WO2021112167A1 - 重合体組成物の製造方法 - Google Patents

重合体組成物の製造方法 Download PDF

Info

Publication number
WO2021112167A1
WO2021112167A1 PCT/JP2020/044999 JP2020044999W WO2021112167A1 WO 2021112167 A1 WO2021112167 A1 WO 2021112167A1 JP 2020044999 W JP2020044999 W JP 2020044999W WO 2021112167 A1 WO2021112167 A1 WO 2021112167A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
polymer
conjugated diene
Prior art date
Application number
PCT/JP2020/044999
Other languages
English (en)
French (fr)
Inventor
雄介 天野
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020227020161A priority Critical patent/KR20220101678A/ko
Priority to EP20897104.4A priority patent/EP4071208A4/en
Priority to CN202080083710.9A priority patent/CN114761482A/zh
Priority to JP2021562710A priority patent/JPWO2021112167A1/ja
Priority to US17/782,943 priority patent/US20230033703A1/en
Publication of WO2021112167A1 publication Critical patent/WO2021112167A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a method for producing a polymer composition.
  • Patent Document 1 discloses that when this material is used as a tread material for a tire, it is excellent in heat generation, wear resistance, and wet grip.
  • a crosslinked polymer (tire) having good processability, good dispersibility of the filler when it contains a filler, and excellent low hysteresis loss property.
  • a method for producing a polymer composition suitable for the production of the above is provided.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following aspects.
  • One aspect of the method for producing a polymer composition according to the present invention is (A) A polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, which comprises an active polymerization terminal and a compound represented by any of the following general formulas (1) to (3).
  • a 2 is a monovalent group bonded to L 2 with an imino group, an amide group, a (thio) carbonyl group, a (thio) carbonyloxy group, a sulfide or a polysulfide, or is protected.
  • R 3 and R 4 are the same as the formula (1), and n5 and R 11 are the same as the formula (1a). * Indicates a site that binds to L 2.
  • a 3 are each independently, an imino group, an amido group, (thio) carbonyl group, a (thio) carbonyl group, secondary amino group, or a tertiary amino group, Z is a nitrogen atom Represents a t-valent group having 1 to 20 carbon atoms including or not containing, L 4 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms, and L 5 represents a hydrocarbylene group having 1 to 20 carbon atoms.
  • R 5 and R 6 each independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n3 is 0 or 1, and t is 2 or 3).
  • R 7 and R 8 each independently represent a hydrocarbyl group having 1 to 20 carbon atoms
  • R 9 is a hydrocarbyl group having 1 to 20 carbon atoms, a hydrogen atom contained in the alkyl group, and -CH.
  • At least one of 2- is a substituted alkyl group having 1 to 20 carbon atoms substituted with a group containing at least one element selected from the group consisting of silicon, nitrogen, phosphorus, oxygen and sulfur, or nitrogen.
  • the basic compound having an acid dissociation constant of 8.0 or more can be an amine compound.
  • the basic compound having an acid dissociation constant of 8.0 or more can be a guanidine-based compound.
  • the acidic compound in the second step, can be kneaded together with the kneaded product and the cross-linking agent.
  • the acidic compound can be a saturated fatty acid having 12 to 24 carbon atoms.
  • silica in any aspect of the method for producing a polymer composition.
  • silica in the first step, silica can be kneaded together with the conjugated diene polymer and the basic compound having an acid dissociation constant of 8.0 or more.
  • the conjugated diene polymer, the basic compound having an acid dissociation constant of 8.0 or more, and the silica can be kneaded, and then a silane coupling agent can be added for further kneading. it can.
  • the cross-linking agent can be sulfur.
  • a crosslinked polymer having good processability, good dispersibility of the filler when it contains a filler, and excellent low hysteresis loss property.
  • a polymer composition suitable for producing (tire) can be produced.
  • the numerical range described as "XY" means that the numerical value X is included as the lower limit value and the numerical value Y is included as the upper limit value.
  • (meth) acrylic acid- is a concept including both acrylic acid-and methacrylic acid-.
  • the method for producing a polymer composition according to an embodiment of the present invention is (A) a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound.
  • a conjugated diene polymer (hereinafter, also referred to as "(A) conjugated diene polymer”), which is a reaction product of an active polymerization terminal and a compound represented by any of the following general formulas (1) to (3).
  • a basic compound having an acid dissociation constant of 8.0 or more hereinafter, also referred to as “(B) basic compound”
  • the polymer composition obtained by the production method according to the present embodiment can be obtained by kneading (A) a conjugated diene-based polymer, (B) a basic compound, and, if necessary, another additive. It is an unvulcanized polymer composition. Such a polymer composition forms a crosslinked polymer by subjecting it to a crosslinking treatment such as vulcanization.
  • the first step is to knead (A) a conjugated diene-based polymer and (B) a basic compound, and contain (A) a conjugated diene-based polymer and (B) a basic compound.
  • This is the process of obtaining a kneaded product.
  • all or part of the (B) basic compound is (A) conjugated with a compound for producing (B) a basic compound (hereinafter, also referred to as a "producing compound"). It may be produced by kneading with a diene polymer. That is, all or part of (B) the basic compound may be produced during the first step.
  • a conjugated diene polymer (B) a basic compound and silica may be kneaded, and then a silane coupling agent may be added for further kneading.
  • a silane coupling agent may be added for further kneading.
  • the silica or the silane coupling agent may be kneaded together with the (A) conjugated diene-based polymer and the production compound.
  • the first step if necessary, other polymers (polymers other than the (A) conjugated diene-based polymer), extenders, anti-aging agents, and the like may be kneaded together. Further, in the first step, the acidic compounds, which are preferably kneaded in the second step, may be kneaded together.
  • the first step other components can be kneaded together with (A) the conjugated diene polymer and (B) the basic compound or the compound for production, but (B) the basic compound and / Or the production compound and the (A) conjugated diene-based polymer are kneaded at the same time.
  • kneading may be started at the same time as the (A) conjugated diene polymer, or after the (A) conjugated diene polymer and (B) the basic compound and / or the production compound are kneaded. It may be added and kneaded.
  • the effect of the present invention may not be sufficiently obtained.
  • a silane coupling agent When a silane coupling agent is used in the first step, first, (A) a conjugated diene-based polymer, (B) a basic compound and silica are kneaded, and then the silane coupling agent is added. It is preferable to knead the mixture further.
  • the obtained polymer composition becomes more excellent in processability, and the crosslinked polymer formed from the polymer composition is more excellent. It has a low hysteresis loss property. In addition, the dispersibility of silica can be improved.
  • the timing of addition of the silane coupling agent depends on the type of silica, the ratio of silica used, the kneading conditions, etc., and (A) the type and ratio of the conjugated diene polymer, (B) It is appropriately determined in consideration of the usage ratio of the basic compound and / or the compound for production.
  • At least (A) a conjugated diene polymer, (B) a basic compound and / or a compound for production and silica are blended for 0.5 to 10 minutes. After kneading, it is preferable to add and mix a silane coupling agent and knead for 0.5 to 10 minutes.
  • Examples of the kneader used in the first step include open or closed kneaders such as a plast mill, a Banbury mixer, a roll, and an internal mixer.
  • the kneading temperature is set to 30 ° C. to 180 ° C., preferably 50 ° C. to 160 ° C.
  • the processability of the obtained polymer composition may deteriorate.
  • the method is not limited to the method of post-adding the silane coupling agent and kneading, and the silane coupling agent is used in another step.
  • a kneaded product containing a silane coupling agent may be obtained by a method of kneading all the components at the same time.
  • the conjugated diene polymer is a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and has an active polymerization terminal and the following general formula (1).
  • To (3) which is a reaction product with the compound represented by any of (3).
  • a 2 is a monovalent group bonded to L 2 with an imino group, an amide group, a (thio) carbonyl group, a (thio) carbonyloxy group, a sulfide or a polysulfide, or is protected.
  • R 3 and R 4 independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n2 is 0 to 3, and m1 is 0 or 1. is there.)
  • L 3 , R 3 , R 4 and n 2 are the same as those in the formula (1), n 5 is 1 or 2, m 2 is 0 to 2, and R 11 has 1 to 1 carbon atoms. there. multiple represents an alkanediyl group of 20 L 3 may be different even in the same, respectively. * indicates a site binding to L 2.
  • R 3 and R 4 are the same as the formula (1), and n5 and R 11 are the same as the formula (1a). * Indicates a site that binds to L 2.
  • a 3 are each independently, an imino group, an amido group, (thio) carbonyl group, a (thio) carbonyl group, secondary amino group, or a tertiary amino group
  • Z is a nitrogen atom
  • L 4 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms
  • L 5 represents a hydrocarbylene group having 1 to 20 carbon atoms.
  • R 5 and R 6 each independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n3 is 0 or 1, and t is 2 or 3).
  • R 7 and R 8 each independently represent a hydrocarbyl group having 1 to 20 carbon atoms
  • R 9 is a hydrocarbyl group having 1 to 20 carbon atoms, a hydrogen atom contained in the alkyl group, and -CH.
  • At least one of 2- is a substituted alkyl group having 1 to 20 carbon atoms substituted with a group containing at least one element selected from the group consisting of silicon, nitrogen, phosphorus, oxygen and sulfur, or nitrogen.
  • the conjugated diene-based polymer has a structural unit derived from the conjugated diene compound, and has a structure derived from any of the compounds of the above general formulas (1) to (3) at the active polymerization terminal.
  • a monomer containing a conjugated diene compound is polymerized in the presence of an alkali metal compound or an alkaline earth metal compound to obtain a polymer having an active polymerization terminal.
  • Polymerization step then, by reacting the polymer having an active polymerization terminal with any of the compounds of the above general formulas (1) to (3) (hereinafter, also referred to as "specific modifier"). Can be obtained (modification step).
  • Examples of the conjugated diene compound that can be used in the polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene. , 2-Phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like. Among these, 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene are preferable.
  • the conjugated diene compound may be used alone or in combination of two or more.
  • the conjugated diene-based polymer (A) may be a homopolymer of the conjugated diene compound, but from the viewpoint of increasing the strength of the crosslinked polymer, it must be a copolymer of the conjugated diene compound and an aromatic vinyl compound. Is preferable. Above all, a copolymer containing 1,3-butadiene and styrene in a monomer composition is preferable in terms of high living property in anionic polymerization.
  • the (A) conjugated diene polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound
  • the (A) conjugated diene polymer is typically a conjugated diene compound and an aromatic vinyl compound. It may have a random copolymerized moiety having an irregular distribution of, and further have a block moiety composed of structural units derived from a conjugated diene compound or an aromatic vinyl compound.
  • aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and the like.
  • the content of the aromatic vinyl compound is the low hysteresis loss of the obtained crosslinked polymer. From the viewpoint of improving the balance between the property and the wet grip property, it is preferably 3 to 55% by mass based on 100% by mass of the total of the conjugated diene compound and the aromatic vinyl compound used for polymerization, and 5 to 50% by mass. Is more preferable.
  • the aromatic vinyl content of the (A) conjugated diene polymer can be measured by 1 1 H-NMR.
  • a monomer other than the conjugated diene compound and the aromatic vinyl compound may be used.
  • examples of other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate and the like.
  • the amount of the other monomer used is preferably 25% by mass or less, more preferably 15% by mass or less, and preferably 10% by mass or less, based on 100% by mass of the total amount of the monomers used for the polymerization. Especially preferable.
  • any of a solution polymerization method, a gas phase polymerization method and a bulk polymerization method may be used, but the solution polymerization method is particularly preferable.
  • the polymerization type either a batch type or a continuous type may be used.
