WO2021124853A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2021124853A1
WO2021124853A1 PCT/JP2020/044495 JP2020044495W WO2021124853A1 WO 2021124853 A1 WO2021124853 A1 WO 2021124853A1 JP 2020044495 W JP2020044495 W JP 2020044495W WO 2021124853 A1 WO2021124853 A1 WO 2021124853A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding surface
fitting
fitting shaft
groove
shaft portion
Prior art date
Application number
PCT/JP2020/044495
Other languages
English (en)
French (fr)
Inventor
増田 正典
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20901818.3A priority Critical patent/EP4056849A4/en
Priority to CN202080083539.1A priority patent/CN114761691B/zh
Publication of WO2021124853A1 publication Critical patent/WO2021124853A1/ja
Priority to US17/842,254 priority patent/US11674514B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/605Shaft sleeves or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0078Fixing rotors on shafts, e.g. by clamping together hub and shaft

Definitions

  • This disclosure relates to a compressor.
  • a compressor having a compression mechanism having a cylinder in which a tubular piston is housed in the cylinder and a drive shaft having an eccentric portion fitted to the piston, in which the piston rotates eccentrically in the cylinder.
  • the sliding surface that receives a large load when compressing a working fluid such as a refrigerant is a sliding surface with a wide axial width (hereinafter referred to as the first sliding surface), and the sliding surface on the opposite load side is the shaft.
  • a sliding surface having a narrow direction width hereinafter referred to as a second sliding surface
  • the lubricating oil flows into the gap, the lubricating oil flows in the gap when the drive shaft rotates, and the lubricating oil easily flows out from the gap. Therefore, it is difficult to supply oil to the first sliding surface.
  • An object of the present disclosure is to form a sliding surface having a wide axial width and a sliding surface having a narrow axial width in a fitting shaft portion such as an eccentric portion or a spindle portion and a fitting cylinder portion such as a piston or a bearing portion. This is to improve the performance of the compressor by facilitating the lubrication of the sliding surface having a wide axial width.
  • the first aspect of the present disclosure is A drive shaft (35) having a spindle portion (35a) and an eccentric portion (35b) eccentric from the center of the spindle portion (35a). It has a compression mechanism (20) having a fitting cylinder portion (52) to which the fitting shaft portion (51) of the drive shaft (35) is fitted. It is premised on a compressor in which the fitting shaft portion (51) of the drive shaft (35) and the fitting cylinder portion (52) slide via an oil film.
  • the compressor of the first aspect is
  • the fitting shaft portion (51) is formed on a first sliding surface (53) formed in a part of the outer peripheral surface in the circumferential direction and another part in the circumferential direction of the outer peripheral surface, and is formed in the axial direction. It has a second sliding surface (54) whose width is narrower than the axial width of the first sliding surface (53).
  • the sliding portion between the fitting shaft portion (51) and the fitting cylinder portion (52) is axially adjacent to the second sliding surface (54) and is a gap (56) into which lubricating oil flows. ) And an oil holding portion (57) for suppressing the oil in the gap (56) from flowing out toward the end surface of the fitting shaft portion (51).
  • the oil holding portion (57) suppresses the outflow of oil at the end of the gap (56), and the oil The pressure rises.
  • the oil pressure rises it becomes difficult for the refrigerant gas having a small specific density to enter the oil in the oil holding portion (57). Therefore, substantially only the lubricating oil is supplied from the oil holding portion (57) to the first sliding surface (53), and the intrusion of the refrigerant gas into the first sliding surface (53) can be avoided. As a result, it is possible to suppress a decrease in reliability of the sliding portion and improve the performance of the compressor.
  • a second aspect of the present disclosure is in the first aspect,
  • the second sliding surface (54) is formed at the central portion in the axial direction of the fitting shaft portion (51).
  • the oil holding portion (57) is composed of a boundary portion between the first sliding surface (53) and the void (56).
  • the boundary portion is characterized in that its central portion protrudes from the end portion in the oil outflow direction to the first sliding surface (53).
  • the drive shaft (35) Lubricating oil can be effectively stored during rotation. As a result, the infiltration of the refrigerant gas into the first sliding surface (53) is suppressed, and the reliability of the sliding portion is ensured.
  • a third aspect of the present disclosure is in the first or second aspect
  • the gap (56) is formed by an arcuate groove (55) extending in the circumferential direction of the fitting shaft portion (51).
  • the groove (55) is characterized in that it is a groove (55) whose depth in the axial direction changes.
  • a fourth aspect of the present disclosure is in the third aspect,
  • the second sliding surface (54) is formed at the central portion in the axial direction of the fitting shaft portion (51).
  • the grooves (55) are formed on both sides of the fitting shaft portion (51) in the axial direction with respect to the second sliding surface (54), and the first groove (51) on the end surface side of the fitting shaft portion (51).
  • the groove (55) becomes deeper from the edge portion (55a) toward the second edge portion (55b) on the second sliding surface (54) side.
  • a fifth aspect of the present disclosure is in the third aspect,
  • the second sliding surface (54) is formed at the central portion in the axial direction of the fitting shaft portion (51).
  • the grooves (55) are formed on both sides of the fitting shaft portion (51) in the axial direction with respect to the second sliding surface (54), and the first groove (51) on the end surface side of the fitting shaft portion (51).
  • the depth increases from the edge portion (55a) and the second edge portion (55b) on the second sliding surface (54) side toward the intermediate portion between the first edge portion (55a) and the second edge portion (55b). It is characterized by being a groove (55).
  • a gap (56) is formed by the arcuate groove (55) on the inner surface of the fitting shaft portion (51). Since the arcuate groove (55) and the oil holding portion (57) can be formed by one processing with a lathe, the reliability of the sliding portion can be improved by inexpensive processing. In particular, the oil holding portion (57) of the second aspect formed at the boundary between the first sliding surface (53) and the gap (56) can be easily formed by lathe processing.
  • a sixth aspect of the present disclosure is in the first aspect,
  • the second sliding surface (54) is formed at both ends in the axial direction of the fitting shaft portion (51).
  • the gap (56) is formed in the central portion of the fitting shaft portion (51) in the axial direction, and is formed by an arc-shaped groove (55) extending in the circumferential direction of the fitting shaft portion (51).
  • the fitting shaft portion (51) is characterized in that a communication passage (58) communicating with the grooves (55) on both sides of the second sliding surface (54) is formed.
  • the oil holding portion (57) is formed by the gap (56) formed in the central portion of the fitting shaft portion (51) in the axial direction, and the oil holding portion (57) at the end of the gap (56) is formed. Oil collects in 57). Therefore, it is possible to suppress the infiltration of the refrigerant gas into the first sliding surface (53). Further, since the second sliding surface (54) is formed at both ends of the fitting shaft portion (51) in the axial direction, the bearing span can be lengthened, so that the inclination of the drive shaft (35) can be suppressed to be small.
  • a seventh aspect of the present disclosure is in any one of the first to sixth aspects,
  • the compression mechanism (20) has an annular piston (25) whose rotation is restricted and a cylinder (22) in which the piston (25) is housed.
  • the fitting cylinder portion (52) is the piston (25), and the fitting shaft portion (51) is an eccentric portion (35b) of the drive shaft (35).
  • the reliability of the sliding surface between the eccentric portion (35b) of the drive shaft (35) and the piston (25) can be enhanced.
  • the compression mechanism (20) has an annular piston (25) whose rotation is restricted and a cylinder (22) in which the piston (25) is housed.
  • the fitting cylinder portion (52) is a tubular bearing portion (23a) formed in the cylinder (22), and the fitting shaft portion (51) is a spindle portion (35a) of the drive shaft (35). It is characterized by being.
  • the reliability of the sliding surface between the spindle portion (35a) of the drive shaft (35) and the bearing portion (23a) of the cylinder (22) can be enhanced.
  • FIG. 1 is a vertical cross-sectional view of the compressor according to the embodiment.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3 is a cross-sectional view of the compression mechanism.
  • FIG. 4 is a diagram showing the operation of the compression mechanism.
  • FIG. 5 is a first perspective view of an eccentric portion of the drive shaft.
  • FIG. 6 is a second perspective view of the eccentric portion of FIG.
  • FIG. 7 is a cross-sectional view of the drive shaft cut above the eccentric portion.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 9 is a first perspective view of an eccentric portion of the drive shaft according to the first modification.
  • FIG. 10 is a second perspective view of the eccentric portion of FIG. FIG.
  • FIG. 11 is a cross-sectional view of the drive shaft cut above the eccentric portion.
  • FIG. 12 is a sectional view taken along line XII-XII of FIG.
  • FIG. 13 is a first perspective view of an eccentric portion of the drive shaft according to the second modification.
  • FIG. 14 is a second perspective view of the eccentric portion of FIG.
  • FIG. 15 is a cross-sectional view of the drive shaft cut above the eccentric portion.
  • FIG. 16 is a sectional view taken along line XVI-XVI of FIG.
  • FIG. 17 is a diagram showing a modified example of the groove.
  • FIG. 1 is a vertical cross-sectional view of the compressor (1) according to the embodiment.
  • This compressor (1) is a swing piston type compressor, and is connected to a refrigerant circuit that performs a refrigeration cycle.
  • the compressor (1) comprises a casing (10). Inside the casing (10), a compression mechanism (20) that compresses the refrigerant in the refrigerant circuit and an electric motor (30) that drives the compression mechanism (20) are housed.
  • the casing (10) is composed of a vertically long cylindrical closed container.
  • the casing (10) has a cylindrical body portion (11), an upper end plate portion (12) that closes the upper opening of the body portion (11), and a lower portion that closes the lower opening of the body portion (11). It is provided with a side end plate portion (13).
