the bidirectional electrical steel sheet according to an embodiment of the present invention may have an average grain size of 2000 ⁇ m or more. If the average grain size is too small, the fractions of ⁇ 100 ⁇ 001> and ⁇ 100 ⁇ 380> textures may be lowered, resulting in inferior magnetism.
  • the grain size can be measured based on a plane parallel to the rolling plane (ND plane) of the steel sheet.
  • the particle size refers to the diameter of an imaginary circle having the same area as the grain size. More specifically, the average grain size may be 2500 ⁇ m or more.
  • both B 8 in the rolling direction and the rolling vertical direction may be 1.65T or more. More specifically, both the rolling direction and the rolling vertical direction B 8 may be 1.70T or more. More specifically, both B 8 in the rolling direction and the rolling vertical direction may be 1.73T or more.
  • the bidirectional electrical steel sheet according to an embodiment of the present invention has excellent magnetism in both the rolling direction and the rolling direction.
  • both B 50 in the rolling direction and the rolling vertical direction may be 1.80T or more.
  • both B 8 in the rolling direction and the rolling vertical direction may be 1.85T or more.
  • both B 8 in the rolling direction and the rolling vertical direction may be 1.88T or more.
  • the deviation of the magnetic flux density (B50) in the rolling direction (L direction) and the magnetic flux density (B50) in the rolling direction (C direction) is defined by Equation 1 below. It can be 3 or less.
  • B L 50 and B C 50 are the magnetic flux densities in the rolling direction and the rolling vertical direction (B50), respectively, and MAX(B L 50 , B C 50 ) is the magnetic flux density in the rolling direction and the rolling vertical direction ( B50) indicates the larger value.
  • the deviation may be 2 or less.
  • a method of manufacturing a bi-directional electrical steel sheet comprises the steps of: manufacturing a hot-rolled sheet by hot-rolling a slab; manufacturing a primary cold-rolled sheet by first cold rolling the hot-rolled sheet; intermediate annealing of the primary cold-rolled sheet; It includes the steps of manufacturing a secondary cold-rolled sheet by secondary cold rolling of the intermediate annealed sheet and final annealing of the secondary cold-rolled sheet.
  • a slab is manufactured.
  • the reason for limiting the addition ratio of each composition in the slab is the same as the reason for limiting the composition of the above-described bidirectional electrical steel sheet, and thus repeated description will be omitted. Since the element content does not substantially change in the manufacturing process of hot rolling, hot-rolled sheet annealing, primary cold rolling, intermediate annealing, secondary cold rolling, and final annealing, which will be described later, the composition of the slab and the composition of the bi-directional electrical steel sheet are different. Practically the same.
  • the slab can be manufactured using a thin slab method or a strip casting method.
  • the thickness of the slab can be 200 to 300 mm.
  • the slab can be heated as needed.
  • the heating temperature may be 1100 to 1250° C., and the heating time may be 30 minutes or more.
  • the slab is hot-rolled to manufacture a hot-rolled sheet.
  • the thickness of the hot-rolled sheet may be 2.0 to 3.0 mm.
  • the step of annealing the hot-rolled sheet may be further included.
  • the annealing of the hot-rolled sheet may be annealed at a temperature of 1000 to 1150°C. It can also be annealed for 60 to 150 seconds. It may further include a pickling step after the hot-rolled sheet annealing.
  • a primary cold-rolled sheet is manufactured by primary rolling a hot-rolled sheet.
  • the step of manufacturing the primary cold-rolled sheet may include one cold rolling or two or more cold rolling with intermediate annealing therebetween.
  • the first cold-rolled sheet and the step of manufacturing the second cold-rolled sheet it may be rolled in the same direction.
  • the primary cold-rolled sheet is intermediate annealed.
  • the intermediate annealing step is sufficient to complete recrystallization, it can be annealed at 900 to 1100° C. for 60 to 150 seconds.
  • the intermediate annealing may be annealed in a reducing atmosphere. Since secondary cold rolling must be performed after intermediate annealing, annealing can be performed in an atmosphere with a large amount of hydrogen so as not to be oxidized during annealing. The remaining atmosphere may be air.
  • the secondary cold-rolled sheet is prepared by cold-rolling the intermediate annealed sheet.
  • Secondary cold rolling can adjust the reduction ratio to 55 to 85%.
  • the reduction ratio is too small, fewer grains of ⁇ 100 ⁇ 001> and ⁇ 100 ⁇ 380> orientations may be formed.
  • the reduction ratio is too high
  • the ⁇ 001> direction of the grains rotates after recrystallization, and secondary recrystallization occurs in the ⁇ 250> or ⁇ 120> direction, which is rotated more than the ⁇ 380>.
  • the reduction ratio may be 55 to 80%. More specifically, the reduction ratio may be 55 to 65%.
  • the reduction ratio can be calculated as ([thickness of steel sheet before reduction] - [thickness of steel sheet after reduction]) / [thickness of steel sheet before reduction].
  • an annealing separator may be applied for a long time annealing.
  • the annealing separator may include alumina (Al 2 O 3 ).
  • the secondary cold-rolled sheet is final annealed.
