WO2021125259A1 - 重合体組成物、架橋重合体、及びタイヤ - Google Patents

重合体組成物、架橋重合体、及びタイヤ Download PDF

Info

Publication number
WO2021125259A1
WO2021125259A1 PCT/JP2020/047135 JP2020047135W WO2021125259A1 WO 2021125259 A1 WO2021125259 A1 WO 2021125259A1 JP 2020047135 W JP2020047135 W JP 2020047135W WO 2021125259 A1 WO2021125259 A1 WO 2021125259A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
mass
polymer composition
carbon atoms
Prior art date
Application number
PCT/JP2020/047135
Other languages
English (en)
French (fr)
Inventor
雄介 天野
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2021125259A1 publication Critical patent/WO2021125259A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a polymer composition, a crosslinked polymer, and a tire prepared by using the crosslinked polymer.
  • Patent Document 1 discloses that when this material is used as a tread material for a tire, it is excellent in heat generation, wear resistance, and wet grip.
  • Patent Document 1 when the modified conjugated diene polymer disclosed in Patent Document 1 is used as a tread material for a tire, there is a problem that sufficient performance cannot be obtained in terms of fuel efficiency.
  • such a crosslinked polymer (tire) may deteriorate over time in the presence of ozone, and cracks may occur on the surface. Therefore, for the purpose of static protection from ozone, it has been studied to add an anti-aging agent and a wax component to the polymer composition in order to form a protective film on the surface of the crosslinked polymer.
  • an anti-aging agent and a wax component to the polymer composition in order to form a protective film on the surface of the crosslinked polymer.
  • the anti-aging agent and the wax component easily move through the polymer substrate such as the polymer component, and are discolored by blooming to the surface of the crosslinked polymer over time.
  • the conventional crosslinked polymer (tire) has a problem in terms of durability.
  • some aspects of the present invention provide a polymer composition suitable for producing a crosslinked polymer (tire) having a highly balanced balance in fuel efficiency and durability.
  • some aspects of the present invention provide a tire that is highly balanced in terms of fuel economy and durability.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following aspects.
  • a conjugated diene which is a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, which is a reaction product of an active polymerization terminal and a compound represented by the following general formula (1).
  • Z independently represents a hydrocarbon group having 1 to 8 carbon atoms or a hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms.
  • R 8 is a hydrocarbyloxy group of the .
  • R 1, R 2, R 3 each independently represents a hydrocarbylene group having 1 to 8 carbon atoms
  • a is nitrogen-containing cyclic hydrocarbon bonded with R 3 and the nitrogen Represents a group, a group that is bonded to R 3 with nitrogen and has a substituted silyl group, or SiZ 3 ).
  • R 4 represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • R 5 and R 6 independently represent an amino group, a nitro group, a cyano group, and a carbon. It represents an alkyl group or an aryl group of the number 1 to 8.
  • m represents an integer of 0 to 5.
  • n represents an integer of 0 to 4.
  • the A in the compound represented by the general formula (1), can be a group represented by any of the following formulas (3) to (6) or SiZ 3 .
  • * is a site that binds to R 3 of the above formula (1)
  • Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbyl group having 1 to 8 carbon atoms. Representing an oxy group, one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms, and L is a hydrocarbylene group having 1 to 8 carbon atoms.
  • the component (B) can be contained in an amount of 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the polymer component.
  • polymer composition can contain natural rubber, polybutadiene rubber, or both.
  • the filler (C) can be contained.
  • the filler (C) can be contained in an amount of 10 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the polymer component.
  • the polystyrene-equivalent weight average molecular weight of the conjugated diene polymer (A) measured by gel permeation chromatography can be 10,000 to 2,000,000.
  • a cross-linking agent can be contained.
  • One aspect of the crosslinked polymer according to the present invention is It is produced by using the polymer composition of any one of the above embodiments.
  • One aspect of the tire according to the present invention is It is the one using the crosslinked polymer of the said aspect.
  • the polymer composition according to the present invention it is possible to produce a crosslinked polymer (tire) having a highly balanced balance in fuel efficiency and durability.
  • the numerical range described as "XY" means that the numerical value X is included as the lower limit value and the numerical value Y is included as the upper limit value.
  • (meth) acrylic acid- is a concept including both acrylic acid-and methacrylic acid-.
  • the polymer composition according to the present embodiment is (A) a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and has an active polymerization terminal and the following general formula (1). ), Which is a reaction product with the compound represented by), and (B) a compound represented by the following general formula (2).
  • the polymer composition according to the present embodiment includes (A) a polymer component containing a conjugated diene-based polymer, (B) a compound represented by the following general formula (2), and other additives as necessary. It is an unvulcanized polymer composition obtained by kneading with.
  • the polymer composition according to the present embodiment forms a crosslinked polymer by subjecting it to a crosslinking treatment such as vulcanization.
  • the polymer composition according to the present embodiment is (A) a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and has an active polymerization terminal and the following. It contains a conjugated diene-based polymer (also simply referred to as "(A) conjugated diene-based polymer" in the present specification), which is a reaction product with a compound represented by the general formula (1).
  • Z independently represents a hydrocarbon group having 1 to 8 carbon atoms or a hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms.
  • 8 is a hydrocarbyloxy group of the .R 1, R 2, R 3 each independently represents a hydrocarbylene group having 1 to 8 carbon atoms, a is nitrogen-containing cyclic hydrocarbon bonded with R 3 and the nitrogen Represents a group, a group that is bonded to R 3 with nitrogen and has a substituted silyl group, or SiZ 3 ).
  • the conjugated diene-based polymer has a structural unit derived from the conjugated diene compound, and has a structure derived from the compound of the above general formula (1) at the active polymerization terminal.
  • Such a (A) conjugated diene-based polymer first polymerizes a monomer containing a conjugated diene compound to obtain a polymer having an active terminal (polymerization step), and then obtains a polymer having an active terminal. , Can be obtained by reacting with the compound of the above general formula (1) (hereinafter, also referred to as "specific modifier") (modification step).
  • Examples of the conjugated diene compound that can be used in the polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene. , 2-Phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like. Among these, 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene are preferable.
  • the conjugated diene compound may be used alone or in combination of two or more.
  • the conjugated diene-based polymer (A) may be a homopolymer of the conjugated diene compound, but from the viewpoint of increasing the strength of the crosslinked polymer, it must be a copolymer of the conjugated diene compound and an aromatic vinyl compound. Is preferable. Above all, a copolymer containing 1,3-butadiene and styrene in a monomer composition is preferable in terms of high living property in anionic polymerization.
  • the (A) conjugated diene polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • the (A) conjugated diene polymer is typically a conjugated diene compound and an aromatic vinyl compound. It may have a random copolymerized moiety having an irregular distribution of, and further have a block moiety composed of structural units derived from a conjugated diene compound or an aromatic vinyl compound.
  • aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and the like.
  • the content of the aromatic vinyl compound is the low loss property of the obtained crosslinked polymer.
  • the content is preferably 3 to 55% by mass, preferably 5 to 50% by mass, based on 100% by mass of the total of the conjugated diene compound and the aromatic vinyl compound used for polymerization. It is more preferable to do so.
  • the aromatic vinyl content of the (A) conjugated diene polymer can be measured by 1 1 H-NMR.
  • a monomer other than the conjugated diene compound and the aromatic vinyl compound may be used.
  • examples of other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate and the like.
  • the amount of the other monomer used is preferably 25% by mass or less, more preferably 15% by mass or less, and preferably 10% by mass or less, based on 100% by mass of the total amount of the monomers used for the polymerization. Especially preferable.
  • any of a solution polymerization method, a gas phase polymerization method and a bulk polymerization method may be used, but the solution polymerization method is particularly preferable.
  • the polymerization type either a batch type or a continuous type may be used.
  • the solution polymerization method as an example of a specific polymerization method, a monomer containing a conjugated diene compound is polymerized in an organic solvent in the presence of a polymerization initiator and a randomizer used as necessary. The method can be mentioned.
  • an alkali metal compound or an alkaline earth metal compound can be used as the polymerization initiator.
  • alkyllithiums such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium, 1,4-dilithiobutane, phenyllithium and stillbenlithium.
  • the total amount of the polymerization initiator used is preferably 0.2 to 20 mmol with respect to 100 g of the monomer used for the polymerization.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the polymerization reaction is carried out in the presence of a compound obtained by mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica (hereinafter, also referred to as "modification initiator"). You may go with.
  • modification initiator a functional group that interacts with silica can be introduced into the polymerization initiation terminal of the (A) conjugated diene-based polymer.
  • “interaction” means an intermolecular force which forms a covalent bond between molecules or is weaker than a covalent bond (for example, ion-dipole interaction, dipole-dipole interaction, etc.
  • the "functional group that interacts with silica” preferably has at least one selected from the group consisting of nitrogen atoms, sulfur atoms, phosphorus atoms and oxygen atoms.
  • the modification initiator is preferably a reaction product of a lithium compound such as alkyllithium and a nitrogen-containing compound such as a secondary amine compound.
  • a nitrogen-containing compound such as a secondary amine compound.
  • nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, and the like.
  • a modification initiator is prepared by previously mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica. The prepared modification initiator may be added to the polymerization system to carry out the polymerization.
  • an alkali metal compound or an alkaline earth metal compound and a compound having a functional group that interacts with silica are added to the polymerization system, and both are mixed in the polymerization system to prepare a modification initiator.
  • Polymerization may be carried out.
  • a nitrogen-containing alkyllithium compound can also be used.
  • a reaction product of 3-dimethylaminopropyllithium and isoprene can be used.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content, which represents the content of vinyl bonds (1,2-bonds and 3,4-bonds) in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine. , N-Methylmorpholine, tetramethylethylenediamine and the like. These can be used alone or in combination of two or more.
  • the organic solvent used for the polymerization may be any organic solvent that is inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used. Of these, hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include propane, n-butene, isopentane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, and trans-.
  • 2-Butene, cis-2-butene, 1-pentyne, 2-pentyne, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1-pentene, 2-Pentyne, cyclohexene and the like can be mentioned.
  • the organic solvent may be used alone or in combination of two or more.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred.
  • the temperature of the polymerization reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and particularly preferably 20 ° C. to 100 ° C. Further, it is preferable that the polymerization reaction is carried out under a pressure sufficient to keep the monomer in a substantially liquid phase. Such pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is inert to the polymerization reaction. By such a polymerization reaction, a conjugated diene-based polymer having an active terminal can be obtained.
  • the vinyl bond content in the structural unit derived from the conjugated diene compound is preferably 30 to 65 mol%, more preferably 33 to 62 mol%, and 35 to 35 to It is particularly preferably 60 mol%. If the vinyl bond content is less than 30 mol%, the grip characteristics tend to be too low, and if it exceeds 65 mol%, the wear resistance of the obtained crosslinked polymer tends to be deteriorated.