  • the compression mechanism (20) and the motor (30) are fixed to the inner peripheral surface of the fuselage (11).
  • the motor (30) includes a stator (31) and a rotor (32), both of which are formed in a cylindrical shape.
  • the stator (31) is fixed to the body portion (11) of the casing (10).
  • a rotor (32) is arranged in the hollow portion of the stator (31).
  • a drive shaft (35) is fixed to the hollow portion of the rotor (32) so as to pass through the rotor (32), and the rotor (32) and the drive shaft (35) rotate integrally.
  • the drive shaft (35) has a spindle portion (35a) extending vertically.
  • An eccentric portion (fitting shaft portion) (35b) is integrally formed on the drive shaft (35) near the lower end of the main shaft portion (35a).
  • the eccentric portion (35b) is formed to have a larger diameter than the spindle portion (35a).
  • the axis of the eccentric portion (35b) is eccentric by a predetermined distance with respect to the axis (center) of the spindle portion (35a).
  • the drive shaft (35) is made of cast iron containing graphite, but may be made of other materials.
  • a centrifugal pump (36) is provided at the lower end of the spindle (35a).
  • the centrifugal pump (36) is immersed in the lubricating oil of the oil reservoir formed at the bottom of the casing (10).
  • the centrifugal pump (36) pumps lubricating oil to the oil supply passage (37) in the drive shaft (35) as the drive shaft (35) rotates, and then supplies it to each sliding part of the compression mechanism (20). To do.
  • the compression mechanism (20) has a cylinder (22) formed in an annular shape, as shown in FIG. 2, which is a partially enlarged view of FIG.
  • the front head (23) is fixed to one axial end (upper end) of the cylinder (22), and the rear head (24) is fixed to the other axial end (lower end) of the cylinder (22).
  • a plurality of cylinders (22), front heads (23), and rear heads (24) are laminated in the order of front head (23), cylinders (22), and rear heads (24) from the upper side to the lower side, and extend in the axial direction. Fastened by bolts.
  • the drive shaft (35) penetrates the compression mechanism (20) up and down.
  • Bearings (23a, 24a) are formed on the front head (23) and the rear head (24) to support the drive shaft (35) on both the upper and lower sides of the eccentric portion (35b).
  • the upper end of the cylinder (22) is blocked by the front head (23), while the lower end is blocked by the rear head (24), and the space inside the cylinder (22) constitutes the cylinder chamber (40).
  • the cylinder (22) (cylinder chamber (40)) accommodates a tubular piston (fitting cylinder) (25) that slidably fits into the eccentric portion (35b) of the drive shaft (35). ..
  • the piston (25) makes an eccentric rotary motion in the cylinder chamber (40).
  • FIG. 3 which is a cross-sectional view of the compression mechanism (20)
  • a blade (26) extending radially outward from the outer peripheral surface is integrally formed on the outer peripheral surface of the piston (25).
  • the piston (25) is made of cast iron containing graphite, but may be made of other materials.
  • a circular groove is formed in the cylinder (22) in a plan view.
  • This circular groove is a bush groove (27) that accommodates a pair of bushes (28,28).
  • a pair of bushes (28,28) formed in a crescent shape in a plan view are fitted in the bush groove (27) so as to sandwich the blade (26). With this configuration, the blade (26) regulates the rotation of the piston (25).
  • the cylinder chamber (40) is divided into a low-pressure side cylinder chamber (40a) and a high-pressure side cylinder chamber (40b) (see FIG. 4) by a blade (26).
  • a suction port (41) communicating with the low pressure side cylinder chamber (40a) is formed along a direction perpendicular to the axis of the drive shaft (35).
  • a discharge port (42) communicating with the high-pressure side cylinder chamber (40b) is formed along a direction parallel to the axis of the drive shaft (35).
  • the discharge port (42) is opened and closed by the discharge valve (43).
  • a muffler (44) is attached to the upper surface of the front head (23) so as to cover the discharge port (42) and the discharge valve (43).
  • the muffler (44) is formed so that the muffler space (45) partitioned therein communicates with the internal space of the casing (10) through the upper discharge opening (44a).
  • a suction pipe (14) connected to the suction port (41) is attached to the casing (10), and the refrigerant passes through the suction pipe (14) to the compression mechanism. Inhaled to (20).
  • a discharge pipe (15) is attached to the casing (10) through the upper end plate (12).
  • the lower end of the discharge pipe (15) opens inside the casing (10).
  • the discharge port (42) of the compression mechanism (20) communicates with the space inside the casing (10) through the discharge opening (44a) of the muffler (44), and the refrigerant discharged from the compression mechanism (20) is discharged. It flows out of the casing (10) through the internal space of the casing (10) and the discharge pipe (15).
  • the compression mechanism (20) has a fitting shaft portion (51) of the drive shaft (35) and a fitting cylinder portion (52) to which the fitting shaft portion (51) is fitted, and the fitting shaft portion.
  • the sliding portion (50) is composed of the fitting cylinder portion (52) and the fitting cylinder portion (52).
  • the fitting shaft portion (51) is composed of an eccentric portion (35b)
  • the fitting cylinder portion (52) is composed of a piston (25).
  • the eccentric part (35b) and the piston (25) slide through the oil film.
  • the cylinder chamber (40) includes a low-pressure side cylinder chamber (40a) and a high-pressure side cylinder chamber (40b) as described above.
  • the pressure is almost constant at the low pressure of the refrigerant circuit, but in the high pressure side cylinder chamber (40b), the pressure is changed from the low pressure during the period from the start of compression to the discharge of the refrigerant. It fluctuates up to high pressure. Therefore, when the compression of the refrigerant is started, the pressure in the high-pressure side cylinder chamber (40a) becomes higher than that in the low-pressure side cylinder chamber (40b).
  • a force that pushes the piston (25) against the inner surface of the cylinder (22) acts on the piston (25) in the direction from the high-pressure side cylinder chamber (40b) toward the low-pressure side cylinder chamber (40a).
  • a portion having a large acting load and a portion having a small acting load are generated.
  • the area of the sliding surface is smaller in the portion where the acting load is small than in the portion where the acting load is large.
  • a first sliding surface (53) and a second sliding surface (54) are formed on the outer peripheral surface of the eccentric portion (35b).
  • the first sliding surface (53) is formed in a portion where the acting load is large, and the second sliding surface (54) is formed in a portion where the acting load is small.
  • the first sliding surface (53) is a sliding surface over the entire axial width of the eccentric portion (35b), and is formed on a part of the outer peripheral surface of the eccentric portion (35b) in the circumferential direction.
  • the second sliding surface (54) has an axial width narrower than the axial width of the first sliding surface (53) and is formed on the other part of the peripheral surface of the eccentric portion (35b) in the circumferential direction. ..
  • the second sliding surface (54) is formed with a constant width at the central portion in the axial direction of the eccentric portion (35b).
  • the sliding portion (50) on which the eccentric portion (35b) and the piston (25) slide has grooves (55) on both sides in the axial direction of the second sliding surface (54) on the outer peripheral surface of the eccentric portion (35b). ) Are formed adjacent to each other.
  • the groove (55) forms a gap (56) between the eccentric portion (35b) and the piston (25) into which the supplied lubricating oil flows.
  • the groove (55) forming the gap (56) is an arc-shaped groove (55) extending in the circumferential direction of the piston (25).
  • the groove (55) becomes deeper from both ends in the circumferential direction toward the center.
  • the groove (55) becomes deeper from the first edge portion (55a) on the end face side of the eccentric portion (35b) toward the second edge portion (55b) on the second sliding surface (54) side. ing.
  • the groove (55) has a deeper depth of the second edge portion (55b) on the second sliding surface (54) side than the first edge portion (55a) on the end face side of the eccentric portion (35b).
  • the bottom surface is inclined (see the inclination angle ⁇ in FIG. 8).
  • An oil holding portion (57) is formed on the outer peripheral surface of the eccentric portion (35b) to prevent the oil in the void (56) from flowing out toward the end surface of the eccentric portion (35b).
  • the oil holding portion (57) is eccentric in at least the end portion in the direction in which the lubricating oil is directed toward the first sliding surface (53) (direction of arrow A in FIG. 6) when the drive shaft (35) is rotated, in other words, in FIG. It is formed at the rear end of the portion (35b) in the turning direction (in this embodiment, oil holding portions (57) are formed at both ends in the circumferential direction of the groove (55)).
  • the oil holding portion (57) is formed at a boundary portion between the first sliding surface (53) and the groove (55) forming the gap (56).
  • the groove (55) forming the gap (56) is the circumference of the first edge portion (55a) on the end face side of the eccentric portion (35b) which is the edge portion of the gap (56) in the oil outflow direction.
  • the circumference of the second edge (55b) on the second sliding surface (54) side is longer than the length.
  • the boundary portion forming the oil holding portion (57) is formed on a line inclined with respect to the axis of the drive shaft (35).
  • the eccentric portion (35b) is formed with a notch (60) and a lubrication hole (61) for supplying the lubricating oil of the lubrication passage (37) to the sliding portion (50).
  • the groove (55) can be formed using a lathe. Using a lathe, the groove (55) and the oil holding part (57) can be formed at the same time by triaxial machining with the lathe, and by changing the depth of the groove (55), the boundary part of the oil holding part (57) can be formed. It can be formed on an inclined line. Therefore, the groove (55) and the oil holding portion (57) can be easily formed.
  • the refrigerant discharged from the discharge port (42) flows out from the compression mechanism (20) to the space inside the casing (10) via the muffler space (45) formed in the muffler (44).
  • the refrigerant in the casing (10) flows out from the discharge pipe (15) to the refrigerant circuit.
  • the refrigeration cycle is performed by the refrigerant circulating in the refrigerant circuit.
  • the lubricating oil inside the compressor (1) is diluted by containing a refrigerant.