  • the final annealing may be annealed for 6 to 60 hours. When the annealing time is too short, crystal grains of ⁇ 100 ⁇ 001> and ⁇ 100 ⁇ 380> orientations may not be properly formed. If the annealing time is too long, energy waste may occur. More specifically, the final annealing may be annealed for 12 to 48 hours.
  • the final annealing may be annealed in a reducing atmosphere.
  • the final annealing may be annealed at a temperature of 1000 to 1200°C. If the annealing temperature is too low, recrystallization may not occur properly. Even if the annealing temperature is higher, it is difficult to improve the magnetism.
  • a slab consisting of the components shown in Table 1 and the remainder Fe and unavoidable impurities was prepared, heated at 1130° C. for 2 hours, and then hot rolled to 2.5 mm.
  • the hot-rolled sheet was heat-treated at 1070° C. for 2 minutes, and after pickling, the first cold rolling was performed.
  • the final thickness was fixed at 0.2 mm, and the experiment was conducted while changing the rolling reduction of the secondary cold rolling from 40% to 80%. Therefore, the final thickness at the time of the first cold rolling was 2mm (90%), 1mm (80%), 0.67mm (70%), 0.50mm (60%), and 0.33mm (40%), respectively, and the first rolling was completed.
  • the heat treatment was carried out at 1050 °C for about 2 minutes.
  • Table 1 the area fraction and grain size of the crystal grains having the ⁇ 100 ⁇ 001> and ⁇ 100 ⁇ 380> orientations were measured and summarized.
  • the ODF results are shown in FIG. 1 . It can be seen that a plurality of crystal grains having ⁇ 100 ⁇ 001> and ⁇ 100 ⁇ 380> orientations are formed at a secondary cold rolling reduction ratio of 60 to 80%. It can be seen that other directions having a ⁇ 001 ⁇ plane are widely spread in addition to the 50% of ⁇ 100 ⁇ 001> and ⁇ 100 ⁇ 380> orientations.
  • Comparative Example 2 has a high reduction ratio, so that relatively few crystal grains having ⁇ 100 ⁇ 001> and ⁇ 100 ⁇ 380> orientations are formed, and the magnetism is relatively poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명의 일 실시예에 의한 이방향성 전기강판은 {100}<001>로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %이고, {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %이다.

Description

이방향성 전기강판 및 그의 제조방법
본 발명의 일 실시예는 이방향성 전기강판 및 그의 제조방법에 관한 것이다. 구체적으로 본 발명의 일 실시예는 2차 냉간압연에서의 압하율 및 최종 소둔 시간을 조절하여, {100}<001> 방위를 갖는 결정립의 분율을 높임으로써, 압연 방향 및 압연 수직 방향의 자성이 매우 우수하고, 자성 편차가 매우 작은 이방향성 전기강판 및 그의 제조방법에 관한 것이다.
전기강판은 한 방향으로 뛰어난 자성 특성을 갖는 방향성 전기강판과, 모든 방향으로 균일한 자성 특성을 나타내는 무방향성 전기강판으로 나뉘어진다. BCC 구조의 철이 갖는 자기이방성을 고려하여, 강판의 쓰임새에 따라 원자의 배열을 제어하여 자기적 특성을 제어 및 변화시킨 것이다. 방향성 전기강판은 2차재결정 현상을 이용하며, {110}<001>의 Goss 집합조직만을 가지고 있지만, Goss 집합조직 외의 다른 집합조직이 2차재결정 현상을 이용하여 상용화된 적은 없다.
{100}<001> 방위 즉, Cube 방위는 Goss 방위와는 다르게 자화가 용이한 <001> 축을 RD방향뿐만 아니라, TD방향으로도 갖는다.
Cube 방위는 과거로부터 유용성을 인정받아 왔으나, 교차 압연을 하거나 진공소둔을 하는 등 실제의 대규모 공업생산이 불가능한 기구를 통해 제조하는 방법만이 알려져 있다.
특히 교차압연법은 소재의 연속생산이 불가능한 것에 의하여 활용될 수 없는데, 대형 발전기기의 경우 수m의 직경의 원통형태의 코어를 제조하여야 되기 때문에, 판면에서 코어를 수개 내지 수십개로 분할하여 이를 조립하는 형태로 만들게 되는 공정에 적용할 수 없고, 생산성 또한 극히 낮게 된다.
본 발명의 일 실시예에서는 이방향성 전기강판 및 그의 제조방법을 제공하고자 한다. 구체적으로 본 발명의 일 실시예에서는 2차 냉간압연에서의 압하율 및 최종 소둔 시간을 조절하여, {100}<001> 방위를 갖는 결정립의 분율을 높임으로써, 압연 방향 및 압연 수직 방향의 자성이 매우 우수하고, 자성 편차가 매우 작은 이방향성 전기강판 및 그의 제조방법을 제공하고자 한다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 {100}<001>로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %이고, {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %이다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 {100}<001>로부터 10° 이내의 방위를 갖는 결정립의 분율이 20 내지 50 %이고, {100}<380> 로부터 10° 이내의 방위를 갖는 결정립의 분율이 20 내지 50 %이다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 중량%로, Si: 1.0% 내지 7.0%, Al: 0.02% 이하(0%를 제외함), Mn: 0.02 내지 0.50%, C: 0.004% 이하(0%를 제외함) 및 S: 0.0005 내지 0.005%를 포함하고, 및 잔부는 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
결정립의 평균 입경은 2000㎛ 이상일 수 있다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 하기 식 1로 정의되는 압연 방향(L방향)에서의 자속밀도(B50)과 압연 수직 방향(C방향)에서의 자속밀도(B50)의 편차가 3이하일 수 있다.
