WO2021124475A1 - ポリマー部材の製造方法 - Google Patents

ポリマー部材の製造方法 Download PDF

Info

Publication number
WO2021124475A1
WO2021124475A1 PCT/JP2019/049588 JP2019049588W WO2021124475A1 WO 2021124475 A1 WO2021124475 A1 WO 2021124475A1 JP 2019049588 W JP2019049588 W JP 2019049588W WO 2021124475 A1 WO2021124475 A1 WO 2021124475A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
model
film
curing step
curing
Prior art date
Application number
PCT/JP2019/049588
Other languages
English (en)
French (fr)
Inventor
栄太 吉田
宮崎 秀行
Original Assignee
株式会社アシックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アシックス filed Critical 株式会社アシックス
Priority to CN201980036635.8A priority Critical patent/CN113453873B/zh
Priority to US17/278,956 priority patent/US11884003B2/en
Priority to PCT/JP2019/049588 priority patent/WO2021124475A1/ja
Priority to JP2020556819A priority patent/JP6843311B1/ja
Priority to EP19946245.8A priority patent/EP3871857B1/en
Publication of WO2021124475A1 publication Critical patent/WO2021124475A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • B05D2401/21Mixture of organic solvent and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2520/00Water-based dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/50Footwear, e.g. shoes or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a method for manufacturing a polymer member, and more particularly to a method for manufacturing a polymer member for manufacturing a polymer member in which a polymer coating is provided on the surface of a polymer model.
  • 3D printing technology using stereolithography machines and the like has attracted attention.
  • a molding mold having a cavity corresponding to the shape of the polymer molding is required to manufacture the polymer molding, but when manufacturing the polymer molding by this 3D printing, the molding is required. It does not necessarily require a molding die. Therefore, 3D printing has a great advantage in the case of producing a wide variety of products in a small amount.
  • a polymer model as a base of the polymer member is produced from the polymer composition, a polymer film is formed on the surface of the polymer model to form the polymer member. It is possible to complete it.
  • the polymer coating may peel off from the polymer model. That is, in the method of producing a polymer member by forming a polymer film on the surface of the polymer model after producing the polymer model, there is a problem that it is difficult to suppress the peeling of the polymer film.
  • a polymer model was prepared from a curable composition containing an organic compound having a functional group that reacts with energy rays, and the functional group remained.
  • the present invention is completed by finding that peeling of the polymer film can be suppressed by forming the polymer film after producing the polymer model in the state of being in the state and then irradiating the polymer model with energy rays. It came to.
  • the present invention A method for manufacturing a polymer member in which a polymer film is provided on the surface of a polymer model.
  • a film forming step of forming the polymer film on the polymer model obtained in the curing step was carried out.
  • the polymer model containing the unreacted functional group is prepared.
  • a method for producing a polymer member which further performs a post-curing step of irradiating the polymer model with energy rays after performing the film forming step.
  • the schematic perspective view which shows the polymer member used for the shoe of FIG. FIG. 2 is a cross-sectional view of the polymer member of FIG. 2 (cross-sectional view taken along the line III-III in FIG. 2).
  • FIG. 1 shows a shoe in which the polymer member of the present embodiment is used.
  • the direction along the shoe center axis CX connecting the center HC of the heel and the center TC of the toe may be referred to as the length direction X.
  • the direction X1 from the heel to the toe may be referred to as the front
  • the direction X2 from the toe to the heel may be referred to as the rear.
  • the direction parallel to the horizontal plane HP may be referred to as the width direction Y.
  • the direction Y1 toward the first finger side of the foot may be referred to as the inner foot direction or the like, and the direction Y2 toward the fifth finger side may be referred to as the outer foot direction or the like.
  • the vertical direction Z orthogonal to the horizontal plane HP may be referred to as a thickness direction or a height direction.
  • the upward direction Z1 in the vertical direction Z may be referred to as an upward direction
  • the downward direction Z2 may be referred to as a downward direction.
  • the shoe 1 of the present embodiment has an upper 2 and a sole.
  • the sole is composed of a plurality of shoe parts.
  • the shoe 1 has a midsole 3 and an outsole 4.
  • the shoe 1 of the present embodiment has an outsole 4 at the lowermost position.
  • the outsole 4 of the present embodiment has, for example, a sheet shape, and is arranged at the bottom of the shoe 1 so that the thickness direction is the vertical direction Z.
  • the shoe 1 includes a midsole 3 between an upper 2 that covers the wearer's foot from above and the outsole 4.
  • the shoe 1 is further provided with a polymer member produced by a manufacturing method described later as a shoe member 5.
  • the shoe member 5 of the present embodiment is arranged on the outer foot side of the shoe 1 and is arranged on the hind foot portion 13.
  • the shoe member 5 of the present embodiment not only contributes to improving the aesthetic appearance of the shoe 1, but also has a function of supporting the walking of the wearer of the shoe 1 by making the mechanical properties different from those of the midsole 3 and the like. doing.
  • the shoe member 5 of the present embodiment is provided so that the position in the vertical direction is the position where the midsole 3 is arranged.
  • the shoe member 5 of the present embodiment includes a wall portion 5a extending in the vertical direction of the shoe 1 and a ceiling portion 5b extending in the horizontal direction from the upper end portion of the wall portion 5a. ..
  • the wall portion 5a of the shoe member 5 is arranged so as to form a part of the outer peripheral surface of the shoe 1, and is arranged so as to cover a part of the outer peripheral surface of the midsole 3 from the outer foot side. While the wall portion 5a is arranged so as to be exposed on the outer surface of the shoe 1 in this way, the ceiling portion 5b extends into the shoe 1 and is sandwiched between the upper 2 and the midsole 3. It has been. Therefore, the ceiling portion 5b of the shoe member 5 is arranged so as not to appear in the appearance of the shoe 1.
  • the shoe member 5 of the present embodiment includes a base 51 that is one size smaller than the shoe member 5, and a surface layer 52 that covers the outer surface of the base 51.
  • the base 51 is made of a polymer model
  • the surface layer 52 is made of a polymer coating.
  • the polymer model formed as the substrate 51 is composed of a curable composition cured by energy rays. That is, the substrate 51 in the present embodiment is produced by curing a curable composition containing an organic compound having a functional group that reacts with energy rays with energy rays. More specifically, the substrate 51 is an organic compound having, in its molecule, a functional group that causes a bond reaction with each other by an energy ray or a functional group that causes a bond reaction with another functional group by an energy ray. It is composed of a cured product of a curable composition containing the same.
  • Examples of the energy ray used for producing the substrate 51 include electromagnetic waves, electron beams, particle radiation, and the like, but electromagnetic waves that are easy to handle are preferable.
  • electromagnetic waves ultraviolet rays having a wavelength of 10 nm or more and less than 380 nm and visible light having a wavelength of 380 nm or more and less than 760 nm are more preferable than electromagnetic radiation such as X-rays and ⁇ -rays and microwaves.
  • Examples of the functional group contained in the organic compound contained in the curable composition used for producing the substrate 51 include a (meth) acrylic group, an epoxy group, an oxetane group, and an isocyanate group.
  • the organic compound having the functional group may be a monomer or an oligomer that is liquid at room temperature, or may be a polymer that is solid at room temperature.
  • the organic compound may have a plurality of the functional groups in one molecule.
  • the curable composition may further contain an organic compound having an amino group or a hydroxyl group capable of reacting with the functional group as described above.
  • the organic compound is preferably an oligomer having a mass average molecular weight (Mw) of 1000 or more and 15000 or less.
  • Mw mass average molecular weight
  • the organic compound preferably has an average number of functional groups of 2 or more and 15 or less in one molecule.
  • Examples of the organic compound contained in the curable composition used for producing the substrate 51 include urethane-based (meth) acrylate oligomers, polyester-based (meth) acrylate oligomers, polyether-based (meth) acrylate oligomers, and (meth). ) Acrylic (meth) acrylate oligomers, epoxy-based (meth) acrylate oligomers, conjugated diene polymerization system (meth) acrylate oligomers, and hydrogenated products thereof.
  • the organic compound may be a silicone (meth) acrylate oligomer or a hydrogenated product thereof.
  • a urethane-based (meth) acrylate oligomer is suitable because it can exhibit excellent adhesiveness to the polymer film.
  • the curable composition may contain various polymers, various fillers, and the like in addition to the above-mentioned oligomers.
  • the curable composition may further contain various components such as a polymerization initiator, an oil, a pigment, and a weather resistant agent.