  • the "vinyl bond content” is a value indicating the content ratio of the structural unit having a vinyl bond to all the structural units derived from the conjugated diene compound in the conjugated diene-based polymer, and is 1 H-. It is a value measured by NMR.
  • the conjugated diene-based polymer obtained by the above polymerization reaction is reacted with the active terminal of the polymer with a compound (specific denaturant) represented by the following general formula (1).
  • a (A) conjugated diene-based polymer terminal-modified with a specific denaturing agent can be obtained.
  • the (A) conjugated diene polymer terminal-modified with such a specific denaturing agent promotes dispersibility by interaction with the (B) component and the (C) component at the terminal modification site, and thus has low fuel consumption performance. Is improved.
  • Z independently represents a hydrocarbon group having 1 to 8 carbon atoms or a hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms.
  • 8 is a hydrocarbyloxy group of the .R 1, R 2, R 3 each independently represents a hydrocarbylene group having 1 to 8 carbon atoms, a is nitrogen-containing cyclic hydrocarbon bonded with R 3 and the nitrogen Represents a group, a group that is bonded to R 3 with nitrogen and has a substituted silyl group, or SiZ 3 ).
  • the hydrocarbylene group having 1 to 8 carbon atoms of R 1 to R 3 is a linear or branched alkylene group having 1 to 8 carbon atoms and a cycloalkylene group having 3 to 8 carbon atoms. Examples thereof include a group and an arylene group having 6 to 8 carbon atoms.
  • examples of the hydrocarbyl group having 1 to 8 carbon atoms of Z include a linear or branched alkyl group having 1 to 8 carbon atoms and a cycloalkyl group having 3 to 8 carbon atoms.
  • examples of the hydrocarbyloxy group having 1 to 8 carbon atoms of Z include a linear or branched alkoxy group having 1 to 8 carbon atoms and a cycloalkoxy group having 3 to 8 carbon atoms. Be done.
  • one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms, but the interaction with the component (B) and the component (C) occurs at the terminal modification site. From the viewpoint of strengthening, it is preferable that all three Zs bonded to each Si are hydrocarbyloxy groups having 1 to 8 carbon atoms.
  • A is nitrogen bonded with R 3 and the nitrogen Motoabura cyclic hydrocarbon group, a group, or SiZ 3 having attached a substituted silyl group R 3 and the nitrogen.
  • the nitrogen-containing alicyclic hydrocarbon group include pyrrolidine, pyrroline, pyrrol, pyrazolidine, pyrazoline, pyrazole, imidazolidine, imidazoline, imidazole, triazolidine, 1,2,3-triazoline, 1,2,3.
  • -Nitrogen-containing triazole 1,2,3-triazolidine, 1,2,4-triazoline, 1,2,4-triazol, 1,2,4-triazolidine, tetrazolidine, tetrizoline, tetrazole, and derivatives thereof.
  • Examples thereof include a group in which one hydrogen bonded to nitrogen is eliminated from a compound having a member ring, and among them, a group represented by any of the following formulas (3) to (6) is preferable.
  • * is a site that binds to R 3 of the above formula (1)
  • Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbyl group having 1 to 8 carbon atoms.
  • Representing an oxy group, one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms, and L is a hydrocarbylene group having 1 to 8 carbon atoms.
  • Specific examples of the compound represented by the above general formula (1) include N, N-bis (triethoxysilylpropyl) aminopropyl-1-pyrrolidin and N, N-bis (trimethoxysilylpropyl) aminopropyl-1.
  • the specific modifier may be used alone, but the specific modifier and the modifier other than the specific modifier (hereinafter, "other modifiers"" Also called.) May be used.
  • the other denaturing agent is not particularly limited as long as it is a compound having a functional group that interacts with the component (B) or the component (C) and capable of reacting with the active terminal of the polymer.
  • the above denaturation reaction can be carried out as, for example, a solution reaction.
  • This solution reaction may be carried out using a solution containing an unreacted monomer after the completion of the polymerization reaction.
  • the conjugated diene polymer contained in the solution may be isolated and dissolved in an appropriate solvent such as cyclohexane. You may go.
  • the denaturation reaction may be carried out by either a batch type or a continuous type.
  • the method of adding the denaturant is not particularly limited, and examples thereof include a method of adding the denaturant all at once, a method of adding the denaturant in divided portions, and a method of continuously adding the denaturant.
  • the ratio of the specific modifier (the total amount when two or more kinds are used) is preferably 0.2 mol or more with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator. More preferably, it is 0.4 mol or more.
  • the amount is preferably less than 1.2 mol, more preferably less than 1.2 mol.
  • the proportion of the other denaturing agent used is specified from the viewpoint of sufficiently advancing the reaction between the conjugated diene polymer and the specific denaturing agent. It is preferably 30 mol% or less, more preferably 20 mol% or less, and particularly preferably 10 mol% or less, based on the total usage ratio of the denaturant and other denaturants.
  • the temperature of the denaturation reaction is usually the same as the temperature of the polymerization reaction, preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and preferably 20 ° C. to 100 ° C. Especially preferable.
  • the reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the (A) conjugated diene polymer contained in the reaction solution can be isolated by a known desolvation method such as steam stripping and a drying operation such as heat treatment.
  • the Mooney viscosity of the obtained (A) conjugated diene-based polymer may be adjusted by adding a stretching oil or the like, if necessary. By this treatment, workability can be improved.
  • the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like.
  • the blending amount of the spreading oil may be appropriately set according to the monomer used for the polymerization and the like, and is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the conjugated diene-based polymer.
  • the (A) conjugated diene-based polymer can be obtained.
  • the dispersibility of the component (B) and the component (C) can be improved.
  • the conjugated diene polymer (A) preferably has a structure derived from the compound of the general formula (1) at at least one end of the polymer. Since the conjugated diene polymer (A) has such a structure, the dispersibility of the components (B) and (C) is further improved when applied to, for example, tire applications, and the fuel efficiency is higher. It is preferable because it has an improving effect.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the conjugated diene polymer is preferably 10,000 to 2,000,000.
  • Mw is smaller than 10,000, the crosslinked polymer of the polymer composition according to the present embodiment tends to have low loss resistance and wear resistance, and when it is larger than 2,000,000, it tends to be deteriorated.
  • the processability of the polymer composition tends to decrease.
  • the weight average molecular weight (Mw) of the obtained conjugated diene polymer (A) is more preferably 30,000 to 1,500,000, still more preferably 50,000 to 1,000,000.
  • the molecular weight distribution of the conjugated diene polymer that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.5 to 3.0, more preferably. Is 1.5 to 2.5, and particularly preferably 1.5 to 2.2.
  • Mw / Mn the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn)
  • the polymer composition according to the present embodiment contains (B) a compound represented by the following general formula (2) (also simply referred to as “(B) component” in the present specification).
  • (B) component a compound represented by the following general formula (2)
  • deterioration of the obtained crosslinked polymer over time can be reduced. Specifically, it is possible to reduce the occurrence of cracks by preventing discoloration of the crosslinked polymer and preventing deterioration of the crosslinked polymer due to ozone or the like.
  • the dispersibility of the (B) component and the (C) component is promoted, so that the obtained crosslinked polymer (tire) is low. A synergistic effect of improving fuel efficiency can also be obtained.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • R 5 and R 6 independently represent an amino group, a nitro group, a cyano group, and a carbon. It represents an alkyl group or an aryl group of the number 1 to 8.
  • m represents an integer of 0 to 5.
  • n represents an integer of 0 to 4.
  • component (B) examples include N-phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N'-(1-methylheptyl) -p-phenylenediamine, and the like.
  • N-phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine and N, N'-diphenyl-p-phenylenediamine are preferable.
  • the content of the component (B) in the polymer composition according to the present embodiment is preferably 0.1 part by mass or more and 5 parts by mass or less, more preferably 0.3 part by mass, with respect to 100 parts by mass of the polymer component. Parts or more and 4 parts by mass or less, particularly preferably 0.5 parts by mass or more and 3 parts by mass or less.
  • the content of the component (B) is within the above range, the effect of improving the fuel efficiency performance may be obtained while reducing the deterioration of the obtained crosslinked polymer with time.
  • the number of moles of the component (B) is 0 to 0.6 times the number of moles of the silane coupling agent. It is preferably 0 to 0.4 times, and more preferably 0 to 0.4 times. When the number of moles of the component (B) is 0.6 times or less the number of moles of the silane coupling agent, it is possible to effectively suppress the decrease in the reaction between the silane coupling agent and silica.
  • the polymer composition according to the present embodiment contains natural rubber (hereinafter, also referred to as “NR”), polybutadiene rubber (hereinafter, also referred to as “BR”), or both. It is preferable to do so.
  • NR natural rubber
  • BR polybutadiene rubber
  • NR examples include those generally used in the tire industry, such as SIR20, RSS # 3, TSR20, uncoupling natural rubber (DPNR), and high-purity natural rubber (HPNR).
  • the NR content is preferably 10 parts by mass or more when the total amount of the polymer components contained in the polymer composition is 100 parts by mass. , More preferably 20 parts by mass or more, still more preferably 30 parts by mass or more. If the NR content is less than 10 parts by mass, the wear resistance may decrease.
  • the NR content is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and further preferably 60 parts by mass or less, when the total amount of the polymer components contained in the polymer composition is 100 parts by mass. It is preferably 50 parts by mass or less. If the NR content exceeds 70 parts by mass, the fracture resistance may decrease.
  • the BR is not particularly limited, but for example, a BR having a cis 1,4-bonding content of less than 50% (Rare-earth BR) and a BR having a cis 1,4-binding content of 90% or more (Hysis).
  • BR BR
  • rare earth element BR synthesized using a rare earth element catalyst
  • SPB containing BR syndiotactic polybutadiene crystals
  • modified BR Hysis modified BR, Locis modified BR
  • Examples of the high-sys BR include BR730 and BR51 manufactured by JSR Corporation; BR1220 manufactured by Zeon Corporation; BR130B, BR150B and BR710 manufactured by Ube Industries, Ltd.
  • the high cis BRs those having a cis 1,4-bonding content of 95% or more are particularly preferable.
  • Abrasion resistance can be improved by containing HISIS BR.
  • Examples of the locis BR include BR1250 manufactured by Nippon Zeon Corporation. These may be used alone or in combination of two or more.
  • the modified BR is not particularly limited, but a modified BR having an alkoxy group as a modifying group, a modified BR having an alkoxysilyl group as a modifying group, and the like are preferable, and a high cis modified BR is more preferable.
  • the BR content is preferably 10 parts by mass or more when the total amount of the polymer components contained in the polymer composition is 100 parts by mass. It is more preferably 20 parts by mass or more. If the BR content is less than 10 parts by mass, the wear resistance may decrease.
  • the BR content is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, when the total amount of the polymer components contained in the polymer composition is 100 parts by mass. If it exceeds 50 parts by mass, the fracture resistance may decrease.
  • the weight average molecular weight of BR is preferably 2.0 ⁇ 10 5 or more, more preferably 4.0 ⁇ 10 5 or more. 2.0 In ⁇ 10 less than 5, there is a possibility that abrasion resistance is lowered. Mw of BR is preferably 2.0 ⁇ 10 6 or less. It exceeds 2.0 ⁇ 10 6, processability tends to decrease.
  • the total content of NR and BR is 100 parts by mass based on the total amount of the polymer components contained in the polymer composition. Occasionally, it is preferably 40 parts by mass or more, more preferably 50 parts by mass or more, and particularly preferably 60 parts by mass or more. If the total content of NR and BR is less than 40 parts by mass, the wear resistance may decrease.
  • the total content of NR and BR is preferably 90 parts by mass or less, more preferably 85 parts by mass, when the total amount of the polymer components contained in the polymer composition is 100 parts by mass. It is less than or equal to 80 parts by mass or less, particularly preferably 80 parts by mass or less. If the total content of NR and BR exceeds 90 parts by mass, the fracture resistance may decrease.