[식 1]
Figure PCTKR2020018615-appb-I000001
(식 1 에서 BL 50 및 BC 50은 각각 압연 방향 및 압연 수직 방향에서의 자속밀도(B50)이고, MAX(BL 50, BC 50)은 압연 방향 및 압연 수직 방향에서의 자속밀도(B50) 중 큰 값을 나타낸다.)
본 발명의 일 실시예에 의한 이방향성 전기강판은 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 1차 냉간압연하여 1차 냉연판을 제조하는 단계; 1차 냉연판을 중간 소둔하는 단계; 중간 소둔판을 2차 냉간압연하여 2차 냉연판을 제조하는 단계 및 2차 냉연판을 최종 소둔하는 단계를 포함한다.
2차 냉연판을 제조하는 단계에서 압하율은 55 내지 85%가 될 수 있다.
최종 소둔하는 단계는 6 내지 60 시간 동안 소둔할 수 있다.
슬라브는 중량%로, Si: 1.0% 내지 7.0%, Al: 0.02% 이하(0%를 제외함), Mn: 0.02 내지 0.50%, C: 0.004% 이하(0%를 제외함) 및 S: 0.0005 내지 0.005%를 포함하고, 및 잔부는 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
열연판을 제조하는 단계 이후, 열연판을 열연판 소둔하는 단계를 더 포함할 수 있다.
1차 냉연판을 제조하는 단계는 1회의 냉간압연 또는 중간소둔을 사이에 둔 2회 이상의 냉간압연을 포함할 수 있다.
1차 냉연판을 제조하는 단계 및 2차 냉연판을 제조하는 단계에서 동일 방향으로 압연할 수 있다.
중간 소둔하는 단계는 환원 분위기에서 소둔할 수 있다.
2차 냉연판을 제조하는 단계 이후 소둔 분리제를 도포하는 단계를 더 포함할 수 있다.
최종 소둔하는 단계는 환원 분위기에서 소둔할 수 있다.
최종 소둔하는 단계는 1000 내지 1200℃의 온도에서 소둔할 수 있다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 압연방향과 압연에 수직된 방향의 자성 값이 방향에 상관없이 유사하며, 높은 자속밀도 및 낮은 철손 등 우수한 자성 특성을 나타낸다.
도 1은 실험예 1에서 실시예 1 내지 실시예 3의 ODF 분석 결과이다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 {100}<001>로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %이고, {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %이다.
전술한 {100}<001>로부터 15° 이내의 방위를 갖는 결정립은 Cube 방위 결정립이라고도 하며, 본 발명의 일 실시예에서는 Cube 방위 결정립의 면적 분율을 50 내지 75 %로 포함하고, 동시에 {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 면적 분율을 50 내지 75%로 포함함으로써, 압연 방향 및 압연 수직 방향의 자성이 매우 우수하고, 자성 편차가 매우 작은 이방향성 전기강판을 제공할 수 있다. {100}<001> 방위와 {100}<380> 방위는 15° 이내에서 중복되는 부분이 존재하며, 본 발명의 일 실시예에서 {100}<001>로부터 15° 이내의 방위를 갖는 결정립과 {100}<380> 로부터 15° 이내의 방위를 갖는 결정립에 동시에 해당하는 결정립은 각각 중복하여 계산한다. 따라서, {100}<001>로부터 15° 이내의 방위를 갖는 결정립과 {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 분율의 합이 100%를 초과할 수 있다.
더욱 구체적으로{100}<001>로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 65 %이고, {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 분율이 55 내지 75 %이다. 더욱 구체적으로{100}<001>로부터 15° 이내의 방위를 갖는 결정립의 분율이 60 내지 65 %이고, {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 분율이 55 내지 60 %이다.
결정립 분율은 특정 면에 대한 면적 분율로 평가할 수 있는데, 이 때, 면적 분율은 압연면(ND방향과 수직인 면)과 평행한 면을 기준으로 측정한 결정립 면적 분율이 될 수 있다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 {100}<001>로부터 10° 이내의 방위를 갖는 결정립의 분율이 20 내지 50 %이고, {100}<380> 로부터 10° 이내의 방위를 갖는 결정립의 분율이 20 내지 50 %이다.
더욱 구체적으로 {100}<001>로부터 10° 이내의 방위를 갖는 결정립의 분율이 25 내지 45 %이고, {100}<380> 로부터 10° 이내의 방위를 갖는 결정립의 분율이 20 내지 45 %이다. 더욱 구체적으로 {100}<001>로부터 10° 이내의 방위를 갖는 결정립의 분율이 40 내지 45 %이고, {100}<380> 로부터 10° 이내의 방위를 갖는 결정립의 분율이 30 내지 35 %이다. {100}<001>로부터 10° 이내의 방위를 갖는 결정립과 {100}<380> 로부터 10° 이내의 방위를 갖는 결정립의 분율의 합이 100% 미만이 될 수 있으며, 나머지는 전술한 방위 범위에 벗어나는 방위를 갖는 결정립이다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 중량%로, Si: 1.0% 내지 7.0%, Al: 0.02% 이하(0%를 제외함), Mn: 0.02 내지 0.50%, C: 0.004% 이하(0%를 제외함) 및 S: 0.0005 내지 0.005%를 포함하고, 및 잔부는 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
이방향성 전기강판의 성분 한정의 이유부터 설명한다.