  • the substrate 51 in the present embodiment may be produced by injection molding a curable composition containing a polymer having a functional group curable by energy rays, but it is produced by a method that does not use a molding mold. Is preferable.
  • the substrate 51 in the present embodiment is preferably manufactured by a method called 3D printing or the like, and is preferably manufactured by a stereolithography machine. That is, the substrate 51 may be composed of a photocurable composition that can be cured by light.
  • the organic compound contained in the photocurable composition is preferably an ultraviolet curable (meth) acrylic acid compound.
  • the photopolymerization initiator is contained in the photocurable composition as the polymerization initiator.
  • the photopolymerization initiator include acylphosphine oxide-based photopolymerization initiators such as bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; 2-Dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropanol, 2-hydroxy-1- (4- (4- (2-hydroxy-2-methyl) Propionyl) benzyl) phenyl) -2-methylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2- (dimethylamino) ) -4'-morpholinobtyrop
  • the photocurable composition of the present embodiment exhibits bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide or 2 in order to exhibit good reactivity in the curing step and the post-curing step described later.
  • 4,6-trimethylbenzoyldiphenylphosphine oxide is preferably contained.
  • the surface layer 52 may be formed by an electrostatic coating method or the like using a powder containing a polymer which is a main component of the polymer film, but in order to exhibit good adhesion to the substrate 51, the polymer may be formed. It is preferably formed by using a film forming agent which is a liquid agent containing a polymer which is a main component of the film.
  • the polymer contained in the film forming agent examples include an ultraviolet curable resin containing a urethane group, a thermosetting resin, and a moisture curable resin.
  • the polymer may be an ester polymer, an epoxy polymer, a silicone polymer, an acrylic polymer or the like. Among them, the polymer is preferably a polyurethane-based polymer.
  • the film-forming agent is preferably a liquid having a sufficiently low viscosity at room temperature (23 ° C.), and preferably has a viscosity of 3000 mPa ⁇ s or less.
  • the viscosity can be measured, for example, by a Brookfield rotational viscometer at a rotational speed of 20 rpm. If the film-forming agent has an excessively low viscosity, it may be difficult to form the thick surface layer 52. Therefore, the viscosity of the film forming agent is preferably 10 mPa ⁇ s or more.
  • the dispersion medium or solvent of the polymer in the film-forming agent.
  • the dispersion medium and the solvent are preferably water or an aqueous organic solvent in order to improve the working environment when forming the surface layer 52.
  • the aqueous organic solvent include various alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and t-butyl alcohol, acetone, methyl ethyl ketone and the like.
  • the shoe member 5 provided with such a surface layer 52 can be manufactured, for example, by a manufacturing method including the process shown in FIG.
  • the polymer member used as the shoe member 5 includes a curing step S1 for producing the polymer model by curing a curable composition containing an organic compound having a functional group that reacts with the energy rays with the energy rays, and the curing.
  • a film forming step S2 for forming the polymer film on the polymer model obtained in step S1 is carried out, and in the curing step S1, the polymer model in which the functional group remains is produced, and the film forming step S2 After that, the post-curing step S3 of irradiating the polymer model with energy rays is further carried out.
  • FIG. 5 shows the state of the curing step S1 using the stereolithography machine.
  • a liquid photocurable composition having a viscosity of 2000 mPa ⁇ s or less at room temperature, and more preferably to use a photocurable composition having a viscosity of 1000 mPa ⁇ s or less. ..
  • the viscosity of the photocurable composition is usually 1 mPa ⁇ s or more.
  • the photocurable composition HL is housed in a transparent container RB having an internal volume capable of accommodating the shoe member 5, and the light curable composition HL is transparent from a light source LS capable of changing the focal position.
  • the photocurable composition HL can be irradiated with light from the outside of the container RB, and the photocurable composition HL can be cured by the light to form a polymer model 510 serving as the substrate 51.
  • the polymer model 510 is preferably prepared so that the photocurable composition is in a semi-cured state in which it is not completely cured.
  • the fact that the produced polymer model 510 is in a semi-cured state means that, for example, the polymer model 510 is irradiated with light (for example, ultraviolet rays) capable of curing the photocurable composition HL, and the light is emitted. It can be confirmed by confirming the increase / decrease of the functional group before and after the irradiation of.
  • the polymer model 510 is measured by FT-IR by the ATR method and the infrared absorption peak attributed to the functional group decreases after irradiation with light, the polymer model Can be confirmed to be in a semi-cured state in which is not completely cured.
  • a polymer model 510 having excellent transparency can be formed.
  • the polymer model 510 has a haze of 20% or less, more preferably 15% or less, and even more preferably 10% or less, as determined based on JIS K7136 in a thickness of 2 mm. If the polymer model 510 has such transparency, it is advantageous in that it gives the shoe member 5 an excellent aesthetic appearance. The fact that the polymer model 510 has such transparency also exerts an advantage in workability (photocurability) when changing from a semi-cured state to a final cured state.
  • the polymer model obtained in order to remove the deposits on the surface may be washed.
  • the effect of increasing the number of functional groups (such as (meth) acrylate groups) on the surface of the polymer model can also be exhibited.
  • the step of drying the polymer model may be performed before the film forming step S2 is performed.
  • the curing step S1 is not limited to the stereolithography method, but can also be carried out by, for example, 3D printing by the material extrusion deposition method as shown in FIG.
  • the polymer model 510 is produced by the material extrusion deposition method in the curing step S1, as shown in FIG. 6, the polymer model 510 to be produced is divided into a plurality of layers in the height direction, and each layer is sequentially laminated.
  • a plate-like body having a size corresponding to the shape in each cross section when the polymer model 510 to be produced is cut by a horizontal plane at a predetermined pitch from the lower end and having a thickness corresponding to the pitch.
  • the polymer shaped product is produced by a method in which the plate-like bodies are sequentially laminated from the lower end.
  • the material extrusion deposition method is suitable when the curable composition is in a solid state at room temperature or when a curable composition having low transparency is used.
  • the material extrusion deposition method can easily produce a polymer model having a hollow structure.
  • the polymer model 510 produced by this method has a stepped step on the outer surface.
  • the step exerts a function of improving the surface retention of the film forming agent in the film forming step S2.
  • the step also functions effectively to exhibit excellent adhesiveness between the polymer coating and the polymer model.
  • a slight step may be formed on the surface of the polymer model.
  • the height of the step is preferably 0.01 mm or more, more preferably 0.05 mm or more, and more preferably 0.1 mm or more, when the direction in which the polymer model is formed is the height direction. It is more preferable to have.
  • the height of the step is preferably 1 mm or less, more preferably 0.8 mm or less, and further preferably 0.5 mm or less.
  • the point that the plate-shaped body is in a semi-cured state and the point that the semi-cured state can be confirmed by FT-IR are the same as in the case of using a stereolithography machine.
  • the curing step S1 can be performed by a 3D printing other than the above, and can also be performed by a method other than the 3D printing.
  • the curing step S1 if it is considered that the degree of curing is insufficient only by curing the curable composition when producing the polymer model, the curing is advanced before the film forming step. You may. That is, in the curing step S1, an additional curing reaction may be caused in the polymer model once prepared so as to be in a cured state suitable for performing the film forming step S2 and the post-curing step S3. As the additional curing reaction at this time, not only the curing reaction by irradiation with energy rays but also a thermosetting reaction or the like may be used.
  • the film forming step S2 for forming a polymer film on the surface of the polymer model formed in the curing step S1 can be carried out by a method of brushing the polymer model with the film forming agent.
  • the film forming agent may be spray-coated on the polymer model.
  • a method of immersing the polymer model in the film forming agent contained in the tank and pulling it up may be adopted.
  • the film forming step S2 can be carried out by adopting a conventionally known method as a coating method.
  • the polymer formed object coated with the film forming agent may be heated or the polymer formed object may be blown to promote the formation of the polymer film.
  • a post-curing step of irradiating the semi-cured polymer model with energy rays such as ultraviolet rays is performed.
  • the energy rays are emitted through the film-forming agent coated on the polymer model. Therefore, it is preferable that the film forming agent has low energy absorption of the energy rays.