  • the refrigerant easily flows out from the groove (55), so that the amount of oil is reduced and the refrigerant foams under negative pressure.
  • the refrigerant gas may flow into the first sliding surface (53), resulting in poor lubrication.
  • the lubricating oil collects at the end of the groove (55), and the pressure of the lubricating oil at the end of the groove (55) rises, so that the refrigerant is less likely to foam. Moreover, the refrigerant having a light specific density hardly penetrates into the lubricating oil having a high pressure at the end of the groove (55). As a result, the infiltration of the refrigerant gas into the first sliding surface (53) is suppressed. Therefore, the sliding portion between the eccentric portion (35b) and the piston (25) is sufficiently lubricated.
  • the compression mechanism (20) has a drive shaft (35) having a spindle portion (35a) and an eccentric portion (35b) eccentric from the center of the spindle portion (35a). It has a compression mechanism (20) having a piston (25) as a fitting cylinder portion (52) to which an eccentric portion (35b), which is a fitting shaft portion (51) of the drive shaft (35), is fitted, and is eccentric. The part (35b) and the piston (25) slide through the oil film.
  • the eccentric portion (35b) is formed on a first sliding surface (53) formed on a part of the outer peripheral surface in the circumferential direction and another part of the outer peripheral surface in the circumferential direction, and has a thirth axial width. It has a second sliding surface (54) that is narrower than the axial width of the sliding surface (53).
  • the sliding portion (50) between the piston (25) and the eccentric portion (35b) is axially adjacent to the second sliding surface (54) and has a gap (56) through which lubricating oil flows and a gap.
  • An oil holding portion (57) is formed to prevent the oil in (56) from flowing out toward the end face of the eccentric portion (35b).
  • the oil holding portion (57) at the end of the gap (56) indicates the arrow A in FIG. As shown, the outflow of lubricating oil is suppressed. Therefore, the pressure of the lubricating oil accumulated at the end of the gap (56) increases. When the pressure of the lubricating oil at the end of the gap (56) rises, the refrigerant gas having a small specific gravity hardly penetrates into the lubricating oil. As a result, since only the lubricating oil is supplied from the oil holding portion (57) to the first sliding surface (53), it is possible to suppress the infiltration of the refrigerant gas into the first sliding surface (53). .. As a result, poor lubrication is less likely to occur, so that a decrease in reliability of the sliding portion (50) can be suppressed and the performance of the compressor can be improved.
  • the second sliding surface (54) is formed at the central portion in the axial direction of the eccentric portion (35b), and the oil holding portion (57) is formed between the first sliding surface (53) and the gap (56). ) And the boundary.
  • the boundary portion is inclined in a direction in which the central portion thereof protrudes from the end portion in the oil outflow direction toward the first sliding surface (53).
  • the boundary portion between the first sliding surface (53) and the gap (56) is inclined so that the central portion protrudes from the edge portion on the oil outflow side of the gap (56).
  • Lubricating oil does not easily flow out from the gap (56) when the drive shaft (35) rotates, and the lubricating oil can be effectively stored in the gap (56).
  • the infiltration of the refrigerant gas into the first sliding surface (53) is suppressed, and the reliability of the sliding portion (50) is ensured.
  • the gap (56) is formed by an arcuate groove (55) extending in the circumferential direction of the eccentric portion (35b), and the groove (55) is formed by a groove (55) whose axial depth changes. It is supposed to be.
  • the second sliding surface (54) is formed at the central portion in the axial direction of the eccentric portion (35b).
  • Grooves (55) are formed on both sides of the eccentric portion (35b) in the axial direction with respect to the second sliding surface (54), and are formed from the first edge portion (55a) on the end face side of the eccentric portion (35b) to the second. It becomes deeper toward the second edge (55b) on the sliding surface (54) side.
  • a gap (56) is formed by an arcuate groove (55) on the outer surface of the eccentric portion (35b). Since the arcuate groove (55) and the oil holding portion (57) can be formed by one machining with a lathe, the reliability of the sliding portion (50) can be improved by inexpensive machining. In particular, the inclined oil holding portion (57) formed at the boundary between the first sliding surface (53) and the gap (56) can be easily formed by lathe processing. By machining with a lathe, a plurality of groove portions can be machined with one chucking, so that the drive shaft (35) can be mass-produced at low cost even in a configuration having a plurality of grooves (55).
  • the groove (55) can be formed by inexpensive lathe processing, and the width in the axial direction is narrow.
  • the sliding portion (50) having the sliding portion (50) good sliding characteristics due to graphite can be obtained.
  • the sliding portion (50) may be configured as shown in FIGS. 9 to 12.
  • the point that the second sliding surface (54) is formed at the central portion in the axial direction of the eccentric portion (35b) is the same as that of the above embodiment.
  • the grooves (55) formed on both sides of the eccentric portion (35b) in the axial direction with respect to the second sliding surface (54) have a shape different from that of the above embodiment. Specifically, as shown in FIG. 12, the groove (55) has a first edge portion (55a) on the end face side of the eccentric portion (35b) and a second edge portion (54) on the second sliding surface (54) side. The shape becomes deeper from 55b) toward the lower end of the groove (55c) in the middle of the first edge (55a) and the second edge (55b).
  • a gap (56) is formed by the arcuate groove (55) on the outer surface of the eccentric portion (35b), as in the above embodiment.
  • the arcuate groove (55) and the oil holding portion (57) can be formed by one processing with a lathe, the reliability of the sliding portion (50) can be improved by inexpensive processing.
  • the oil holding portion (57) of the second aspect formed at the boundary between the first sliding surface (53) and the gap (56) can be easily formed by lathe processing.
  • the sliding portion (50) may be configured as shown in FIGS. 13 to 16.
  • the second sliding surface (54) is formed at both ends in the axial direction of the eccentric portion (35b).
  • the gap (56) is formed in the axially central portion of the eccentric portion (35b) by the arcuate groove (55) extending in the circumferential direction of the eccentric portion (35b).
  • a slit communicating from the groove (55) to the outside of the piston (25) is formed as a communication passage (58) for removing gas.
  • the communication passage (58) may be a passage that is not exposed on the outer peripheral surface of the eccentric portion (35b).
  • the communication passage (58) may be formed in the piston (25).
  • the oil holding portion (57) is formed by the gap (56) formed in the central portion in the axial direction of the eccentric portion (35b), and the oil holding portion (57) at the end of the gap (56).
  • Refrigerant gas hardly penetrates into the oil that collects in the oil. Therefore, it is possible to suppress the infiltration of the refrigerant gas into the first sliding surface (53).
  • the bearing span can be lengthened by forming the second sliding surface (54) at both ends of the eccentric portion (35b) in the axial direction, so that the inclination of the drive shaft (35) can be suppressed to a small value. ..
  • the sliding portion (50) may be configured as shown by a virtual line in FIGS. 1 and 2.
  • the fitting cylinder portion (52) is composed of the bearing portion (23a) of the front head (23), and the fitting shaft portion (51) is composed of the spindle portion (35a) of the drive shaft (35). .. Then, the gap (56) and the oil holding portion (57) described in the above-described embodiment and each modification are formed in the spindle portion (35a) which is the fitting shaft portion (51).
  • the above embodiment may have the following configuration.
  • the boundary portion between the first sliding surface (53), which is the oil holding portion (57), and the gap (56) does not have to be formed on an inclined line.
  • the boundary portion has a gap (conversely speaking, so that the first sliding surface (53) has a concave shape. It may be a curved (or bent) line so that 56) has a protruding shape.
  • the boundary portion may have a shape in which the central portion thereof protrudes from the end portion in the oil outflow direction toward the first sliding surface (53).
  • the second sliding surface (54) is formed at the central portion in the axial direction of the piston (25) with a constant width, but the second sliding surface (54) is not necessarily constant. It does not have to be the width of.
  • the oil holding portion (57) may be formed at the end of the lubricating oil in the direction toward the first sliding surface (53) (position indicated by the arrow A in FIG. 7) when the drive shaft (35) rotates. , It does not have to be formed at both ends of the groove (55).
  • the sliding structure of the present disclosure is not limited to the swing piston type compressor of the above embodiment, and the rolling piston type compressor in which the piston (25) and the blade are made of separate members is fitted with the piston (25). It can be applied to the eccentric part (35b) of the drive shaft (35) and the main shaft part (35a) of the drive shaft (35) that fits with the bearing part.
  • the sliding structure of the present disclosure further relates to a two-cylinder swinging piston type compressor (1) in which two compression mechanisms (20) are provided in the axial direction of the drive shaft (35), and the piston (25). It can be applied to the eccentric part (35b) of the drive shaft (35) to be fitted.
  • the sliding structure of the present disclosure can be applied to the eccentric portion of the drive shaft that fits with the movable scroll and the spindle portion of the drive shaft that fits with the bearing portion for the scroll compression mechanism. As described above, the sliding structure of the present disclosure can be applied to various sliding portions of the compressor.
  • the second sliding surface (54) formed on the main shaft portion (35a) of the drive shaft (35) fitted with the bearing portion (23a, 24a) is at the center of the bearing portion (23a, 24a) in the axial direction. Instead, it can be provided at a position biased toward the cylinder (22) side. In this way, the bearing spacing can be narrower than when the second sliding surface (54) is formed at the center of the bearing portion (23a, 24a) in the axial direction, and the deflection of the drive shaft (35) is suppressed to suppress the bending of the bearing. Damage due to one-sided contact can be suppressed.