  • the polymer composition according to the present embodiment includes (A) conjugated diene-based polymer, other diene-based polymers other than NR and BR, and (C), if necessary. Fillers, silane coupling agents, cross-linking agents, acidic compounds, waxes, spreading oils (process oils), vulcanization accelerators, as well as vulcanization aids, processing aids, anti-scorch agents, softeners, coloring Known additives such as agents, flame retardants, lubricants, foaming agents, plasticizing agents, antioxidants, ultraviolet inhibitors, antistatic agents, and anticoloring agents may be used depending on the purpose of use of the polymer composition. it can.
  • the polymer composition according to the present embodiment may contain a diene-based polymer other than (A) conjugated diene-based polymer, NR, and BR.
  • a diene-based polymer is not particularly limited as long as it has a repeating unit derived from a conjugated diene compound, and examples thereof include polyisoprene, ethylene-propylene-diene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber. Be done.
  • the content of the other diene-based polymers is 100 parts by mass based on the total amount of the polymer components contained in the polymer composition. , It is preferably 5 parts by mass or more and 30 parts by mass or less, more preferably 8 parts by mass or more and 25 parts by mass or less, and particularly preferably 10 parts by mass or more and 20 parts by mass or less.
  • the polymer composition according to the present embodiment is simply a filler (in the present specification, "(C)). It may also contain “ingredients”).
  • the filler (C) include silica, carbon black, and a mixture thereof.
  • the content of the component (C) in the polymer composition according to the present embodiment is preferably 10 parts by mass or more and 150 parts by mass or less, and more preferably 20 parts by mass or more and 130 parts by mass with respect to 100 parts by mass of the polymer component. Parts or less, particularly preferably 30 parts by mass or more and 110 parts by mass or less.
  • the content of the component (C) is within the above range, the low loss property, abrasion resistance, and wet grip property of the obtained crosslinked polymer may be further improved.
  • silica examples include wet silica (hydrous silicic acid), dry silica (silicic anhydride), calcium silicate, and aluminum silicate. Of these, wet silica is preferred.
  • the ratio of silica used is preferably 0 to 130 parts by mass, more preferably 10 to 120 parts by mass, and particularly preferably 20 to 110 parts by mass with respect to 100 parts by mass of the polymer component. When the ratio of silica used is not less than the lower limit value, sufficient wear resistance and wet grip performance can be easily obtained, and when it is not more than the upper limit value, sufficiently low loss property can be easily obtained.
  • the ratio of silica used is preferably 20% by mass or more, more preferably 50% by mass or more, based on 100% by mass of the component (C). Within this range, it is advantageous in terms of low loss resistance, wear resistance, and wet grip performance.
  • Carbon black is not particularly limited, and general ones blended in the rubber composition can be used, and specific examples thereof include GPF, FEF, HAF, ISAF, and SAF. Among these, ISAF, SAF, and HAF are preferable, and ISAF is more preferable.
  • the ratio of carbon black used is preferably 0 to 130 parts by mass, and more preferably 2 to 110 parts by mass with respect to 100 parts by mass of the polymer component.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
  • Cyrilethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyltriethoxysilane; 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxy Cyrilethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropylbenzothiazolyltetrasulfide, 3-trie
  • the ratio of the silane coupling agent used is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the total of the filler (C).
  • the ratio of the silane coupling agent used is within the above range, sufficient reinforcing properties and fracture resistance can be imparted to the crosslinked polymer formed from the polymer composition, and the wear resistance of the crosslinked polymer is improved. it can.
  • Cross-linking agent examples include sulfur, sulfur halides, organic peroxides, quinone dioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and the like. Of these, sulfur is usually used as the cross-linking agent.
  • the ratio of the cross-linking agent used is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • the acidic compound saturated fatty acids having 12 to 24 carbon atoms and metal salts thereof are preferably used. By containing the acidic compound, the bloom of the component (B) and the petroleum wax can be suppressed.
  • Specific examples of acidic compounds include lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, henicosylic acid, bechenic acid, tricosylic acid, lignoceric acid, and these.
  • saturated fatty acids include calcium salt and zinc salt. These acidic compounds can be used alone or in combination of two or more. Of these, stearic acid is preferred.
  • the ratio of the acidic compound used is preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer component.
  • the wax is not particularly limited, and examples thereof include petroleum wax, natural wax, and synthetic wax obtained by purifying or chemically treating a plurality of waxes. These waxes may be used alone or in combination of two or more.
  • the ratio of wax used is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymer component.
  • Examples of petroleum-based waxes include paraffin wax and microcrystalline wax.
  • the natural wax is not particularly limited as long as it is a wax derived from non-petroleum resources, and is, for example, a plant wax such as candelilla wax, carnauba wax, wood wax, rice wax, jojoba wax; Animal waxes; mineral waxes such as ozokelite, selecin, petrolactam; and purified products thereof.
  • the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like.
  • the proportion of the spreading oil used is 0 to 50 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization aid examples include zinc oxide and the like.
  • the ratio of the vulcanization aid used is 1 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization accelerator examples include compounds such as guadinin, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, thiuram, dithiocarbamate, and zantate.
  • Preferred specific examples of the vulcanization accelerator are sulfenamides such as N-cyclohexyl-2-benzothiazyl sulfenamide (CBS) and N-tetra-butyl-2-benzothiazyl sulfenamide (TBBS).
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • TBBS N-tetra-butyl-2-benzothiazyl sulfenamide
  • vulcanization accelerators examples include vulcanization accelerators.
  • the proportion of the vulcanization accelerator used is appropriately determined in consideration of the type and proportion of the basic compound, but is preferably 0.5 to 5 parts by
  • the polymer composition according to the present embodiment can be prepared by kneading each of the above components using, for example, a kneader such as a plastomill, a Banbury mixer, a roll, or an internal mixer. it can. For example, it is preferable to prepare by the following method.
  • first-stage kneading it is preferable that the component (B), the filler (C), and if necessary, the silane coupling agent are kneaded together with the (A) conjugated diene-based polymer. Further, in the first-stage kneading, other polymers, waxes, spreading oils, anti-aging agents and the like are also kneaded together, if necessary. Further, in the first-stage kneading, the acidic compounds, which are preferably kneaded in the second-stage kneading, may be kneaded together.
  • the dispersibility of these components tends to be improved, and the fuel efficiency performance of the tire (crosslinked polymer) formed from the obtained polymer composition is improved. May be done.
  • a silane coupling agent is used for the first-stage kneading, first, (A) conjugated diene-based polymer, other polymer, (B) component, and (C) filler are kneaded, and then the silane cup is used. It is preferable to add a ring agent (post-addition) and further knead.
  • the obtained polymer composition becomes more processable, and the crosslinked polymer formed from the polymer composition has more excellent low hysteresis. It will have characteristics. Further, by adding a silane coupling agent afterwards in the first-stage kneading, the dispersibility of the component (B) and the filler (C) may be improved.
  • the timing of adding the silane coupling agent depends on the type of silica, the ratio of silica used, the kneading conditions, etc., and (A) the use of the conjugated diene polymer and other polymers. It is determined as appropriate in consideration of the ratio.
  • the (A) conjugated diene polymer and other polymers are blended and kneaded for 0.5 to 10 minutes, and then the silane coupling agent is added. It is preferable to knead for 0.5 to 10 minutes.
  • the kneading machine used for the first-stage kneading examples include an open type or a closed type kneader such as a plast mill, a Banbury mixer, a roll, and an internal mixer. Further, in the first-stage kneading, the kneading temperature is set to 30 ° C. to 180 ° C., preferably 50 ° C. to 160 ° C.
  • the method is not limited to the method of adding the silane coupling agent afterwards and kneading, and the silane coupling agent is used for the first-stage kneading.
  • a kneaded product containing a silane coupling agent may be obtained by a method of kneading all the components at the same time.
  • a method of adding other polymers and additives after preparing a masterbatch in which (A) conjugated diene-based polymer, (B) component, (C) filler, and silane coupling agent are kneaded may be used. ..
  • the second-stage kneading is a step of adding at least a cross-linking agent to the kneaded product obtained in the first-stage kneading and kneading the kneaded product and the cross-linking agent to obtain a polymer composition.
  • the acidic compound is kneaded together with the kneaded product obtained in the first-stage kneading and the cross-linking agent.
  • zinc oxide and the vulcanization accelerator are also kneaded together, if necessary.
  • a polymer composition is obtained by a method of simultaneously kneading an acidic compound and other components such as zinc oxide and a vulcanization accelerator.
  • the obtained polymer composition has more excellent processability, and the crosslinked polymer formed from the polymer composition has more excellent low hysteresis characteristics. Will have.
  • the kneading machine used in the first stage kneading is used. Further, in the second stage kneading, the kneading temperature is set to 30 ° C. to 130 ° C., preferably 50 ° C. to 110 ° C.
  • the polymer composition obtained by the above-mentioned production method is an unvulcanized rubber composition, and a crosslinked polymer is formed by performing a crosslinking treatment such as vulcanization, for example.
  • the crosslinked polymer formed from the polymer composition according to this embodiment is suitably used as a tire, specifically, a tread of a tire.
  • the tire formed from the polymer composition according to the present embodiment has high strength in the tread and a desired shape in the tread, so that excellent performance can be obtained.
  • the crosslinked polymer formed from the polymer composition according to the present embodiment can also be used as a tire member other than a tread, a vibration-proof rubber, a fender, a belt, a hose, and other industrial products.
  • the polymer component and component (B) shown in Table 2 below are used under the conditions of a filling rate of 72% and a rotation speed of 60 rpm as a first-stage kneading using a plast mill (contents: 250 ml) attached with a temperature control device. Carbon black, wax, spreading oil, anti-aging agent, stearic acid, and zinc oxide were kneaded.
  • the second-stage kneading the kneaded product obtained above is cooled to room temperature, and then the vulcanization accelerator and sulfur are kneaded to form the polymers of Examples 1 to 5 and Comparative Examples 1 to 4. I got something.
  • each of the obtained polymer compositions was molded and vulcanized at 160 ° C. for a predetermined time with a vulcanization press to obtain each crosslinked polymer having a predetermined shape to be subjected to the following evaluation test.
  • ⁇ Ozone resistance> According to JIS K6257-1: 2015, a test piece (length 60 mm x width 10 mm x thickness 2.0 mm) is attached to an extension jig to give a 20% tensile strain, at an ozone concentration of 0.5 ppm and an atmospheric temperature of 40 ° C. After leaving it for 48 hours, a static ozone deterioration test was conducted. The observation results were evaluated according to the following evaluation criteria. (Evaluation of cracks) 0: No cracks. 1: Cracks can be observed by magnifying and observing. 2: Very small cracks of less than 0.5 mm can be observed with the naked eye. 3: Cracks of 0.5 mm or more can be observed with the naked eye. (Crack density) S: Very low. F: Relatively low. N: Density other than S and F.
  • Table 1 shows the physical characteristics of each polymer synthesized above.
  • Table 2 shows the composition and evaluation results of each polymer composition.
  • the polymer compositions according to Examples 1 to 5 contain the (A) conjugated diene-based polymer and the (B) component, so that the polymer compositions according to Comparative Examples 1 to 4 are contained. It was confirmed that a crosslinked polymer (tire) having a highly balanced balance in fuel efficiency and durability (ozone resistance, discoloration resistance) can be obtained as compared with the product.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention also includes a configuration that exhibits the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention also includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Abstract