  • the film-forming agent and the polymer film formed by the film-forming agent preferably have excellent transparency as in the polymer model, and have a haze of 20% or less at a thickness of 2 mm as in the polymer model. Is preferable.
  • the haze of the film-forming agent or the polymer film is more preferably 15% or less, and even more preferably 10% or less.
  • the haze of the film-forming agent or the polymer film is preferably less than or equal to the haze of the polymer-shaped product, and more preferably 80% or less of the haze of the polymer-shaped product.
  • the film forming agent used in the film forming step S2 is preferably a water emulsion type using water as a dispersion medium in consideration of the working environment and the like.
  • the post-curing step S3 can be carried out using various energy radiation sources.
  • the energy rays used in the post-curing step S3 may be the same as or different from the energy rays used in the curing reaction in the curing step S1.
  • Examples of the energy radiation source include metal halide lamps, high-pressure mercury lamps, and LED lamps.
  • sunlight may be used as the energy ray.
  • the peak height peculiar to the functional group becomes half or less of that before the post-curing step. It is preferable that it is carried out in this way.
  • the post-curing step S3 may be carried out so that the surface energy of the polymer model (base 51) after the post-curing step is lower than the surface energy of the polymer coating (surface layer 52).
  • the curable composition constituting the substrate 51 is formed.
  • the molecular chain of the polymer contained in the polymer film and the molecular chain of the polymer contained in the polymer coating may be in an entangled state or chemically bonded to each other. Therefore, if the relationship of surface energy is as described above, peeling is likely to occur, but in the present embodiment, high adhesiveness is exhibited between the substrate 51 and the surface layer 52.
  • the film forming agent used in the film forming step contains an organic solvent, it is advantageous in that it exhibits higher adhesive force to the polymer modeled object than the water emulsion type. Since the polymer member (shoe member 5) of the present embodiment exerts a high adhesive force between the substrate 51 and the surface layer 52 due to the entanglement of the molecular chains as described above, a water emulsion type film forming agent is used. Even if it is used, peeling of the surface layer 52 from the substrate 51 can be suppressed.
  • the polymer member (shoe member 5) of the present embodiment may have a type A durometer hardness (instantaneous value) of 95 or less specified in JIS K6253-3, and the type A durometer hardness is 90 or less. You may.
  • the hardness of the polymer member (shoe member 5) is soft, deformation is likely to occur and peeling is likely to occur between the substrate 51 and the surface layer 52, but in the present embodiment, such a possibility can be suppressed. That is, the polymer member (shoe member 5) of the present embodiment has the above-mentioned durometer hardness, so that the effect of the present invention is more remarkably exhibited.
  • the surface layer 52 preferably has a pencil hardness of 4H or more, and more preferably 5H or more.
  • the polymer member is used as the shoe member 5 in a state where the polymer member is arranged on the midsole 3 of the shoe 1 is illustrated, but the polymer member is a part or all of the outsole 4. It may constitute.
  • the polymer member can be widely used not only as a member for shoes such as the outsole 4 but also for other purposes.
  • the polymer member can be used for various purposes such as toys such as dolls, sports equipment, cushioning materials, anti-slip materials, tatires, and sealing materials.
  • the material and method for forming the polymer model or the polymer coating can be changed to those suitable for each application. That is, the present invention is not limited to the above examples.
  • the polymer model was subjected to ultrasonic cleaning for 2 minutes while being immersed in isopropyl alcohol, and the polymer model after ultrasonic cleaning was placed in a constant temperature bath at 60 ° C. for 10 minutes to dry.
  • the polymer model after drying was irradiated with ultraviolet rays (UV-A) so that the integrated energy was 8 J / cm 2, and post-curing was carried out.
  • UV-A ultraviolet rays
  • An emulsion-type film-forming agent containing a polyether polyurethane and containing water as a dispersion medium was prepared, and the film-forming agent was brush-coated on the surface of the post-cured polymer model, and the film-forming agent was applied in a constant temperature bath at 60 ° C. for 10 It was dried for a minute to form a polymer film on the surface of the polymer model.
  • a urethane-based adhesive was applied to the surface of the polymer member on which the polymer film was formed, and dried in a constant temperature bath at 60 ° C. for 5 minutes. The same urethane adhesive was applied to a sheet made of thermoplastic polyurethane and dried in a constant temperature bath at 60 ° C. for 5 minutes.
  • the polymer member and the sheet were laminated so that the surfaces coated with the urethane adhesive were in contact with each other and crimped with a crimping machine to prepare a laminate, and the laminate was left in an environment of 23 ° C. for about 3 days.
  • a strip-shaped sample having a width of 2 cm was cut out from the laminate about 3 days after the pressure bonding, and the sheet was peeled from the polymer member at a speed of 50 mm / min, and the stress required for the peeling was measured.
  • the stress at this time was 0.1 kgf or less, and the polymer coating was easily peeled off from the surface of the polymer model.
  • Table 1 When the surface energy of the polymer model and the surface energy of the polymer coating were determined by the contact angle method, they were as shown in Table 1 below.
  • the surface energy is the standard liquid (diiodomethane, ethanol, pure water) on the surface of the polymer model or the surface of the polymer coating using the contact angle measuring device (trade name "DMs-401”) of Kyowa Interface Science Co., Ltd.
  • the contact angle was measured, and it was calculated from the measurement result of the contact angle using the analysis software (trade name "FAMAS”: calculation method "Kitasaki-Hata theoretical formula") attached to the device.
  • a sheet-shaped cured product thickness: 2 mm
  • a polymer film is applied to the surface of the sheet-shaped cured product.
  • the formed material was used as a sample for measurement. Then, the measurement was carried out under the same environment after storing the prepared sample in an environment adjusted to a standard state (23 ° C., 50% RH) for several hours. In the measurement, the sample is set on the table of the contact angle measuring device (trade name "DMs-401"), diiodomethane, ethanol, and pure water are dropped from the syringe onto the sample to measure the contact angle, and the equipment is used. The surface energy was calculated using the attached analysis software (trade name "FAMAS").
  • Comparative Example 2 A polymer member was formed in the same manner as in Comparative Example 1 except that post-curing by ultraviolet rays was not performed, and the evaluation was carried out in the same manner as in Comparative Example 1. As a result, the stress at the time of peeling was 0.1 kgf or less, and the polymer coating was easily peeled from the surface of the polymer model as in Comparative Example 1.
  • Example 1 -Curing Step A photocurable composition containing a urethane-based (meth) acrylate oligomer having a (meth) acrylic group at the end of a polyether-type polyurethane, an acrylic monomer, and a photopolymerization initiator was prepared. Using a commercially available 3D printer (manufactured by Phorozen Co., Ltd., trade name "Shuffle XL"), a square polymer model having a thickness of 2 mm and a side of 50 mm, which was composed of the photocurable composition in a semi-cured state, was produced. The polymer model was subjected to ultrasonic cleaning for 2 minutes while being immersed in isopropyl alcohol, and the polymer model after ultrasonic cleaning was placed in a constant temperature bath at 60 ° C. for 10 minutes to dry.
  • a commercially available 3D printer manufactured by Phorozen Co., Ltd., trade name "Shuffle XL”
  • An emulsion-type film-forming agent containing polyether polyurethane and containing water as a dispersion medium is prepared, and the film-forming agent is brush-coated on the surface of the washed and dried polymer model, and the temperature is 60 ° C.
  • the polymer film was formed on the surface of the polymer model by drying in a constant temperature bath of the above for 10 minutes.
  • Post-curing was performed by irradiating the dried polymer model with ultraviolet rays (UV-A) so that the integrated energy was 2 J / cm 2.
  • UV-A ultraviolet rays
  • a urethane adhesive was applied to the surface of the cured polymer member and dried in a constant temperature bath at 60 ° C. for 5 minutes.
  • the same urethane adhesive was applied to a sheet made of thermoplastic polyurethane and dried in a constant temperature bath at 60 ° C. for 5 minutes.
  • the polymer member and the sheet were laminated so that the surfaces coated with the urethane adhesive were in contact with each other and crimped with a crimping machine to prepare a laminate, and the laminate was left in an environment of 23 ° C. for about 3 days.
  • a strip-shaped sample having a width of 2 cm was cut out from the laminate about 3 days after the pressure bonding, and the sheet was peeled from the polymer member at a speed of 50 mm / min, and the stress required for the peeling was measured.
  • the stress required for peeling was 1.1 kgf, and it was confirmed that a good adhesive force was acting between the polymer coating and the polymer model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Paints Or Removers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