Si: 1.0 내지 7.0 중량%
실리콘(Si)는, 열간압연에서는 오스테나이트를 형성하는 원소이다. 슬라브 가열 온도 부근과 열연판 소둔 온도 부근에서 10부피% 내외의 오스테나이트 분율을 갖게 하기 위하여 첨가량을 제한할 필요가 있다. 또한 최종 소둔에서는 페라이트 단상이어야 소둔시 재결정 미세조직의 형성이 원활하게 일어날 수 있기 때문에 페라이트 단상이 되는 성분으로 제한할 필요가 있다. 순철에서는 1.0 중량% 이상 첨가시 페라이트 단상이 형성되고 이에 C의 첨가를 통하여 오스테나이트 분율을 조절할 수 있기 때문에, Si 함량의 하한을 1.0 중량%로 한정할 수 있다. 또한 7.0 중량% 초과시 냉간압연이 어렵고, 포화자속이 떨어지기 때문에 이를 제한한다. 보다 구체적으로 Si는 2.0 내지 4.0 중량% 포함될 수 있다. 더욱 구체적으로 자속밀도가 높은 강판을 얻기 위해서는 Si는 2.5 내지 3.5 중량% 포함될 수 있다.
Al: 0.02 중량% 이하
알루미늄(Al)은 Al 비저항을 높이는 역할을 할 수 있다. 그러나 Al이 다량 첨가된 강판은 열처리 시에 강판표면에 Al2O3가 형성된다. Al2O3는 표면에서부터 결정립계로 침투할 수 있고, 이는 결정립의 성장을 저해하며 2차재결정을 방해하는 요소가 된다. 따라서 Al은 0.02 중량% 이하가 적당하다. 더욱 구체적으로 Al은 0.01 중량% 이하 포함될 수 있다. 더욱 구체적으로 Al을 0.005 중량% 이하 포함될 수 있다.
Mn: 0.02 내지 0.50 중량%
망간(Mn)은 비저항을 증가시키는 원소이다. 그러나 Mn의 첨가가 과다하면 열처리 시, Austenite 영역을 지나치게 되고, 상변태를 일으킬 가능성이 있다. 또한 과량의 Mn은 필요이상으로 황을 trap하여 원소 S의 확산을 막는 효과가 있다. 적당한 량의 Mn은 미세한 MnS를 석출시켜 결정립계를 약한 힘으로 잡고 있고, 적당한 온도에서 MnS는 녹아 없어지며 2차재결정을 일으킨다. 휘발되는 S의 속도도 Mn으로 어느 정도 제어할 수 있으므로, Mn이 적당량 들어가는 것은 2차재결정에 일정 역할을 한다고 볼 수 있다. 더욱 구체적으로 Mn을 0.05 내지 0.30 중량% 포함할 수 있다.
C: 0.004 중량% 이하
탄소(C)는 위에 언급된 타 원소들과 다르게 Fe원자와 치환되지 않고, interstitial site에 침입하는 원소이다. 그 특성으로 인해 C가 다량으로 들어갈 경우 전위의 이동을 저해하고, 결정립의 성장을 방해하게 된다. 더욱 구체적으로 C를 0.003 중량% 이하로 포함할 수 있다.
S: 0.0005 내지 0.0050 중량%
황(S)는 표면에 편석된 S의 함량에 따라 표면에너지가 달라지고, 달라진 표면에너지로 인해 특정 방위의 결정립의 재결정 현상이 일어날 수 있다. S가 전혀 없는 표면에서는 {110}면이 안정하고, S가 약하게 편석된 표면에서는 {100}면이 안정하며, S가 많이 편석된 표면에는 {111}면이 안정하다. 표면에 S를 약하게 편석시키기 위해 S함량을 극미량으로 조절한다. Mn 역시 S를 추가적으로 더 잡아두는 역할을 하게하여 표면에 S가 약하게 편석하도록 돕는다. 더욱 구체적으로 S를 0.0010 내지 0.0040 중량% 포함할 수 있다.
또한, 본 발명의 이방향성 전기강판은, 전술한 성분 이외의 잔부는, Fe 및 불가피적 불순물이다. 단, 본 발명의 작용 효과를 저해하지 않는 범위 내이면, 다른 원소의 함유를 배제하는 것은 아니다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 평균 결정립경이 2000㎛ 이상일 수 있다. 평균 결정립경이 너무 작으면 {100}<001> 및 {100}<380> 집합조직의 분율이 낮아져, 자성이 열위될 수 있다. 결정립경은 강판의 압연면(ND면)과 평행한 면을 기준으로 측정할 수 있다. 입경은 결정립과 동일한 면적을 갖는 가상의 원을 가정하여, 그 원의 직경을 의미한다. 더욱 구체적으로 평균 결정립경은 2500㎛ 이상일 수 있다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 압연 방향과 압연 수직 방향의 자성이 모두 우수하다. 구체적으로 압연 방향과 압연 수직방향의 B8이 모두 1.65T 이상일 수 있다. 더욱 구체적으로 압연 방향과 압연 수직방향의 B8이 모두 1.70T 이상일 수 있다. 더욱 구체적으로 압연 방향과 압연 수직방향의 B8이 모두 1.73T 이상일 수 있다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 압연 방향과 압연 수직 방향의 자성이 모두 우수하다. 구체적으로 압연 방향과 압연 수직방향의 B50이 모두 1.80T 이상일 수 있다. 더욱 구체적으로 압연 방향과 압연 수직방향의 B8이 모두 1.85T 이상일 수 있다. 더욱 구체적으로 압연 방향과 압연 수직방향의 B8이 모두 1.88T 이상일 수 있다.