低燃費性及び耐久性において高度にバランスに優れた架橋重合体(タイヤ)の製造に適した重合体組成物を提供する。 本発明に係る重合体組成物は、(A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体と、(B)下記一般式(2)で表される化合物と、を含有する。

Description

重合体組成物、架橋重合体、及びタイヤ
 本発明は、重合体組成物、架橋重合体、及び該架橋重合体を用いて作成されたタイヤに関する。
 近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。従来、タイヤの転がり抵抗を減少させる手法として、タイヤ構造を最適化する手法が検討されてきたが、タイヤに適用される重合体組成物について、tanδが低く(以下、「低ロス性」ともいう。)、低発熱性の優れたものを用いることも、現在一般的な手法として行われている。
 このような発熱性の低い重合体組成物を得る方法としては、カーボンブラックやシリカ等の充填剤の減量、又は大粒径のカーボンブラックの使用等が考えられるが、いずれの方法でも、重合体組成物の補強性、耐摩耗性及び湿潤路面でのグリップ性(以下、「ウエットグリップ性」ともいう。)の低下が避けられない。
 そこで、例えば、金属末端を有する活性重合体を形成し、該活性重合体に特定の変性剤を導入して変性させた変性共役ジエン系重合体をタイヤのトレッド材料として使用する検討がなされている(例えば、特許文献1参照)。特許文献1には、この材料をタイヤのトレッド材料として使用すると、発熱性、耐摩耗性、及びウエットグリップ性に優れたものとなることが開示されている。
特表2016-528369号公報
 しかしながら、特許文献1に開示された変性共役ジエン系重合体をタイヤのトレッド材料として使用した場合、低燃費性の点で十分な性能が得られないという課題があった。
 また、このような架橋重合体(タイヤ)は、オゾンの存在下で経時的な劣化が進行し、表面に亀裂(クラック)が発生することがあった。そのため、オゾンからの静的保護を目的として、架橋重合体の表面に保護膜を形成するために、重合体組成物に老化防止剤やワックス成分を配合することが検討されている。しかしながら、老化防止剤やワックス成分は、重合体成分等のポリマー基質を通って移動しやすく、経時的な架橋重合体の表面へのブルームにより変色させてしまうという課題があった。このように従来の架橋重合体(タイヤ)は、耐久性の点で課題があった。
 そこで、本発明に係る幾つかの態様は、低燃費性及び耐久性において高度にバランスに優れた架橋重合体(タイヤ)の製造に適した重合体組成物を提供する。また、本発明に係る幾つかの態様は、低燃費性及び耐久性において高度にバランスに優れたタイヤを提供する。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様として実現することができる。
 本発明に係る重合体組成物の一態様は、
 (A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体と、
 (B)下記一般式(2)で表される化合物と、
を含有する。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基を表し、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基を表し、AはRと窒素で結合する含窒素脂環式炭化水素基、Rと窒素で結合し置換シリル基を有する基又はSiZを表す。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、Rは炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。R及びRはそれぞれ独立に、アミノ基、ニトロ基、シアノ基、炭素数1~8のアルキル基、又はアリール基を表す。mは0~5の整数を表す。nは0~4の整数を表す。R及びRが複数存在する場合は、R及びRはそれぞれ同じであってもよく、異なっていてもよい。)
 前記重合体組成物の一態様において、
 前記一般式(1)で表される化合物において、前記Aが下記式(3)~(6)のいずれかの式で表される基又はSiZであることができる。
Figure JPOXMLDOC01-appb-C000006
(式(3)~(6)中、*は上記式(1)のRと結合する部位であり、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基を表し、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基であり、Lは炭素数1~8のヒドロカルビレン基である。)
 前記重合体組成物のいずれかの態様において、
 重合体成分100質量部に対して、前記(B)成分を0.1質量部以上5質量部以下含有することができる。
 前記重合体組成物のいずれかの態様において、
 更に、天然ゴム若しくはポリブタジエンゴム又はその両方を含有することができる。
 前記重合体組成物のいずれかの態様において、
 更に、(C)フィラーを含有することができる。
 前記重合体組成物のいずれかの態様において、
 重合体成分100質量部に対して、前記(C)フィラーを10質量部以上150質量部以下含有することができる。
 前記重合体組成物のいずれかの態様において、
 前記(A)共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が10,000~2,000,000であることができる。
 前記重合体組成物のいずれかの態様において、
 更に、架橋剤を含有することができる。
 本発明に係る架橋重合体の一態様は、
 前記いずれかの態様の重合体組成物を用いて製造されたものである。
 本発明に係るタイヤの一態様は、
 前記態様の架橋重合体を使用したものである。
 本発明に係る重合体組成物によれば、低燃費性及び耐久性において高度にバランスに優れた架橋重合体(タイヤ)を製造することができる。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 本明細書において、「X~Y」のように記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含む意味である。
 本明細書において、「(メタ)アクリル酸~」とは、アクリル酸~及びメタクリル酸~の双方を含む概念である。
 1.重合体組成物
 本実施形態に係る重合体組成物は、(A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体と、(B)下記一般式(2)で表される化合物と、を含有する。
 本実施形態に係る重合体組成物は、(A)共役ジエン系重合体を含む重合体成分と、(B)下記一般式(2)で表される化合物と、必要に応じて他の添加剤とを混練することにより得られる未加硫の重合体組成物である。本実施形態に係る重合体組成物は、例えば加硫などの架橋処理をすることにより、架橋重合体を形成するものである。
 以下、本実施形態に係る重合体組成物に含まれる各成分について説明する。
 1.1.(A)共役ジエン系重合体
 本実施形態に係る重合体組成物は、(A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体(本明細書において、単に「(A)共役ジエン系重合体」ともいう。)を含有する。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基を表し、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基を表し、AはRと窒素で結合する含窒素脂環式炭化水素基、Rと窒素で結合し置換シリル基を有する基又はSiZを表す。)
 (A)共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を有し、かつ活性重合末端に、上記一般式(1)の化合物に由来する構造を有する。このような(A)共役ジエン系重合体は、まず、共役ジエン化合物を含む単量体を重合して活性末端を有する重合体を得て(重合工程)、次いで、活性末端を有する重合体と、上記一般式(1)の化合物(以下、「特定変性剤」ともいう。)と、を反応させることにより得ることができる(変性工程)。
<重合工程>
 重合に際して使用し得る共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンが好ましい。共役ジエン化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 (A)共役ジエン系重合体は、共役ジエン化合物の単独重合体であってもよいが、架橋重合体の強度を高める観点から、共役ジエン化合物と芳香族ビニル化合物との共重合体であることが好ましい。中でも、アニオン重合におけるリビング性が高い点において、1,3-ブタジエンとスチレンとをモノマー組成に含む共重合体であることが好ましい。(A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、(A)共役ジエン系重合体は、典型的には、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有し、さらに、共役ジエン化合物又は芳香族ビニル化合物に由来する構造単位からなるブロック部分を有していてもよい。
 重合に際して使用し得る芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、5-tert-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、tert-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-tert-ブチルスチレン、3-tert-ブチルスチレン、4-tert-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。これらの中でも、スチレン及びα-メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 (A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、芳香族ビニル化合物の含有量(芳香族ビニル含量)は、得られる架橋重合体の低ロス性とウエットグリップ性とのバランスを良好にする観点から、重合に使用する共役ジエン化合物及び芳香族ビニル化合物の合計100質量%中、3~55質量%とすることが好ましく、5~50質量%とすることがより好ましい。なお、(A)共役ジエン系重合体の芳香族ビニル含量は、H-NMRによって測定することができる。
 重合に際しては、共役ジエン化合物及び芳香族ビニル化合物以外の他のモノマーを使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヒドロキシエチル等が挙げられる。他のモノマーの使用量は、重合に使用するモノマーの全体量100質量%中、25質量%以下とすることが好ましく、15質量%以下とすることがより好ましく、10質量%以下とすることが特に好ましい。
 使用する重合方法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよいが、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。
 重合開始剤としては、アルカリ金属化合物又はアルカリ土類金属化合物を用いることができる。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等のアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、3-(ジメチルアミノ)プロピルリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム等が挙げられる。これらの中でも、リチウム化合物が好ましい。重合開始剤の合計の使用量は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。なお、重合開始剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
 また、重合反応は、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを混合して得られる化合物(以下、「変性開始剤」ともいう。)の存在下で行ってもよい。変性開始剤の存在下で重合を行うことにより、(A)共役ジエン系重合体の重合開始末端に、シリカと相互作用する官能基を導入することができる。なお、本明細書において「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。「シリカと相互作用する官能基」は、窒素原子、硫黄原子、リン原子及び酸素原子よりなる群から選択される少なくとも1種を有することが好ましい。