ポリマー造形物の表面にポリマー被膜が設けられているポリマー部材でのポリマー被膜の剥離を抑制するために硬化性組成物をエネルギー線によって硬化させて前記ポリマー造形物を作製する硬化工程と、該ポリマー造形物に前記ポリマー被膜を形成させる被膜形成工程と、被膜形成工程後に前記ポリマー造形物にエネルギー線を照射する後硬化工程とを実施し、前記硬化工程では硬化性組成物に反応性の官能基が残存したポリマー造形物を作製する。

Description

ポリマー部材の製造方法
 本発明は、ポリマー部材の製造方法に関し、より詳しくは、ポリマー造形物の表面にポリマー被膜が設けられているポリマー部材を製造するポリマー部材の製造方法に関する。
 近年、光造形機などによる3Dプリント技術が注目されている。
 従来のインジェクション成形などでは、ポリマー造形物を製造するために当該ポリマー造形物の形状に対応したキャビティーを有する成形型が必要になるが、この3Dプリントでポリマー造形物を製造する際には、必ずしも成形型を要しない。
 そのため、3Dプリントは、多品種のものを僅かな量で製造するような場合に大きな利点を有する。
 ところでポリマー部材の製造方法において、その際に用いる成形方法に適したポリマー組成物では最終製品に求められる表面性状を発揮させ難い場合がある。
 例えば、インジェクション成形では、一般的に溶融粘度の低いポリマー組成物を用いる方が製造効率上有利になるが、その場合は、熱変形の生じ難い表面性状を製品に付与することが難しくなる。
 また、光硬化性を有するポリマー組成物を使って硬化物を層状に堆積させる3Dプリントでは、製造されるポリマー部材の表面に階段状の凹凸が形成されてしまい易く、表面が十分平滑なポリマー部材が得られ難い(下記特許文献1参照)。
特開2019-155912号公報
 上記のように所望の表面性状が得られ難い場合、一旦、ポリマー組成物でポリマー部材の下地となるポリマー造形物を製造した後に、該ポリマー造形物の表面にポリマー被膜を形成してポリマー部材を完成させることが考えられる。
 しかしながら、そのような場合には、ポリマー被膜がポリマー造形物から剥離するおそれがある。
 即ち、ポリマー造形物を製造した後に、該ポリマー造形物の表面にポリマー被膜を形成してポリマー部材を製造する方法においては、ポリマー被膜の剥離を抑制することが難しいという問題がある。
 上記課題を解決すべく本発明者が鋭意検討を行ったところ、エネルギー線によって反応する官能基を有する有機化合物を含む硬化性組成物によってポリマー造形物を作製し、しかも、前記官能基を残存させた状態で前記ポリマー造形物を作製した上でポリマー被膜を形成し、そして、その後にポリマー造形物にエネルギー線を照射することでポリマー被膜の剥離を抑制し得ることを見出して本発明を完成させるに至った。
 上記課題を解決するために、本発明は、
 ポリマー造形物の表面にポリマー被膜が設けられているポリマー部材を製造するポリマー部材の製造方法であって、
 エネルギー線によって反応する官能基を有する有機化合物を含む硬化性組成物をエネルギー線によって硬化させて前記ポリマー造形物を作製する硬化工程と、
 前記硬化工程で得られた前記ポリマー造形物に前記ポリマー被膜を形成させる被膜形成工程とを実施し、
 前記硬化工程では未反応な前記官能基を含む前記ポリマー造形物を作製し、
 前記被膜形成工程を実施した後に前記ポリマー造形物にエネルギー線を照射する後硬化工程をさらに実施するポリマー部材の製造方法、を提供する。
一実施形態の製造方法で作製したポリマー部材を備えた靴を示した概略斜視図。 図1の靴に用いられているポリマー部材を示す概略斜視図。 図2のポリマー部材の断面図(図2のIII-III線矢視断面図)。 ポリマー部材の製造方法を示した概略フロー図。 ポリマー部材の製造方法における硬化工程の一例を示す概略図。 ポリマー部材の製造方法における硬化工程の他の例を示す概略図。
 以下に本発明の実施の形態について図を参照しつつ説明する。
 尚、以下においては、ポリマー部材として靴用部材を作製する場合を例示するが、本発明において製造されるポリマー部材は下記例示に何等限定されるものではない。
 図1は、本実施形態のポリマー部材が用いられている靴を示したものである。
 尚、以下において図1に示した靴1について説明する際に、踵の中心HCと爪先の中心TCとを結ぶシューセンター軸CXに沿った方向のことを長さ方向Xと称することがある。
 また、シューセンター軸CXに沿った方向の内、踵から爪先に向けた方向X1を前方などと称し、爪先から踵に向けた方向X2を後方などと称することがある。
 さらに、シューセンター軸CXに直交する方向の内、水平面HPに平行する方向を幅方向Yと称することがある。
 この幅方向Yの内、足の第1指側に向けた方向Y1を内足方向などと称し、第5指側に向けた方向Y2を外足方向などと称することがある。
 そして、水平面HPに直交する垂直方向Zを厚さ方向や高さ方向と称することがある。
 さらに、以下においては、この垂直方向Zにおいて上方に向かう方向Z1を上方向と称し、下方に向かう方向Z2を下方向と称することがある。
 図1に示すように、本実施形態の靴1は、アッパー2と靴底とを有している。
 前記靴底は、複数の靴用パーツによって構成されている。
 該靴1は、ミッドソール3、及び、アウトソール4を有している。
 本実施形態の靴1は、最も下方にアウトソール4を備えている。
 本実施形態のアウトソール4は、たとえばシート状であり、厚さ方向が垂直方向Zとなるように靴1の最下部に配されている。
 前記靴1は、着用者の足を上側から覆うアッパー2と前記アウトソール4との間にミッドソール3を備えている。
 前記靴1には、後述する製造方法によって作製されたポリマー部材が靴用部材5としてさらに備えられている。
 本実施形態の靴用部材5は、靴1の外足側に配されており、後足部13に配されている。
 本実施形態の靴用部材5は、靴1の美観の向上に寄与しているだけでなくミッドソール3などとは機械的物性を異ならせて靴1の着用者の歩行をサポートする機能を有している。
 本実施形態の靴用部材5は、図1示すよう、上下方向での位置がミッドソール3の配されている位置となるように備えられている。
 本実施形態の靴用部材5は、図1、図2に示すように、靴1の上下方向に延びる壁部5aと壁部5aの上端部より水平方向に延びる天井部5bとを備えている。
 靴用部材5の壁部5aは、靴1の外周面の一部を構成するように配され、ミッドソール3の外周面の一部を外足側より覆うように配されている。
 このように前記壁部5aが靴1の外表面に露出した状態で配されているのに対して前記天井部5bは靴1の内部へと延びてアッパー2とミッドソール3との間に挟まれている。
 従って、前記靴用部材5の天井部5bは、靴1の外観には表れないように配されている。
 本実施形態の靴用部材5は、図3に示すように靴用部材5よりも一回り小さな基体51と、該基体51の外表面を覆う表面層52とを備えている。
 本実施形態における前記靴用部材5は、前記基体51がポリマー造形物によって構成されており、前記表面層52がポリマー被膜によって構成されている。
 前記基体51となっている前記ポリマー造形物は、エネルギー線によって硬化された硬化性組成物によって構成されている。
 即ち、本実施形態における前記基体51は、エネルギー線によって反応する官能基を有する有機化合物を含む硬化性組成物をエネルギー線によって硬化させることによって作製されたものである。
 より具体的に説明すると、前記基体51は、エネルギー線によって互いに結合反応を起こす官能基か、又は、エネルギー線によって別の官能基と結合反応を起こす官能基かを分子中に備えた有機化合物を含む硬化性組成物の硬化物によって構成されている。