본 발명의 일 실시예에 의한 이방향성 전기강판은 하기 식 1로 정의되는 압연 방향(L방향)에서의 자속밀도(B50)과 압연 수직 방향(C방향)에서의 자속밀도(B50)의 편차가 3이하일 수 있다.
[식 1]
Figure PCTKR2020018615-appb-I000002
(식 1 에서 BL 50 및 BC 50은 각각 압연 방향 및 압연 수직 방향에서의 자속밀도(B50)이고, MAX(BL 50, BC 50)은 압연 방향 및 압연 수직 방향에서의 자속밀도(B50) 중 큰 값을 나타낸다.)
더욱 구체적으로 편차가 2 이하일 수 있다.
본 발명의 일 실시예에 의한 이방향성 전기강판의 제조 방법은 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 1차 냉간압연하여 1차 냉연판을 제조하는 단계; 1차 냉연판을 중간 소둔하는 단계; 중간 소둔판을 2차 냉간압연하여 2차 냉연판을 제조하는 단계 및 2차 냉연판을 최종 소둔하는 단계를 포함한다.
이하 각 단계별로 구체적으로 설명한다.
먼저 슬라브를 제조한다. 슬라브 내의 각 조성의 첨가 비율을 한정한 이유는 전술한 이방향성 전기강판의 조성 한정 이유와 동일하므로, 반복되는 설명을 생략한다. 후술할 열간압연, 열연판 소둔, 1차 냉간압연, 중간 소둔, 2차 냉간압연, 최종 소둔 등의 제조 과정에서 원소 함량은 실질적으로 변동되지 아니하므로, 슬라브의 조성과 이방향성 전기강판의 조성이 실질적으로 동일하다.
슬라브는 박물 슬라브법 또는 스트립 캐스팅법을 이용하여 제조할 수 있다. 슬라브의 두께는 200 내지 300 mm가 될 수 있다. 슬라브는 필요에 따라 가열할 수 있다. 가열 온도는 1100 내지 1250℃가 될 수 있고, 가열 시간은 30분 이상이 될 수 있다.
다음으로, 슬라브를 열간 압연하여 열연판을 제조한다.
열연판을 제조하는 단계에서 열연판의 두께는 2.0 내지 3.0mm가 될 수 있다.
열연판을 제조하는 단계 이후, 열연판을 열연판 소둔하는 단계를 더 포함할 수 있다. 열연판 소둔하는 단계는 1000 내지 1150℃의 온도에서 소둔할 수 있다. 또한 60 내지 150초 동안 소둔할 수 있다. 열연판 소둔 이후 산세 단계를 더 포함할 수 있다.
다음으로, 열연판을 1차 압연하여 1차 냉연판을 제조한다.
1차 냉연판을 제조하는 단계는 1회의 냉간압연 또는 중간소둔을 사이에 둔 2회 이상의 냉간압연을 포함할 수 있다.
1차 냉연판을 제조하는 단계 및 2차 냉연판을 제조하는 단계에서 동일 방향으로 압연할 수 있다.
다음으로, 1차 냉연판을 중간 소둔한다.
중간 소둔하는 단계는 재결정이 완료되는 정도로 충분하므로 900 내지 1100℃ 에서 60 내지 150초간 소둔할 수 있다.
중간 소둔하는 단계는 환원 분위기에서 소둔할 수 있다. 중간 소둔한 이후 2차 냉간압연을 수행해야 하므로, 소둔 시 산화되지 않도록 수소가 다량인 분위기에서 소둔할 수 있다. 나머지 분위기는 공기일 수 있다.
다음으로, 중간 소둔판을 2차 냉간압연하여 2차 냉연판을 제조한다.
2차 냉간압연은 압하율을 55 내지 85%로 조절할 수 있다. 압하율이 너무 적을 시, {100}<001> 및 {100}<380> 방위의 결정립이 적게 형성될 수 있다. 압하율이 너무 높을 시 압하율이 너무 높을 시, 재결정 이후 결정립의 <001>방향이 회전하여, <380>보다 더 회전한, <250>이나 <120>등의 방향으로 2차재결정이 일어나게 된다. 더욱 구체적으로 압하율은 55 내지 80%가 될 수 있다. 더욱 구체적으로 압하율은 55 내지 65%가 될 수 있다.
압하율은 ([압하 전 강판 두께] - [압하 후 강판 두께]) / [압하 전 강판 두께]로 계산될 수 있다.
2차 냉간압연하는 단계 이후, 장시간 소둔을 위해 소둔 분리제를 도포할 수 있다. 소둔 분리제는 알루미나(Al2O3)를 포함할 수 있다.
다음으로, 2차 냉연판을 최종 소둔한다.
최종 소둔하는 단계는 6 내지 60 시간 동안 소둔할 수 있다. 소둔 시간이 너무 짧을 시 {100}<001> 및 {100}<380> 방위의 결정립이 적절히 형성되지 않을 수 있다. 소둔 시간이 너무 길 시, 에너지 낭비가 발생할 수 있다. 더욱 구체적으로 최종 소둔 하는 단계는 12 내지 48시간 동안 소둔할 수 있다.
최종 소둔하는 단계는 환원 분위기에서 소둔할 수 있다.
최종 소둔하는 단계는 1000 내지 1200℃의 온도에서 소둔할 수 있다. 소둔 온도가 너무 낮으면 재결정이 적절히 일어나지 않을 수 있다. 소둔 온도가 더 높더라도 자성이 향상되기는 어렵다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
실험예 1
표 1에서 나타내는 성분 및 잔부 Fe 및 불가피한 불순물로 이루어진 슬라브를 제조하고, 1130℃에서 2시간동안 가열된 후 2.5mm로 열간압연 하였다. 열연판은 1070℃ 조건에서 2분 열처리를 진행했고, 산세 후 1차 냉간압연을 진행하였다. 최종두께는 0.2mm로 고정하고 2차 냉간압연의 압하율을 40%부터 80%까지 변화시켜가며 실험을 하였다. 따라서 1차 냉간압연시 최종두께는 각각 2mm(90%), 1mm(80%), 0.67mm(70%), 0.50mm(60%), 0.33mm(40%)였고, 1차 압연이 완료된 시편은 1050℃ 조건에서 2분가량 열처리를 진행하였다. 이 때 수소 100% 분위기에서 진행하였다. 시편은 2차 냉간압연을 거치고 최종적으로 0.2mm의 두께로 맞춰졌다. 각기 시편은 single sheet tester(SST)로 자성을 측정하기 위한 60X60mm 크기로 잘라졌으며, 크기가 맞춰진 시편은 1100℃로 맞춰진 가열로에서 수소분위기로 48시간 열처리를 진행하였다.
표 1에 {100}<001> 및 {100}<380> 방위를 갖는 결정립의 면적 분율 및 결정립 입경을 측정하여 정리하였다. 도 1에 ODF 결과를 나타내었다. 2차 냉간압연 압하율이 60 내지 80%에서 {100}<001> 및 {100}<380> 방위를 갖는 결정립이 다수 형성됨을 확인할 수 있다. 50%의 {100}<001> 및 {100}<380> 방위 외에 {001}면을 갖는 다른 방향들이 넓게 퍼져 있음을 확인할 수 있다.
또한, B8, B50을 측정하여 표 2에 정리하였다.
Si(wt%) Mn(wt%) S(wt%) 2차 냉간압연 압하율
(%)
{100}<001> 15˚ 이내 분율 (%) {100}<380> 15˚ 이내 분율 (%) {100}<001> 10˚ 이내 분율 (%) {100}<380> 10˚ 이내 분율 (%)
비교예 1 3 0.1 0.003 40 42 11 40 25
실시예 1 3 0.1 0.003 60 64 57 41 34
실시예 2 3 0.1 0.003 70 51 56 27 22
실시예 3 3 0.1 0.003 80 56 72 32 43
비교예 2 3 0.1 0.003 90 13 94 0 90
B8 평균
(T)
압연방향 B8
(T)
압연 수직 방향 B8
(T)
B50 평균
(T)
압연방향 B50
(T)
압연 수직 방향 B50
(T)
B50편차
비교예 1 1.64 1.62 1.65 1.79 1.78 1.81 1.70
실시예 1 1.78 1.79 1.76 1.92 1.94 1.90 2.06
실시예 2 1.69 1.73 1.65 1.87 1.90 1.84 3.16
실시예 3 1.70 1.69 1.71 1.87 1.86 1.89 1.59
비교예 2 1.64 1.63 1.65 1.82 1.82 1.83 3.18
표 1 및 표 2에서 나타나듯이, 실시예 1 내지 3에서 {100}<001> 및 {100}<380> 방위를 갖는 결정립이 다수 형성됨을 확인할 수 있다.반면, 비교예 1은 압하율이 낮아 {100}<001> 및 {100}<380> 방위를 갖는 결정립이 비교적 적게 형성되고, 자성이 비교적 열위함을 확인할 수 있다.
또한, 비교예 2는 압하율이 높아 {100}<001> 및 {100}<380> 방위를 갖는 결정립이 비교적 적게 형성되고, 자성이 비교적 열위함을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. {100}<001>로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %이고, {100}<380> 로부터 15° 이내의 방위를 갖는 결정립의 분율이 50 내지 75 %인 이방향성 전기강판.
  2. 제1항에 있어서,
    {100}<001>로부터 10° 이내의 방위를 갖는 결정립의 분율이 20 내지 50 %이고, {100}<380> 로부터 10° 이내의 방위를 갖는 결정립의 분율이 20 내지 50 %인 이방향성 전기강판.
  3. 제1항에 있어서,
    상기 이방향성 전기강판은 중량%로, Si: 1.0% 내지 7.0%, Al: 0.02% 이하(0%를 제외함), Mn: 0.02 내지 0.50%, C: 0.004% 이하(0%를 제외함) 및 S: 0.0005 내지 0.005%를 포함하고, 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하는 이방향성 전기강판.
  4. 제1항에 있어서,
    결정립의 평균 입경은 2000㎛ 이상인 이방향성 전기강판.
  5. 제1항에 있어서,
    하기 식 1로 정의되는 압연 방향(L방향)에서의 자속밀도(B50)과 압연 수직 방향(C방향)에서의 자속밀도(B50)의 편차가 3이하인 이방향성 전기강판.
    [식 1]
    Figure PCTKR2020018615-appb-I000003
    (식 1 에서 BL 50 및 BC 50은 각각 압연 방향 및 압연 수직 방향에서의 자속밀도(B50)이고, MAX(BL 50, BC 50)은 압연 방향 및 압연 수직 방향에서의 자속밀도(B50) 중 큰 값을 나타낸다.)
  6. 슬라브를 열간압연하여 열연판을 제조하는 단계;
    상기 열연판을 1차 냉간압연하여 1차 냉연판을 제조하는 단계;
    상기 1차 냉연판을 중간 소둔하는 단계;
    중간 소둔판을 2차 냉간압연하여 2차 냉연판을 제조하는 단계 및
    상기 2차 냉연판을 최종 소둔하는 단계를 포함하고,
    상기 2차 냉연판을 제조하는 단계에서 압하율은 55 내지 85%이고,
    최종 소둔하는 단계는 6 내지 60 시간 동안 소둔하는 이방향성 전기강판의 제조 방법.
  7. 제6항에 있어서,
    상기 슬라브는 중량%로, Si: 1.0% 내지 7.0%, Al: 0.02% 이하(0%를 제외함), Mn: 0.02 내지 0.50%, C: 0.004% 이하(0%를 제외함) 및 S: 0.0005 내지 0.005%를 포함하고, 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하는 이방향성 전기강판의 제조 방법.
  8. 제6항에 있어서,
    상기 열연판을 제조하는 단계 이후, 열연판을 열연판 소둔하는 단계를 더 포함하는 이방향성 전기강판의 제조 방법.
  9. 제6항에 있어서,
    상기 1차 냉연판을 제조하는 단계는 1회의 냉간압연 또는 중간소둔을 사이에 둔 2회 이상의 냉간압연을 포함하는 이방향성 전기강판의 제조 방법.
  10. 제6항에 있어서,
    상기 1차 냉연판을 제조하는 단계 및 2차 냉연판을 제조하는 단계에서 동일 방향으로 압연하는 이방향성 전기강판의 제조 방법.
  11. 제6항에 있어서,
    상기 중간 소둔하는 단계는 환원 분위기에서 소둔하는 이방향성 전기강판의 제조 방법.
  12. 제6항에 있어서,
    상기 2차 냉연판을 제조하는 단계 이후 소둔 분리제를 도포하는 단계를 더 포함하는 이방향성 전기강판의 제조 방법.
  13. 제6항에 있어서,
    상기 최종 소둔하는 단계는 환원 분위기에서 소둔하는 이방향성 전기강판의 제조 방법.
  14. 제6항에 있어서,
    상기 최종 소둔하는 단계는 1000 내지 1200℃의 온도에서 소둔하는 이방향성 전기강판의 제조 방법.
PCT/KR2020/018615 2019-12-20 2020-12-17 이방향성 전기강판 및 그의 제조방법 WO2021125861A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20901862.1A EP4079890A4 (en) 2019-12-20 2020-12-17 DOUBLE ORIENTATION ELECTRIC STEEL SHEET AND METHOD FOR MANUFACTURING SAME
JP2022537582A JP2023508295A (ja) 2019-12-20 2020-12-17 二方向性電磁鋼板およびその製造方法
US17/785,240 US20230035269A1 (en) 2019-12-20 2020-12-17 Double-oriented electrical steel sheet and manufacturing method therefor
CN202080097275.5A CN115151674B (zh) 2019-12-20 2020-12-17 双取向电工钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0171868 2019-12-20
KR1020190171868A KR102323332B1 (ko) 2019-12-20 2019-12-20 이방향성 전기강판 및 그의 제조방법

Publications (2)

Publication Number Publication Date
WO2021125861A2 true WO2021125861A2 (ko) 2021-06-24
WO2021125861A3 WO2021125861A3 (ko) 2021-08-12

Family

ID=76477968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018615 WO2021125861A2 (ko) 2019-12-20 2020-12-17 이방향성 전기강판 및 그의 제조방법

Country Status (6)

Country Link
US (1) US20230035269A1 (ko)
EP (1) EP4079890A4 (ko)
JP (1) JP2023508295A (ko)
KR (1) KR102323332B1 (ko)
CN (1) CN115151674B (ko)
WO (1) WO2021125861A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230094866A (ko) * 2021-12-21 2023-06-28 주식회사 포스코 이방향성 전기강판 및 그의 제조방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB917282A (en) * 1958-03-18 1963-01-30 Yawata Iron & Steel Co Method of producing cube oriented silicon steel sheet and strip
GB1000303A (en) * 1960-09-03 1965-08-04 Yawata Iron & Steel Co A method of improving the magnetic induction of doubly-oriented silicon steel strips
EP0318051B1 (en) * 1987-11-27 1995-05-24 Nippon Steel Corporation Process for production of double-oriented electrical steel sheet having high flux density
EP0452153B1 (en) * 1990-04-12 1998-03-25 Nippon Steel Corporation Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