 変性開始剤としては、アルキルリチウム等のリチウム化合物と、第2級アミン化合物などの窒素含有化合物との反応生成物であることが好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。なお、変性開始剤の存在下で重合を行う場合、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを予め混合することにより変性開始剤を調製し、その調製した変性開始剤を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを添加し、重合系中で両者を混合することにより変性開始剤を調製して重合を行ってもよい。又は、窒素含有のアルキルリチウム化合物を使用することもできる。窒素含有のアルキルリチウム化合物の具体例としては、3-ジメチルアミノプロピルリチウムとイソプレンとの反応物等を使用することができる。
 ランダマイザーは、重合体中におけるビニル結合(1,2-結合及び3,4-結合)の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
 重合に使用する有機溶媒としては、反応に不活性な有機溶媒であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などを用いることができる。中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶液重合を用いる場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0℃~120℃であることがより好ましく、20℃~100℃であることが特に好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。こうした重合反応により、活性末端を有する共役ジエン系重合体を得ることができる。
 活性末端を有する共役ジエン系重合体につき、共役ジエン化合物に由来する構造単位におけるビニル結合含量は、30~65モル%であることが好ましく、33~62モル%であることがより好ましく、35~60モル%であることが特に好ましい。ビニル結合含量が30モル%未満であると、グリップ特性が低くなり過ぎる傾向があり、65モル%を超えると、得られる架橋重合体の耐摩耗性が悪化しやすくなる傾向にある。なお、本明細書において「ビニル結合含量」は、共役ジエン系重合体中において、共役ジエン化合物に由来する全構造単位に対する、ビニル結合を有する構造単位の含有割合を示す値であり、H-NMRによって測定した値である。
<変性工程>
 次いで、上記重合反応により得られた共役ジエン系重合体につき、該重合体の活性末端と、下記一般式(1)で表される化合物(特定変性剤)とを反応させる。こうした工程を経ることにより、特定変性剤で末端変性された(A)共役ジエン系重合体を得ることができる。このような特定変性剤で末端変性された(A)共役ジエン系重合体は、末端変性部位において(B)成分や(C)成分との相互作用により、分散性が促進されるので低燃費性能が向上する。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基を表し、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基を表し、AはRと窒素で結合する含窒素脂環式炭化水素基、Rと窒素で結合し置換シリル基を有する基又はSiZを表す。)
 上記式(1)において、R~Rの炭素数1~8のヒドロカルビレン基としては、炭素数1~8の直鎖状又は分岐状のアルキレン基、炭素数3~8のシクロアルキレン基、炭素数6~8のアリーレン基等が挙げられる。上記式(1)において、Zの炭素数1~8のヒドロカルビル基としては、炭素数1~8の直鎖状又は分岐状のアルキル基、炭素数3~8のシクロアルキル基が挙げられる。また、上記式(1)において、Zの炭素数1~8のヒドロカルビルオキシ基としては、炭素数1~8の直鎖状又は分岐状のアルコキシ基、炭素数3~8のシクロアルコキシ基が挙げられる。
 上記式(1)中、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基であるが、末端変性部位において(B)成分や(C)成分との相互作用を強くできる観点から、各Siに結合するZの3個とも炭素数1~8のヒドロカルビルオキシ基であることが好ましい。
 上記式(1)中、Aは、Rと窒素で結合する含窒素脂環式炭化水素基、Rと窒素で結合し置換シリル基を有する基又はSiZである。この内、含窒素脂環式炭化水素基としては、例えば、ピロリジン、ピロリン、ピロール、ピラゾリジン、ピラゾリン、ピラゾール、イミダゾリジン、イミダゾリン、イミダゾール、トリアゾリジン、1,2,3-トリアゾリン、1,2,3-トリアゾール、1,2,3-トリアゾリジン、1,2,4-トリアゾリン、1,2,4-トリアゾール、1,2,4-トリアゾリジン、テトラゾリジン、テトリゾリン、テトラゾール、及びこれらの誘導体等の含窒素五員環を有する化合物から窒素と結合する一つの水素が脱離した基が挙げられるが、中でも下記式(3)~(6)のいずれかの式で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(3)~(6)中、*は上記式(1)のRと結合する部位であり、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基を表し、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基であり、Lは炭素数1~8のヒドロカルビレン基である。)
 上記一般式(1)で表される化合物の具体例としては、N,N-ビス(トリエトキシシリルプロピル)アミノプロピル-1-ピロリジン、N,N-ビス(トリメトキシシリルプロピル)アミノプロピル-1-ピロリジン、N,N-ビス(トリエトキシシリルプロピル)アミノプロピル-1-イミダゾリン、N,N-ビス(トリメトキシシリルプロピル)アミノプロピル-1-イミダゾリン、N,N-ビス(トリエトキシシリルプロピル)アミノプロピル-1-イミダゾール、N,N-ビス(トリメトキシシリルプロピル)アミノプロピル-1-イミダゾール、N,N,N’,N’-テトラキス(トリメトキシシリルプロピル)ジアミノエタン、N,N,N’,N’-テトラキス(トリエトキシシリルプロピル)ジアミノエタン、N,N,N-トリス(トリメトキシシリル)アミン、N,N,N-トリス(トリエトキシシリルプロピル)アミン等が挙げられる。これらの化合物は、1種単独で使用してもよく、2種以上組み合わせて使用してもよい。
 なお、活性末端を有する共役ジエン系重合体の変性反応に際しては、特定変性剤を単独で使用してもよいが、特定変性剤とともに特定変性剤以外の変性剤(以下、「その他の変性剤」ともいう。)を使用してもよい。その他の変性剤は、(B)成分や(C)成分と相互作用する官能基を有し、かつ重合体の活性末端と反応し得る化合物であれば特に限定されない。
 上記の変性反応は、例えば溶液反応として行うことができる。この溶液反応は、重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共役ジエン系重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、変性反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、変性剤の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられる。
 特定変性剤の使用割合(二種以上使用する場合にはその合計量)は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、0.2モル以上とすることが好ましく、0.4モル以上とすることがより好ましい。0.2モル以上とすることにより、特定変性剤による重合体末端の変性反応を十分に進行させることができ、末端変性部位における(B)成分や(C)成分との相互作用を十分に強くすることができる。また、変性反応後における溶液中の未反応物を少なくする点で、特定変性剤の使用割合の上限値は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、1.5モル未満とすることが好ましく、1.2モル未満とすることがより好ましい。
 なお、変性反応に際し、特定変性剤とその他の変性剤とを併用する場合、その他の変性剤の使用割合は、共役ジエン系重合体と特定変性剤との反応を十分に進行させる観点から、特定変性剤とその他の変性剤との合計の使用割合に対して、30モル%以下とすることが好ましく、20モル%以下とすることがより好ましく、10モル%以下とすることが特に好ましい。
 変性反応の温度は、通常、重合反応の温度と同じであり、-20℃~150℃とすることが好ましく、0℃~120℃とすることがより好ましく、20℃~100℃とすることが特に好ましい。変性反応の温度が低いと、変性後の共役ジエン系重合体の粘度が上昇する傾向がある。一方、変性反応の温度が高いと、重合体の活性末端が失活しやすくなる。変性反応の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
 反応溶液に含まれる(A)共役ジエン系重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。得られた(A)共役ジエン系重合体は、必要に応じて伸展油等を添加することによりムーニー粘度を調整してもよい。この処理により、加工性を良好にすることができる。伸展油としては、例えばアロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の配合量は、重合に用いるモノマー等に応じて適宜設定すればよいが、例えば共役ジエン系重合体100質量部に対し、10~50質量部である。
 このようにして、(A)共役ジエン系重合体を得ることができる。(A)共役ジエン系重合体によれば、(B)成分や(C)成分の分散性を向上させることができる。これにより、自動車タイヤ等の用途において求められる低燃費性能が改善された架橋重合体を得ることができる。
 (A)共役ジエン系重合体は、該重合体の少なくとも片末端に、上記一般式(1)の化合物に由来する構造を有することが好ましい。(A)共役ジエン系重合体がこのような構造を有することにより、例えばタイヤ用途に適用した場合に、(B)成分や(C)成分の分散性がより改善され、低燃費性能においてより高い改善効果を奏する点で好ましい。
 (A)共役ジエン系重合体のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは10,000~2,000,000である。Mwが10,000よりも小さいと、本実施形態に係る重合体組成物の架橋重合体において、低ロス性及び耐摩耗性が低下しやすい傾向にあり、2,000,000よりも大きいと、重合体組成物の加工性が低下しやすい傾向にある。得られる(A)共役ジエン系重合体の重量平均分子量(Mw)は、より好ましくは30,000~1,500,000であり、さらに好ましくは50,000~1,000,000である。
 (A)共役ジエン系重合体の分子量分布、すなわち重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.5~3.0であり、より好ましくは1.5~2.5であり、特に好ましくは1.5~2.2である。(A)共役ジエン系重合体の分子量分布が前記範囲にあると、より優れた低ロス性、耐摩耗性、ウエットグリップ性能及び機械的特性が得られやすい。
 1.2.(B)成分
 本実施形態に係る重合体組成物は、(B)下記一般式(2)で表される化合物(本明細書において、単に「(B)成分」ともいう。)を含有する。このような(B)成分を含有することにより、得られる架橋重合体の経時的な劣化を低減することができる。具体的には、架橋重合体の変色を防止したり、架橋重合体のオゾン等による劣化を防止することによりクラックの発生を低減したりすることができる。また、(A)共役ジエン共重合体と(B)成分とを併用することで、(B)成分や(C)成分の分散性が促進されるので、得られる架橋重合体(タイヤ)の低燃費性能が向上するという相乗効果も得られる。
Figure JPOXMLDOC01-appb-C000010
(式(2)中、Rは炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。R及びRはそれぞれ独立に、アミノ基、ニトロ基、シアノ基、炭素数1~8のアルキル基、又はアリール基を表す。mは0~5の整数を表す。nは0~4の整数を表す。R及びRが複数存在する場合は、R及びRはそれぞれ同じであってもよく、異なっていてもよい。)