 前記基体51の作製に用いる前記エネルギー線としては、例えば、電磁波、電子線、粒子放射線などがあげられるが、取り扱いが容易な電磁波が好ましい。
 電磁波の中でも、X線やγ線などのような電磁放射線やマイクロウェーブなどよりも波長が10nm以上380nm未満の紫外線や波長が380nm以上760nm未満の可視光などの光が好適である。
 前記基体51の作製に用いる前記硬化性組成物に含まれる有機化合物が備える前記官能基としては、例えば、(メタ)アクリル基、エポキシ基、オキセタン基、イソシアネート基などが挙げられる。
 該官能基を備える前記有機化合物は、常温において液状のモノマーやオリゴマーであってもよく、常温において固体状のポリマーであってもよい。
 前記有機化合物は、1分子中に前記官能基を複数有していてもよい。
 前記硬化性組成物には、上記のような官能基と反応可能なアミノ基や水酸基を有する有機化合物がさらに含まれていてもよい。
 前記有機化合物は、質量平均分子量(Mw)が1000以上15000以下のオリゴマーであることが好ましい。
 前記有機化合物は、1分子中における平均官能基数が2以上15以下であることが好ましい。
 前記基体51の作製に用いる前記硬化性組成物に含まれる前記有機化合物としては、例えば、ウレタン系(メタ)アクリレートオリゴマー、ポリエステル系(メタ)アクリレートオリゴマー、ポリエーテル系(メタ)アクリレートオリゴマー、(メタ)アクリル(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、共役ジエン重合体系(メタ)アクリレートオリゴマー、及び、これらの水素添加物などがあげられる。
 前記有機化合物は、シリコーン(メタ)アクリレートオリゴマーやその水素添加物であってもよい。
 前記有機化合物としては、前記ポリマー被膜との間に優れた接着性が発揮され得ることからウレタン系(メタ)アクリレートオリゴマーが好適である。
 前記硬化性組成物は、上記のようなオリゴマー以外に、各種ポリマーや各種フィラーなどを含有してもよい。
 前記硬化性組成物は、重合開始剤、オイル、顔料、耐候剤などの各種成分をさらに含んでもよい。
 靴を製造する際は、通常、複数のサイズの製品が作製される。
 また、靴を製造する際は、多くの場合、同じ形状でも色合いの異なる複数種類の製品が作製される場合がある。
 そのため、前記靴用部材5としては、大きさや色合いなどが異なる複数種類のものを簡便に製造できることが好ましい。
 インジェクション成形などで靴用部材5を作製しようとすると、成形型を数多く備える必要が生じる。
 そのため、本実施形態における前記基体51は、エネルギー線によって硬化可能な官能基を有するポリマーを含む硬化性組成物をインジェクション成形することによって作製されてもよいが、成形型を用いない方法で作製されることが好ましい。
 本実施形態における前記基体51は、3Dプリントなどと称される方法で作製されることが好ましく、光造形機で作製されることが好ましい。
 即ち、前記基体51は、光で硬化可能な光硬化性組成物によって構成されてもよい。
 該光硬化性組成物に含有される前記有機化合物は、紫外線硬化可能な(メタ)アクリル酸化合物であることが好ましい。
 前記基体51を光硬化性組成物で構成する場合、前記重合開始剤として光重合開始剤を前記光硬化性組成物に含有させることが好ましい。
 該光重合開始剤としては、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドなどのアシルフォスフィンオキサイド系光重合開始剤;2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパノン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-(ジメチルアミノ)-4’-モルフォリノブチロフェノン、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オンなどのアルキルフェノン系光重合開始剤;3-メチルベンゾイルぎ酸メチルなどの分子内水素引き抜き型光重合開始剤;カチオン系光重合開始剤などがあげられる。
 本実施形態の前記光硬化性組成物は、後述する硬化工程や後硬化工程において良好な反応性を発揮する上で、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、又は、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドを含むことが好ましい。
 前記表面層52は、ポリマー被膜の主成分となるポリマーを含む粉体を使った静電塗装法などによって形成されてもよいが、前記基体51との良好な密着性を発揮させる上では、ポリマー被膜の主成分となるポリマーを含む液剤である被膜形成剤を用いて形成されることが好ましい。
 被膜形成剤に含まれる前記ポリマーとしては、ウレタン基を含む紫外線硬化樹脂、熱硬化樹脂、湿気硬化樹脂などがあげられる。
 前記ポリマーとしては、エステル系ポリマー、エポキシ系ポリマー、シリコーン系ポリマー、アクリル系ポリマーなどであってもよい。
 なかでも、前記ポリマーはポリウレタン系ポリマーであることが好ましい。
 該被膜形成剤は、常温(23℃)において十分低粘度な液状であることが好ましく、粘度が3000mPa・s以下であることが好ましい。
 該粘度は、例えば、ブルックフィールド回転粘度計によって20rpmの回転速度で測定することができる。
 前記被膜形成剤が過度に低粘度では、厚さの厚い前記表面層52を形成することが難しくなる場合がある。
 そのため、前記被膜形成剤の粘度は10mPa・s以上であることが好ましい。
 前記被膜形成剤を上記のような粘度とする上では、前記ポリマーの分散媒又は溶媒を当該被膜形成剤に含有させることが好ましい。
 なお、該分散媒や該溶媒は、前記表面層52を形成する際の作業環境を良好なものとする上において水又は水系有機溶媒であることが好ましい。
 該水系有機溶媒としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、t-ブチルアルコール等の各種アルコール、アセトン、メチルエチルケトンなどがあげられる。
 このような表面層52を備えた前記靴用部材5は、例えば、図4に示す工程を備えた製造方法によって作製され得る。
 前記靴用部材5として用いるポリマー部材は、前記エネルギー線によって反応する官能基を有する有機化合物を含む硬化性組成物をエネルギー線によって硬化させて前記ポリマー造形物を作製する硬化工程S1と、前記硬化工程S1で得られた前記ポリマー造形物に前記ポリマー被膜を形成させる被膜形成工程S2とを実施し、前記硬化工程S1では前記官能基が残存した前記ポリマー造形物を作製し、前記被膜形成工程S2の後に前記ポリマー造形物にエネルギー線を照射する後硬化工程S3をさらに実施する。
 前記硬化工程S1では、前記の通り、光造形機を利用した3Dプリントによって前記基体51となるポリマー造形物を作製することが好ましい。
 図5に光造形機を利用した硬化工程S1の様子を示す。
 該硬化工程S1では、常温において粘度が2000mPa・s以下の値となる液状の光硬化性組成物を用いることが好ましく、1000mPa・s以下の粘度を有する光硬化性組成物を用いることがより好ましい。
 光硬化性組成物の粘度は、通常、1mPa・s以上とされる。