  • the solution polymerization method as an example of a specific polymerization method, a monomer containing a conjugated diene compound is polymerized in an organic solvent in the presence of a polymerization initiator and a randomizer used as necessary. The method can be mentioned.
  • an alkali metal compound or an alkaline earth metal compound can be used as the polymerization initiator.
  • alkyllithiums such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium, 1,4-dilithiobutane, phenyllithium and stillbenlithium.
  • the total amount of the polymerization initiator used is preferably 0.2 to 20 mmol with respect to 100 g of the monomer used for the polymerization.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the polymerization reaction is carried out in the presence of a compound obtained by mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica (hereinafter, also referred to as "modification initiator"). You may go with.
  • a modification initiator By carrying out the polymerization in the presence of a modification initiator, a functional group that interacts with silica can be introduced into the polymerization initiation terminal of the (A) conjugated diene-based polymer.
  • “interaction” means an intermolecular force (for example, an ion-dipole interaction, a dipole-dipole interaction, etc.) that forms a covalent bond between molecules or is weaker than a covalent bond.
  • the "functional group that interacts with silica” preferably has at least one selected from the group consisting of nitrogen atoms, sulfur atoms, phosphorus atoms and oxygen atoms.
  • the modification initiator is preferably a reaction product of a lithium compound such as alkyllithium and a nitrogen-containing compound such as a secondary amine compound.
  • a nitrogen-containing compound such as a secondary amine compound.
  • nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, and the like.
  • a modification initiator is prepared by previously mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica.
  • the prepared modification initiator may be added to the polymerization system to carry out the polymerization.
  • an alkali metal compound or an alkaline earth metal compound and a compound having a functional group that interacts with silica are added to the polymerization system, and both are mixed in the polymerization system to prepare a modification initiator.
  • Polymerization may be carried out.
  • a nitrogen-containing alkyllithium compound can also be used.
  • a reaction product of 3-dimethylaminopropyllithium and isoprene can be used.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content, which represents the content of vinyl bonds (1,2-bonds and 3,4-bonds) in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine. , N-Methylmorpholine, tetramethylethylenediamine and the like. These can be used alone or in combination of two or more.
  • the organic solvent used for the polymerization may be any organic solvent that is inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used. Of these, hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include propane, n-butene, isopentane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, and trans-.
  • 2-Butene, cis-2-butene, 1-pentyne, 2-pentyne, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1-pentene, 2-Pentyne, cyclohexene and the like can be mentioned.
  • the organic solvent may be used alone or in combination of two or more.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred.
  • the temperature of the polymerization reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and particularly preferably 20 ° C. to 100 ° C. Further, it is preferable that the polymerization reaction is carried out under a pressure sufficient to keep the monomer in a substantially liquid phase. Such pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is inert to the polymerization reaction. By such a polymerization reaction, a conjugated diene-based polymer having an active polymerization terminal can be obtained.
  • the vinyl bond content in the structural unit derived from the conjugated diene compound is preferably 30 to 65 mol%, more preferably 33 to 62 mol%, and 35. It is particularly preferably ⁇ 60 mol%. If the vinyl bond content is less than 30 mol%, the grip characteristics tend to be too low, and if it exceeds 65 mol%, the wear resistance of the obtained crosslinked polymer tends to be deteriorated.
  • the "vinyl bond content” is a value indicating the content ratio of the structural unit having a vinyl bond to all the structural units derived from the conjugated diene compound in the conjugated diene-based polymer, and is 1 H-. It is a value measured by NMR.
  • a 2 is a monovalent group bonded to L 2 with an imino group, an amide group, a (thio) carbonyl group, a (thio) carbonyloxy group, a sulfide or a polysulfide, or is protected.
  • R 3 and R 4 independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n2 is 0 to 3, and m1 is 0 or 1. is there.)
  • L 3 , R 3 , R 4 and n 2 are the same as those in the formula (1), n 5 is 1 or 2, m 2 is 0 to 2, and R 11 has 1 to 1 carbon atoms. there. multiple represents an alkanediyl group of 20 L 3 may be different even in the same, respectively. * indicates a site binding to L 2.
  • the hydrocarbylene group having 1 to 20 carbon atoms of L 2 and L 3 is a linear or branched alkanediyl group having 1 to 20 carbon atoms and a cyclo having 3 to 20 carbon atoms. Examples thereof include an alkylene group and an arylene group having 6 to 20 carbon atoms.
  • the hydrocarbyl group having 1 to 4 carbon atoms of R 3 and R 4 a linear or branched alkyl group having 1 to 4 carbon atoms and a cycloalkyl group having 3 to 4 carbon atoms are used. Can be mentioned.
  • Specific examples of the compound represented by the above general formula (1) include N- (3-imidazolylpropyl) -N, N-bis (3-trimethoxysilylpropyl) amine, N- (3-imidazolylpropyl)-.
  • a 3 are each independently, an imino group, an amido group, (thio) carbonyl group, a (thio) carbonyl group, secondary amino group, or a tertiary amino group
  • Z is a nitrogen atom
  • L 4 represents a single bond or a hydrocarbylene group having 1 to 20 carbon atoms
  • L 5 represents a hydrocarbylene group having 1 to 20 carbon atoms.
  • R 5 and R 6 each independently represent a hydrocarbyl group having 1 to 4 carbon atoms, n3 is 0 or 1, and t is 2 or 3).
  • Z is a divalent or trivalent group having 1 to 20 carbon atoms which may contain a nitrogen atom, but preferably contains a nitrogen atom.
  • hydrocarbylene group of 1 to 20 carbon atoms hydrocarbylene group and L 5 of the L 4 having 1 to 20 carbon atoms, having 1 to 20 carbon atoms, straight or branched Examples thereof include an alkanediyl group, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms.
  • Specific examples of the compound represented by the general formula (2) include compounds represented by the following formulas (M-1) to (M-4).
  • R 12 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • n6 represents an integer of 1 to 10.
  • R 7 and R 8 each independently represent a hydrocarbyl group having 1 to 20 carbon atoms
  • R 9 is a hydrocarbyl group having 1 to 20 carbon atoms, a hydrogen atom contained in the alkyl group, and -CH.
  • At least one of 2- is a substituted alkyl group having 1 to 20 carbon atoms substituted with a group containing at least one element selected from the group consisting of silicon, nitrogen, phosphorus, oxygen and sulfur, or nitrogen.
  • the hydrocarbyl groups having 1 to 20 carbon atoms of R 7 and R 8 include linear or branched alkyl groups having 1 to 20 carbon atoms and cycloalkyl groups having 3 to 20 carbon atoms. Examples thereof include an aryl group having 6 to 20 carbon atoms.
  • Specific examples of the compound represented by the above general formula (3) include N-phenyl-2,2-dimethoxy-1-aza-2-silacyclopentane, N- (3-trimethoxysilylpropyl) -2, Examples thereof include 2-dimethoxy-1-aza-2-silacyclopentane and N- (3-triethoxysilylpropyl) -2,2-dimethoxy-1-aza-2-silacyclopentane.
  • the specific modifier may be used alone, but the specific modifier and the modifier other than the specific modifier (hereinafter, "other modifiers") ”) May be used.
  • the other denaturing agent is not particularly limited as long as it is a compound having a functional group that interacts with the filler and can react with the active polymerization terminal of the polymer.
  • the above denaturation reaction can be carried out as, for example, a solution reaction.
  • This solution reaction may be carried out using a solution containing an unreacted monomer after the completion of the polymerization reaction.
  • the conjugated diene polymer contained in the solution may be isolated and dissolved in an appropriate solvent such as cyclohexane. You may go.
  • the denaturation reaction may be carried out by either a batch type or a continuous type.
  • the method of adding the denaturant is not particularly limited, and examples thereof include a method of adding the denaturant all at once, a method of adding the denaturant in divided portions, and a method of continuously adding the denaturant.
  • the ratio of the specific modifier (the total amount when two or more kinds are used) is preferably 0.2 mol or more with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator. More preferably, it is 0.4 mol or more.
  • the amount is 0.2 mol or more, the modification reaction of the polymer terminal by the specific modifier can be sufficiently proceeded, and the interaction with the filler at the terminal modification site can be sufficiently strengthened.
  • the upper limit of the usage ratio of the specific modifier is 1.5 with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator.
  • the amount is preferably less than 1.2 mol, more preferably less than 1.2 mol.
  • the ratio of the other denaturants used is specified from the viewpoint of sufficiently advancing the reaction between the conjugated diene polymer and the specific denaturant. It is preferably 30 mol% or less, more preferably 20 mol% or less, and particularly preferably 10 mol% or less, based on the total usage ratio of the denaturant and other denaturants.
  • the temperature of the denaturation reaction is usually the same as the temperature of the polymerization reaction, preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and preferably 20 ° C. to 100 ° C. Especially preferable.
  • the reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the (A) conjugated diene polymer contained in the reaction solution can be isolated by a known desolvation method such as steam stripping and a drying operation such as heat treatment.
  • the Mooney viscosity of the obtained (A) conjugated diene-based polymer may be adjusted by adding a stretching oil or the like, if necessary. By this treatment, workability can be improved.
  • the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like.
  • the blending amount of the spreading oil may be appropriately set according to the monomer used for the polymerization and the like, and is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the conjugated diene-based polymer.
  • the (A) conjugated diene-based polymer can be obtained.
  • compatibility with the filler can be improved, and a polymer composition having improved processability and dispersibility of the filler can be obtained.
  • a tire (crosslinked polymer) having excellent low hysteresis loss property and wet grip property required for applications such as automobile tires can be obtained. be able to.
  • the conjugated diene-based polymer (A) preferably has a structure derived from any of the compounds of the above general formulas (1) to (3) at at least one end of the polymer.
  • the conjugated diene polymer (A) has such a structure, for example, when applied to tire applications, the dispersibility of fillers such as carbon black and silica is further improved, and low hysteresis loss property and wet grip property are obtained. It is preferable in that it produces a higher improvement effect.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the conjugated diene polymer is preferably 100,000 to 2,000,000.
  • Mw is smaller than 100,000, the crosslinked polymer of the obtained polymer composition tends to have low hysteresis loss and wear resistance, and when it is larger than 2,000,000, the polymer tends to be deteriorated.
  • the processability of the composition tends to decrease.
  • the weight average molecular weight (Mw) of the obtained conjugated diene polymer (A) is more preferably 150,000 to 1,500,000, still more preferably 200,000 to 1,000,000.
  • the molecular weight distribution of the conjugated diene polymer that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.5 to 3.0, more preferably. Is 1.5 to 2.5, and particularly preferably 1.5 to 2.2.
  • (B) Basic compound (B) The basic compound is a compound having an acid dissociation constant (pKa) of 8.0 or more. By kneading the conjugated diene polymer (A) and the basic compound (B) together, the kneading time can be shortened. It is considered that this is because the presence of the (B) basic compound promotes the dissolution of the association state between the functional groups of the (A) conjugated diene polymer. Further, in the second step described later, the bond between the (A) conjugated diene polymer and the cross-linking agent is easily promoted.
  • pKa acid dissociation constant
  • an amine compound is preferably used as the basic compound.
  • guanidine, 1,3-diphenylguanidine, 1,1,3,3-tetramethylguanidine, etc. are used in that the bond between the (A) conjugated diene polymer and the cross-linking agent is easily promoted.
  • the guanidine-based compound of is preferably used.
  • an aliphatic amine compound having a long-chain alkyl group or a long-chain alkenyl group is also preferably used.