 (B)成分の具体例としては、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、N-フェニル-N’-(1-メチルヘプチル)-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N,N’-ジフェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン等が挙げられ、これらの1種以上を使用することができる。中でも、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、N,N’-ジフェニル-p-フェニレンジアミンが好ましい。
 本実施形態に係る重合体組成物中の(B)成分の含有量は、重合体成分100質量部に対して、好ましくは0.1質量部以上5質量部以下、より好ましくは0.3質量部以上4質量部以下、特に好ましくは0.5質量部以上3質量部以下である。(B)成分の含有量が前記範囲にあると、得られる架橋重合体の経時的な劣化を低減しながら、低燃費性能が向上する効果が得られる場合がある。
 なお、本実施形態に係る重合体組成物中に後述のシリカ及びシランカップリング剤が添加される場合、(B)成分のモル数は、シランカップリング剤のモル数の0~0.6倍であることが好ましく、0~0.4倍であることがより好ましい。(B)成分のモル数がシランカップリング剤のモル数の0.6倍以下であれば、シランカップリング剤とシリカとの反応が低下するのを効果的に抑制することができる。
 1.3.天然ゴム、ポリブタジエンゴム
 本実施形態に係る重合体組成物は、上記成分の他に、天然ゴム(以下「NR」ともいう。)若しくはポリブタジエンゴム(以下「BR」ともいう。)又はその両方を含有することが好ましい。NR及び/又はBRを含有することで、得られる架橋重合体の耐破壊強度や耐摩耗性等の耐久性が向上する傾向がある。
 NRとしては、例えば、SIR20、RSS#3、TSR20、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)等、タイヤ工業において一般的に使用されているものが挙げられる。
 本実施形態に係る重合体組成物がNRを含有する場合、NR含有量は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上である。NR含有量が10質量部未満であると、耐摩耗性が低下する恐れがある。また、NR含有量は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは70質量部以下であり、より好ましくは60質量部以下であり、更に好ましくは50質量部以下である。NR含有量が70質量部を超えると、耐破壊強度が低下する恐れがある。
 BRとしては、特に限定されるものではないが、例えば、シス1,4-結合含有率が50%未満のBR(ローシスBR)、シス1,4-結合含有率が90%以上のBR(ハイシスBR)、希土類元素系触媒を用いて合成されたBR(希土類系BR)、シンジオタクチックポリブタジエン結晶を含有するBR(SPB含有BR)、変性BR(ハイシス変性BR、ローシス変性BR)などを使用できる。これらの中でも、ハイシス未変性BR,ハイシス変性BR、ローシス未変性BR及びローシス変性BRからなる群より選択される少なくとも1種を用いることが好ましく、ハイシス未変性BRを用いることがより好ましい。
 ハイシスBRとしては、例えば、JSR(株)製のBR730、BR51;日本ゼオン(株)製のBR1220;宇部興産(株)製のBR130B、BR150B、BR710等が挙げられる。ハイシスBRの中でも、シス1,4-結合含有率が95%以上のものが特に好ましい。ハイシスBRを含有することで耐摩耗性を向上させることができる。ローシスBRとしては、例えば、日本ゼオン(株)製のBR1250等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 変性BRとしては、特に限定されるものではないが、BRにアルコキシ基を変性基として有する変性BR、アルコキシシリル基を変性基として有する変性BRなどが好ましく、中でもハイシス変性BRがより好ましい。
 本実施形態に係る重合体組成物がBRを含有する場合、BR含有量は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは10質量部以上であり、より好ましくは20質量部以上である。BR含有量が10質量部未満であると、耐摩耗性が低下する恐れがある。また、BR含有量は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは50質量部以下であり、より好ましくは40質量部以下である。50質量部を超えると、耐破壊強度が低下する恐れがある。
 BRの重量平均分子量(Mw)は、好ましくは2.0×10以上、より好ましくは4.0×10以上である。2.0×10未満では、耐摩耗性が低下するおそれがある。BRのMwは、好ましくは2.0×10以下である。2.0×10を超えると、加工性が低下する傾向がある。
 本実施形態に係る重合体組成物がNRとBRの両方を含有する場合、NRとBRの含有量の合計は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは40質量部以上であり、より好ましくは50質量部以上であり、特に好ましくは60質量部以上である。NRとBRの含有量の合計が40質量部未満であると、耐摩耗性が低下する恐れがある。また、NRとBRの含有量の合計は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは90質量部以下であり、より好ましくは85質量部以下であり、特に好ましくは80質量部以下である。NRとBRの含有量の合計が90質量部を超えると、耐破壊強度が低下する恐れがある。
 1.4.その他の成分
 本実施形態に係る重合体組成物は、上記の成分の他に、必要に応じて、(A)共役ジエン系重合体、NR、BR以外のその他のジエン系重合体、(C)フィラー、シランカップリング剤、架橋剤、酸性化合物、ワックス、伸展油(プロセス油)、加硫促進剤の他、必要に応じて加硫助剤、加工助剤、スコーチ防止剤、軟化剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、酸化防止剤、紫外線防止剤、帯電防止剤、着色防止剤などの公知の添加剤を、重合体組成物の使用目的に応じて使用することができる。
<その他のジエン系重合体>
 本実施形態に係る重合体組成物は、(A)共役ジエン系重合体、NR、BR以外のジエン系重合体を含有してもよい。このようなジエン系重合体としては、共役ジエン化合物に由来する繰り返し単位を有すれば特に制限されないが、例えば、ポリイソプレン、エチレン-プロピレン-ジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム等が挙げられる。
 本実施形態に係る重合体組成物がその他のジエン系重合体を含有する場合、その他のジエン系重合体の含有量は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは5質量部以上30質量部以下であり、より好ましくは8質量部以上25質量部以下であり、特に好ましくは10質量部以上20質量部以下である。
<(C)フィラー>
 本実施形態に係る重合体組成物は、得られる架橋重合体の低ロス性、耐摩耗性、ウエットグリップ性をさらに向上させるために、(C)フィラー(本明細書において、単に「(C)成分」ともいう。)を含有してもよい。(C)フィラーとしては、例えば、シリカ、カーボンブラック、及びこれらの混合物が挙げられる。
 本実施形態に係る重合体組成物中の(C)成分の含有量は、重合体成分100質量部に対して、好ましくは10質量部以上150質量部以下、より好ましくは20質量部以上130質量部以下、特に好ましくは30質量部以上110質量部以下である。(C)成分の含有量が前記範囲であると、得られる架橋重合体の低ロス性、耐摩耗性、ウエットグリップ性をさらに向上できる場合がある。
(シリカ)
 シリカとしては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられる。これらの中でも、湿式シリカが好ましい。シリカの使用割合は、重合体成分100質量部に対して、好ましくは0~130質量部、より好ましくは10~120質量部、特に好ましくは20~110質量部である。シリカの使用割合が、前記下限値以上であると、十分な耐摩耗性、ウエットグリップ性能が得られやすく、前記上限値以下であると、十分な低ロス性が得られやすい。
 さらに、シリカの使用割合は、(C)成分100質量%中、好ましくは20質量%以上、より好ましくは50質量%以上である。この範囲にあると、低ロス性、耐摩耗性、ウエットグリップ性能の点で有利である。
(カーボンブラック)
 カーボンブラックとしては、特に制限されず、ゴム組成物に配合される一般的なものを用いることができ、具体例としては、例えば、GPF、FEF、HAF、ISAF、SAFなどが挙げられる。これらの中では、ISAF、SAF、HAFが好ましく、ISAFがより好ましい。
 カーボンブラックの使用割合は、重合体成分100質量部に対して、好ましくは0~130質量部であり、より好ましくは2~110質量部である。
<シランカップリング剤>
 シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン;3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。これらの化合物は、1種単独でまたは2種以上組み合わせて用いることができる。また、これらの中では、補強性改善効果などの観点から、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好ましい。
 シランカップリング剤の使用割合は、(C)フィラーの合計100質量部に対して、0.5~20質量部であることが好ましい。シランカップリング剤の使用割合が前記範囲にあると、重合体組成物から形成される架橋重合体に十分な補強性及び耐破壊特性を付与することができ、架橋重合体の耐摩耗性を向上できる。
<架橋剤>
 架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられる。これらの中では、通常、架橋剤として硫黄が用いられる。架橋剤の使用割合は、重合体成分100質量部に対して、0.1~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。
<酸性化合物>
 酸性化合物としては、炭素数12~24の飽和脂肪酸及びそれらの金属塩が好適に用いられる。酸性化合物を含有することにより、(B)成分や石油系ワックスのブルームを抑制することができる。酸性化合物の具体例としては、ラウリル酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘンイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸、及びこれらの飽和脂肪酸の、カルシウム塩、亜鉛塩などが挙げられる。これらの酸性化合物は、1種単独でまたは2種以上組み合わせて用いることができる。これらの中では、ステアリン酸が好ましい。酸性化合物の使用割合は、重合体成分100質量部に対して、0.3~15質量部であることが好ましい。
<ワックス>
 ワックスとしては特に限定されず、石油系ワックス、天然系ワックスなどが挙げられ、また、複数のワックスを精製又は化学処理した合成ワックスも使用可能である。これらのワックスは、1種単独で使用しても、2種類以上を併用してもよい。ワックスの使用割合は、重合体成分100質量部に対して、0.5~10質量部であることが好ましい。
 石油系ワックスとしては、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。天然系ワックスとしては、石油外資源由来のワックスであれば特に限定されず、例えば、キャンデリラワックス、カルナバワックス、木ろう、ライスワックス、ホホバろうなどの植物系ワックス;ミツロウ、ラノリン、鯨ろうなどの動物系ワックス;オゾケライト、セレシン、ペトロラクタムなどの鉱物系ワックス;及びこれらの精製物などが挙げられる。
<他の添加剤>
 伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の使用割合は、重合体成分100質量部に対して、0~50質量部である。
 加硫助剤としては、例えば、酸化亜鉛等が挙げられる。加硫助剤の使用割合は、重合体成分100質量部に対して、1~5質量部である。