 該硬化工程S1では、図5に示すように前記靴用部材5を収容可能な内容積を有する透明容器RBに光硬化性組成物HLを収容し、焦点位置を変更可能な光源LSより前記透明容器RBの外部より前記光硬化性組成物HLに光を照射し、該光によって光硬化性組成物HLを硬化させて前記基体51となるポリマー造形物510を形成させることができる。
 前記ポリマー造形物510は、光硬化性組成物が完全に硬化していない半硬化状態となるように作製することが好ましい。
 作製されたポリマー造形物510が半硬化状態となっていることは、例えば、ポリマー造形物510に対して前記光硬化性組成物HLを硬化可能な光(例えば、紫外線)を照射し、該光の照射前後での前記官能基の増減を確認することで確かめることができる。
 より詳しくは、前記ポリマー造形物510の表面に対してATR法でのFT-IRによる測定を実施し、前記官能基に帰属する赤外吸収ピークが光の照射後に減少すれば、当該ポリマー造形物が完全に硬化反応をしていない半硬化な状態であると確認することができる。
 該硬化工程S1では、透明性に優れたポリマー造形物510を形成することができる。
 該ポリマー造形物510は、JIS K7136に基づいて求められる2mm厚さでのヘーズが20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。
 ポリマー造形物510がこのような透明性を有すると、靴用部材5に優れた美観を与える点において有利になる。
 ポリマー造形物510がこのような透明性を有することは、半硬化状態から最終的な硬化状態へとする際の作業性(光硬化性)においても利点を発揮する。
 該硬化工程S1では、表面の付着物を除去するために得られた前記ポリマー造形物を洗浄することを実施してもよい。
 前記ポリマー造形物を水や水系有機溶媒で洗浄することで、該ポリマー造形物の表面における前記官能基((メタ)アクリレート基など)の数を増大させる効果も発揮され得る。
 該硬化工程S1で前記洗浄を行う場合は、前記被膜形成工程S2を実施する前に前記ポリマー造形物を乾燥する工程を実施してもよい。
 前記硬化工程S1は、光造形法に限らず、例えば、図6に示すような材料押出堆積法による3Dプリントによっても実施可能である。
 前記硬化工程S1で、材料押出堆積法でポリマー造形物510を作製する場合、図6に示すように、作製するポリマー造形物510を高さ方向に複数の層に分けて各層を順次積層する方法にてポリマー造形物を作製することができる。
 該方法においては、作製するポリマー造形物510を下端から所定ピッチで水平面によって切断した際の各断面での形状に対応する大きさを有し、且つ、前記ピッチに対応する厚みを有する板状体を前記硬化性組成物で形成し、該板状体を前記下端から順次積層する方法によって前記ポリマー造形物を作製することが好ましい。
 該材料押出堆積法は、硬化性組成物が常温で固体状である場合や、透明度の低い硬化性組成物を用いる場合に適しているといえる。
 また、材料押出堆積法は、中空構造のポリマー造形物を作製することも容易である。
 該材料押出堆積法では、3DプリンタのノズルPNから、例えば、熱溶融状態の硬化性組成物を吐出して板状体を順次形成し、一つの板状体が冷え固まらない内に他の板状体を積層して作製された積層物510aが最終的なポリマー造形物510となる。
 そのため、該方法で作製されるポリマー造形物510は、外表面に階段状の段差が形成される。
 該段差は、前記被膜形成工程S2において被膜形成剤の表面保持を良好にする機能を発揮する。
 前記段差は、ポリマー被膜とポリマー造形物との間に優れた接着性を発揮するのにも有効に機能する。
 尚、前記光造形法においてもポリマー造形物の表面に僅かながら段差が形成され得る。
 前記段差は、ポリマー造形物が形成される方向を高さ方向とした際に、高さが0.01mm以上であることが好ましく、0.05mm以上であることがより好ましく、0.1mm以上であることがさらに好ましい。
 前記段差は、高さが1mm以下であることが好ましく、0.8mm以下であることがより好ましく、0.5mm以下であることがさらに好ましい。
 前記板状体を半硬化状態とする点、及び、当該半硬化状態をFT-IRで確認できる点については光造形機を用いる場合と同じである。
 該硬化工程S1は、上記以外の他の3Dプリントによっても実施可能であり、3Dプリント以外の方法によっても実施可能である。
 該硬化工程S1では、ポリマー造形物を作製する際の硬化性組成物の硬化だけでは硬化の度合いが不十分であると考えられる場合は、前記被膜形成工程前に硬化を進行させることを実施してもよい。
 即ち、該硬化工程S1では、被膜形成工程S2や後硬化工程S3を行うのに適した硬化状態となるように一旦作製したポリマー造形物に追加の硬化反応を生じさせるようにしてもよい。
 この時の追加の硬化反応は、エネルギー線の照射による硬化反応だけでなく熱硬化反応などを利用するようにしてもよい。
 前記硬化工程S1で形成されたポリマー造形物の表面にポリマー被膜を形成するための被膜形成工程S2は、前記被膜形成剤を前記ポリマー造形物に刷毛塗りする方法などにより実施できる。
 前記被膜形成工程S2では、前記被膜形成剤を前記ポリマー造形物にスプレーコートしてもよい。
 前記被膜形成工程S2では、槽に収容した前記被膜形成剤に前記ポリマー造形物を浸漬して引き上げる方法を採用してもよい。
 前記被膜形成工程S2は、これらの方法以外にも塗工方法として従来公知の方法を採用して実施することができる。
 該被膜形成工程S2では、被膜形成剤で被覆された前記ポリマー造形物を加熱したり、該ポリマー造形物に風を当てたりしてポリマー被膜の形成を促進してもよい。
 該被膜形成工程S2の後は半硬化状態の前記ポリマー造形物に紫外線などのエネルギー線を照射する後硬化工程が実施される。
 該エネルギー線は、前記ポリマー造形物に被覆されている前記被膜形成剤を通じて照射される。
 そのため、該被膜形成剤は、前記エネルギー線のエネルギー吸収性が低いことが好ましい。
 該被膜形成剤や該被膜形成剤で形成されるポリマー被膜は、ポリマー造形物と同様に透明性に優れることが好ましく、ポリマー造形物と同様に2mm厚さでのヘーズが20%以下であることが好ましい。
 被膜形成剤やポリマー被膜のヘーズは、15%以下であることがより好ましく、10%以下であることがさらに好ましい。
 被膜形成剤やポリマー被膜のヘーズは、ポリマー造形物のヘーズ以下であることが好ましく、ポリマー造形物のヘーズの80%以下であることがより好ましい。
 該被膜形成工程S2で用いる前記被膜形成剤は、作業環境面などを勘案すると、水を分散媒とした水エマルジョンタイプのものであることが好ましい。
 前記後硬化工程S3は、各種のエネルギー線源を用いて実施することができる。
 前記後硬化工程S3用いられるエネルギー線は、硬化工程S1での硬化反応に用いるエネルギー線と同じであっても異なっていてもよい。
 前記エネルギー線源としては、例えば、メタルハライドランプ、高圧水銀灯、LEDランプがあげられる。
 前記後硬化工程S3は、前記エネルギー線として太陽光を用いてもよい。
 前記後硬化工程S3は、前記ポリマー造形物(基体51)の外表面に対してFT-IRによる測定を実施したときに前記官能基に特有のピーク高さが後硬化工程前の半分以下となるように実施されることが好ましい。
 前記後硬化工程S3は、当該後硬化工程後における前記ポリマー造形物(基体51)の表面エネルギーが、前記ポリマー被膜(表面層52)の表面エネルギーよりも低くなるように実施されてもよい。
 本実施形態においては、前記官能基が残存した前記ポリマー造形物を用いて前記被膜形成工程が実施された後に前記ポリマー造形物にエネルギー線が照射されるため、基体51を構成する硬化性組成物に含まれるポリマーの分子鎖と、ポリマー被膜に含まれるポリマーの分子鎖とが絡み合った状態になったり、これらが化学結合した状態になったりする。
 従って、表面エネルギーの関係が上記のようなものであると本来は剥離が生じ易いものの、本実施形態においては基体51と表面層52との間に高い接着性が発揮される。
 前記被膜形成工程で用いる被膜形成剤は、有機溶剤を含む方が水エマルジョンタイプよりもポリマー造形物との間に高い接着力を発揮する点においては有利である。
 本実施形態のポリマー部材(靴用部材5)は、上記のような分子鎖の絡み合いによって基体51と表面層52との間に高い接着力が発揮されるため、水エマルジョンタイプの被膜形成剤を用いても基体51からの表面層52の剥離が抑制され得る。
 本実施形態のポリマー部材(靴用部材5)は、JIS K6253-3に規定のタイプAデュロメータ硬さ(瞬時値)が95以下であってもよく、該タイプAデュロメータ硬さが90以下であってもよい。
 ポリマー部材(靴用部材5)の硬さが柔らかな場合は変形を生じ易く基体51と表面層52との間に剥離が生じ易くなるが、本実施形態においてはそのようなおそれを抑制できる。
 即ち、本実施形態のポリマー部材(靴用部材5)は、上記のようなデュロメータ硬さを有することで本発明の効果がより顕著に発揮される。
 前記表面層52は、エンピツ硬度が4H以上であることが好ましく、5H以上であることがより好ましい。
 なお、本実施形態においては、ポリマー部材を靴1のミッドソール3に配した状態で靴用部材5として利用する場合を例示しているが、該ポリマー部材は、アウトソール4の一部又は全部を構成するものであってもよい。
 また、ポリマー部材は、アウトソール4などの靴用部材としてだけでなく他の用途にも幅広く用い得る。
 該ポリマー部材は、人形などのおもちゃや、スポーツ用具、クッション材、防滑材、タタイヤ、シーリング材など各種用途に用いることができる。
 その場合、ポリマー造形物やポリマー被膜の形成材料や形成方法は各用途に適したものに変更可能である。
 即ち、本発明は上記例示に何等限定されるものではない。
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
(比較例1)
 ポリエーテル型ポリウレタンの末端に(メタ)アクリル基を有するウレタン系(メタ)アクリレートオリゴマー、アクリルモノマー、及び、光重合開始剤を含む光硬化性組成物を用意した。
 市販の3Dプリンタ(Phorozen社製、商品名「Shuffle XL」)を用い、半硬化状態の前記光硬化性組成物で構成された厚さが2mmで、大きさが一辺50mmの正方形である板状のポリマー造形物を作製した。
 該ポリマー造形物をイソプロピルアルコールに浸漬した状態で超音波洗浄を2分間実施し、超音波洗浄後のポリマー造形物を60℃の恒温槽に10分間入れて乾燥した。
 乾燥後のポリマー造形物に対して紫外線(UV-A)を積算エネルギーが8J/cmとなるように照射して後硬化を実施した。
 ポリエーテル型ポリウレタンを含み、水を分散媒として含有するエマルジョンタイプの被膜形成剤を用意し、後硬化されたポリマー造形物の表面に該被膜形成剤を刷毛塗りし、60℃の恒温槽で10分間乾燥してポリマー造形物の表面にポリマー被膜を形成させた。
 このポリマー被膜が形成されたポリマー部材の表面にウレタン系接着剤を塗布して60℃の恒温槽で5分間乾燥させた。
 熱可塑性ポリウレタン製のシートに同じウレタン系接着剤を塗布して同じく60℃の恒温槽で5分間乾燥させた。
 前記ポリマー部材と前記シートとをウレタン系接着剤を塗布した面が接するように重ね合わせて圧着機で圧着して積層体を作製し、該積層体を23℃の環境で3日程度放置した。
 圧着から3日程度経過した前記積層体から2cm幅の短冊状試料を切り出し、前記ポリマー部材から前記シートを50mm/minの速度で剥離し、剥離に要する応力を測定した。
 このときの応力は、0.1kgf以下であり、ポリマー被膜がポリマー造形物の表面から容易に剥離した。
 なお、ポリマー造形物の表面エネルギーとポリマー被膜の表面エネルギーとを接触角法によって求めたところ、後記の表1に示す通りとなった。
 尚、表面エネルギーは、協和界面科学社の接触角測定装置(商品名「DMs-401」)を用いてポリマー造形物の表面やポリマー被膜の表面において標準液体(ジヨードメタン、エタノール、純水)との接触角を測定し、該接触角の測定結果から装置付属の解析ソフト(商品名「FAMAS」:算出方法「北崎・畑 理論式」)を使って算出した。
 具体的には、ポリマー造形物の表面エネルギーについては各条件で硬化させたシート状硬化物(厚さ:2mm)を試料とし、ポリマー被膜の表面エネルギーについてはシート状硬化物の表面にポリマー被膜を形成したものを試料として測定を実施した。
 そして、測定は、作製した試料を標準状態(23℃、50%RH)に調整された環境下で数時間保管した後に同環境下で実施した。
 測定では、接触角測定装置(商品名「DMs-401」)のテーブル上に試料をセットして、シリンジから試料の上にジヨードメタン、エタノール、純水を滴下させて、接触角を測定し、設備付属の解析ソフト(商品名「FAMAS」)にて表面エネルギーを算出した。
(比較例2)
 紫外線による後硬化を実施しなかったこと以外は比較例1と同様にポリマー部材を形成し、比較例1と同様に評価した。
 その結果、剥離時の応力は0.1kgf以下となり、比較例1と同様にポリマー被膜がポリマー造形物の表面から容易に剥離した。
(実施例1)
・硬化工程
 ポリエーテル型ポリウレタンの末端に(メタ)アクリル基を有するウレタン系(メタ)アクリレートオリゴマー、アクリルモノマー、及び、光重合開始剤を含む光硬化性組成物を用意した。
 市販の3Dプリンタ(Phorozen社製、商品名「Shuffle XL」)を用い、半硬化状態の前記光硬化性組成物で構成された厚さが2mmで一辺50mmの正方形のポリマー造形物を作製した。
 該ポリマー造形物をイソプロピルアルコールに浸漬した状態で超音波洗浄を2分間実施し、超音波洗浄後のポリマー造形物を60℃の恒温槽に10分間入れて乾燥した。
・被膜形成工程
 ポリエーテル型ポリウレタンを含み、水を分散媒として含有するエマルジョンタイプの被膜形成剤を用意し、洗浄・乾燥されたポリマー造形物の表面に該被膜形成剤を刷毛塗りし、60℃の恒温槽で10分間乾燥してポリマー造形物の表面にポリマー被膜を形成させた。
・後硬化工程
 乾燥後のポリマー造形物に対して紫外線(UV-A)を積算エネルギーが2J/cmとなるように照射して後硬化を実施した。
 この後硬化の行われたポリマー部材の表面にウレタン系接着剤を塗布して60℃の恒温槽で5分間乾燥させた。
 熱可塑性ポリウレタン製のシートに同じウレタン系接着剤を塗布して同じく60℃の恒温槽で5分間乾燥させた。
 前記ポリマー部材と前記シートとをウレタン系接着剤を塗布した面が接するように重ね合わせて圧着機で圧着して積層体を作製し、該積層体を23℃の環境で3日程度放置した。
 圧着から3日程度経過した前記積層体から2cm幅の短冊状試料を切り出し、前記ポリマー部材から前記シートを50mm/minの速度で剥離し、剥離に要する応力を測定した。
 その結果、剥離に要する応力は、1.1kgfとなり、ポリマー被膜とポリマー造形物との間に良好な接着力が作用していることが確認できた。
Figure JPOXMLDOC01-appb-T000001
 以上のことからも本発明によればポリマー被膜が剥離し難いポリマー部材を得られることがわかる。
1:靴、2:アッパー、3:ミッドソール、4:アウトソール、5:靴用部材(ポリマー部材)、51:基体、52:表面層、510:ポリマー造形物

Claims (7)

  1.  ポリマー造形物の表面にポリマー被膜が設けられているポリマー部材を製造するポリマー部材の製造方法であって、
     エネルギー線によって反応する官能基を有する有機化合物を含む硬化性組成物をエネルギー線によって硬化させて前記ポリマー造形物を作製する硬化工程と、
     前記硬化工程で得られた前記ポリマー造形物に前記ポリマー被膜を形成させる被膜形成工程とを実施し、
     前記硬化工程では未反応な前記官能基を含む前記ポリマー造形物を作製し、
     前記被膜形成工程を実施した後に前記ポリマー造形物にエネルギー線を照射する後硬化工程をさらに実施するポリマー部材の製造方法。
  2.  前記被膜形成工程では、ポリマーを含む液剤である被膜形成剤が用いられ、該被膜形成剤が前記ポリマー造形物に塗布され、塗布された前記被膜形成剤が乾燥されることによって前記ポリマー被膜が形成される請求項1記載のポリマー部材の製造方法。
  3.  前記被膜形成剤には、前記ポリマーの分散媒又は溶媒として、水又は水系有機溶媒が含まれている請求項2記載のポリマー部材の製造方法。
  4.  前記硬化性組成物が光で硬化可能な光硬化性組成物であり、前記硬化工程では、光造形機で前記ポリマー造形物が作製される請求項1乃至3の何れか1項記載のポリマー部材の製造方法。
  5.  前記後硬化工程を実施した後の前記ポリマー造形物の表面エネルギーは、前記ポリマー被膜の表面エネルギーよりも低い請求項1乃至4の何れか1項記載のポリマー部材の製造方法。
  6.  前記有機化合物が、紫外線硬化可能な(メタ)アクリル酸化合物であり、前記硬化性組成物には光重合開始剤が含まれている請求項1乃至5の何れか1項記載のポリマー部材の製造方法。
  7.  製造するポリマー部材が靴用部材である請求項1乃至6の何れか1項記載のポリマー部材の製造方法。
     
PCT/JP2019/049588 2019-12-18 2019-12-18 ポリマー部材の製造方法 WO2021124475A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980036635.8A CN113453873B (zh) 2019-12-18 2019-12-18 聚合物部件的制造方法
US17/278,956 US11884003B2 (en) 2019-12-18 2019-12-18 Method for producing polymer member
PCT/JP2019/049588 WO2021124475A1 (ja) 2019-12-18 2019-12-18 ポリマー部材の製造方法
JP2020556819A JP6843311B1 (ja) 2019-12-18 2019-12-18 ポリマー部材の製造方法
EP19946245.8A EP3871857B1 (en) 2019-12-18 2019-12-18 Polymer member production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049588 WO2021124475A1 (ja) 2019-12-18 2019-12-18 ポリマー部材の製造方法

Publications (1)

Publication Number Publication Date
WO2021124475A1 true WO2021124475A1 (ja) 2021-06-24

Family

ID=74860846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049588 WO2021124475A1 (ja) 2019-12-18 2019-12-18 ポリマー部材の製造方法

Country Status (5)

Country Link
US (1) US11884003B2 (ja)
EP (1) EP3871857B1 (ja)
JP (1) JP6843311B1 (ja)
CN (1) CN113453873B (ja)
WO (1) WO2021124475A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174563A (ja) * 1995-12-26 1997-07-08 Teijin Seiki Co Ltd 光造形型およびその製造方法
JP2001079855A (ja) * 1999-09-10 2001-03-27 Teijin Seiki Co Ltd 光造形型
JP2015112845A (ja) * 2013-12-13 2015-06-22 セイコーエプソン株式会社 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
US10029395B2 (en) * 2013-03-14 2018-07-24 Stratasys Ltd. Polymer based molds and methods of manufacturing there of
JP2019155912A (ja) 2018-03-07 2019-09-19 ゼロックス コーポレイションXerox Corporation 3d印刷された物体の表面仕上げ用低融点粒子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234636A (en) * 1989-09-29 1993-08-10 3D Systems, Inc. Methods of coating stereolithographic parts
CA2045275A1 (en) * 1990-06-26 1991-12-27 John A. Lawton Solid imaging system using incremental photoforming
US6263249B1 (en) * 1999-02-26 2001-07-17 Medtronic, Inc. Medical electrical lead having controlled texture surface and method of making same
EP3102391B1 (en) * 2015-02-03 2017-07-26 Philips Lighting Holding B.V. Fused deposition modeling based mold for molding and replicating objects, method for its manufacture and fused deposition modeling 3d printer
US10350823B2 (en) * 2015-12-22 2019-07-16 Carbon, Inc. Dual precursor resin systems for additive manufacturing with dual cure resins
CN109982850A (zh) * 2016-11-22 2019-07-05 昕诺飞控股有限公司 粉末涂覆的fdm打印的物品、相关的制造方法和装置
CN110945039B (zh) * 2017-07-28 2022-03-04 株式会社尼康 光固化性组合物及三维物体的制造方法
EP3713741B1 (en) * 2017-11-21 2023-03-01 3M Innovative Properties Company A method of making a physical object
JP6969481B2 (ja) * 2018-04-03 2021-11-24 王子ホールディングス株式会社 粘着剤組成物、粘着シート及び積層体
WO2021132699A1 (ja) * 2019-12-25 2021-07-01 クラレノリタケデンタル株式会社 エネルギー線硬化性立体造形物用コーティング材及びそれを含むエネルギー線硬化性立体造形用材料キット並びにそれを用いた立体造形物及びその製造方法
CN113693340B (zh) * 2020-05-21 2022-09-02 清锋(北京)科技有限公司 一种3d打印环保鞋底以及打印及后处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174563A (ja) * 1995-12-26 1997-07-08 Teijin Seiki Co Ltd 光造形型およびその製造方法
JP2001079855A (ja) * 1999-09-10 2001-03-27 Teijin Seiki Co Ltd 光造形型
US10029395B2 (en) * 2013-03-14 2018-07-24 Stratasys Ltd. Polymer based molds and methods of manufacturing there of
JP2015112845A (ja) * 2013-12-13 2015-06-22 セイコーエプソン株式会社 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP2019155912A (ja) 2018-03-07 2019-09-19 ゼロックス コーポレイションXerox Corporation 3d印刷された物体の表面仕上げ用低融点粒子

Also Published As

Publication number Publication date
JP6843311B1 (ja) 2021-03-17
JPWO2021124475A1 (ja) 2021-06-24
CN113453873A (zh) 2021-09-28
EP3871857B1 (en) 2024-02-07
EP3871857A4 (en) 2021-10-13
US20220111580A1 (en) 2022-04-14
EP3871857A1 (en) 2021-09-01
US11884003B2 (en) 2024-01-30
CN113453873B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
TWI438218B (zh) 硬塗敷形成用薄片
TWI438217B (zh) 硬塗層形成用樹脂組合物
KR102430212B1 (ko) 가식 시트
TWI729012B (zh) 防霧積層體、含有防霧積層體的物品、及其製造方法、以及防霧方法
KR20140010099A (ko) 삼차원 성형용 장식 시트 및 그 제조 방법과 상기 장식 시트를 사용한 장식 성형품 및 그 제조 방법
CN105765002B (zh) 可成形硬涂层涂覆的pc/pmma共挤出膜
JP2007030479A (ja) 活性エネルギー線硬化樹脂積層体およびその製造方法
CN104129129A (zh) 树脂层叠体
JP5790378B2 (ja) 水圧転写フィルム、その製造方法並びにこれを用いた加飾成形品の製造方法
KR20140114795A (ko) 수지 적층체 및 이것을 사용한 성형 방법
JP6843311B1 (ja) ポリマー部材の製造方法
JP2012521476A (ja) ハードコーティング組成物、これを用いた多層シート及びその製造方法
JP5616036B2 (ja) 基材、中間膜及び微細凹凸構造膜を積層してなる積層体
KR20100026013A (ko) 하드코팅액 조성물 및 하드 코팅 필름
JP5889179B2 (ja) 加飾成型品の製造方法
KR20100026012A (ko) 하드코팅액 조성물 및 하드 코팅 필름
JPWO2020008956A5 (ja)
US10195133B2 (en) Photocurable composition for nail or artificial nail
JP7108390B2 (ja) 硬化性樹脂組成物
JP7108391B2 (ja) ウレタンアクリレート系硬化性樹脂組成物
JP2018012279A (ja) 三次元加飾用フィルム、三次元加飾成型体および三次元加飾用フィルムの製造方法
CN104097376A (zh) 热成型用树脂层叠体及其成型方法
CN108700679B (zh) 光学部件的制造方法以及光学部件
JP2020049771A (ja) 加飾シート及び加飾樹脂成形品
JP2012072238A (ja) 光硬化性樹脂組成物およびその硬化体を含むスイッチ部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556819

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019946245

Country of ref document: EP

Effective date: 20210401

NENP Non-entry into the national phase

Ref country code: DE