  • aliphatic amine compounds having a long-chain alkyl group or a long-chain alkenyl group are represented by R 1- NH 2 , R 1- N (CH 3 ) 2 , or R 1- NH (CH 2 ) x NH 2 .
  • examples thereof include compounds having a chemical structure (R 1 ; an alkyl group having 10 or more and 24 or less carbon atoms or an alkenyl group having 10 or more and 24 or less carbon atoms, x; an integer of 1 or more and 5 or less), and an acetate thereof.
  • stearylamine dimethylstearylamine, laurylamine, dimethyllaurylamine, oleylamine, dimethyloctylamine, beef propylenediamine, stearylamine acetate, and acetates thereof.
  • These aliphatic amine compounds having a long-chain alkyl group or a long-chain alkenyl group can be used alone or in combination of two or more.
  • a plurality of compounds specifically, a plurality of compounds (compounds for producing) for producing a basic compound are kneaded together with the (A) conjugated diene-based polymer. It may be generated by the above.
  • all of the (B) basic compounds used in the first step may be produced from a plurality of production compounds, and some of them may be produced from a plurality of production compounds. It may be produced from the compound for producing the above.
  • a combination of a sulfenamide-based compound and a thiazole-based compound is preferably used.
  • a disulfide compound and an amine compound are produced by adding a sulfenamide-based compound and a thiazole-based compound as a plurality of production compounds to a composition containing the (A) conjugated diene-based polymer and kneading under predetermined conditions. To do. Then, the produced amine compound is kneaded as a basic compound together with the (A) conjugated diene-based polymer.
  • Examples of the sulfenamide-based compound constituting the production compound include N-cyclohexyl-2-benzothiazolesulfenamide (CBS), N- (tert-butyl) -2-benzothiazolesulfenamide (TBBS), and N-. Examples thereof include morpholino-2-benzothiazolesulfenamide (MBS). These compounds may be used alone or in combination of two or more.
  • Examples of the thiazole-based compound constituting the production compound include 2-mercaptobenzothiazole (MBT).
  • CBS sulfenamide
  • MTT 2-mercaptobenzothiazolyl
  • the proportion of the basic compound (B) used is preferably 0.5 to 10 parts by mass, more preferably 0.8 to 8 parts by mass, and particularly preferably 1 with respect to 100 parts by mass of the polymer component. ⁇ 5 parts by mass.
  • the ratio of the basic compound (B) used is within the above range, sufficient mechanical strength and abrasion resistance can be imparted to the crosslinked polymer formed from the obtained polymer composition.
  • the polymer component as an optional component other than the (A) conjugated diene-based polymer, which is an essential component, for example, natural rubber, butadiene rubber, butyl rubber, synthetic isoprene rubber, styrene-butadiene copolymer rubber, ethylene- ⁇ - Other polymer components such as olefin copolymer rubber, ethylene- ⁇ -olefin-diene copolymer rubber, acrylonitrile-butadiene copolymer rubber, chloroprene rubber and butyl halide rubber, and mixtures thereof may be contained.
  • natural rubber butadiene rubber, butyl rubber, synthetic isoprene rubber, styrene-butadiene copolymer rubber, ethylene- ⁇ - Other polymer components
  • olefin copolymer rubber ethylene- ⁇ -olefin-diene copolymer rubber
  • acrylonitrile-butadiene copolymer rubber chloroprene rubber and but
  • the obtained crosslinked polymer (tire) contains natural rubber or butadiene rubber because it can achieve a high balance between low hysteresis loss and wet grip while maintaining wear resistance. It is preferable to do so.
  • the proportion of the other polymer component used is preferably 10 to 45% by mass based on 100% by mass of the polymer component.
  • optional components other than the polymer component include fillers such as silica and carbon black, silane coupling agents, spreading oils, and antiaging agents.
  • silica examples include wet silica (hydrous silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate and the like. Of these, wet silica is preferred.
  • the ratio of silica used is preferably 10 to 200 parts by mass, more preferably 20 to 130 parts by mass, and particularly preferably 25 to 110 parts by mass with respect to 100 parts by mass of the polymer component.
  • the content ratio of silica is within the above range, the low hysteresis loss property and the wet grip property of the obtained crosslinked polymer (tire) can be highly balanced.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
  • Cyrilethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyltriethoxysilane; 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxy Cyrilethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropylbenzothiazolyltetrasulfide, 3-trie
  • the ratio of the silane coupling agent used is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of silica.
  • the ratio of the silane coupling agent used is within the above range, sufficient reinforcing properties and fracture resistance can be imparted to the crosslinked polymer formed from the polymer composition, and the wear resistance of the crosslinked polymer is improved. You may be able to do it.
  • Carbon black that is generally used as a filler can be used.
  • Specific examples of carbon black include GPF, FEF, HAF, ISAF, SAF and the like. Among these, ISAF, SAF, and HAF are preferable, and ISAF is more preferable.
  • the ratio of carbon black used is preferably 0.5 to 100 parts by mass, and more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polymer component.
  • Examples of the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like.
  • the proportion of the spreading oil used is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the polymer component.
  • antiaging agent examples include N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine and the like.
  • the proportion of the antiaging agent used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • Second Step In the second step, at least a cross-linking agent is added to the kneaded product obtained in the first step, and the kneaded product and the cross-linking agent are kneaded to obtain (A) a conjugated diene polymer.
  • the acidic compound is kneaded together with the kneaded product obtained in the first step and the cross-linking agent.
  • the vulcanization aid or vulcanization accelerator ((B) basic compound or production compound has a vulcanization accelerating effect
  • the above (B) ) Vulcanization accelerators for compounds other than basic compounds and production compounds are also kneaded together.
  • a compound having a vulcanization accelerating effect is used as the production compound in the first step, it is preferable not to use a vulcanization accelerator in the second step.
  • a polymer composition is obtained by a method of simultaneously kneading an acidic compound and other components such as a vulcanization aid and a vulcanization accelerator.
  • the obtained polymer composition has more excellent processability, and the crosslinked polymer formed from the polymer composition has more excellent low hysteresis. It has a loss property. Further, when the polymer composition contains a filler (specifically, silica and carbon black), the dispersibility of the filler can be improved.
  • a filler specifically, silica and carbon black
  • the kneader used in the first step can be used. Further, in the second step, the kneading temperature is set to 30 ° C. to 130 ° C., preferably 50 ° C. to 110 ° C. When the kneading temperature in the second step is 130 ° C. or higher, the processability of the obtained polymer composition may deteriorate.
  • cross-linking agent examples include vulcanizing agents such as sulfur, sulfur halides, organic peroxides, quinone dioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Of these, sulfur is usually used as the cross-linking agent.
  • the ratio of the cross-linking agent used is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • the ratio of the cross-linking agent used is within the above range, it is possible to suppress the progress of cross-linking during kneading, and the physical properties of the obtained cross-linked polymer are good.
  • a vulcanization accelerator can be used in combination.
  • saturated fatty acids having 12 to 24 carbon atoms and metal salts thereof are preferably used.
  • Specific examples of acidic compounds include lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid, arachidic acid, henicosylic acid, behenic acid, tricosylic acid, lignoceric acid, and these.
  • saturated fatty acids include calcium salt and zinc salt. These acidic compounds can be used alone or in combination of two or more. Of these, stearic acid is preferred.
  • the ratio of the acidic compound used is preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization aid examples include zinc oxide and the like.
  • the ratio of the vulcanization aid used is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization accelerator examples include guadinin-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, sulfenamide-based, thiourea-based, thiuram-based, dithiocarbamate-based, and zantate-based compounds.
  • Preferred specific examples of the vulcanization accelerator are sulfenamides such as N-cyclohexyl-2-benzothiazyl sulfenamide (CBS) and N-tetra-butyl-2-benzothiazyl sulfenamide (TBBS).
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • TBBS N-tetra-butyl-2-benzothiazyl sulfenamide
  • vulcanization accelerators examples include vulcanization accelerators.
  • the proportion of the vulcanization accelerator used is appropriately determined in consideration of the type and
  • the polymer composition obtained by the production method according to the present embodiment as described above is an unvulcanized polymer composition, and a crosslinked polymer is formed by performing a crosslinking treatment such as vulcanization, for example. It is a thing.
  • the effect of the method for producing a polymer composition according to the present embodiment is that the conjugated diene-based polymer has an active polymerization terminal and a compound represented by any of the above general formulas (1) to (3). This is remarkable when it is a reaction product.
  • the crosslinked polymer formed from the polymer composition obtained by the production method according to the present embodiment is suitably used as a tire, specifically, a tread of a tire.
  • a tire specifically, a tread of a tire.
  • high strength can be obtained in the tread, and a desired shape can be obtained in the tread, so that excellent performance can be obtained.
  • the crosslinked polymer can also be used as a tire member other than a tread, a vibration-proof rubber, a fender, a belt, a hose, and other industrial products.
  • the polymerization formulations are shown in Table 1 below, and the physical properties are shown in Table 2 below.
  • Examples 1 to 3, 5 to 8 and Comparative Examples 1 to 6 A polymer composition was produced by blending each component according to the formulation shown in Table 3 below and kneading them. Kneading was carried out by the following method.
  • each component was mixed according to Table 3 below under the conditions of a rotation speed of 60 rpm and a kneading time of 4 minutes. That is, all the components to be used in the first step were kneaded all at once.
  • a plast mill equipped with a temperature control device is subjected to the second step according to Table 3 below.
  • Each polymer composition was obtained by blending each component to be provided and kneading under the conditions of a rotation speed of 60 rpm and a kneading time of 1.5 minutes.
  • each of the obtained polymer compositions is molded and vulcanized by a vulcanization press at 160 ° C. for a predetermined time to obtain each crosslinked polymer having a predetermined shape to be subjected to the following evaluation test. Obtained.
  • Example 4 A polymer composition was produced by blending each component according to the formulation shown in Table 3 below and kneading them. Kneading was carried out by the following method.
  • a plast mill equipped with a temperature control device is subjected to the second step according to Table 3 below.
  • Each polymer composition was obtained by blending each component to be provided and kneading under the conditions of a rotation speed of 60 rpm and a kneading time of 1.5 minutes.
  • each of the obtained polymer compositions is molded and vulcanized by a vulcanization press at 160 ° C. for a predetermined time to obtain each crosslinked polymer having a predetermined shape to be subjected to the following evaluation test. Obtained.
  • 1" -Vulcanization accelerator D manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Noxeller D”, 1,3-diphenylguanidine-Vulcanization accelerator CZ: manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Noxeller CZ”, N-Cyclohexyl-2-benzothiazolyl sulfur amide / sulfur: manufactured by Tsurumi Chemical Industry Co., Ltd.
  • an acidic compound is provided in the second step as in the method for producing a polymer composition according to Examples 3 to 4 and 6, or silane is used as in the method for producing a polymer composition according to Example 4. It was confirmed that by adding the coupling agent afterwards, the processability and the dispersibility of the filler were further excellent, and the crosslinked polymer formed from the polymer composition had more excellent low hysteresis loss characteristics. confirmed.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention also includes a configuration that exhibits the same effects as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention also includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Abstract

加工性が良好であり、またフィラーを含有する場合においては当該フィラーの分散性が良好であり、低ヒステリシスロス性に優れた架橋重合体(タイヤ)の製造に適した重合体組成物の製造方法を提供する。 本発明に係る重合体組成物の製造方法は、(A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体、及び、(B)酸解離定数が8.0以上の塩基性化合物を混練する第1の工程と、前記第1の工程において得られた混練物、及び、架橋剤を混練する第2の工程と、を有する。

Description

重合体組成物の製造方法
 本発明は、重合体組成物の製造方法に関する。
 近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。従来、タイヤの転がり抵抗を減少させる手法として、タイヤ構造を最適化する手法が検討されてきたが、タイヤに適用される重合体組成物について、tanδが低く(以下、「低ヒステリシスロス性」ともいう。)、低発熱性の優れたものを用いることも、現在一般的な手法として行われている。
 このような発熱性の低い重合体組成物を得る方法としては、カーボンブラックやシリカ等のフィラーの減量、又は大粒径のカーボンブラックの使用等が考えられるが、いずれの方法でも、重合体組成物の補強性、耐摩耗性及び湿潤路面でのグリップ性(以下、「ウェットグリップ性」ともいう。)の低下が避けられない。
 そこで、例えば、金属末端を有する活性重合体を形成し、該活性重合体に特定の変性剤を導入して変性させた変性共役ジエン系重合体をタイヤのトレッド材料として使用する検討がなされている(例えば、特許文献1参照)。特許文献1には、この材料をタイヤのトレッド材料として使用すると、発熱性、耐摩耗性、及びウェットグリップ性に優れたものとなることが開示されている。
特表2016-528369号公報
 しかしながら、特許文献1に開示された変性共役ジエン系重合体をタイヤのトレッド材料として使用した場合、重合体組成物に含有されるシリカ等のフィラーとの相互作用が強いために加工性が劣り、十分に混練できずに性能を発揮できない場合があった。
 そこで、本発明に係る幾つかの態様は、加工性が良好であり、またフィラーを含有する場合においては当該フィラーの分散性が良好であり、低ヒステリシスロス性に優れた架橋重合体(タイヤ)の製造に適した重合体組成物の製造方法を提供する。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様として実現することができる。
 本発明に係る重合体組成物の製造方法の一態様は、
 (A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体、及び、(B)酸解離定数が8.0以上の塩基性化合物を混練する第1の工程と、
 前記第1の工程において得られた混練物、及び、架橋剤を混練する第2の工程と、
を有する。
Figure JPOXMLDOC01-appb-C000006
 
(式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、下記式(1a)で示される基、もしくは下記式(1b)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0または1である。)
Figure JPOXMLDOC01-appb-C000007
 
(式(1a)中、L、R、R及びn2は式(1)と同様であり、n5は1又は2であり、m2は0~2であり、R11は炭素数1~20のアルカンジイル基を表す。複数あるLはそれぞれ同じであっても異なっていてもよい。*はLと結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000008
 
(式(1b)中、R及びRは式(1)と同様であり、n5及びR11は式(1a)と同様である。*はLと結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000009
 
(式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
Figure JPOXMLDOC01-appb-C000010
 
(式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1又は2である。)
 前記重合体組成物の製造方法の一態様において、
 前記酸解離定数が8.0以上の塩基性化合物がアミン化合物であることができる。
 前記重合体組成物の製造方法のいずれかの態様において、
 前記酸解離定数が8.0以上の塩基性化合物がグアニジン系化合物であることができる。
 前記重合体組成物の製造方法のいずれかの態様において、
 前記第2の工程において、前記混練物と前記架橋剤と共に、酸性化合物を混練することができる。
 前記重合体組成物の製造方法のいずれかの態様において、
 前記酸性化合物が、炭素数12~24の飽和脂肪酸であることができる。
 前記重合体組成物の製造方法のいずれかの態様において、
 前記第1の工程において、前記共役ジエン系重合体と前記酸解離定数が8.0以上の塩基性化合物と共に、シリカを混練することができる。
 前記重合体組成物の製造方法のいずれかの態様において、
 前記第1の工程において、前記共役ジエン系重合体と前記酸解離定数が8.0以上の塩基性化合物と前記シリカとを混練し、その後、シランカップリング剤を添加して更に混練することができる。
 前記重合体組成物の製造方法のいずれかの態様において、
 前記架橋剤が硫黄であることができる。
 本発明に係る重合体組成物の製造方法によれば、加工性が良好であり、またフィラーを含有する場合においては当該フィラーの分散性が良好であり、低ヒステリシスロス性に優れた架橋重合体(タイヤ)の製造に適した重合体組成物を製造することができる。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
 本明細書において、「X~Y」のように記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含む意味である。
 本明細書において、「(メタ)アクリル酸~」とは、アクリル酸~及びメタクリル酸~の双方を含む概念である。
 1.重合体組成物の製造方法
 本発明の一実施形態に係る重合体組成物の製造方法は、(A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体(以下、「(A)共役ジエン系重合体」ともいう。)、及び、(B)酸解離定数が8.0以上の塩基性化合物(以下、「(B)塩基性化合物」ともいう。)を混練する第1の工程と、前記第1の工程において得られた混練物、及び、架橋剤を混練する第2の工程と、を有する。
 本実施形態に係る製造方法によって得られる重合体組成物は、(A)共役ジエン系重合体と、(B)塩基性化合物と、必要に応じて他の添加剤とを混練することにより得られる未加硫の重合体組成物である。かかる重合体組成物は、例えば加硫などの架橋処理をすることにより、架橋重合体を形成するものである。
 以下、本実施形態に係る重合体組成物の製造方法について説明する。
 1.1.第1の工程
 第1の工程は、(A)共役ジエン系重合体、及び、(B)塩基性化合物を混練し、(A)共役ジエン系重合体と(B)塩基性化合物とを含有する混練物を得る工程である。この第1の工程においては、(B)塩基性化合物の全部又は一部は、(B)塩基性化合物を生成するための化合物(以下、「生成用化合物」ともいう。)が(A)共役ジエン系重合体と共に混練されることによって生成されたものであってもよい。すなわち、(B)塩基性化合物の全部又は一部は、第1の工程中に生成されたものであってもよい。
 また、第1の工程においては、(A)共役ジエン系重合体と(B)塩基性化合物とシリカとを混練し、その後、シランカップリング剤を添加して更に混練してもよい。なお、(B)塩基性化合物が第1の工程において生成される場合には、シリカやシランカップリング剤は、(A)共役ジエン系重合体と生成用化合物と共に混練されてもよい。
 また、第1の工程においては、必要に応じて、その他の重合体((A)共役ジエン系重合体以外の重合体)、伸展剤及び老化防止剤等も共に混練されてもよい。さらに、第1の工程においては、第2の工程において混練されることが好ましいとされる、酸性化合物が共に混練されてもよい。
 このように、第1の工程においては、(A)共役ジエン系重合体及び(B)塩基性化合物もしくは生成用化合物と共に、他の成分を混練することができるが、(B)塩基性化合物及び/又は生成用化合物と(A)共役ジエン系重合体とは同時に混練が開始される。その他の成分は、(A)共役ジエン系重合体と同時に混練が開始されてもよいし、(A)共役ジエン系重合体と(B)塩基性化合物及び/又は生成用化合物とを混練した後に添加されて混練されてもよい。第1の工程において、(B)塩基性化合物及び/又は生成用化合物が、その他の成分よりも後に添加されて混練されたときには、本発明の効果が十分に得られない場合がある。
 シリカを含有する重合体組成物を製造する場合において、シリカを第1の工程に供することにより、得られる重合体組成物から形成される架橋重合体における低ヒステリシスロス性とのバランスの観点から、シリカの分散性を良好なものとすることができる。
 また、第1の工程にシランカップリング剤を供する場合には、先ず、(A)共役ジエン系重合体と(B)塩基性化合物とシリカとを混練し、その後、シランカップリング剤を添加して更に混練することが好ましい。
 具体的には、先ず、(A)共役ジエン系重合体、(B)塩基性化合物及び必要に応じて第1の工程に供される成分のうちのシランカップリング剤以外の成分(具体的には、シリカ等)を混練した後、その混練物にシランカップリング剤を添加(後添加)して更に混練することが好ましい。
 第1の工程においてシランカップリング剤を後添加することにより、得られる重合体組成物がより加工性に優れたものとなり、また、重合体組成物から形成される架橋重合体が、より優れた低ヒステリシスロス性を有するものとなる。また、シリカの分散性をより良好なものとすることができる。
 シランカップリング剤を後添加する場合において、シランカップリング剤の添加のタイミングは、シリカの種類、シリカの使用割合及び混練条件などに応じ、(A)共役ジエン系重合体の種類及び使用割合、(B)塩基性化合物及び/又は生成用化合物の使用割合などを考慮して適宜に定められる。
 また、シランカップリング剤を後添加する場合においては、少なくとも(A)共役ジエン系重合体と(B)塩基性化合物及び/又は生成用化合物とシリカとを配合して0.5~10分間にわたって混練した後、シランカップリング剤を添加配合して0.5~10分間にわたって混練することが好ましい。
 第1の工程に用いられる混練機としては、プラストミル、バンバリーミキサー、ロール、インターナルミキサー等の開放式又は密閉式の混練機が挙げられる。
 また、第1の工程において、混練温度は、30℃~180℃とされ、好ましくは50℃~160℃である。第1の工程の混練温度が160℃以上である場合には、得られる重合体組成物の加工性が悪化するおそれがある。
 また、第1の工程にシランカップリング剤を供する場合においては、シランカップリング剤を後添加して混練する手法に限定されず、シランカップリング剤を、第1の工程に供される他の全ての成分と共に一斉に混練する手法によって、シランカップリング剤を含有する混練物を得てもよい。
 以下、第1の工程で用いられる各成分について詳細に説明する。
 1.1.1.(A)共役ジエン系重合体
 (A)共役ジエン系重合体は、共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である。
Figure JPOXMLDOC01-appb-C000011
 
(式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、下記式(1a)で示される基、もしくは下記式(1b)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0又は1である。)
Figure JPOXMLDOC01-appb-C000012
 
(式(1a)中、L、R、R及びn2は式(1)と同様であり、n5は1又は2であり、m2は0~2であり、R11は炭素数1~20のアルカンジイル基を表す。複数あるLはそれぞれ同じであっても異なっていてもよい。*はLと結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000013
 
(式(1b)中、R及びRは式(1)と同様であり、n5及びR11は式(1a)と同様である。*はLと結合する部位を示す。
Figure JPOXMLDOC01-appb-C000014
 
(式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
Figure JPOXMLDOC01-appb-C000015
 
(式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1又は2である。)
 (A)共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を有し、かつ活性重合末端に、上記一般式(1)~(3)のいずれかの化合物に由来する構造を有する。このような(A)共役ジエン系重合体は、まず、アルカリ金属化合物又はアルカリ土類金属化合物の存在下で共役ジエン化合物を含む単量体を重合して活性重合末端を有する重合体を得て(重合工程)、次いで、活性重合末端を有する重合体と、上記一般式(1)~(3)のいずれかの化合物(以下、「特定変性剤」ともいう。)と、を反応させることにより得ることができる(変性工程)。
<重合工程>
 重合に際して使用し得る共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンが好ましい。共役ジエン化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 (A)共役ジエン系重合体は、共役ジエン化合物の単独重合体であってもよいが、架橋重合体の強度を高める観点から、共役ジエン化合物と芳香族ビニル化合物との共重合体であることが好ましい。中でも、アニオン重合におけるリビング性が高い点において、1,3-ブタジエンとスチレンとをモノマー組成に含む共重合体であることが好ましい。(A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、(A)共役ジエン系重合体は、典型的には、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有し、さらに、共役ジエン化合物又は芳香族ビニル化合物に由来する構造単位からなるブロック部分を有していてもよい。
 重合に際して使用し得る芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、5-tert-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、tert-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-tert-ブチルスチレン、3-tert-ブチルスチレン、4-tert-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。これらの中でも、スチレン及びα-メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 (A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、芳香族ビニル化合物の含有量(芳香族ビニル含量)は、得られる架橋重合体の低ヒステリシスロス性とウェットグリップ性とのバランスを良好にする観点から、重合に使用する共役ジエン化合物及び芳香族ビニル化合物の合計100質量%中、3~55質量%とすることが好ましく、5~50質量%とすることがより好ましい。なお、(A)共役ジエン系重合体の芳香族ビニル含量は、H-NMRによって測定することができる。
 重合に際しては、共役ジエン化合物及び芳香族ビニル化合物以外の他のモノマーを使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヒドロキシエチル等が挙げられる。他のモノマーの使用量は、重合に使用するモノマーの全体量100質量%中、25質量%以下とすることが好ましく、15質量%以下とすることがより好ましく、10質量%以下とすることが特に好ましい。
 使用する重合方法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよいが、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。
 重合開始剤としては、アルカリ金属化合物又はアルカリ土類金属化合物を用いることができる。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等のアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、3-(ジメチルアミノ)プロピルリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム等が挙げられる。これらの中でも、リチウム化合物が好ましい。重合開始剤の合計の使用量は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。なお、重合開始剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
 また、重合反応は、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを混合して得られる化合物(以下、「変性開始剤」ともいう。)の存在下で行ってもよい。変性開始剤の存在下で重合を行うことにより、(A)共役ジエン系重合体の重合開始末端に、シリカと相互作用する官能基を導入することができる。なお、本明細書において「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。「シリカと相互作用する官能基」は、窒素原子、硫黄原子、リン原子及び酸素原子よりなる群から選択される少なくとも1種を有することが好ましい。
 変性開始剤としては、アルキルリチウム等のリチウム化合物と、第2級アミン化合物などの窒素含有化合物との反応生成物であることが好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルフォリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。なお、変性開始剤の存在下で重合を行う場合、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを予め混合することにより変性開始剤を調製し、その調製した変性開始剤を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを添加し、重合系中で両者を混合することにより変性開始剤を調製して重合を行ってもよい。又は、窒素含有のアルキルリチウム化合物を使用することもできる。窒素含有のアルキルリチウム化合物の具体例としては、3-ジメチルアミノプロピルリチウムとイソプレンとの反応物等を使用することができる。
 ランダマイザーは、重合体中におけるビニル結合(1,2-結合及び3,4-結合)の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。
 重合に使用する有機溶媒としては、反応に不活性な有機溶媒であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などを用いることができる。中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶液重合を用いる場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0℃~120℃であることがより好ましく、20℃~100℃であることが特に好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。こうした重合反応により、活性重合末端を有する共役ジエン系重合体を得ることができる。
 活性重合末端を有する共役ジエン系重合体において、共役ジエン化合物に由来する構造単位におけるビニル結合含量は、30~65モル%であることが好ましく、33~62モル%であることがより好ましく、35~60モル%であることが特に好ましい。ビニル結合含量が30モル%未満であると、グリップ特性が低くなり過ぎる傾向があり、65モル%を超えると、得られる架橋重合体の耐摩耗性が悪化しやすくなる傾向にある。なお、本明細書において「ビニル結合含量」は、共役ジエン系重合体中において、共役ジエン化合物に由来する全構造単位に対する、ビニル結合を有する構造単位の含有割合を示す値であり、H-NMRによって測定した値である。
<変性工程>
 次いで、上記重合反応により得られた共役ジエン系重合体につき、該重合体の活性重合末端と、下記一般式(1)~(3)で表される化合物(特定変性剤)とを反応させる。こうした工程を経ることにより、特定変性剤で末端変性された(A)共役ジエン系重合体を得ることができる。このような特定変性剤で末端変性された(A)共役ジエン系重合体は、末端変性部位においてフィラーとの相互作用が強くなるのでウェットグリップ性及び低ヒステリシスロス性が向上し、またイミンの持つ分岐特性によって加工性やフィラーの分散性も向上する。
Figure JPOXMLDOC01-appb-C000016
 
(式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、下記式(1a)で示される基、もしくは下記式(1b)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0又は1である。)
Figure JPOXMLDOC01-appb-C000017
 
(式(1a)中、L、R、R及びn2は式(1)と同様であり、n5は1又は2であり、m2は0~2であり、R11は炭素数1~20のアルカンジイル基を表す。複数あるLはそれぞれ同じであっても異なっていてもよい。*はLと結合する部位を示す。)
Figure JPOXMLDOC01-appb-C000018
 
(式(1b)中、R及びRは式(1)と同様であり、n5及びR11は式(1a)と同様である。*はLと結合する部位を示す。)
 上記式(1)において、L及びLの炭素数1~20のヒドロカルビレン基としては、炭素数1~20の直鎖状又は分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基、炭素数6~20のアリーレン基等が挙げられる。上記式(1)において、R及びRの炭素数1~4のヒドロカルビル基としては、炭素数1~4の直鎖状又は分岐状のアルキル基、炭素数3~4のシクロアルキル基が挙げられる。
 上記一般式(1)で表される化合物の具体例としては、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリメトキシシリルプロピル)アミン、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミン、N,N-ビス(トリメトキシシリル)アミノプロピルメチルジエチルシラン、N,N,N-トリス(トリエトキシシリルプロピル)アミン、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパン、N-(3-(2,2-ジエトキシ-1,2-アザシロリジン-1-イル)プロピル)-N,N’,N’-トリス(3-(トリエトキシシリル)プロピル)プロパン-1,3-ジアミン、N,N-ビス(3-(2,2-ジエトキシ-1,2-アザシロリジン-1-イル)プロピル)-N’,N’-ビス(3-(トリエトキシシリル)プロピル)プロパン-1,3-ジアミン、3-(2,2-ジエトキシ-1,2-アザシロリジン-1-イル)-N,N-ビス(3-(トリエトキシシリル)プロピル)プロパン-1-アミン等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 
(式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
 上記式(2)において、Zは、窒素原子を含んでもよい炭素数1~20の2価もしくは3価の基であるが、窒素原子を含んでいることが好ましい。上記式(2)において、Lの炭素数1~20のヒドロカルビレン基及びLの炭素数1~20のヒドロカルビレン基としては、炭素数1~20の直鎖状又は分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基、炭素数6~20のアリーレン基等が挙げられる。上記式(2)において、R及びRの炭素数1~4のヒドロカルビル基としては、炭素数1~4の直鎖状又は分岐状のアルキル基、炭素数3~4のシクロアルキル基が挙げられる。
 上記一般式(2)で表される化合物の具体例としては、下記式(M-1)~(M-4)で示される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 
 上記式(M-1)中、R12は水素原子又は炭素数1~20のアルキル基を表し、n6は1~10の整数を表す。
Figure JPOXMLDOC01-appb-C000021
 
(式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1又は2である。)
 上記式(3)において、R及びRの炭素数1~20のヒドロカルビル基としては、炭素数1~20の直鎖状又は分岐状のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基等が挙げられる。
 上記一般式(3)で表される化合物の具体例としては、N-フェニル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-(3-トリメトキシシリルプロピル)-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N-(3-トリエトキシシリルプロピル)-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン等が挙げられる。
 なお、活性重合末端を有する共役ジエン系重合体の変性反応に際しては、特定変性剤を単独で使用してもよいが、特定変性剤とともに特定変性剤以外の変性剤(以下、「その他の変性剤」ともいう。)を使用してもよい。その他の変性剤は、フィラーと相互作用する官能基を有し、かつ重合体の活性重合末端と反応し得る化合物であれば特に限定されない。
 上記の変性反応は、例えば溶液反応として行うことができる。この溶液反応は、重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共役ジエン系重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、変性反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、変性剤の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられる。
 特定変性剤の使用割合(二種以上使用する場合にはその合計量)は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、0.2モル以上とすることが好ましく、0.4モル以上とすることがより好ましい。0.2モル以上とすることにより、特定変性剤による重合体末端の変性反応を十分に進行させることができ、末端変性部位におけるフィラーとの相互作用を十分に強くすることができる。また、変性反応後における溶液中の未反応物を少なくする点で、特定変性剤の使用割合の上限値は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、1.5モル未満とすることが好ましく、1.2モル未満とすることがより好ましい。
 なお、変性反応に際し、特定変性剤とその他の変性剤とを併用する場合、その他の変性剤の使用割合は、共役ジエン系重合体と特定変性剤との反応を十分に進行させる観点から、特定変性剤とその他の変性剤との合計の使用割合に対して、30モル%以下とすることが好ましく、20モル%以下とすることがより好ましく、10モル%以下とすることが特に好ましい。
 変性反応の温度は、通常、重合反応の温度と同じであり、-20℃~150℃とすることが好ましく、0℃~120℃とすることがより好ましく、20℃~100℃とすることが特に好ましい。変性反応の温度が低いと、変性後の共役ジエン系重合体の粘度が上昇する傾向がある。一方、変性反応の温度が高いと、重合体の活性末端が失活しやすくなる。変性反応の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
 反応溶液に含まれる(A)共役ジエン系重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。得られた(A)共役ジエン系重合体は、必要に応じて伸展油等を添加することによりムーニー粘度を調整してもよい。この処理により、加工性を良好にすることができる。伸展油としては、例えばアロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の配合量は、重合に用いるモノマー等に応じて適宜設定すればよいが、例えば共役ジエン系重合体100質量部に対し、10~50質量部である。
 このようにして、(A)共役ジエン系重合体を得ることができる。(A)共役ジエン系重合体によれば、フィラーとの相容性を向上させることができ、加工性及びフィラーの分散性が改善された重合体組成物を得ることができる。このような(A)共役ジエン系重合体を含有する重合体組成物を用いることで、自動車タイヤ等の用途において求められる低ヒステリシスロス性及びウェットグリップ性に優れたタイヤ(架橋重合体)を得ることができる。
 (A)共役ジエン系重合体は、該重合体の少なくとも片末端に、上記一般式(1)~(3)のいずれかの化合物に由来する構造を有することが好ましい。(A)共役ジエン系重合体がこのような構造を有することにより、例えばタイヤ用途に適用した場合に、カーボンブラックやシリカ等のフィラーの分散性がより改善され、低ヒステリシスロス性及びウェットグリップ性において、より高い改善効果を奏する点で好ましい。
 (A)共役ジエン系重合体のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは100,000~2,000,000である。Mwが100,000よりも小さいと、得られる重合体組成物の架橋重合体において、低ヒステリシスロス性及び耐摩耗性が低下しやすい傾向にあり、2,000,000よりも大きいと、重合体組成物の加工性が低下しやすい傾向にある。得られる(A)共役ジエン系重合体の重量平均分子量(Mw)は、より好ましくは150,000~1,500,000であり、さらに好ましくは200,000~1,000,000である。
 (A)共役ジエン系重合体の分子量分布、すなわち重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.5~3.0であり、より好ましくは1.5~2.5であり、特に好ましくは1.5~2.2である。(A)共役ジエン系重合体の分子量分布が前記範囲にあると、より優れた低ヒステリシスロス性、耐摩耗性、ウェットグリップ性能及び機械的特性が得られやすい。
 1.1.2.(B)塩基性化合物
 (B)塩基性化合物は、酸解離定数(pKa)が8.0以上の化合物である。(A)共役ジエン系重合体と(B)塩基性化合物とを共に混練することにより、混練時間を短縮することができる。これは、(B)塩基性化合物が存在することにより、(A)共役ジエン系重合体の官能基同士の会合状態の解れを促進しているためと考えられる。また、後述する第2の工程において、(A)共役ジエン系重合体と架橋剤との結合が促進されやすくなる。
 (B)塩基性化合物としては、アミン化合物が好適に用いられる。このようなアミン化合物の具体例としては、ピロール(pKa=23.0)、インドール(pKa=21.0)、カルバゾール(pKa=19.9)、ピラゾール(pKa=19.8)、イミダゾール(pKa=14.4)、グアニジン(pKa=13.7)、1,1,3,3-テトラメチルグアニジン(pKa=13.6)、ピペリジン(pKa=11.2)、キヌクリジン(pKa=11.0)、シクロヘキシルアミン(pKa=10.6)、1,3-ジフェニルグアニジン(pKa=10.1)、ピペラジン(pKa=9.8)、1,2,3-トリアゾール(pKa=9.3)、プリン(pKa=8.9)、トリエチレンジアミン(pKa=8.8)、モルフォリン(pKa=8.4)、及びこれらの誘導体が挙げられる。これらのアミン化合物の中でも、(A)共役ジエン系重合体と架橋剤との結合が促進されやい点で、グアニジン、1,3-ジフェニルグアニジン、1,1,3,3-テトラメチルグアニジン等のグアニジン系化合物が好適に用いられる。
 また、(B)塩基性化合物としては、長鎖アルキル基又は長鎖アルケニル基を有する脂肪族アミン化合物も好適に用いられる。長鎖アルキル基又は長鎖アルケニル基を有する脂肪族アミン化合物の例としては、R-NH、R-N(CH、もしくはR-NH(CHNHで表される化学構造(R;炭素数10以上24以下のアルキル基又は炭素数10以上24以下のアルケニル基、x;1以上5以下の整数)を有する化合物、及びその酢酸塩が挙げられる。具体的には、1-アミノウンデカン、ステアリルアミン、ジメチルステアリルアミン、ラウリルアミン、ジメチルラウリルアミン、オレイルアミン、ジメチルオクチルアミン、牛脂プロピレンジアミン、ステアリルアミンアセテート、及びこれらの酢酸塩等が挙げられる。これらの長鎖アルキル基又は長鎖アルケニル基を有する脂肪族アミン化合物は、1種単独でまたは2種以上組み合わせて用いることができる。これらの中では、原料の入手容易性、及び取扱性の観点からステアリルアミン(pKa=10.6)が好ましい。
 (B)塩基性化合物は、第1の工程において、複数の化合物、具体的には塩基性化合物を生成するための化合物(生成用化合物)の複数が(A)共役ジエン系重合体と共に混練されることにより生成されたものであってもよい。ここに、第1の工程において、第1の工程に供される(B)塩基性化合物は、その全てが複数の生成用化合物から生成されたものであってもよく、またその一部が複数の生成用化合物から生成されたものであってもよい。
 複数の生成用化合物としては、スルフェンアミド系化合物とチアゾール系化合物との組み合わせが好適に用いられる。複数の生成用化合物としてスルフェンアミド系化合物とチアゾール系化合物とを、(A)共役ジエン系重合体を含む組成物に添加し、所定条件で混練することにより、ジスルフィド化合物とアミン化合物とが生成する。そして、生成したアミン化合物が塩基性化合物として、(A)共役ジエン系重合体と共に混練される。
 生成用化合物を構成するスルフェンアミド系化合物としては、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(CBS)、N-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミド(TBBS)、N-モルホリノ-2-ベンゾチアゾールスルフェンアミド(MBS)等が挙げられる。これらの化合物は、1種単独でまたは2種以上を組み合わせて用いることができる。
 また、生成用化合物を構成するチアゾール系化合物としては、2-メルカプトベンゾチアゾール(MBT)等が挙げられる。
 スルフェンアミド系化合物とチアゾール系化合物との組み合わせとしては、入手容易性、生成する塩基性化合物の安定性から、シクロヘキシルアミン(pKa=10.6)を生成する、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(CBS)と2-メルカプトベンゾチアゾリル(MBT)との組み合わせが好ましい。
 (B)塩基性化合物の使用割合は、重合体成分100質量部に対して、好ましくは0.5~10質量部であり、より好ましくは0.8~8質量部であり、特に好ましくは1~5質量部である。(B)塩基性化合物の使用割合が前記範囲にあると、得られる重合体組成物から形成される架橋重合体に十分な機械的強度及び耐摩耗性を与えることができる。
 1.1.3.その他の成分
 第1の工程においては、必須成分である、(A)共役ジエン系重合体、及び、(B)塩基性化合物の他、必要に応じて任意成分をさらに添加して混練してもよい。
 重合体成分においては、必須成分である、(A)共役ジエン系重合体以外の任意成分として、例えば、天然ゴム、ブタジエンゴム、ブチルゴム、合成イソプレンゴム、スチレン-ブタジエン共重合ゴム、エチレン-α-オレフィン共重合ゴム、エチレン-α-オレフィン-ジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、クロロプレンゴム及びハロゲン化ブチルゴム、並びにこれらの混合物などの他の重合体成分が含有されていてもよい。これらの中でも、得られる架橋重合体(タイヤ)において、耐摩耗性を維持しつつ、低ヒステリシスロス性とウェットグリップ性とのバランスを高次に達成できるという理由から、天然ゴムあるいはブタジエンゴムを含有することが好ましい。他の重合体成分の使用割合は、重合体成分100質量%中、10~45質量%であることが好ましい。
 重合体成分以外の任意成分としては、例えば、シリカやカーボンブラック等のフィラー、シランカップリング剤、伸展油、老化防止剤等が挙げられる。
<シリカ>
 シリカとしては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらの中では、湿式シリカが好ましい。
 シリカの使用割合は、重合体成分100質量部に対して、好ましくは10~200質量部であり、より好ましくは20~130質量部であり、特に好ましくは25~110質量部である。シリカの含有割合が前記範囲にあると、得られる架橋重合体(タイヤ)の低ヒステリシスロス性及びウェットグリップ性を高度にバランスに優れたものとすることができる。
<シランカップリング剤>
 シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン;3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。これらの化合物は、1種単独でまたは2種以上組み合わせて用いることができる。また、これらの中では、補強性改善効果などの観点から、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好ましい。
 シランカップリング剤の使用割合は、シリカ100質量部に対して、好ましくは0.5~20質量部である。シランカップリング剤の使用割合が前記範囲にあると、重合体組成物から形成される架橋重合体に十分な補強性及び耐破壊特性を付与することができ、架橋重合体の耐摩耗性を向上できる場合がある。
<カーボンブラック>
 カーボンブラックとしては、一般的にフィラーとして用いられているカーボンブラックを用いることができる。カーボンブラックの具体例としては、例えば、GPF、FEF、HAF、ISAF、SAFなどが挙げられる。これらの中では、ISAF、SAF、HAFが好ましく、ISAFがより好ましい。
 カーボンブラックの使用割合は、重合体成分100質量部に対して、好ましくは0.5~100質量部であり、より好ましくは1~50質量部である。
<伸展油>
 伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の使用割合は、重合体成分100質量部に対して、好ましくは0~50質量部である。
<老化防止剤>
 老化防止剤としては、例えば、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン等が挙げられる。老化防止剤の使用割合は、重合体成分100質量部に対して、好ましくは0.5~5質量部である。
 1.2.第2の工程
 第2の工程は、前記第1の工程において得られた混練物に、少なくとも架橋剤を添加し、当該混練物と架橋剤とを混練し、(A)共役ジエン系重合体と(B)塩基性化合物と架橋剤とを含有する混練物、すなわち重合体組成物を得る工程である。
 この第2の工程においては、第1の工程において得られた混練物と架橋剤と共に、酸性化合物が混練されることが好ましい。
 また、第2の工程においては、必要に応じて、加硫助剤や加硫促進剤((B)塩基性化合物や生成用化合物が加硫促進効果を有するものである場合は、当該(B)塩基性化合物及び生成用化合物以外の化合物に係る加硫促進剤)も共に混練される。ここに、第1の工程において、生成用化合物として加硫促進効果を有するものを用いた場合には、第2の工程においては加硫促進剤を用いないことが好ましい。
 そして、第2の工程においては、通常、当該第2の工程に供される全ての成分(具体的には、第1の工程において得られた混練物、架橋剤、並びに、必要に応じて供される、酸性化合物及び加硫助剤や加硫促進剤等のその他の成分)を一斉に混練する手法によって重合体組成物が得られる。
 第2の工程に酸性化合物を供することによれば、得られる重合体組成物がより加工性に優れたものとなり、また、重合体組成物から形成される架橋重合体が、より優れた低ヒステリシスロス性を有するものとなる。さらに、重合体組成物がフィラー(具体的には、シリカ及びカーボンブラック)を含有する場合においては、フィラーの分散性をより良好なものとすることができる。
 第2の工程においては、第1の工程において用いられた混練機を用いることができる。また、第2の工程において、混練温度は、30℃~130℃とされ、好ましくは50℃~110℃である。第2の工程の混練温度が130℃以上である場合には、得られる重合体組成物の加工性が悪化するおそれがある。
 以下、第2の工程で用いられる各成分について詳細に説明する。
<架橋剤>
 架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等の加硫剤が挙げられる。これらの中では、通常、架橋剤としては硫黄が用いられる。
 架橋剤の使用割合は、重合体成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.5~5質量部である。架橋剤の使用割合が前記範囲にあると、混練中に架橋が進行するのを抑制できると共に、得られる架橋重合体の物性が良好なものとなる。架橋剤として前述した加硫剤を用いる場合においては、加硫促進剤を併用することができる。
<酸性化合物>
 酸性化合物としては、炭素数12~24の飽和脂肪酸及びそれらの金属塩が好適に用いられる。酸性化合物の具体例としては、ラウリル酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘンイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸、及びこれらの飽和脂肪酸の、カルシウム塩、亜鉛塩などが挙げられる。これらの酸性化合物は、1種単独でまたは2種以上組み合わせて用いることができる。これらの中では、ステアリン酸が好ましい。酸性化合物の使用割合は、重合体成分100質量部に対して、好ましくは0.3~15質量部である。
<加硫助剤>
 加硫助剤としては、例えば、酸化亜鉛等が挙げられる。加硫助剤の使用割合は、重合体成分100質量部に対して、好ましくは1~5質量部である。
<加硫促進剤>
 加硫促進剤としては、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。加硫促進剤の好ましい具体例としては、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N-テトラ-ブチル-2-ベンゾチアジルスルフェンアミド(TBBS)等のスルフェンアミド系加硫促進剤が挙げられる。加硫促進剤の使用割合は、塩基性化合物の種類及び使用割合を考慮して適宜に定められるが、重合体成分100質量部に対して、好ましくは0.5~5質量部である。
 1.3.作用効果
 以上のような本実施形態に係る製造方法によって得られる重合体組成物は、未加硫の重合体組成物であり、例えば加硫などの架橋処理をすることによって架橋重合体が形成されるものである。
 そして、本実施形態に係る重合体組成物の製造方法においては、(A)共役ジエン系重合体と共に(B)塩基性化合物を混練し、得られた混練物と架橋剤とを混練する。そのため、重合体成分として(A)共役ジエン系重合体が配合されてなるものであっても、(A)共役ジエン系重合体の有する優れた低燃費性能を維持しつつ、加工性を向上させることができる。また、得られる重合体組成物がフィラーを含有する場合においては、当該フィラーの分散性を向上させることができる。
 したがって、本実施形態に係る重合体組成物の製造方法によれば、優れた加工性が得られ、またフィラーを含有する場合においては当該フィラーに良好な分散性が得られる、(A)共役ジエン系重合体を含有する重合体組成物を得ることができる。
 このような本実施形態に係る重合体組成物の製造方法の効果は、共役ジエン系重合体が、活性重合末端と上記一般式(1)~(3)のいずれかで表される化合物との反応生成物である場合において顕著である。
 1.4.用途
 本実施形態に係る製造方法によって得られる重合体組成物から形成される架橋重合体は、タイヤ、具体的にはタイヤのトレッドとして好適に用いられる。こうして得られたタイヤには、トレッドに高い強度が得られ、またトレッドに所望の形状が得られるため、優れた性能が得られる。また、前記架橋重合体は、トレッド以外のタイヤ部材、防振ゴム、防舷材、ベルト、ホース、及びその他の工業品などとして用いることもできる。
 2.実施例
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記製造例、実施例及び比較例中の「%」は、特に断りのない限り質量基準である。
 2.1.(A)共役ジエン系重合体の製造例及び物性測定
<製造例1>
 窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2500g、ビニル基含量調整剤(ランダマイザー)としてテトラヒドロフラン50g、並びに、モノマーとしてスチレン125g及び1,3-ブタジエン365gを仕込んだ。反応器の内容物の温度を10℃に調整した後、重合開始剤としてn-ブチルリチウム5.20mmolを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
 重合転化率が99%に達した時点(重合開始から25分経過後)で、1,3-ブタジエン10gを1分間かけて追加し、その後、変性剤としてN-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミン1.15mmolを加えて15分間反応を行った。ここに、変性剤を加える直前において、変性前の重合体の重量平均分子量を測定するためのサンプリングを行った。
 得られた変性共役ジエン系共重合体を含む重合体溶液に、老化防止剤として2,6-ジ-tert-ブチル-p-クレゾールを4.40g添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥を行うことにより変性共役ジエン系共重合体(以下、「SBR-1」ともいう。)を得た。
<製造例2>
 製造例1において、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミンに代えて、トリス(3-トリエトキシシリルプロピル)アミンを0.767mmol添加した以外は同様の操作を行い、変性共役ジエン系共重合体(以下、「SBR-2」ともいう。)を得た。
<製造例3>
 製造例1において、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミンに代えて、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパンを0.575mmol添加した以外は同様の操作を行い、変性共役ジエン系共重合体(以下、「SBR-3」ともいう。)を得た。
<製造例4>
 製造例1において、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミンに代えて、3-(2,2-ジエトキシ-1,2-アザシロリジン-1-イル)-N,N-ビス(3-(トリエトキシシリル)プロピル)プロパン-1-アミンを0.767mmol添加した以外は同様の操作を行い、変性共役ジエン系共重合体(以下、「SBR-4」ともいう。)を得た。
<製造例5>
 製造例1において、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミンに代えて、ジメチルジエトキシシランを2.30mmol添加した以外は同様の操作を行い、共役ジエン系共重合体(以下、「SBR-5」ともいう。)を得た。
<結合スチレン含量(スチレンに由来する構造単位の含有割合)>
 500MHzのH-NMRによって求めた。
<ビニル基含量>
 500MHzのH-NMRによって求めた。
<変性前の重量平均分子量(Mw)の測定>
 ゲルパーミエーションクロマトグラフィー(GPC)(東ソー社製の「HLC-8120」)を用い、下記のGPC条件で得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ポリスチレン換算の重量平均分子量(Mw)を算出した。
(GPC条件)
 カラム:商品名「GMHXL」(東ソー社製)2本
 カラム温度:40℃
 移動相:テトラヒドロフラン
 流速:1.0ml/分
 サンプル濃度:10mg/20ml
<ムーニー粘度>
 JIS K6300-1に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で求めた。
 得られた共役ジエン系重合体SBR-1~SBR-5について、重合処方を下表1に示し、また物性を下表2に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 2.2.実施例1~3、5~8及び比較例1~6
 下表3に示す配合処方により各成分を配合し、それらを混練することによって重合体組成物を製造した。混練は以下の方法で行った。
 温度制御装置を付属したプラストミル(内容量:250mL)を使用し、第1の工程(一段目の混練)として、回転数60rpm、混練時間4分の条件で、下表3に従って配合した各成分、すなわち第1の工程に供すべき全ての成分を一斉に混練した。
 次いで、第2の工程(二段目の混練)として、上記の第1の工程で得られた混練物を室温まで冷却後、温度制御装置を付属したプラストミルに下表3に従って第2の工程に供すべき各成分を配合し、回転数60rpm、混練時間1.5分の条件で混練することにより、各重合体組成物を得た。
 次に、得られた各重合体組成物を成型し、160℃で所定時間、加硫プレスにて加硫成型を行うことにより、下記の評価試験に供する所定の形状を有する各架橋重合体を得た。
 2.3.実施例4
 下表3に示す配合処方により各成分を配合し、それらを混練することによって重合体組成物を製造した。混練は以下の方法で行った。
 温度制御装置を付属したプラストミル(内容量:250mL)を使用し、第1の工程(一段目の混練)として、回転数60rpm、混練時間2分の条件で、下表3に従って配合した、シランカップリング剤以外の各成分を混練した後、シランカップリング剤を添加配合し、回転数60rpm、混練時間2分の条件で更に混練した。
 次いで、第2の工程(二段目の混練)として、上記の第1の工程で得られた混練物を室温まで冷却後、温度制御装置を付属したプラストミルに下表3に従って第2の工程に供すべき各成分を配合し、回転数60rpm、混練時間1.5分の条件で混練することにより、各重合体組成物を得た。
 次に、得られた各重合体組成物を成型し、160℃で所定時間、加硫プレスにて加硫成型を行うことにより、下記の評価試験に供する所定の形状を有する各架橋重合体を得た。
 2.4.評価方法
 上記で得られた各重合体組成物及び各架橋重合体について、以下の評価試験を行った。結果を下表3に示す。
<加工性評価試験>
 上記で得られた加硫前の、第1の工程(一段目の混練)において得られた混練物及び第2の工程(二段目の混練)において得られた混練物を測定試料とし、各測定試料について、ムーニー粘度(ML1+4、100℃)を測定した。下表3においては、ムーニー粘度(ML1+4、100℃)の測定値を、比較例1に係る測定値を基準として100とした場合の指数が示されている。その指数によれば、数値が大きいほど加工性が良好であることを示す。
<低ヒステリシスロス性能(60℃tanδ)>
 上記で得られた架橋重合体を測定試料とし、ARES粘弾性試験装置(TAインスツルメント社製)を使用し、せん断動歪3.0%、角速度100ラジアン毎秒、温度60℃の条件で、60℃tanδを測定した。下表3においては、比較例1に係る測定値を100としたときの指数が示されており、その指数によれば、数値が大きいほど低ヒステリシスロス性が小さくて良好であることを示す。
<フィラー分散性>
 上記で得られた架橋重合体を測定試料とし、ARES粘弾性試験装置(TAインスツルメント社製)を使用し、角速度100ラジアン毎秒、50℃の条件にて、せん断動歪0.1%における弾性率とせん断動歪10.0%における弾性率との弾性率差ΔG’を測定した。下表3においては、弾性率差ΔG’の測定値を、比較例1に係る測定値を100とした場合の指数が示されている。その指数によれば、数値が大きいほどフィラーの分散性が良好であることを示す。
 2.5.評価結果
 下表3に、各重合体組成物の製造における各工程で用いた成分及び配合割合、並びに各評価結果を示す。
Figure JPOXMLDOC01-appb-T000024
 上表3中、重合体組成物の組成中の各成分の数値は質量部を表す。なお、上表3に示す各材料は、それぞれ以下の商品を用いた。
・塩基性化合物A:東京化成工業社製、テトラヒドロ-1,4-オキサジン(モルフォリン)、pKa=8.4
・塩基性化合物B:大内新興化学工業社製、商品名「ノクセラーD」、1,3-ジフェニルグアニジン、pKa=10.1
・塩基性化合物C:東京化成工業社製、アニリン、pKa=4.6
・ポリブタジエンゴム:JSR社製、商品名「BR-01」
・伸展油:ジャパンエナジー社製、商品名「JOMOプロセス NC-140」
・シリカ:ソルベイ社製、商品名「ZEOSIL 1165MP」
・シランカップリング剤:エボニック社製、商品名「Si75」、ビス(3-トリエトキシシリルプロピル)ジスルフィド
・老化防止剤:精工化学社製、商品名「オゾノン6C」、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
・ステアリン酸:日油社製、商品名「ビーズステアリン酸つばき」
・酸化亜鉛:三井金属鉱業社製、商品名「亜鉛華1号」
・加硫促進剤D:大内新興化学工業社製、商品名「ノクセラーD」、1,3-ジフェニルグアニジン
・加硫促進剤CZ:大内新興化学工業社製、商品名「ノクセラーCZ」、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
・硫黄:鶴見化学工業社製、商品名「金華印油入微粉硫黄」
 上表3の結果から、実施例1~8に係る重合体組成物の製造方法によれば、優れた加工性が得られ、フィラーの分散性にも優れた重合体組成物が得られることが確認され、更に、当該重合体組成物から形成される架橋重合体は、優れた低ヒステリシスロス特性を有することが確認された。
 そして、実施例3~4、6に係る重合体組成物の製造方法のように第2の工程に酸性化合物を供すること、又は、実施例4に係る重合体組成物の製造方法のようにシランカップリング剤を後添加することにより、加工性及びフィラーの分散性により一層優れることが確認され、当該重合体組成物から形成される架橋重合体は、より優れた低ヒステリシスロス特性を有することが確認された。
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 

Claims (8)

  1.  (A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)~(3)のいずれかで表される化合物との反応生成物である、共役ジエン系重合体、及び、(B)酸解離定数が8.0以上の塩基性化合物を混練する第1の工程と、
     前記第1の工程において得られた混練物、及び、架橋剤を混練する第2の工程と、
    を有する、重合体組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Aは、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、スルフィドもしくはポリスルフィドでLと結合した1価の基であるか、又は、保護された一級アミノ基、保護された二級アミノ基、三級アミノ基、ニトリル基、ピリジル基、(チオ)エポキシ基、(チオ)イソシアネート基、(チオ)ホルミル基、(チオ)カルボン酸エステル、(チオ)カルボン酸エステルの金属塩、カルボン酸ハロゲン化合物、イミダゾリル基、下記式(1a)で示される基、もしくは下記式(1b)で示される基を表し、L及びLはそれぞれ独立に単結合もしくは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n2は0~3であり、m1は0または1である。)
    Figure JPOXMLDOC01-appb-C000002
     
    (式(1a)中、L、R、R及びn2は式(1)と同様であり、n5は1又は2であり、m2は0~2であり、R11は炭素数1~20のアルカンジイル基を表す。複数あるLはそれぞれ同じであっても異なっていてもよい。*はLと結合する部位を示す。)
    Figure JPOXMLDOC01-appb-C000003
     
    (式(1b)中、R及びRは式(1)と同様であり、n5及びR11は式(1a)と同様である。*はLと結合する部位を示す。)
    Figure JPOXMLDOC01-appb-C000004
     
    (式(2)中、Aはそれぞれ独立に、イミノ基、アミド基、(チオ)カルボニル基、(チオ)カルボニルオキシ基、二級アミノ基、又は三級アミノ基を表し、Zは窒素原子を含む又は含まない炭素数1~20のt価の基を表し、Lは単結合又は炭素数1~20のヒドロカルビレン基を表し、Lは炭素数1~20のヒドロカルビレン基を表し、R及びRはそれぞれ独立に炭素数1~4のヒドロカルビル基を表し、n3は0又は1であり、tは2又は3である。)
    Figure JPOXMLDOC01-appb-C000005
     
    (式(3)中、R及びRは、それぞれ独立に炭素数1~20のヒドロカルビル基を表し、Rは、炭素数1~20のヒドロカルビル基、アルキル基が有する水素原子及び-CH-の少なくとも1個がケイ素、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む基で置換された炭素数1~20の置換アルキル基であるか、又は窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を含む炭素数6~20の芳香族基を表し、R10は、炭素数1~20のアルカンジイル基を表す。n4は1又は2である。)
  2.  前記酸解離定数が8.0以上の塩基性化合物がアミン化合物である、請求項1に記載の重合体組成物の製造方法。
  3.  前記酸解離定数が8.0以上の塩基性化合物がグアニジン系化合物である、請求項1または請求項2に記載の重合体組成物の製造方法。
  4.  前記第2の工程において、前記混練物と前記架橋剤と共に、酸性化合物を混練する、請求項1に記載の重合体組成物の製造方法。
  5.  前記酸性化合物が、炭素数12~24の飽和脂肪酸である、請求項4に記載の重合体組成物の製造方法。
  6.  前記第1の工程において、前記共役ジエン系重合体と前記酸解離定数が8.0以上の塩基性化合物と共に、シリカを混練する、請求項1ないし請求項5のいずれか一項に記載の重合体組成物の製造方法。
  7.  前記第1の工程において、前記共役ジエン系重合体と前記酸解離定数が8.0以上の塩基性化合物と前記シリカとを混練し、その後、シランカップリング剤を添加して更に混練する、請求項6に記載の重合体組成物の製造方法。
  8.  前記架橋剤が硫黄である、請求項1ないし請求項7のいずれか一項に記載の重合体組成物の製造方法。
     
PCT/JP2020/044999 2019-12-06 2020-12-03 重合体組成物の製造方法 WO2021112167A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227020161A KR20220101678A (ko) 2019-12-06 2020-12-03 중합체 조성물의 제조 방법
EP20897104.4A EP4071208A4 (en) 2019-12-06 2020-12-03 METHOD FOR MAKING A POLYMER COMPOSITION
CN202080083710.9A CN114761482A (zh) 2019-12-06 2020-12-03 聚合物组合物的制造方法
JP2021562710A JPWO2021112167A1 (ja) 2019-12-06 2020-12-03
US17/782,943 US20230033703A1 (en) 2019-12-06 2020-12-03 Polymer composition production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019221071 2019-12-06
JP2019-221071 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112167A1 true WO2021112167A1 (ja) 2021-06-10

Family

ID=76222344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044999 WO2021112167A1 (ja) 2019-12-06 2020-12-03 重合体組成物の製造方法

Country Status (7)

Country Link
US (1) US20230033703A1 (ja)
EP (1) EP4071208A4 (ja)
JP (1) JPWO2021112167A1 (ja)
KR (1) KR20220101678A (ja)
CN (1) CN114761482A (ja)
TW (1) TW202124483A (ja)
WO (1) WO2021112167A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136746A (ja) * 2011-12-22 2013-07-11 Goodyear Tire & Rubber Co:The 官能化ポリブタジエン及び官能化スチレン/ブタジエンエラストマーを含有するゴム部品を有するタイヤ
JP2016008286A (ja) * 2014-06-26 2016-01-18 東洋ゴム工業株式会社 ゴム組成物の製造方法、ゴム組成物、クッションゴム及び更生タイヤ
JP2018123225A (ja) * 2017-01-31 2018-08-09 旭化成株式会社 ヒステリシスロスが改良されたゴム組成物、加硫物、及びゴム組成物の製造方法
JP2018177894A (ja) * 2017-04-06 2018-11-15 株式会社ブリヂストン ゴム組成物及びタイヤ
WO2019117214A1 (ja) * 2017-12-14 2019-06-20 株式会社ブリヂストン ゴム組成物およびタイヤ
JP2019206697A (ja) * 2018-05-29 2019-12-05 Jsr株式会社 重合体組成物及びその製造方法、並びにタイヤ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050203251A1 (en) * 2004-03-11 2005-09-15 Sumitomo Chemical Company, Limited Process for producing modified diene polymer rubber
CN105658676B (zh) 2013-10-17 2017-07-04 Lg化学株式会社 改性的基于共轭二烯的聚合物,其制备方法以及包含所述聚合物的橡胶组合物
JP6928282B2 (ja) * 2017-08-18 2021-09-01 Jsr株式会社 ゴム組成物の製造方法
TW202116900A (zh) * 2019-09-10 2021-05-01 日商Jsr股份有限公司 聚合物組成物、交聯聚合物及輪胎

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136746A (ja) * 2011-12-22 2013-07-11 Goodyear Tire & Rubber Co:The 官能化ポリブタジエン及び官能化スチレン/ブタジエンエラストマーを含有するゴム部品を有するタイヤ
JP2016008286A (ja) * 2014-06-26 2016-01-18 東洋ゴム工業株式会社 ゴム組成物の製造方法、ゴム組成物、クッションゴム及び更生タイヤ
JP2018123225A (ja) * 2017-01-31 2018-08-09 旭化成株式会社 ヒステリシスロスが改良されたゴム組成物、加硫物、及びゴム組成物の製造方法
JP2018177894A (ja) * 2017-04-06 2018-11-15 株式会社ブリヂストン ゴム組成物及びタイヤ
WO2019117214A1 (ja) * 2017-12-14 2019-06-20 株式会社ブリヂストン ゴム組成物およびタイヤ
JP2019206697A (ja) * 2018-05-29 2019-12-05 Jsr株式会社 重合体組成物及びその製造方法、並びにタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071208A4 *

Also Published As

Publication number Publication date
EP4071208A4 (en) 2023-01-18
TW202124483A (zh) 2021-07-01
EP4071208A1 (en) 2022-10-12
JPWO2021112167A1 (ja) 2021-06-10
KR20220101678A (ko) 2022-07-19
CN114761482A (zh) 2022-07-15
US20230033703A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
KR102594509B1 (ko) 중합체 조성물, 가교 중합체 및, 타이어
TWI829906B (zh) 氫化共軛二烯系聚合物、聚合物組成物、交聯體及輪胎
WO2021020189A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JPWO2017026288A1 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
JP6885079B2 (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ
JP2016074880A (ja) ゴム組成物および空気入りタイヤ
KR102619412B1 (ko) 중합체 조성물, 가교 중합체 및, 타이어
JP7366050B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP7194641B2 (ja) 重合体組成物及びその製造方法、並びにタイヤ
JP6330578B2 (ja) 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体並びにタイヤ
JP2018119106A (ja) 変性共役ジエン系重合体の製造方法、重合体組成物、架橋重合体及びタイヤ
WO2021112167A1 (ja) 重合体組成物の製造方法
JP7458373B2 (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2018199280A1 (ja) 架橋ゴム及びタイヤ
WO2021125259A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2022024219A1 (ja) 重合体組成物、架橋重合体、及びタイヤ
JP2020180218A (ja) 重合体組成物、架橋重合体、及びタイヤ
WO2021256419A1 (ja) 重合体組成物、架橋重合体、及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562710

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020161

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897104

Country of ref document: EP

Effective date: 20220706