 加硫促進剤としては、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。加硫促進剤の好ましい具体例としては、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N-テトラ-ブチル-2-ベンゾチアジルスルフェンアミド(TBBS)等のスルフェンアミド系加硫促進剤が挙げられる。加硫促進剤の使用割合は、塩基性化合物の種類及び使用割合を考慮して適宜に定められるが、重合体成分100質量部に対して、0.5~5質量部であることが好ましい。
 1.4.重合体組成物の製造方法
 本実施形態に係る重合体組成物は、上記の各成分を、例えばプラストミル、バンバリーミキサー、ロール、インターナルミキサー等の混練機を用いて混練することによって調製することができる。例えば、下記の方法によって調製することが好ましい。
<一段目の混練>
 一段目の混練においては、(A)共役ジエン系重合体と共に、(B)成分及び(C)フィラー、必要に応じてシランカップリング剤が混練されることが好ましい。また、一段目の混練においては、必要に応じて、その他の重合体、ワックス、伸展油及び老化防止剤なども共に混練される。また、一段目の混練においては、二段目の混練において混練されることが好ましいとされる、酸性化合物が共に混練されてもよい。
 (B)成分及び(C)フィラーを一段目の混練に供することによって、これらの分散性が良好となりやすく、得られる重合体組成物から形成されるタイヤ(架橋重合体)の低燃費性能が向上する場合がある。
 また、一段目の混練にシランカップリング剤を供する場合には、先ず、(A)共役ジエン系重合体、その他の重合体、(B)成分、(C)フィラーを混練し、その後、シランカップリング剤を添加(後添加)して更に混練することが好ましい。
 一段目の混練においてシランカップリング剤を後添加することにより、得られる重合体組成物がより加工性に優れたものとなり、該重合体組成物から形成される架橋重合体がより優れた低ヒステリシス特性を有するものとなる。また、一段目の混練においてシランカップリング剤を後添加することにより、(B)成分及び(C)フィラーの分散性をより良好なものとすることができる場合がある。
 シランカップリング剤を後添加する場合において、シランカップリング剤の添加タイミングは、シリカの種類、シリカの使用割合及び混練条件などに応じ、(A)共役ジエン系重合体及びその他の重合体の使用割合などを考慮して適宜に定められる。
 また、シランカップリング剤を後添加する場合においては、(A)共役ジエン系重合体及びその他の重合体を配合して0.5分間~10分間にわたって混練した後、シランカップリング剤を添加して0.5分間~10分間にわたって混練することが好ましい。
 一段目の混練に用いられる混練機としては、プラストミル、バンバリーミキサー、ロール、インターナルミキサーなどの開放式または密閉式の混練機が挙げられる。また、一段目の混練において、混練温度は、30℃~180℃とされ、好ましくは50℃~160℃である。
 また、一段目の混練にシランカップリング剤を供する場合においては、シランカップリング剤を後添加して混練する手法に限定されず、シランカップリング剤を、一段目の混練に供される他の全ての成分と共に一斉に混練する手法によって、シランカップリング剤を含有する混練物を得てもよい。また、(A)共役ジエン系重合体、(B)成分、(C)フィラー、及びシランカップリング剤が混練されるマスターバッチを作製した後に、その他の重合体、添加剤を添加する方法でもよい。
<二段目の混練>
 二段目の混練は、一段目の混練において得られた混練物に、少なくとも架橋剤を添加し、当該混練物と架橋剤とを混練し、重合体組成物を得る工程である。この二段目の混練においては、一段目の混練において得られた混練物と架橋剤と共に、酸性化合物が混練されることが好ましい。また、二段目の混練においては、必要に応じて、酸化亜鉛及び加硫促進剤も共に混練される。そして、二段目の混練においては、通常、当該二段目の混練に供される全ての成分(具体的には、一段目の混練において得られた混練物、架橋剤、並びに、必要に応じて供される、酸性化合物及び酸化亜鉛や加硫促進剤などのその他の成分)を一斉に混練する手法によって重合体組成物が得られる。
 二段目の混練に酸性化合物を供することにより、得られる重合体組成物がより加工性に優れたものとなり、また、重合体組成物から形成される架橋重合体が、より優れた低ヒステリシス特性を有するものとなる。
 二段目の混練においては、一段目の混練において用いた混練機が用いられる。また、二段目の混練において、混練温度は、30℃~130℃とされ、好ましくは50℃~110℃である。
 以上のような製造方法によって得られる重合体組成物は、未加硫ゴム組成物であり、例えば加硫などの架橋処理をすることによって架橋重合体が形成されるものである。
 1.5.用途
 本実施形態に係る重合体組成物から形成される架橋重合体は、タイヤ、具体的にはタイヤのトレッドとして好適に用いられる。本実施形態に係る重合体組成物から形成されるタイヤには、トレッドに高い強度が得られ、またトレッドに所望の形状が得られるため、優れた性能が得られる。また、本実施形態に係る重合体組成物から形成される架橋重合体は、トレッド以外のタイヤ部材、防振ゴム、防舷材、ベルト、ホース、及びその他の工業品などとして用いることもできる。
 2.実施例
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記製造例、実施例及び比較例中の「%」は、特に断りのない限り質量基準である。
 2.1.(A)共役ジエン系重合体の製造例
<製造例1>
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2500g、ビニル基含量調整剤(ランダマイザー)としてテトラヒドロフラン50g、並びに、モノマーとしてスチレン125g及び1,3-ブタジエン365gを仕込んだ。反応器の内容物の温度を10℃に調整した後、重合開始剤としてn-ブチルリチウム5.20mmolを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点(重合開始から25分経過後)で、1,3-ブタジエン10gを1分間かけて追加し、その後、変性剤としてN,N-ジメチルアミノプロピルトリエトキシシラン2.08mmolを加えて15分間反応を行った。ここに、変性剤を加える直前において、変性前の重合体の重量平均分子量を測定するためのサンプリングを行った。
 得られた変性共役ジエン系共重合体を含む重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを4.40g添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことにより共役ジエン系共重合体(以下、「SBR-1」ともいう。)を得た。
<製造例2>
 製造例1において、N,N-ジメチルアミノプロピルトリエトキシシランに代えて、N,N-ビス(トリエトキシシリルプロピル)アミノプロピル-1-イミダゾール1.15mmolを使用した以外は製造例1と同様の操作を行い、共役ジエン系共重合体(以下、「SBR-2」ともいう。)を得た。
<製造例3>
 製造例1において、N,N-ジメチルアミノプロピルトリエトキシシランに代えて、N,N-ビス(トリエトキシシリルプロピル)アミノプロピル-1-ピロリジン1.15mmolを使用した以外は製造例1と同様の操作を行い、共役ジエン系共重合体(以下、「SBR-3」ともいう。)を得た。
 2.2.物性の測定方法
<重量平均分子量(Mw)の測定>
 上記で製造された変性前の各重合体について、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー社製の「HLC-8120」)を用い、下記のGPC条件で得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ピーク分子量及び重量平均分子量(Mw)を算出した。
(GPC条件)
 カラム:商品名「GMHXL」(東ソー社製)2本
 カラム温度:40℃
 移動相:テトラヒドロフラン
 流速:1.0ml/分
 サンプル濃度:10mg/20ml
<ビニル含量、結合スチレン含量の測定>
・ビニル含量(%):400MHzのH-NMR測定によって測定した。
・結合スチレン含量(%):400MHzのH-NMR測定によって測定した。結合スチレン含量は、芳香族ビニル含量に相当するパラメータである。
 2.3.実施例1~5及び比較例1~4
 2.3.1.重合体組成物及び架橋重合体の製造
 下表2に示す配合処方により各成分を配合し、それらを混練することによって各重合体組成物を製造した。混練は以下の方法で行った。
 温度制御装置を付属したプラストミル(内容量:250ml)を使用し、一段目の混練)として、充填率72%、回転数60rpmの条件で、下表2に示す重合体成分、(B)成分、カーボンブラック、ワックス、伸展油、老化防止剤、ステアリン酸、酸化亜鉛を混練した。次いで、二段目の混練として、上記で得られた混練物を室温まで冷却後、加硫促進剤、硫黄を混練することにより、実施例1~5及び比較例1~4の各重合体組成物を得た。
 次に、得られた各重合体組成物を成形し、160℃で所定時間、加硫プレスにて加硫し、下記の評価試験に供する所定の形状を有する各架橋重合体を得た。
 2.3.2.架橋重合体の評価
 得られた各架橋重合体について、以下の評価試験を行った。結果を下表2に示す。
<低燃費性(60℃tanδ)>
 上記で得られた架橋重合体を測定用試料として、ARES-RDA(TA Instruments社製)を使用し、剪断歪0.7%、角速度100ラジアン毎秒、60℃の条件で、損失係数(tanδ(60℃))を測定した。下表2においては、比較例1の測定値を基準として100とした指数で表示し、tanδ(60℃)は数値が大きいほどエネルギーロスが小さく、低ヒステリシスロス特性が良好であることを示す。
<耐オゾン性>
 JIS K6259-1:2015に準拠し、試験片(長さ60mm×幅10mm×厚み2.0mm)を伸長ジグに取り付け20%の引張歪みを与え、オゾン濃度0.5ppm、雰囲気温度40℃にて48時間放置させ、静的オゾン劣化試験を行った。その観察結果を下記の評価基準により評価した。
(亀裂の評価)
 0:亀裂なし。
 1:拡大して観察すると亀裂を観察できる。
 2:肉眼で0.5mm未満の非常に小さな亀裂を観察できる。
 3:肉眼で0.5mm以上の亀裂を観察できる。
(亀裂の密度)
 S:非常に低い。
 F:比較的低い。
 N:S、F以外の密度である。
<耐変色性>
 上記で得られた架橋重合体を40℃で3週間放置した後の黒色度を目視で観察し、下記の評価基準により評価した。
(評価基準)
 5:変色が全く認められない。
 4:わずかに変色が認められる。
 3:半分以下の範囲で変色が認められる。
 2:半分以上の範囲で変色が認められる。
 1:全面に変色が認められる。
 2.4.評価結果
 下表1に、上記で合成した各重合体の物性値を示す。下表2に、各重合体組成物の組成及び評価結果を示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 上表2中、重合体組成物の組成中の各成分の数値は質量部を表す。なお、上表2に示す各材料は、それぞれ以下の商品を用いた。
<その他の重合体>
・NR:「TSR20」、天然ゴム
・BR:宇部興産社製、商品名「BR150B」、ブタジエンゴム
<(B)成分>
・B-1:住友化学工業社製、商品名「アンチゲン6C」、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(6PPD)
・B-2:大内新興化学工業社製、商品名「ノクラックDP」、N,N’-ジフェニル-p-フェニレンジアミン
<(C)フィラー>
・カーボンブラック:キャボットジャパン社製、商品名「ショウブラックN550」(NSA:42m/g、DBP吸油量:115ml/100g)
<その他の成分>
・ワックス:日本精蝋社製、商品名「オゾエースワックス」
・伸展油:出光興産社製、商品名「プロセスオイルPW-32」、パラフィン系プロセスオイル
・老化防止剤:大内新興化学工業社製、商品名「ノクラック224」、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体
・ステアリン酸:日油社製、商品名「椿」
・硫黄:鶴見化学工業社製、商品名「金華印油入微粉硫黄」
・酸化亜鉛:三井金属鉱業社製、商品名「亜鉛華1号」
・加硫促進剤:大内新興化学工業社製、商品名「ノクセラNS」、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド
 上表2の結果から、実施例1~5に係る重合体組成物は、(A)共役ジエン系重合体と(B)成分とを含有することで、比較例1~4に係る重合体組成物に比べて、低燃費性及び耐久性(耐オゾン性、耐変色性)において高度にバランスに優れた架橋重合体(タイヤ)が得られることが確認できた。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 