Abstract

嵌合軸部(51)と嵌合筒部との間に軸方向幅の広い第1摺動面(53)と狭い第2摺動面(54)が形成される圧縮機において、嵌合軸部(51)の外周面の周方向の一部に第1摺動面(53)を形成し、その周方向の他の一部に軸方向幅が第1摺動面(53)の軸方向幅よりも狭い第2摺動面(54)を形成する。嵌合軸部(51)と嵌合筒部との摺動部分に、第2摺動面(54)に対して軸方向に隣接し、潤滑油が流入する空隙(56)と、空隙(56)内の油が嵌合軸部(51)から流出するのを抑制する油保持部(57)を形成する。

Description

圧縮機
 本開示は、圧縮機に関するものである。
 従来、シリンダ内に筒状のピストンが収容されるシリンダを有する圧縮機構と、ピストンに嵌合する偏心部を有する駆動軸とを備え、シリンダ内でピストンが偏心回転する圧縮機が知られている。この圧縮機において、冷媒などの作動流体の圧縮時に大きな荷重を受ける摺動面を軸方向幅の広い摺動面(以下、第1摺動面という)にし、反負荷側の摺動面を軸方向幅の狭い摺動面(以下、第2摺動面という)にしたものがある(例えば、特許文献1参照)。
 上記構成の圧縮機では、軸方向幅の狭い第2摺動面を形成することで偏心部とピストンの間に形成される空隙に潤滑油が流入し、この空隙から第1摺動面へ潤滑油が供給される。
特開平05-164071号公報
 空隙には潤滑油が流入するものの、駆動軸の回転時に空隙内で潤滑油の流れが生じ、空隙から潤滑油が流出しやすい。そのため、第1摺動面に油を供給するのが困難である。
 このことは、駆動軸の主軸部と筒状の軸受部とが摺動する摺動部に第1摺動面と第2摺動面を形成する構成でも同様である。要するに、従来の圧縮機では、偏心部や主軸部のような嵌合軸部と、ピストンや軸受部のような嵌合筒部とが摺動する構成において、空隙から潤滑油が流出しやすく、信頼性の低下につながる問題がある。そこで、摺動面の信頼性低下を抑えつつ、軸方向幅の広い摺動面と狭い摺動面を形成することを可能にし、必要のない摺動部での油剪断損失を低減することで圧縮機の性能を高めることが望まれる。
 本開示の目的は、偏心部や主軸部のような嵌合軸部と、ピストンや軸受部のような嵌合筒部とに、軸方向幅の広い摺動面と狭い摺動面が形成される圧縮機において、軸方向幅の広い摺動面の給油を容易にすることで圧縮機の性能を高めることである。
 本開示の第1の態様は、
 主軸部(35a)と、該主軸部(35a)の中心から偏心した偏心部(35b)とを有する駆動軸(35)と、
 上記駆動軸(35)が有する嵌合軸部(51)が嵌合する嵌合筒部(52)を有する圧縮機構(20)と、を有し、
 上記駆動軸(35)の嵌合軸部(51)と上記嵌合筒部(52)とが油膜を介して摺動する圧縮機を前提とする。
 第1の態様の圧縮機は、
 上記嵌合軸部(51)は、その外周面の周方向の一部に形成される第1摺動面(53)と、上記外周面の周方向の他の一部に形成され、軸方向幅が第1摺動面(53)の軸方向幅よりも狭い第2摺動面(54)とを有し、
 上記嵌合軸部(51)と嵌合筒部(52)との摺動部分には、上記第2摺動面(54)に対して軸方向に隣接し、潤滑油が流入する空隙(56)と、該空隙(56)内の油が上記嵌合軸部(51)の端面の方向へ流出するのを抑制する油保持部(57)が形成されている
ことを特徴とする。
 第1の態様では、駆動軸(35)が回転し、空隙(56)に潤滑油が溜まると、空隙(56)の端部において油保持部(57)により油の流出が抑制され、油の圧力が上昇する。油の圧力が上昇すると、油保持部(57)の油には、比重の小さな冷媒ガスの浸入が困難になる。よって、油保持部(57)から第1摺動面(53)へはほぼ潤滑油のみが供給され、第1摺動面(53)への冷媒ガスの浸入を回避できる。その結果、摺動部の信頼性低下を抑制し、圧縮機の性能を高められる。
 本開示の第2の態様は、
 第1の態様において、
 上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の中央部に形成され、
 上記油保持部(57)は、上記第1摺動面(53)と上記空隙(56)との境界部により構成され、
 上記境界部は、その中央部が、油の流出する方向の端部より、上記第1摺動面(53)へ突出している
ことを特徴とする。
 第2の態様では、
 第2の態様では、第1摺動面(53)と空隙(56)との境界部の中央部が、空隙(56)の油流出側の縁部より突出しているので、駆動軸(35)の回転時に潤滑油を効果的に溜めることができる。このことにより、第1摺動面(53)への冷媒ガスの浸入が抑制され、摺動部の信頼性が確保される。
 本開示の第3の態様は、
 第1または第2の態様において、
 上記空隙(56)は、上記嵌合軸部(51)の周方向に延びる円弧状の溝(55)により形成され、
 上記溝(55)は、軸方向の深さが変化する溝(55)である
ことを特徴とする。
 本開示の第4の態様は、
 第3の態様において、
 上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の中央部に形成され、
 上記溝(55)は、上記第2摺動面(54)に対して上記嵌合軸部(51)の軸方向の両側に形成され、上記嵌合軸部(51)の端面側の第1縁部(55a)から上記第2摺動面(54)側の第2縁部(55b)に向かって深くなる溝(55)である
ことを特徴とする。
 本開示の第5の態様は、
 第3の態様において、
 上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の中央部に形成され、
 上記溝(55)は、上記第2摺動面(54)に対して上記嵌合軸部(51)の軸方向の両側に形成され、上記嵌合軸部(51)の端面側の第1縁部(55a)と上記第2摺動面(54)側の第2縁部(55b)から、該第1縁部(55a)と第2縁部(55b)の中間部に向かって深くなる溝(55)である
ことを特徴とする。
 第3~第5の態様では、嵌合軸部(51)の内面の円弧状の溝(55)により空隙(56)が形成される。円弧状の溝(55)と油保持部(57)を旋盤による一度の加工で形成できるので、安価な加工で摺動部の信頼性を高められる。特に、第1摺動面(53)と空隙(56)との境界部に形成される第2の態様の油保持部(57)を、旋盤による加工で容易に形成できる。
 本開示の第6の態様は、
 第1の態様において、
 上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の両端部に形成され、
 上記空隙(56)は、上記嵌合軸部(51)の軸方向の中央部に形成され、該嵌合軸部(51)の周方向に延びる円弧状の溝(55)により形成され、
 上記嵌合軸部(51)に、上記第2摺動面(54)の両側の溝(55)に連通する連通路(58)が形成されている
ことを特徴とする。
 第6の態様では、嵌合軸部(51)の軸方向の中央部に形成される空隙(56)により油保持部(57)が形成され、空隙(56)の端部の油保持部(57)に油が溜まる。そのため、第1摺動面(53)への冷媒ガスの浸入を抑制できる。さらに、第2摺動面(54)が嵌合軸部(51)の軸方向の両端部に形成することで軸受スパンを長くできるため、駆動軸(35)の傾きを小さく抑えられる。
 本開示の第7の態様は、
 第1から第6の態様の何れか1つにおいて、
 上記圧縮機構(20)は、自転が規制された環状のピストン(25)と、該ピストン(25)が収容されるシリンダ(22)とを有し、
 上記嵌合筒部(52)が上記ピストン(25)であり、上記嵌合軸部(51)が上記駆動軸(35)の偏心部(35b)である
ことを特徴とする。
 第7の態様では、駆動軸(35)の偏心部(35b)とピストン(25)との摺動面の信頼性を高められる。
 本開示の第8の態様は、
 第1から第6の態様の何れか1つにおいて、
 上記圧縮機構(20)は、自転が規制された環状のピストン(25)と、該ピストン(25)が収容されるシリンダ(22)とを有し、
 上記嵌合筒部(52)が上記シリンダ(22)に形成される筒状の軸受部(23a)であり、上記嵌合軸部(51)が上記駆動軸(35)の主軸部(35a)である
ことを特徴とする。
 第8の態様では、駆動軸(35)の主軸部(35a)とシリンダ(22)の軸受部(23a)との摺動面の信頼性を高められる。
図1は、実施形態に係る圧縮機の縦断面図である。 図2は、図1の部分拡大図である。 図3は、圧縮機構の横断面図である。 図4は、圧縮機構の動作を示す図である。 図5は、駆動軸の偏心部の第1の斜視図である。 図6は、図5の偏心部の第2の斜視図である。 図7は、駆動軸を偏心部の上方で切断した断面図である。 図8は、図7のVIII-VIII線断面図である。 図9は、変形例1に係る駆動軸の偏心部の第1の斜視図である。 図10は、図8の偏心部の第2の斜視図である。 図11は、駆動軸を偏心部の上方で切断した断面図である。 図12は、図11のXII-XII線断面図である。 図13は、変形例2に係る駆動軸の偏心部の第1の斜視図である。 図14は、図11の偏心部の第2の斜視図である。 図15は、駆動軸を偏心部の上方で切断した断面図である。 図16は、図15のXVI-XVI線断面図である。 図17は、溝の変形例を示す図である。
 実施形態について説明する。
 図1は、実施形態に係る圧縮機(1)の縦断面図である。この圧縮機(1)は、揺動ピストン式圧縮機であり、冷凍サイクルを行う冷媒回路に接続される。
 〈全体構造〉
 圧縮機(1)はケーシング(10)を備える。ケーシング(10)の内部には、冷媒回路の冷媒を圧縮する圧縮機構(20)と、圧縮機構(20)を駆動する電動機(30)とが収容される。
〈ケーシング〉
 ケーシング(10)は、縦長円筒状の密閉容器で構成される。ケーシング(10)は、円筒状の胴体部(11)と、胴体部(11)の上側開口部を閉塞する上側鏡板部(12)と、胴体部(11)の下側開口部を閉塞する下側鏡板部(13)とを備える。
 圧縮機構(20)及び電動機(30)は、胴体部(11)の内周面に固定されている。
 〈電動機〉
 電動機(30)は、共に円筒状に形成されたステータ(31)及びロータ(32)を備える。ステータ(31)は、ケーシング(10)の胴体部(11)に固定される。ステータ(31)の中空部にはロータ(32)が配置される。ロータ(32)の中空部には、ロータ(32)を貫通するように駆動軸(35)が固定され、ロータ(32)と駆動軸(35)とが一体で回転する。
 〈駆動軸〉
 駆動軸(35)は、上下に延びる主軸部(35a)を有する。駆動軸(35)には、主軸部(35a)の下端寄りに偏心部(嵌合軸部)(35b)が一体に形成される。偏心部(35b)は、主軸部(35a)よりも大径に形成される。偏心部(35b)の軸心は、主軸部(35a)の軸心(中心)に対して所定距離だけ偏心している。本実施形態において、駆動軸(35)は黒鉛を含む鋳鉄で形成されるが、他の材料で形成してもよい。
 主軸部(35a)の下端部には遠心ポンプ(36)が設けられている。遠心ポンプ(36)は、ケーシング(10)の底部に形成される油溜め部の潤滑油に浸漬する。遠心ポンプ(36)は、駆動軸(35)の回転に伴って潤滑油を駆動軸(35)内の給油路(37)へ汲み上げた後で、圧縮機構(20)の各摺動部へ供給する。
 〈圧縮機構〉
 圧縮機構(20)は、図1の部分拡大図である図2に示すように、環状に形成されたシリンダ(22)を有する。シリンダ(22)の軸方向一方端(上端)には、フロントヘッド(23)が固定され、シリンダ(22)の軸方向他方端(下端)には、リアヘッド(24)が固定される。シリンダ(22)、フロントヘッド(23)及びリアヘッド(24)は、上側から下側に向かってフロントヘッド(23)、シリンダ(22)及びリアヘッド(24)の順に積層され、軸方向に延びる複数のボルトによって締結される。
 駆動軸(35)は、圧縮機構(20)を上下に貫通する。フロントヘッド(23)とリアヘッド(24)には、駆動軸(35)を偏心部(35b)の上下両側で支持する軸受部(23a,24a)が形成される。
 シリンダ(22)の上端がフロントヘッド(23)によって閉塞される一方、下端がリアヘッド(24)に閉塞され、シリンダ(22)の内部の空間がシリンダ室(40)を構成する。シリンダ(22)(シリンダ室(40))には、駆動軸(35)の偏心部(35b)に摺動自在に嵌合する筒状のピストン(嵌合筒部)(25)が収容される。ピストン(25)は、駆動軸(35)が回転すると、シリンダ室(40)の中で偏心回転運動をする。圧縮機構(20)の横断面図である図3に示すように、ピストン(25)の外周面には、該外周面から径方向外側へ延びるブレード(26)が一体に形成される。本実施形態において、ピストン(25)は、黒鉛を含む鋳鉄で形成されるが、他の材料で形成してもよい。
 シリンダ(22)には、平面視で円形の溝が形成されている。この円形溝は、一対のブッシュ(28,28)を収容するブッシュ溝(27)である。ブッシュ溝(27)には、平面視で半月状に形成された一対のブッシュ(28,28)が、ブレード(26)を挟む状態で嵌め込まれている。この構成により、ブレード(26)がピストン(25)の自転を規制する。
 シリンダ室(40)は、ブレード(26)によって低圧側シリンダ室(40a)と高圧側シリンダ室(40b)(図4参照)とに区画される。シリンダ(22)の外周壁には、低圧側シリンダ室(40a)に連通する吸入ポート(41)が、駆動軸(35)の軸心と直角の方向に沿って形成される。
 フロントヘッド(23)には、高圧側シリンダ室(40b)に連通する吐出ポート(42)が、駆動軸(35)の軸心と平行な方向に沿って形成される。吐出ポート(42)は、吐出弁(43)で開閉される。
 フロントヘッド(23)の上面には、吐出ポート(42)及び吐出弁(43)を覆うようにマフラ(44)が取り付けられている。マフラ(44)は、その内部に区画されるマフラ空間(45)が、上部の吐出開口(44a)を通じてケーシング(10)の内部空間に連通するように形成される。
 〈吸入管及び吐出管〉
 上記ケーシング(10)には、図1,図2に示すように、上記吸入ポート(41)に接続される吸入管(14)が取り付けられ、冷媒が吸入管(14)を通って上記圧縮機構(20)へ吸入される。
 ケーシング(10)には、上側鏡板部(12)を貫通して吐出管(15)が取り付けられている。吐出管(15)の下側の端部は、ケーシング(10)の内部に開口する。圧縮機構(20)の吐出ポート(42)は、マフラ(44)の吐出開口(44a)を通じてケーシング(10)の内部の空間に連通しており、圧縮機構(20)から吐出された冷媒は、ケーシング(10)の内部空間と吐出管(15)を通じてケーシング(10)の外へ流出する。
 〈駆動軸とピストンとの摺動部の構造〉
 圧縮機構(20)は、駆動軸(35)が有する嵌合軸部(51)と、この嵌合軸部(51)が嵌合する嵌合筒部(52)を有し、嵌合軸部(51)と嵌合筒部(52)により摺動部(50)が構成される。本実施形態において、嵌合軸部(51)は偏心部(35b)により構成され、嵌合筒部(52)はピストン(25)により構成されている。偏心部(35b)とピストン(25)は、油膜を介して摺動する。
 ここで、シリンダ室(40)は、上述したように低圧側シリンダ室(40a)と高圧側シリンダ室(40b)とを含む。低圧側シリンダ室(40a)は、圧力が冷媒回路の低圧圧力でほぼ一定であるが、高圧側シリンダ室(40b)は、冷媒を圧縮の開始から吐出するまでの間に、圧力が低圧圧力から高圧圧力まで変動する。そのため、冷媒の圧縮が開始されると、高圧側シリンダ室(40a)の圧力が低圧側シリンダ室(40b)よりも高くなる。そうすると、ピストン(25)には、該ピストン(25)を、高圧側シリンダ室(40b)から低圧側シリンダ室(40a)に向かう方向へ、シリンダ(22)の内面に押しつける力が作用する。その結果、偏心部(35b)とピストン(25)とが摺動する摺動面には、作用する荷重が大きな部分と、作用する荷重が小さな部分が生じる。本実施形態では、作用する荷重が小さな部分は、作用する荷重が大きな部分よりも、摺動面の面積を小さくしている。
 具体的には、図5~図8に示すように、偏心部(35b)の外周面に、第1摺動面(53)と第2摺動面(54)とが形成される。第1摺動面(53)は、作用する荷重が大きな部分に形成され、第2摺動面(54)は、作用する荷重が小さな部分に形成される。第1摺動面(53)は、偏心部(35b)の軸方向幅の全体に亘る摺動面であり、偏心部(35b)の外周面の周方向の一部に形成される。第2摺動面(54)は、軸方向幅が第1摺動面(53)の軸方向幅よりも狭く、偏心部(35b)の外周面の周方向の他の一部に形成される。
 第2摺動面(54)は、偏心部(35b)の軸方向の中央部に一定の幅で形成される。偏心部(35b)とピストン(25)とが摺動する摺動部(50)には、偏心部(35b)の外周面における第2摺動面(54)の軸方向の両側に溝(55)が隣接して形成される。この溝(55)により、偏心部(35b)とピストン(25)との間に供給された潤滑油が流入する空隙(56)が形成される。空隙(56)を形成する溝(55)は、ピストン(25)の周方向に延びる円弧状の溝(55)である。溝(55)は、周方向の両端部から中央部に向かって深さが深くなっている。
 さらに、溝(55)は、偏心部(35b)の端面側の第1縁部(55a)から第2摺動面(54)側の第2縁部(55b)に向かって深さが深くなっている。言い換えると、溝(55)は、偏心部(35b)の端面側の第1縁部(55a)より第2摺動面(54)側の第2縁部(55b)の深さが深くなるように、底面が傾斜している(図8の傾斜角αを参照)。
 偏心部(35b)の外周面には、空隙(56)内の油が偏心部(35b)の端面の方向へ流出するのを抑制する油保持部(57)が形成される。油保持部(57)は、少なくとも、駆動軸(35)の回転時に潤滑油が第1摺動面(53)に向かう方向(図6の矢印A方向)の端部、言い換えると図4において偏心部(35b)の旋回方向の後側の端部に形成される(この実施形態では、溝(55)の周方向の両端部に油保持部(57)が形成されている)。油保持部(57)は、第1摺動面(53)と空隙(56)を構成する溝(55)との境界部に形成される。
 この実施形態において、空隙(56)を形成する溝(55)は、該空隙(56)の油流出方向の縁部である偏心部(35b)の端面側の第1縁部(55a)の周長より、第2摺動面(54)側の第2縁部(55b)の周長が長い。このことにより、油保持部(57)を構成する境界部は、駆動軸(35)の軸心に対して傾斜した線上に形成されている。なお、偏心部(35b)には、給油路(37)の潤滑油を摺動部(50)に供給する切り欠き(60)と給油孔(61)が形成されている。
 上記溝(55)は、旋盤を用いて形成できる。旋盤を用いると、溝(55)と油保持部(57)を旋盤による3軸加工で同時に形成でき、溝(55)の深さを変化させることで、油保持部(57)の境界部を傾斜した線上に形成できる。そのため、溝(55)と油保持部(57)を容易に形成できる。
  -運転動作-
 本実施形態の圧縮機(1)において、電動機(30)を起動するとロータ(32)が回転し、その回転が駆動軸(35)を介して圧縮機構(20)のピストン(25)に伝達される。ピストン(25)は、駆動軸(35)の偏心部(35b)に装着されているので、駆動軸(35)の回転中心の周りの周回軌道上を旋回する。また、ピストン(25)に一体に形成されたブレード(26)がブッシュ(28)に保持されているので、ピストン(25)は自転をせずに揺動しながら公転(偏心回転)する。
 圧縮機構(20)のピストン(25)が回転すると、図4において0°の状態から90°,180°,さらに270°の状態を経て0°の状態に戻る方向へピストン(25)が移動して、低圧側シリンダ室(40a)の容積が拡大しながら高圧側シリンダ室(40b)の容積が縮小する動作が繰り返し行われる。冷媒は、低圧側シリンダ室(40a)に吸入され、高圧側シリンダ室(40b)で圧縮されて吐出される。このとき、ピストン(25)には、冷媒の圧縮により、高圧側シリンダ室(40b)から低圧側シリンダ室(40a)へ向かう方向へ押す荷重が作用する。
 吐出ポート(42)から吐出された冷媒は、マフラ(44)内に形成されたマフラ空間(45)を経て、圧縮機構(20)からケーシング(10)内の空間へ流出する。
 ケーシング(10)内の冷媒は、吐出管(15)から冷媒回路へ流出する。冷媒が冷媒回路を循環することにより、冷凍サイクルが行われる。
  -摺動部における油の動き-
 駆動軸(35)が回転すると、給油路(37)から潤滑部(50)へ潤滑油が供給される。潤滑油は、溝(55)に流入する。溝(55)の中の潤滑油は、駆動軸(35)との相対的な関係において、駆動軸(35)の回転方向後側の溝(55)の端部から、さらに図6の矢印A方向へ進んで第1摺動面(53)へ移動しようとする。潤滑油は、傾斜した線に沿って形成された油保持部(57)の作用により、その傾斜した線に沿って進むことで溝(55)の中にとどまる方向へ流れ、溝(55)の端部から流出し難い。そのため、溝(55)の端部における潤滑油の圧力が上昇する。
 ここで、一般に圧縮機(1)の内部の潤滑油は、冷媒を含むことで希釈される。油保持部(57)が形成されない従来の構成では、冷媒が溝(55)から容易に流出することで油量が少なくなり、冷媒が負圧発泡する。その結果、冷媒ガスが第1摺動面(53)へ流入し、潤滑不良が生じるおそれがある。
 本実施形態では、溝(55)の端部に潤滑油が溜まり、溝(55)の端部の潤滑油の圧力が上昇することにより冷媒が発泡し難くなる。しかも、溝(55)の端部の圧力が高い潤滑油内へ、比重の軽い冷媒は殆ど浸入しない。その結果、第1摺動面(53)への冷媒ガスの浸入が抑制される。よって、偏心部(35b)とピストン(25)の間の摺動部が十分に潤滑される。
  -実施形態の効果-
 この実施形態の圧縮機(1)は、圧縮機構(20)が、主軸部(35a)と、主軸部(35a)の中心から偏心した偏心部(35b)とを有する駆動軸(35)と、駆動軸(35)が有する嵌合軸部(51)である偏心部(35b)が嵌合する嵌合筒部(52)としてピストン(25)を有する圧縮機構(20)とを有し、偏心部(35b)とピストン(25)とが油膜を介して摺動する。
 偏心部(35b)は、その外周面の周方向の一部に形成される第1摺動面(53)と、その外周面の周方向の他の一部に形成され、軸方向幅が第1摺動面(53)の軸方向幅よりも狭い第2摺動面(54)とを有する。ピストン(25)と偏心部(35b)との摺動部(50)には、第2摺動面(54)に対して軸方向に隣接し、潤滑油が流入する空隙(56)と、空隙(56)内の油が偏心部(35b)の端面の方向へ流出するのを抑制する油保持部(57)が形成されている。
 従来のこの種の圧縮機(1)では、軸方向幅の狭い摺動面を形成するために偏心部(35b)とピストン(25)の間にできる空隙(56)から潤滑油が流出しやすい問題がある。そのため、摺動面のうち、大きな荷重を受ける部分(軸方向幅の広い第1摺動面(53))へ十分に給油するのが困難である。特に、冷媒を圧縮する圧縮機(1)では、冷媒で希釈された潤滑油が空隙(56)から容易に流出することで冷媒が負圧発泡し、冷媒ガスが潤滑面に拡がることで潤滑不良が生じ、信頼性の低下につながるおそれがある。そこで、摺動面の信頼性低下を抑えつつ、軸方向幅の広い摺動面と狭い摺動面を形成することを可能にし、必要のない摺動部での油剪断損失を低減することで圧縮機の性能を高めることが望まれる。
 また、従来、軸方向幅の異なる第1摺動面(53)と第2摺動面(54)を有する軸受部を安価に量産することが望まれているが、この種の軸受構造を安価に量産することは困難である。
 本実施形態によれば、駆動軸(35)が回転して空隙(56)に潤滑油が溜まると、空隙(56)の端部において、油保持部(57)により、図6に矢印Aで示したように潤滑油の流出が抑制される。そのため、空隙(56)の端部に溜まる潤滑油の圧力が上昇する。空隙(56)の端部の潤滑油の圧力が上昇すると、その潤滑油には、比重の小さな冷媒ガスはほぼ浸入しなくなる。このことにより、油保持部(57)から第1摺動面(53)へは、ほぼ潤滑油のみが供給されるので、第1摺動面(53)へ冷媒ガスが浸入するのを抑制できる。その結果、潤滑不良が生じ難くなるため、摺動部(50)の信頼性低下を抑制し、圧縮機の性能を高められる。
 本実施形態では、第2摺動面(54)が、偏心部(35b)の軸方向の中央部に形成され、油保持部(57)は、第1摺動面(53)と空隙(56)との境界部により構成されている。境界部は、その中央部が油の流出する方向の端部より第1摺動面(53)へ突出する方向へ傾斜している。
 本実施形態によれば、第1摺動面(53)と空隙(56)との境界部が、中央部が空隙(56)の油流出側の縁部より突出するように傾斜しているので、駆動軸(35)の回転時に潤滑油が空隙(56)から流出し難く、潤滑油を空隙(56)に効果的に溜めることができる。このことにより、第1摺動面(53)への冷媒ガスの浸入が抑制され、摺動部(50)の信頼性が確保される。
 本実施形態では、空隙(56)は、偏心部(35b)の周方向に延びる円弧状の溝(55)により形成され、溝(55)を、軸方向の深さが変化する溝(55)としている。
 第2摺動面(54)は、偏心部(35b)の軸方向の中央部に形成される。溝(55)は、第2摺動面(54)に対して偏心部(35b)の軸方向の両側に形成され、偏心部(35b)の端面側の第1縁部(55a)から第2摺動面(54)側の第2縁部(55b)に向かって深くなっている。
 本実施形態によれば、偏心部(35b)の外面の円弧状の溝(55)により空隙(56)が形成される。円弧状の溝(55)と油保持部(57)は旋盤による一度の加工で形成できるので、安価な加工で摺動部(50)の信頼性を高められる。特に、第1摺動面(53)と空隙(56)との境界部に形成される傾斜した油保持部(57)を、旋盤による加工で容易に形成できる。旋盤で加工することにより、一度のチャッキングで複数の溝部を加工できるから、複数の溝(55)を有する構成であっても、駆動軸(35)を安価に量産できる。さらに、いわゆるニアネットシェイプ成形では偏心部(25b)に溝(55)を形成するのが困難な場合でも、安価な旋盤加工で溝(55)を形成できるし、軸方向の幅が狭い第2摺動部(50)を有する摺動部(50)において、黒鉛による良好な摺動特性を得ることができる。
  -実施形態の変形例-
  -第1変形例-
 例えば、摺動部(50)を、図9~図12に示すように構成してもよい。
 この例では、第2摺動面(54)が偏心部(35b)の軸方向の中央部に形成される点は、上記実施形態と同じである。一方、第2摺動面(54)に対して偏心部(35b)の軸方向の両側に形成される溝(55)は、上記実施形態とは異なる形状である。具体的には、溝(55)は、図12に示すように、偏心部(35b)の端面側の第1縁部(55a)と第2摺動面(54)側の第2縁部(55b)から、その第1縁部(55a)と第2縁部(55b)の中間部の溝下端(55c)に向かって深くなる形状である。
 このように構成すると、上記実施形態と同様に、偏心部(35b)の外面の円弧状の溝(55)により空隙(56)が形成される。この変形例においても、円弧状の溝(55)と油保持部(57)を旋盤による一度の加工で形成できるので、安価な加工で摺動部(50)の信頼性を高められる。特に、第1摺動面(53)と空隙(56)との境界部に形成される第2の態様の油保持部(57)を、旋盤による加工で容易に形成できる。
  -第2変形例-
 摺動部(50)は、図13~図16に示すように構成してもよい。
 この例では、第2摺動面(54)は、偏心部(35b)の軸方向の両端部に形成される。空隙(56)は、偏心部(35b)の周方向に延びる円弧状の溝(55)により、偏心部(35b)の軸方向の中央部に形成される。この例では、偏心部(35b)に、溝(55)からピストン(25)の外部に連通するスリットがガスを抜くための連通路(58)として形成される。連通路(58)は、偏心部(35b)の外周面に露出しない通路でもよい。連通路(58)は、ピストン(25)に形成してもよい。
 このように構成すると、偏心部(35b)の軸方向の中央部に形成される空隙(56)により油保持部(57)が形成され、空隙(56)の端部の油保持部(57)に溜まる油に冷媒ガスがほとんど浸入しない。そのため、第1摺動面(53)への冷媒ガスの浸入を抑制できる。さらに、この変形例では、第2摺動面(54)を偏心部(35b)の軸方向の両端部に形成することで軸受スパンを長くできるため、駆動軸(35)の傾きを小さく抑えられる。
  -第3変形例-
 摺動部(50)は、図1,図2に仮想線で示すように構成してもよい。
 この例では、嵌合筒部(52)がフロントヘッド(23)の軸受部(23a)により構成され、嵌合軸部(51)が駆動軸(35)の主軸部(35a)により構成される。そして、嵌合軸部(51)である主軸部(35a)に、上記実施形態及び各変形例で説明した空隙(56)と油保持部(57)が形成される。
 このように構成すると、駆動軸(35)の主軸部(35a)とフロントヘッド(23)の軸受部(23a)との間の摺動部(50)において、油保持部(57)により潤滑油が保持され、上記実施形態及び各変形例と同様に冷媒の負圧発泡が抑制される。そのため、冷媒ガスが第1摺動面(53)に浸入するのが抑制される。その結果、駆動軸(35)の主軸部(35a)とフロントヘッド(23)の軸受部(23a)との間の摺動面の信頼性を高められる。
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
 上記実施形態において、油保持部(57)である第1摺動面(53)と空隙(56)との境界部は、傾斜したライン上に形成されていなくてもよい。例えば、偏心部(35b)の外周面を展開した部分図である図17に示すように、境界部は、第1摺動面(53)が凹状になるように、逆に言うと、空隙(56)が突状になるように、湾曲(または屈曲)したラインでもよい。要するに、境界部は、その中央部が、油の流出する方向の端部より、第1摺動面(53)へ向かって突出する形状であればよい。
 上記実施形態において、第2摺動面(54)は、ピストン(25)の軸方向の中央部に一定の幅で形成されるようにしているが、第2摺動面(54)は必ずしも一定の幅でなくてもよい。
 油保持部(57)は、駆動軸(35)の回転時に潤滑油が第1摺動面(53)に向かう方向(図7の矢印Aで示す位置)の端部に形成されていればよく、溝(55)の両端部に形成しなくてもよい。
 本開示の摺動構造は、上記実施形態の揺動ピストン型圧縮機に限らず、ピストン(25)とブレードとが別部材で構成されるローリングピストン型圧縮機について、ピストン(25)と嵌合する駆動軸(35)の偏心部(35b)や、軸受部と嵌合する駆動軸(35)の主軸部(35a)に適用可能である。本開示の摺動構造は、さらに、圧縮機構(20)が駆動軸(35)の軸方向に2つ設けられる2シリンダ型で揺動ピストン型の圧縮機(1)について、ピストン(25)と嵌合する駆動軸(35)の偏心部(35b)に適用可能である。さらに、本開示の摺動構造は、スクロール圧縮機構について、可動スクロールと嵌合する駆動軸の偏心部や、軸受部と嵌合する駆動軸の主軸部に適用可能である。このように、本開示の摺動構造は、圧縮機の種々の摺動部に適用できる。
 また、軸受部(23a,24a)と嵌合する駆動軸(35)の主軸部(35a)に形成される第2摺動面(54)は、軸受部(23a,24a)の軸方向の中央でなく、シリンダ(22)側に偏った位置に設けることができる。このようにすると、第2摺動面(54)を軸受部(23a,24a)の軸方向の中央に形成するよりも軸受間隔を狭くでき、駆動軸(35)の撓みを抑制して軸受の片当たりによる損傷を抑制できる。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上説明したように、本開示は、圧縮機について有用である。
 1   圧縮機
 20  圧縮機構
 22  シリンダ
 23a  軸受部
 25  ピストン
 35  駆動軸
 35a  主軸部
 35b  偏心部
 51  嵌合軸部
 52  嵌合筒部
 53  第1摺動面
 54  第2摺動面
 55  溝
 55a  第1縁部
 55b  第2縁部
 56  空隙
 57  油保持部
 58  連通路
 59  境界部
 

Claims (8)

  1.  主軸部(35a)と、該主軸部(35a)の中心から偏心した偏心部(35b)とを有する駆動軸(35)と、
     上記駆動軸(35)が有する嵌合軸部(51)が嵌合する嵌合筒部(52)を有する圧縮機構(20)と、を有し、
     上記駆動軸(35)の嵌合軸部(51)と上記嵌合筒部(52)とが油膜を介して摺動する圧縮機であって、
     上記嵌合軸部(51)は、その外周面の周方向の一部に形成される第1摺動面(53)と、上記外周面の周方向の他の一部に形成され、軸方向幅が第1摺動面(53)の軸方向幅よりも狭い第2摺動面(54)とを有し、
     上記嵌合軸部(51)と嵌合筒部(52)との摺動部分には、上記第2摺動面(54)に対して軸方向に隣接し、潤滑油が流入する空隙(56)と、該空隙(56)内の油が上記嵌合軸部(51)の端面の方向へ流出するのを抑制する油保持部(57)が形成されている
    ことを特徴とする圧縮機。
  2.  請求項1において、
     上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の中央部に形成され、
     上記油保持部(57)は、上記第1摺動面(53)と上記空隙(56)との境界部により構成され、
     上記境界部は、その中央部が、油の流出する方向の端部より、上記第1摺動面(53)へ突出している
    ことを特徴とする圧縮機。
  3.  請求項1または2において、
     上記空隙(56)は、上記嵌合軸部(51)の周方向に延びる円弧状の溝(55)により形成され、
     上記溝(55)は、軸方向の深さが変化する溝(55)である
    ことを特徴とする圧縮機。
  4.  請求項3において、
     上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の中央部に形成され、
     上記溝(55)は、上記第2摺動面(54)に対して上記嵌合軸部(51)の軸方向の両側に形成され、上記嵌合軸部(51)の端面側の第1縁部(55a)から上記第2摺動面(54)側の第2縁部(55b)に向かって深くなる溝(55)である
    ことを特徴とする圧縮機。
  5.  請求項3において、
     上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の中央部に形成され、
     上記溝(55)は、上記第2摺動面(54)に対して上記嵌合軸部(51)の軸方向の両側に形成され、上記嵌合軸部(51)の端面側の第1縁部(55a)と上記第2摺動面(54)側の第2縁部(55b)から、該第1縁部(55a)と第2縁部(55b)の中間部に向かって深くなる溝(55)である
    ことを特徴とする圧縮機。
  6.  請求項1において、
     上記第2摺動面(54)は、上記嵌合軸部(51)の軸方向の両端部に形成され、
     上記空隙(56)は、上記嵌合軸部(51)の軸方向の中央部に形成され、該嵌合軸部(51)の周方向に延びる円弧状の溝(55)により形成され、
     上記嵌合軸部(51)に、上記第2摺動面(54)の両側の溝(55)に連通する連通路(58)が形成されている
    ことを特徴とする圧縮機。
  7.  請求項1から6の何れか1つにおいて、
     上記圧縮機構(20)は、自転が規制された環状のピストン(25)と、該ピストン(25)が収容されるシリンダ(22)とを有し、
     上記嵌合筒部(52)が上記ピストン(25)であり、上記嵌合軸部(51)が上記駆動軸(35)の偏心部(35b)である
    ことを特徴とする圧縮機。
  8.  請求項1から6の何れか1つにおいて、
     上記圧縮機構(20)は、環状のピストン(25)と、該ピストン(25)が収容されるシリンダ(22)とを有し、
     上記嵌合筒部(52)が上記シリンダ(22)に形成される筒状の軸受部(23a)であり、上記嵌合軸部(51)が上記駆動軸(35)の主軸部(35a)である
    ことを特徴とする圧縮機。
     
PCT/JP2020/044495 2019-12-17 2020-11-30 圧縮機 WO2021124853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20901818.3A EP4056849A4 (en) 2019-12-17 2020-11-30 COMPRESSOR
CN202080083539.1A CN114761691B (zh) 2019-12-17 2020-11-30 压缩机
US17/842,254 US11674514B2 (en) 2019-12-17 2022-06-16 Compressor with a fitted shaft portion having two sliding surfaces and an oil retainer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-227029 2019-12-17
JP2019227029A JP6881558B1 (ja) 2019-12-17 2019-12-17 圧縮機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/842,254 Continuation US11674514B2 (en) 2019-12-17 2022-06-16 Compressor with a fitted shaft portion having two sliding surfaces and an oil retainer

Publications (1)

Publication Number Publication Date
WO2021124853A1 true WO2021124853A1 (ja) 2021-06-24

Family

ID=76083896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044495 WO2021124853A1 (ja) 2019-12-17 2020-11-30 圧縮機

Country Status (5)

Country Link
US (1) US11674514B2 (ja)
EP (1) EP4056849A4 (ja)
JP (1) JP6881558B1 (ja)
CN (1) CN114761691B (ja)
WO (1) WO2021124853A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688988A (en) * 1979-12-19 1981-07-18 Hitachi Ltd Rotary compressor
JPH05164071A (ja) 1991-12-13 1993-06-29 Daikin Ind Ltd ロータリー圧縮機
JPH05340370A (ja) * 1992-06-05 1993-12-21 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JPH11166491A (ja) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp スクロール圧縮機
CN104879301A (zh) * 2015-06-11 2015-09-02 广东美芝制冷设备有限公司 用于回转式压缩机的曲轴和具有其的回转式压缩机
WO2017221398A1 (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 ロータリ圧縮機および冷凍サイクル装置
WO2019134364A1 (zh) * 2018-01-08 2019-07-11 瑞智精密股份有限公司 压缩机用的曲轴以及具有其的压缩机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731127B2 (ja) * 2004-01-22 2006-01-05 ダイキン工業株式会社 スイング圧縮機
JP5556450B2 (ja) * 2010-07-02 2014-07-23 パナソニック株式会社 回転式圧縮機
JP6930576B2 (ja) * 2019-12-17 2021-09-01 ダイキン工業株式会社 圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688988A (en) * 1979-12-19 1981-07-18 Hitachi Ltd Rotary compressor
JPH05164071A (ja) 1991-12-13 1993-06-29 Daikin Ind Ltd ロータリー圧縮機
JPH05340370A (ja) * 1992-06-05 1993-12-21 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JPH11166491A (ja) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp スクロール圧縮機
CN104879301A (zh) * 2015-06-11 2015-09-02 广东美芝制冷设备有限公司 用于回转式压缩机的曲轴和具有其的回转式压缩机
WO2017221398A1 (ja) * 2016-06-24 2017-12-28 三菱電機株式会社 ロータリ圧縮機および冷凍サイクル装置
WO2019134364A1 (zh) * 2018-01-08 2019-07-11 瑞智精密股份有限公司 压缩机用的曲轴以及具有其的压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056849A4

Also Published As

Publication number Publication date
US11674514B2 (en) 2023-06-13
EP4056849A4 (en) 2022-12-21
US20220307498A1 (en) 2022-09-29
EP4056849A1 (en) 2022-09-14
JP2021095865A (ja) 2021-06-24
CN114761691A (zh) 2022-07-15
JP6881558B1 (ja) 2021-06-02
CN114761691B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
JP4605290B2 (ja) 密閉型圧縮機
JP4454818B2 (ja) 容積形流体機械
KR100322269B1 (ko) 요동형로타리압축기
WO2021124852A1 (ja) 圧縮機
JP6131769B2 (ja) 回転式圧縮機
WO2021124853A1 (ja) 圧縮機
WO2022176544A1 (ja) タンデム型オイルポンプ
JP2013072362A (ja) 圧縮機
JP2019190287A (ja) 圧縮機
JP2010275974A (ja) ロータリ式圧縮機
JP2009127517A (ja) 密閉型圧縮機
JP6700691B2 (ja) 電動圧縮機
JP2022013732A (ja) 圧縮機
JP2876922B2 (ja) ローリングピストン型圧縮機
JP6104396B2 (ja) スクロール圧縮機
JP5703752B2 (ja) 圧縮機
JPH05312172A (ja) ローリングピストン型圧縮機
JP3742849B2 (ja) ロータリー圧縮機
JP3350336B2 (ja) ヘリカルブレード式圧縮機
JPS5836194B2 (ja) ベ−ン式圧縮機
JP2002147380A (ja) ロータリ圧縮機
JP2002147375A (ja) ロータリ圧縮機
JP2017106327A (ja) 回転式圧縮機
JPS58170878A (ja) スクロ−ル・コンプレツサ
JP2019056314A (ja) ベーン型圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020901818

Country of ref document: EP

Effective date: 20220607

NENP Non-entry into the national phase

Ref country code: DE