DE69712757T2 (de) * 1996-11-01 2003-01-30 Sumitomo Metal Ind Elektromagnetisch bidirektionale stahlplatte und verfahren zu deren herstellung
JP4123629B2 (ja) * 1999-04-23 2008-07-23 Jfeスチール株式会社 電磁鋼板およびその製造方法
JP3870625B2 (ja) * 1999-09-27 2007-01-24 住友金属工業株式会社 二方向性電磁鋼板の製造方法
US6562473B1 (en) * 1999-12-03 2003-05-13 Kawasaki Steel Corporation Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP4300661B2 (ja) * 1999-12-17 2009-07-22 住友金属工業株式会社 磁気特性に優れる二方向性珪素鋼板の製造方法
JP4277432B2 (ja) * 1999-12-27 2009-06-10 住友金属工業株式会社 低磁歪二方向性電磁鋼板
KR100544723B1 (ko) * 2001-12-24 2006-01-24 주식회사 포스코 저철손 및 고자속밀도를 갖는 방향성 전기강판의 제조방법
JP2003231922A (ja) * 2002-02-07 2003-08-19 Sumitomo Metal Ind Ltd 低鉄損低磁歪珪素鋼板の製造方法
JP2004084034A (ja) * 2002-08-28 2004-03-18 Sumitomo Metal Ind Ltd 二方向性電磁鋼板の製造方法
JP2005179745A (ja) * 2003-12-19 2005-07-07 Jfe Steel Kk 二方向性電磁鋼板の製造方法
JP2008150697A (ja) * 2006-12-20 2008-07-03 Jfe Steel Kk 電磁鋼板の製造方法
KR101223115B1 (ko) * 2010-12-23 2013-01-17 주식회사 포스코 자성이 우수한 방향성 전기강판 및 이의 제조방법
EP3162907B1 (en) * 2014-06-26 2021-05-26 Nippon Steel Corporation Electrical steel sheet
KR102428115B1 (ko) * 2015-12-22 2022-08-01 주식회사 포스코 방향성 전기강판의 제조 방법
CN109477186B (zh) * 2016-07-29 2020-11-27 杰富意钢铁株式会社 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法
CN107217198B (zh) * 2017-06-01 2018-10-09 东北大学 一种基于薄带连铸制备旋转立方双取向硅钢的方法
KR102080166B1 (ko) * 2017-12-26 2020-02-21 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR102009834B1 (ko) * 2017-12-26 2019-08-12 주식회사 포스코 이방향성 전기강판 및 그의 제조방법
KR101842417B1 (ko) * 2018-01-05 2018-03-26 포항공과대학교 산학협력단 (100) 집합조직으로 구성된 전기강판 및 그의 제조방법
KR101877198B1 (ko) * 2018-01-16 2018-07-10 포항공과대학교 산학협력단 무방향성 전기강판 및 그 제조방법

Also Published As

Publication number Publication date
EP4079890A4 (en) 2024-06-05
KR102323332B1 (ko) 2021-11-05
JP2023508295A (ja) 2023-03-02
CN115151674B (zh) 2024-03-26
KR20210079754A (ko) 2021-06-30
EP4079890A2 (en) 2022-10-26
CN115151674A (zh) 2022-10-04
WO2021125861A3 (ko) 2021-08-12
US20230035269A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2013089297A1 (ko) 자성이 우수한 방향성 전기강판의 제조방법
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2012087016A2 (ko) 자성이 우수한 방향성 전기강판 및 이의 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2013094777A1 (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
WO2020067721A1 (ko) 이방향성 전기강판 및 그의 제조방법
WO2021125861A2 (ko) 이방향성 전기강판 및 그의 제조방법
WO2021125864A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2009091213A1 (ko) 로테이티드 큐브 집합조직의 형성방법 및 이를 이용하여 제조된 전기강판
WO2020111783A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111736A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2022234902A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
WO2022234901A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
KR20190078160A (ko) 방향성 전기강판 및 이의 제조방법
WO2023121266A1 (ko) 이방향성 전기강판 및 그의 제조방법
WO2016039505A1 (ko) 비대칭압연에 의한 goss 집합조직을 가지는 전기강판의 제조방법
WO2009093827A2 (ko) 이방향성 전기강판의 제조방법 및 이를 이용하여 제조된 이방향성 전기강판
WO2020067723A1 (ko) 무방향성 전기강판 및 그 제조방법
KR100276341B1 (ko) 슬라브 저온가열에의한 고자속밀도 방향성 전기강판의 제조방법
WO2023121273A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2024025245A1 (ko) 무방향성 전기강판 및 그 제조 방법
WO2023121274A1 (ko) 방향성 전기강판 및 방향성 전기강판의 제조 방법
WO2024071628A1 (ko) 무방향성 전기 강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901862

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2022537582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020901862

Country of ref document: EP

Effective date: 20220720