Claims (10)

  1.  (A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体と、
     (B)下記一般式(2)で表される化合物と、
    を含有する、重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基を表し、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基を表し、AはRと窒素で結合する含窒素脂環式炭化水素基、Rと窒素で結合し置換シリル基を有する基又はSiZを表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。R及びRはそれぞれ独立に、アミノ基、ニトロ基、シアノ基、炭素数1~8のアルキル基、又はアリール基を表す。mは0~5の整数を表す。nは0~4の整数を表す。R及びRが複数存在する場合は、R及びRはそれぞれ同じであってもよく、異なっていてもよい。)
  2.  前記一般式(1)で表される化合物において、前記Aが下記式(3)~(6)のいずれかの式で表される基又はSiZである、請求項1に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)~(6)中、*は上記式(1)のRと結合する部位であり、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基を表し、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基であり、Lは炭素数1~8のヒドロカルビレン基である。)
  3.  重合体成分100質量部に対して、前記(B)成分を0.1質量部以上5質量部以下含有する、請求項1又は請求項2に記載の重合体組成物。
  4.  更に、天然ゴム若しくはポリブタジエンゴム又はその両方を含有する、請求項1ないし請求項3のいずれか一項に記載の重合体組成物。
  5.  更に、(C)フィラーを含有する、請求項1ないし請求項4のいずれか一項に記載の重合体組成物。
  6.  重合体成分100質量部に対して、前記(C)フィラーを20質量部以上70質量部以下含有する、請求項5に記載の重合体組成物。
  7.  前記(A)共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が10,000~2,000,000である、請求項1ないし請求項6のいずれか一項に記載の重合体組成物。
  8.  更に、架橋剤を含有する、請求項1ないし請求項7のいずれか一項に記載の重合体組成物。
  9.  請求項8に記載の重合体組成物を用いて製造された架橋重合体。
  10.  請求項9に記載の架橋重合体を使用したタイヤ。
     
PCT/JP2020/047135 2019-12-20 2020-12-17 重合体組成物、架橋重合体、及びタイヤ WO2021125259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-229988 2019-12-20
JP2019229988 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021125259A1 true WO2021125259A1 (ja) 2021-06-24

Family

ID=76476635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047135 WO2021125259A1 (ja) 2019-12-20 2020-12-17 重合体組成物、架橋重合体、及びタイヤ

Country Status (2)

Country Link
TW (1) TW202132383A (ja)
WO (1) WO2021125259A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014052A1 (ja) * 2012-07-20 2014-01-23 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
JP2014201637A (ja) * 2013-04-03 2014-10-27 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2016132764A (ja) * 2015-01-22 2016-07-25 旭化成株式会社 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法及びその組成物
JP2018525490A (ja) * 2015-12-28 2018-09-06 エルジー・ケム・リミテッド 重合開始剤、変性共役ジエン系重合体及びこれらの製造方法
JP2018525483A (ja) * 2015-12-18 2018-09-06 エルジー・ケム・リミテッド 変性共役ジエン系重合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014052A1 (ja) * 2012-07-20 2014-01-23 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、重合体組成物、架橋重合体及びタイヤ
JP2014201637A (ja) * 2013-04-03 2014-10-27 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2016132764A (ja) * 2015-01-22 2016-07-25 旭化成株式会社 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法及びその組成物
JP2018525483A (ja) * 2015-12-18 2018-09-06 エルジー・ケム・リミテッド 変性共役ジエン系重合体の製造方法
JP2018525490A (ja) * 2015-12-28 2018-09-06 エルジー・ケム・リミテッド 重合開始剤、変性共役ジエン系重合体及びこれらの製造方法

Also Published As

Publication number Publication date
TW202132383A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
JP6953841B2 (ja) 空気入りタイヤ
RU2531824C2 (ru) Способ получения модифицированного сопряженного диенового каучука, модифицированный сопряженный диеновый каучук и каучуковая композиция
EP2871211B1 (en) Rubber composition and pneumatic tire
WO2016039006A1 (ja) 空気入りタイヤ
EP2184318A2 (en) Rubber composition and tire
EP2182028A1 (en) Rubber composition and tire
KR102594509B1 (ko) 중합체 조성물, 가교 중합체 및, 타이어
JP2012107141A (ja) 空気入りタイヤ
WO2021020189A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP7371631B2 (ja) 空気入りタイヤ
JP2022028234A (ja) ポリマーブレンド及びその製造方法、並びに、それを用いたゴム組成物及び空気入りタイヤ
EP3006227B1 (en) Rubber composition and pneumatic tire
JP2016074880A (ja) ゴム組成物および空気入りタイヤ
JP2008260943A (ja) 変性重合体の製造方法、変性重合体及びその変性重合体を用いたゴム組成物
JP7194641B2 (ja) 重合体組成物及びその製造方法、並びにタイヤ
JP6330578B2 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体並びにタイヤ
EP4029911A1 (en) Polymer composition, crosslinked polymer and tire
WO2021125259A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP7458373B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2021112167A1 (ja) 重合体組成物の製造方法
WO2018199280A1 (ja) 架橋ゴム及びタイヤ
WO2022024219A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2020180218A (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2021256419A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2020261618A1 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP