WO2021124470A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2021124470A1
WO2021124470A1 PCT/JP2019/049535 JP2019049535W WO2021124470A1 WO 2021124470 A1 WO2021124470 A1 WO 2021124470A1 JP 2019049535 W JP2019049535 W JP 2019049535W WO 2021124470 A1 WO2021124470 A1 WO 2021124470A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
wafer
shaped member
plasma
conductor
Prior art date
Application number
PCT/JP2019/049535
Other languages
English (en)
French (fr)
Inventor
裕之 梶房
横川 賢悦
荒瀬 高男
森 政士
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US16/980,501 priority Critical patent/US20210249233A1/en
Priority to KR1020207023260A priority patent/KR102503478B1/ko
Priority to CN201980015455.1A priority patent/CN113348732B/zh
Priority to JP2020545817A priority patent/JP7043617B2/ja
Priority to PCT/JP2019/049535 priority patent/WO2021124470A1/ja
Priority to TW109129343A priority patent/TWI757849B/zh
Publication of WO2021124470A1 publication Critical patent/WO2021124470A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3341Reactive etching

Definitions

  • the present invention relates to a plasma processing apparatus that processes a substrate-like sample such as a semiconductor wafer placed on a sample table installed in a processing chamber inside a vacuum vessel using plasma, and supplies high-frequency power to the sample table.
  • the present invention relates to a plasma processing apparatus that processes a sample.
  • the plasma processing device introduces a processing gas into the processing chamber, turns it into plasma, forms an electric field on the wafer by high-frequency bias, attracts charged particles such as ions in the plasma to the wafer, and charges the particles. Is vertically incident on the wafer, so that a vertical shape can be formed on the wafer.
  • Such a plasma processing apparatus is required to process a wider range of the wafer surface more uniformly due to the demand for improving the productivity of semiconductor devices.
  • the etching characteristics for example, processing speed
  • the shape after etching will vary depending on the in-plane position of the wafer. The larger the variation, the more parts do not meet the required shape, and the lower the product yield.
  • the incident of the charged particles is concentrated due to the distortion of the electric field on the wafer, and the etching shape is tilted (tilting).
  • Patent Document 1 a technique disclosed in Japanese Patent Application Laid-Open No. 2014-108764 (Patent Document 1) has been conventionally known.
  • a dielectric focus ring and a conductor focus ring are placed on top of a conductor focus ring having the same potential as the wafer, and the edge electric field changes with time due to the wear of the focus ring. What suppresses is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-225376
  • a conductor ring to which high-frequency power can be applied and a dielectric member covering the conductor ring are installed so as to surround the outer peripheral side of the wafer.
  • a method of detecting wear by using a change in impedance of a circuit and a technique of controlling tilting by changing the magnitude of electric power applied to a conductor ring according to the amount of wear are disclosed.
  • Patent Document 2 cannot independently detect the wear of the inner side surface of the member near the outer peripheral portion of the wafer, which has the strongest influence on the electric field on the outer peripheral portion of the wafer, and is closest to the wafer.
  • An object of the present invention is to provide a plasma processing apparatus capable of obtaining stable plasma processing characteristics by more accurately detecting only the wear of a portion having the strongest influence on the electric field control around the outer peripheral portion of the wafer. is there.
  • the above-mentioned purpose is a processing chamber arranged inside the vacuum vessel in which plasma is formed, and a sample table arranged in the lower part of the processing chamber on which the wafer to be processed using the plasma is placed, and the central portion of the upper part.
  • the magnitude of the high-frequency power according to the result of detecting the voltage of the high-frequency power flowing through the power supply path connecting between the high-frequency power supply that supplies the high-frequency power to the ring-shaped member made of the conductor and the ring-shaped member during the processing. Achieved by a plasma processing device equipped with a regulator that regulates.
  • the present invention it is possible to provide a plasma processing apparatus capable of more accurately detecting changes in plasma processing characteristics with time on the outer peripheral portion of a wafer.
  • FIG. 5 is a vertical cross-sectional view schematically showing a state after consumption of a member due to plasma treatment of the outer peripheral side portion of the sample table shown in FIG.
  • FIG. 7 is a cross-sectional view schematically showing the shape of a film having a predetermined thickness arranged on the surface of the wafer after being etched.
  • a plasma 740 having a predetermined potential is formed in the space above the upper surface of the wafer 720, and a predetermined thickness is formed between the plasma 740 and the surface of the wafer 720 along the surface of the wafer 720.
  • Reference numeral 752 indicates the interface of the sheath, and the thickness of the sheath (distance between the sheath interface 752 and the upper surface of the wafer 720) formed between the sheath interface 752 and the upper surface of the wafer 720 is below the wafer 720. It changes depending on the magnitude of the high frequency power supplied to the electrodes.
  • the charged particles 753 in the plasma 740 (which have a positive charge in this figure) are subjected to Coulomb force in the electric field formed between the wafer 720 and the plasma 740 and are perpendicular to the equipotential surface 751 in the sheath. It is attracted and accelerated toward the wafer 720 in the direction.
  • the equipotential surface 751 is parallel to the upper surface of the wafer 720
  • the charged particles 753 in the plasma are vertically incident on the film on the surface of the wafer 720 and collide with each other.
  • the direction and shape of the side wall surface of the pattern such as grooves and holes formed by removing the material of the film by using the energy at the time of collision by physical or chemical reaction is perpendicular to the upper surface of the film. Be made.
  • the equipotential surface 751 is tilted with respect to the upper surface of the wafer 720 as shown in FIG. 7B, the charged particles 753 are obliquely incident on the upper surface of the film of the wafer 720, and the pattern is formed.
  • the shape and direction of the side wall surface the direction and shape of the side wall surface are tilted (tilting) in the processed shape.
  • electric field concentration is likely to occur in the portion near the outer peripheral edge of the wafer 720, and the equipotential surface 151 is tilted with respect to the upper surface of the film of the wafer 720, causing tilting, and the central portion of the wafer 720.
  • the direction and shape of the pattern will vary.
  • a ring shape arranged around the wafer 720 on the outside of the outer peripheral edge of the wafer 720.
  • Power is supplied to a conductor or semiconductor member to form a bias potential, and a sheath of a desired size is formed above the ring-shaped member or another member covering above the ring-shaped member to form a sheath of a desired size outside the wafer 720.
  • the isopotential surface 751 of the sheath of the peripheral portion is formed.
  • Such a ring facing the plasma 740 is called a focus ring, and the member on the upper surface of the focus ring is scraped by being collided with the charged particles 753 of the plasma 740 during processing of the wafer 720, or is scraped with the particles of the plasma 740. Due to the interaction of the particles, wear such as detachment occurs. Therefore, there is a problem that the height of the equipotential surface 751 of the sheath formed above the upper surface of the ring changes as the number of wafers to be processed and the time increases, and the degree of tilting also changes. Occurs.
  • FIG. 8 is a vertical cross-sectional view schematically showing the outline of the configuration of the prior art of the sample table provided with the configuration for suppressing the change with time.
  • a cylindrical convex portion whose upper surface is higher than the outer peripheral side is provided in the central portion of the upper portion of the base material 813 made of a metal or the like conductor having a cylindrical shape, which constitutes the main portion of the sample table 810.
  • a state in which a dielectric film 811 made of a dielectric material such as ceramics is arranged on the upper surface of the convex portion and a wafer 720 is placed on the upper surface thereof is shown.
  • the wafer 720 is attracted to the upper surface of the dielectric film 811 by the electrostatic force formed by supplying electric power from the DC power supply to the conductor film 812, which is a film-like electrode arranged inside the dielectric film 811. It is held.
  • the outer peripheral side of the convex portion in the upper central portion of the base material 813 is a concave portion that surrounds the convex portion on the ring by lowering the height of the upper surface, and the surface of the side wall of the convex portion having a cylindrical shape and the ring-shaped concave portion.
  • a coating film 814 composed of a dielectric material such as ceramics is arranged in, and a focus ring 801, 802, 803, which is a ring-shaped member surrounding the convex portion, is arranged on the upper surface of the coating film 813.
  • These focus rings 801, 802, 803 are members that are stacked in the vertical direction and joined to each other to form an integral member, and the wafer 720 is placed on and held on the dielectric film 811 of the wafer 720. It is arranged on the recess so as to surround it on the outer peripheral side.
  • the base material 813 is electrically connected to the second high frequency power supply 831 via the matching unit 832, and the high frequency power output by the high frequency power supply 831 is supplied while the wafer 720 is being processed.
  • the focus ring 801 is electrically connected to the base material 813 for high frequency power and has the same potential as the base material 813.
  • the shape of the sheath interface 152 for example, the height position relative to the upper surface of the wafer 720, as the focus ring 803 facing the plasma 740 is consumed and the height of the upper surface decreases (varies downward in the figure). Even if the focus ring 802 changes, the distribution of the equipotential surface 751 on the wafer 120 and in the specific sheath located inside the focus ring 802 is suppressed because the consumption such as scraping by the plasma 740 is small.
  • the focus ring 801 when the inner peripheral wall surface of the focus ring 801 arranged below is greatly worn, the focus ring 801 is used.
  • the distance between the inner peripheral edge of the wafer and the outer peripheral edge of the wafer 720 fluctuates in the horizontal direction (left-right direction in the drawing), and the equipotential surface passing above the outer peripheral edge of the wafer 720 and inside the focus ring 802 accordingly.
  • the distribution of 151 will change.
  • the focus ring 801 located at the lowermost position is made of a semiconductor such as metal or Si and is a conductor with respect to the high frequency power supplied through the base material 813. It was difficult to detect with high accuracy.
  • FIG. 9 is a vertical cross-sectional view schematically showing an outline of the configuration of a sample table according to another conventional technique.
  • the conductor ring 922 surrounding the outer peripheral edge of the wafer 720 and the upper surface and the inner outer peripheral side wall surface of the conductor ring 922 are covered on the concave portion surrounding the outer peripheral edge of the convex portion of the base material 813 of the sample table 810.
  • the ceramics or the dielectric covering 923 made of a dielectric such as quartz is shown.
  • the impedance value between the conductor ring 922 and the plasma 740 on the equivalent circuit between the second high frequency power supply 831 and the plasma 740 and its change are detected, and the dielectric covering 923 facing the plasma 740 is detected. It has a configuration to detect the wear of parts.
  • the sample table 810 in this figure detects the impedance related to the high frequency power on the feeding path by the impedance detector 936 electrically connected to the feeding path between the matching device 832 and the conductor ring 922, and the result of the detection. It has a function of adjusting the electric power applied to the conductor ring 122 by adjusting the operation of the load impedance adjuster 935 on the feeding path according to the above. In such a configuration, when the member of the dielectric covering 923 covering the conductor ring 922 is consumed as shown in FIG.
  • the amount of change can be detected as a parameter corresponding to the amount of wear on the upper surface and the inner side surface of the dielectric covering 923. Further, the magnitude of the high-frequency power applied to the conductor ring 922 is adjusted according to the detected amount of wear of the member, and the conductor ring 922 is formed above the dielectric cover ring 922 covering the upper surface or the inner peripheral side wall surface. It has a function of adjusting the height position of the equipotential surface 751 of the sheath and the inclination of the equipotential surface 751 above the outer peripheral edge of the wafer 720 that changes accordingly.
  • the inner peripheral side wall surface 923a located with a gap in the horizontal direction (horizontal direction in the drawing) from the outer peripheral edge of the wafer 720 of the dielectric covering 923 is the position closest to the outer peripheral edge. Since it is a place through which the potential surface 751 passes, it has the greatest effect on the horizontal distribution of the equipotential surface 751 due to the consumption of the inner peripheral side surface 923a.
  • the dielectric covering 923 in the equivalent circuit between the plasma 740 and the second high-frequency power supply 731, the dielectric covering 923 is a part that functions as an integral capacitance, and is a portion of the inner peripheral side wall surface 923a. Since it is difficult to detect the consumption of a specific part separately from the part that is consumed facing the other plasma 740, for example, the upper surface part, it is possible to accurately realize the distribution of the equipotential surface 751 as desired. could not.
  • FIG. 1 is a vertical cross-sectional view illustrating the outline of the configuration of the plasma processing apparatus according to the embodiment of the present invention.
  • the plasma processing apparatus of this embodiment has a vacuum vessel 101 having a cylindrical shape at least in part, and an electric field for forming the plasma 140 in a processing chamber which is arranged above the vacuum vessel 101 and is a space inside the vacuum vessel 101.
  • the upper electrode 102 which is the upper part of the vacuum vessel 101 and is arranged above the processing chamber and has a disk-like shape, and the upper electrode 102 are arranged below the upper electrode 102 with a gap so as to be parallel to the upper electrode 102.
  • a dielectric shower plate 107 having a disk shape, a sample table 110 arranged below the shower plate 107 and having a substantially cylindrical shape, and an inlet of an exhaust portion arranged on the bottom surface of a vacuum container 101 below the sample table 110. It is provided with a circular vacuum exhaust port 108 in which gas or plasma particles in the processing chamber are discharged through the vacuum exhaust port 108.
  • a gas introduction path which is connected to a gas introduction pipe (not shown) and communicates between the gas introduction pipe and the gap between the shower plate 107 and the upper electrode 102 is arranged.
  • the processing gas flows through the gas introduction pipe connected to the gas source through the gas introduction path inside the vacuum vessel 101 and flows into the gap between the upper electrode 102 and the shower plate 107 to be diffused, and then the shower plate 107. It is supplied from above the inside of the processing chamber in the vacuum vessel 101 through a plurality of through holes arranged in the central portion.
  • the upper electrode 102 is electrically connected to the first high frequency power supply 104 via an electric field radio path such as a coaxial cable, and the first high frequency power for forming a plasma is supplied from the first high frequency power supply 104.
  • the electric field of the first high frequency power is radiated into the processing chamber through the upper electrode 102 and the shower plate 107. Atoms or molecules of the processing gas introduced into the processing chamber are excited by the action of an electric field and dissociated or ionized to generate plasma 140.
  • the magnetic field generated by the two coils 106 arranged around the outer peripheral side and the upper side of the cylindrical side wall of the upper part of the vacuum vessel 101 is axisymmetric and downwardly spreading magnetic force around the central axis in the vertical direction in the processing chamber.
  • the intensity and distribution of the plasma 140 in the processing chamber are adjusted to those suitable for processing according to the strength and direction of the magnetic field and its distribution.
  • a vacuum exhaust means such as a turbo molecular pump (not shown) in the exhaust section connected via the vacuum exhaust port 108
  • particles of plasma and processing gas in the processing chamber are discharged to the outside of the processing chamber through the vacuum exhaust port 108. Will be done.
  • the inside of the treatment chamber is reduced to a pressure of a predetermined degree of vacuum suitable for each of the treatment steps and maintained.
  • an exhaust amount regulator (not shown) is provided on the upstream side of the inlet of the turbo molecular pump in the exhaust section, and the flow rate or speed of the exhaust from the vacuum exhaust port 108 is controlled by cutting off the flow path of the exhaust including the vacuum exhaust port 108. Adjust by increasing or decreasing the area.
  • the sample table 110 of this embodiment includes a base material 113 which is a member having a disk or a cylindrical shape and is a metal member inside.
  • the central portion of the upper portion of the base material 113 has a cylindrical portion having an upward convex shape, and the periphery of the convex portion has a recessed portion surrounding the convex portion in a ring shape.
  • the side wall and the upper surface of the recessed portion of the base material 113 of the sample table 110 except for the upper surface of the convex portion are covered with the dielectric film 114.
  • the circular upper surface of the convex portion of the base material 113 is covered with a dielectric film 111, which is a film of a material containing a dielectric formed by thermal spraying, and the central portion of the upper surface is a disk-shaped sample to be treated. It constitutes a mounting surface on which a certain wafer 120 is mounted and held.
  • the upper surface of the convex portion covered by the dielectric film 111 has a substantially circular shape according to the shape of the wafer 120 and faces the shower plate 107.
  • a conductor film 112 made of a conductor material is arranged inside the dielectric film 111, and a DC power supply 133 is electrically connected via a high-frequency filter 134 to form a film-like electrode.
  • the wafer 120 is electrostatically adsorbed and fixed to the upper surface of the dielectric film 111 of the sample table 110 by the DC voltage applied from the DC power supply 133.
  • the base material 113 of the sample table 110 functions as an electrode to which the second high-frequency power source 131 is electrically connected via the matching unit 132 and the second high-frequency power formed by the second high-frequency power source 131 is supplied. .. Specifically, when the plasma 140 is generated in the processing chamber while the wafer 120 is placed and held on the dielectric film 111, the second high-frequency power supply 131 supplies the second high-frequency power to the base material. The second high-frequency power generates an electric field coupled to the plasma 140 above the upper surface of the wafer 120 to form a plasma sheath between the plasma 140 and the upper surface of the wafer 140.
  • the plasma sheath is a region where the potential changes between the interface of the plasma 140 having a predetermined potential and the base material or the wafer 120 which is a conductor facing the interface, and the potential of the wafer 120 or the base material and the plasma is changed.
  • the charged particles in the plasma 140 pass through the plasma sheath and are attracted to the upper surface of the wafer 120 to collide with each other.
  • the surface of the layer facing the plasma of the film structure previously formed on the upper surface of the wafer 120 is given energy by the collision of charged particles, and the material forming the layer causes a reaction and is separated from the surface. Etching of the layer proceeds.
  • FIG. 2 is a vertical cross-sectional view schematically showing an enlarged outline of the configuration of the upper outer peripheral portion of the sample table of the plasma processing apparatus according to the embodiment shown in FIG.
  • the description of the parts with the same reference numerals as those shown in FIG. 1 will be omitted unless necessary.
  • the ring-shaped portion on the outer peripheral side of the dielectric film 111 which is the upper surface of the sample table 110 and the wafer mounting surface, is lowered by recessing the height of the base material 113, and the base material 113 or the dielectric film is lowered. It has a step between it and the upper surface of 111.
  • a dielectric film 114 is arranged on the ring-shaped portion on the outer peripheral side of the step, that is, above the bottom surface of the recessed portion and on the outer peripheral side of the wafer 120, and a dielectric material such as quartz or alumina is further placed on the dielectric film 114.
  • the insulating ring 121 which is a ring-shaped member made of a material made of a material, and the conductor ring 122 made of a metal or a conductor material are arranged above the upper surface of the insulating ring 121.
  • the conductor ring 122 is branched from a portion between the matching unit 132 and the base material on the wiring constituting the power supply path connected to the base material 113 from the second high frequency power supply 131 via the matching unit 132. Another wire is electrically connected as a power supply path.
  • a load impedance regulator 135 is arranged on the wiring of the branched power supply path.
  • the lower surface of the conductor ring 122 is placed in contact with the upper surface of the insulating ring 121, and the conductor ring 122 is recessed upward from the bottom surface of the dielectric covering 123 made of a dielectric material such as quartz or alumina placed above the insulating ring 121. It is housed and arranged inside the ring-shaped recess formed in the above.
  • the conductor ring 122 is insulated from the sample table 110 or the base material 113 electrically connected to the second high-frequency power source by covering the inner peripheral and outer peripheral side wall surfaces and the upper surface with the dielectric covering 123. .. This makes it possible to apply high-frequency power different from that of the sample table 110 to the conductor ring 122.
  • the dielectric covering 123 having a structure in which the upper surface is flat is placed on the insulating ring 121 and the conductor ring 122 so as to cover the inner and outer peripheral side wall surfaces and the upper surface of the conductor ring 122.
  • the conductor ring 122 is not exposed to the dielectric covering 123 because its upper surface and side surfaces are covered with respect to the plasma 140. Therefore, the metal elements constituting the conductor ring 122 are not released into the vacuum vessel 101, and metal contamination of the wafer 120 is suppressed.
  • the dielectric covering 124 of the present embodiment has a ring-shaped inner peripheral side portion having a flat upper surface thereof, and the height is lowered from the outer peripheral side portion toward the inner peripheral side, and the vertical cross section has a tapered shape.
  • the upper surface of the innermost peripheral end portion of the inner peripheral side portion is flattened in the horizontal direction and placed at a position with a slight gap from the cylindrical side wall of the convex portion of the sample table 110, and the dielectric film 111.
  • the flat upper surface of the innermost peripheral end portion is arranged below the outer peripheral edge of the wafer 120 while being mounted on the upper surface of the wafer 120.
  • a conductor covering 124 which is a ring-shaped member, is mounted.
  • the conductor covering 124 is arranged above the upper surface of the conductor ring 122, and has dimensions and a shape in which a projection surface viewed from above covers at least the entire conductor ring 122.
  • the outer peripheral side portion of the conductor covering 124 may have a cylindrical portion extending downward so as to cover the outer peripheral side wall surface of the dielectric covering 123.
  • the dielectric cover ring 123 and the conductor cover ring 124 By configuring the dielectric cover ring 123 and the conductor cover ring 124 to be detachable, if one of them is worn out, only the worn-out member can be replaced. Further, if the dielectric covering 123 and the conductor covering 124 are adhered with an adhesive or the like, the thermal conductivity between these members can be improved and an excessive temperature rise of one member during the treatment can be suppressed. Whether the two are detachable or adhered can be selected by the user according to the desired effect.
  • the magnitude of the power applied to the wafer 120 (wafer power) and the power applied to the conductor ring 122 (edge power) is a load that is a circuit arranged on a power supply path branched and connected to the conductor ring 122. It is adjusted by the impedance regulator 135. In this embodiment, the ratio of the magnitudes of these electric powers and the magnitude of the electric power generated from the second high-frequency power supply 131 are adjusted by increasing or decreasing the circuit constant of the load impedance regulator 135 to substantially increase the wafer power. The magnitude of the edge power is changed to a desired value while keeping the value within a predetermined allowable range.
  • an impedance detector 136 for measuring the magnitude of impedance may be connected on the branched feeding path.
  • the impedance detector 136 is electrically connected and arranged at a location on the feeding path between the load impedance regulator 135 and the conductor ring 122, and is a current value, a DC voltage value, or a DC voltage value of high-frequency power applied to the conductor ring 122. Detects one or more of the peak-to-peak voltage (Vpp) values. In the following, a case of detecting a change in impedance at a location on the feeding path using the Vpp value will be described.
  • the detected Vpp value is stored in a storage medium or the like (not shown), and the user of the device can confirm this value from the management / operation interface of the device (not shown).
  • a detector may be arranged as a specific circuit or element inside the load impedance regulator 135.
  • a potential difference (bias potential) is generated between the wafer 120 and the plasma 140 due to the wafer power, and an electric field is formed above the wafer 120.
  • the edge power creates an electric field above the dielectric covering 123 and the conductor covering 124 via the dielectric covering 123 or both the dielectric covering 123 and the conductor covering 124. ..
  • the edge power is controlled so that the equipotential surface 151 in the plasma sheath is parallel to the upper surface of the wafer 120 in the space of the processing chamber above the outer peripheral side portion of the wafer 120. As a result, the inclination (tilting) of the shape of the upper surface of the outer peripheral side portion of the wafer 120 after etching is suppressed.
  • FIG. 3 is a vertical cross-sectional view showing an outline of a configuration in a state in which the members of the upper outer peripheral portion of the sample table of the embodiment shown in FIG. 2 are exhausted.
  • the portion consumed by the plasma treatment is mainly the upper surface of the conductor covering 124 and the portion 123a covering the inner side surface of the conductor ring 122 of the dielectric covering 123, which is a portion facing the plasma 140.
  • the wear of the inner side surface 123a which is the upper surface of the tapered portion of the inner peripheral side portion of the dielectric covering close to the wafer 120 and the flat inner peripheral edge portion, is the equipotential surface 151 on the upper surface of the outer peripheral side portion of the wafer 120. Affects the height distribution of. Therefore, the influence of the wear of the conductor covering 124 is suppressed, and the wear of the inner side surface 123a is detected.
  • edge power whose magnitude is controlled via the load impedance regulator 135 is electrically coupled to the plasma 140 via the conductor ring 122, the dielectric covering 123, and the conductor covering 124 in this order.
  • the conductor ring 122 and the conductor covering 124 are conductors on the equivalent circuit representing the electrical coupling between the plasma 140 and the second high-frequency power supply 131, they do not appear as impedance components. That is, the impedance component of this circuit does not change even when the conductor covering 124 is worn out.
  • the dielectric material portion of the dielectric covering 123 between the upper surface and the inner side surface of the dielectric covering 123 and the surface of the conductor ring 122 housed and arranged inside each has a capacitance of 301. And 302 can be considered to constitute. Then, the wear of the inner side surface 123a of the dielectric covering changes the impedance component as the capacitance 302 increases. From this, by detecting the impedance change in the circuit that supplies the edge power, the amount of wear of the inner side surface 123a of the dielectric covering 123 can be detected while suppressing the influence of the wear of the conductor covering 124. Is considered possible.
  • the dielectric covering 123 is arranged in the processing chamber, and then the semiconductor device for the first product is manufactured. Before starting the processing of the wafer 120, another wafer 120 having the same structure as the wafer 120 for the product is processed by using the plasma 140 under the condition that the wafer 120 for the product is processed, and edge power is supplied. An impedance detector 136 connected to the circuit is used to measure the initial Vpp value at the start of use of any dielectric covering 123.
  • the processing conditions (standard processing conditions) of the wafer 120 at this time are the same as the conditions (actual processing conditions) for actually processing the wafer 120 for the product, or at least the wafer power and the edge power are actually processed. It is desirable that the conditions are the same.
  • the detected initial Vpp value is stored in a storage device such as a storage medium (not shown).
  • the product wafer 120 is processed under the actual processing conditions. As the plurality of wafers 120 are processed, the inner side surface 123a of the dielectric covering 123 is consumed, and the surface of the conductor ring 122 to which power is supplied from the second high-frequency power source and the surface of the plasma 140 in the processing chamber are surfaced. The thickness of the member made of the dielectric material of the dielectric covering 123 between the inner side surface 123a and the inner side surface 123a is reduced. As a result, the capacitance 302 on the equivalent circuit of the portion of the dielectric covering 123 passing through the inner side surface 123a changes (generally increases), and the impedance changes.
  • the Vpp (and its difference) The amount of consumption is detected from the value, the dielectric constant of the material, the area of the inner side surface 123a, and the like. Then, using the detected amount of wear on the inner side surface 123a of the dielectric covering 123, it is possible to estimate the progress of wear of the dielectric cover ring 123 more precisely and the timing of its replacement.
  • the processing shape near the outer peripheral edge of the wafer 120 is formed. It is possible to reduce the variation in the impedance of the processing and improve the yield or efficiency of the processing.
  • the Vpp value under the standard processing conditions changes. Further, the radial and circumferential height distributions and shapes of the wafer 120 and the equipotential surface 151 in the plasma sheath formed above the upper surface of the wafer 120 and the dielectric covering 123 are changed, and the wafer 120 is affected by the change.
  • the edge power is appropriately adjusted in order to maintain such tilting within an allowable range.
  • the amount of change ⁇ Vpp_lim between the Vpp value and the initial Vpp value corresponding to the upper or lower limit of the allowable range of the etching shape tilting as the wear progresses is made equivalent to that for the product in advance.
  • the wafer 120 is processed and detected. Further, an equipotential where the tilting amount corresponding to the value of Vpp or the amount of change corresponding to the change in height (thickness) due to the wear of the inner side surface 123a of the dielectric covering 123 due to wear becomes 0.
  • the edge power value that can realize the shape of the surface 151 is also obtained in advance.
  • the processing conditions of the wafer 120 at the time of such detection are the same as or equivalent to the above-mentioned standard processing conditions.
  • the conductor ring 122 is used by using the relationship between the value of Vpp due to the consumption of the inner side surface 123a of the dielectric covering 123 obtained in advance, the amount of change thereof, and the edge power for realizing optimum tilting. The magnitude of the edge power supplied to is changed to a value that can realize the initial etching shape.
  • the output or load impedance of the second high frequency power 131 is adjusted so that the edge power at which the tilting becomes 0 corresponds to the capacitance of the consumed dielectric covering 123 is supplied to the conductor ring 122.
  • the constant of the circuit of the vessel 135 is adjusted.
  • the height positions of the equipotential surface 151 above the upper surface of the outer peripheral portion of the wafer 120 and the upper surface of the dielectric covering 123 are adjusted to be horizontal with respect to the radial direction of the wafer 120, and the number of wafers 120 to be processed is increased.
  • the tilting is adjusted to be constant among the plurality of wafers 120 according to the change in the thickness (capacitance) of the member of the dielectric covering 123 that is consumed accordingly.
  • the tilting of the shape of the wafer 120 after processing is kept within an allowable range for a long period of time, the variation in shape is suppressed, and the processing yield is improved.
  • the timing of replacement due to wear of the dielectric covering 123 can be estimated with high accuracy from the change in impedance on the feeding path. That is, when the wafer 120 having an arbitrary structure is processed under predetermined conditions, the inner side surface 123a of the dielectric covering 123 is consumed, and the amount of change in Vpp reaches ⁇ Vpp_lim, which is the limit when replacement is required.
  • the Vpp value can be obtained in advance and used as a time to replace the dielectric covering 123 when it is detected that the Vpp value under the standard processing conditions exceeds the value.
  • the notification that the value of Vpp detected by the impedance detector 136 is approaching the limit Vpp value, that is, the replacement time is approaching is notified from an alarm provided in a plasma processing device (not shown), for example, of a CRT or a liquid crystal.
  • a plasma processing device for example, of a CRT or a liquid crystal.
  • FIG. 4 shows a modified example capable of detecting the wear of the member of the dielectric covering 123 more accurately.
  • FIG. 4 is a vertical cross-sectional view schematically showing an outline of the configuration of the outer peripheral portion of the sample table of the modified example of the plasma processing apparatus according to the embodiment shown in FIG.
  • the shape of the conductor ring 122 is configured so that the inner side surface 402 thereof is parallel to the inner side surface 123a of the dielectric covering 123, and the other configurations are the same as those in the first embodiment. ..
  • the inner side surface of the conductor ring 122 is an inclined surface so that the cross section of the dielectric covering 123 is parallel to the inner side surface 123a which is the upper surface of the inner peripheral side portion having a tapered shape. It has a shape in which the thickness is increased toward the outside. Further, the average thickness of the inner side surface 123a of the dielectric covering 123 can be reduced, and the capacitance 401 of the dielectric member of the dielectric covering 123 constituting the inner side surface 123a can be increased. As a result, the impedance change due to the wear of the member becomes large, and the amount of wear of the member can be detected more accurately.
  • FIG. 5 is a vertical cross-sectional view schematically showing an outline of the configuration of the outer peripheral portion of the sample table of another modification of the plasma processing apparatus according to the embodiment shown in FIG.
  • the conductor ring 122 includes a flange portion 502 in which the lower portion of the inner peripheral side wall of the conductor ring 122 extends in a flange shape on the inner peripheral side, and the conductor ring 122 has a flange portion 502 covering the conductor ring 122. It has a shape extending below the arranged dielectric covering 123 from the inner side surface 123a to the lower surface of the flat inner peripheral edge of the dielectric covering 123. Further, the conductor covering 124 covers not only the flat upper surface of the outer peripheral side portion of the dielectric covering 123 but also the entire inner side surface 123a which is the tapered upper surface of the inner peripheral side portion. The inner peripheral edge of 124 extends to reach the flat upper surface of the inner peripheral edge of the dielectric covering 123.
  • the portion covered by the conductor covering 124 that is, the upper surface and the inner side surface 123a of the outer peripheral side portion is suppressed from being consumed, and these portions are connected to the upper surface of the conductor ring 122.
  • the change in impedance due to the capacitance of the member of the dielectric covering 123 between them is suppressed.
  • the wear of the portion not covered by the conductor covering 124, that is, the inner peripheral edge of the dielectric covering 123 is detected by the impedance detector 135 as a change in the capacitance 501 based on the change in Vpp.
  • the wear of the inner peripheral edge of the dielectric covering 123 progresses significantly as the processing time of the wafer 120 using the plasma 140 or the number of processed wafers 120 increases as compared with other parts. It is detected as a change in Vpp by the impedance detector 136.
  • the amount of wear at a specific portion of the dielectric covering 123 is accurately detected by suppressing the influence of wear at other locations, and the timing of replacement of the dielectric covering 123 can be estimated more accurately. Further, by improving the accuracy of detecting the consumable amount, the corresponding Vpp value, and the amount of change thereof, the number of wafers 120 to be processed is increased, and the member of the dielectric covering 123 that is consumed accordingly.
  • the height position of the equipotential surface 151 above the upper surface of the outer peripheral portion of the wafer 120 and the upper surface of the dielectric covering 123 is made horizontal with respect to the radial direction of the wafer 120 according to the change in the value of the thickness (capacitance) of the wafer 120.
  • the shape of the wafer 120 after processing is kept within an allowable range and the shape varies over a long period of time. Is suppressed and the processing yield is improved.
  • FIG. 6 is a vertical cross-sectional view showing an outline of the configuration of the plasma processing apparatus according to still another modification of the embodiment shown in FIG. Also in this figure, the description of the parts having the same reference numerals as those in the embodiment shown in FIG. 1 shall be omitted unless necessary.
  • the second high-frequency power supply 131 is not connected to the conductor ring 122, and the independent third high-frequency power supply 601 is connected via the matching unit 602.
  • the frequencies of the wafer power and the edge power can be changed, or the frequencies of the wafer power and the edge power can be made the same, and the phases of the powers output by each can be synchronized, or a predetermined value can be used. It is possible to adjust so as to have a phase difference. It is also possible to replace the third high frequency power supply 601 with a DC power supply and apply DC power to the edge power.
  • the material of the conductor covering 124 is described as Si or SiC. This is especially based on the viewpoint of preventing metal contamination when processing semiconductor devices. However, when it is not necessary to consider metal contamination, it is easily presumed that the same effect as that of the above embodiment can be obtained even if a metal material such as aluminum is used.
  • the plasma processing using one form of the parallel plate type plasma processing apparatus has been exemplified, but the effect of the present invention is not limited by the plasma generation method in the plasma processing.
  • the configuration around the outer peripheral portion of the sample table is similar to that of the present invention. The same effect can be obtained by.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

安定したプラズマ処理特性を得ることのできるプラズマ処理装置を提供するため、真空容器内部の処理室内の下部に配置され前記プラズマを用いた処理対象のウエハが載せられる試料台であって上部の中央部に配置された凸状部の上面に前記ウエハが載せられる試料台において内部に配置され前記ウエハの処理中に高周波電力が供給される電極および前記試料台の前記凸状部の外周側で前記上面を囲んで配置された導体製のリング状部材の電極と、このリング状部材と前記処理室との間及び前記試料台の上面との間で前記リング状部材を対して覆って配置された誘電体製の第1のリング状カバーと、前記処理室と第1のリング状カバーの上面との間でこれを覆って配置され導体製の第2のリング状カバーとを備え、ウエハの処理中に導体製のリング状部材に供給する高周波電力の電圧を検出した結果に応じて当該高周波電力の大きさを調節する調節器とを備えた。

Description

プラズマ処理装置
 本発明は、真空容器内の処理室内部に設置された試料台に載置された半導体ウエハ等の基板状の試料をプラズマを用いて処理するプラズマ処理装置に係り、試料台に高周波電力を供給して試料を処理するプラズマ処理装置に関する。
 半導体デバイスの製造工程において、半導体ウエハの基板上に予め形成された膜構造をエッチングすることが広く行われている。特にプラズマ処理装置は、処理室内部に処理用のガスを導入してそれをプラズマ化し、高周波バイアスによってウエハ上に電界を形成してプラズマ内のイオン等の荷電粒子をウエハに誘引し、荷電粒子をウエハに垂直に入射させることで、ウエハ上に垂直な形状を形成することを可能としている。
 このようなプラズマ処理装置には、半導体デバイスの生産性向上の要求から、ウエハ表面のより広い範囲をより均一に処理することが求められる。エッチング特性(例えば処理速度)がウエハ面内位置によって異なると、エッチング後の形状にウエハ面内位置によってバラつきが現れる。バラつきが大きいほど要求される形状を満たさない部分が増え、製品歩留まりを低下させてしまう。特にウエハ外周部では、エッチング時に荷電粒子をウエハに誘引する際、ウエハ上の電界の歪みによって荷電粒子の入射が集中し、エッチング形状の傾き(チルティング)が発生する。
 また、プラズマ処理を繰り返すことによってウエハ外周部周辺に設置される部材が消耗すると、部材の形状変化によってウエハ上の電界分布が変化し、チルティングの度合いも変化する。チルティングを一定に制御するには部材の交換が必要となるが、その際には処理装置を停止させる必要がある。頻繁な部材交換が必要となると処理装置の稼働率が低下してウエハ処理コストを増大させるため、長期間部材を交換する必要がない処理装置が求められる。更には、部材交換の回数を最小限に抑えるため、部材の消耗を装置の外部から簡便に検知する技術が求められる。
 上記の課題を解決する従来の技術として、特開2014-108764号公報(特許文献1)に開示のものが従来知られていた。この従来の技術では、ウエハと同電位となるようにされた導体製のフォーカスリングの上に重ねて誘電体製フォーカスリングと導体製フォーカスリングを配置し、フォーカスリング消耗によるエッジ電界の経時変化を抑制するものが開示されている。
 更には、特開2014-225376号公報(特許文献2)には、ウエハ外周側を囲むように高周波電力を印加可能な導体製のリングとそれを覆う誘電体製の部材を設置し、部材の消耗を回路のインピーダンス変化を用いて検知する方法と、消耗量に応じて導体製リングへの印加電力の大きさを変化させ、チルティングを制御する技術が開示されている。
特開2014-108764号公報 特開2016-225376号公報
 上記従来の技術では、ウエハ外周部の電界に影響を与えうるウエハ外周部付近に設置される部材の消耗を電気的に検知する手法には限界があった。
 特許文献1の技術では、最下部の導体製のフォーカスリングが消耗した場合は等電位面分布に影響するため、この消耗を検知する必要があるが、最下部のフォーカスリングの消耗を電気的に検知することが原理的に不可能であった。
 また、特許文献2の技術では、ウエハ外周部の電界に最も強く影響を与える、ウエハ外周部付近の部材のウエハに最も近い内側側面の消耗を独立して検出することができないことが判明した。
 本発明の目的は、ウエハ外周部周辺の電界制御に最も強い影響を与える部分の消耗のみをより精密に検知することによって、安定したプラズマ処理特性を得ることのできるプラズマ処理装置を提供することにある。
 上記目的は、真空容器内部に配置され内部でプラズマが形成される処理室と、この処理室内の下部に配置され前記プラズマを用いた処理対象のウエハが載せられる試料台であって上部の中央部に配置された凸状部の上面に前記ウエハが載せられる試料台と、当該試料台内部に配置され前記ウエハの処理中に高周波電力が供給される電極と、前記試料台の前記凸状部の外周側で前記上面を囲んで配置された導体製のリング状部材と、このリング状部材と前記処理室との間及び前記試料台の上面との間で前記リング状部材を対して覆って配置された誘電体製の第1のリング状カバーと、前記処理室と第1のリング状カバーの上面との間でこれを覆って配置され導体製の第2のリング状カバーと、前記ウエハの処理中に前記導体製のリング状部材に高周波電力を供給する高周波電源と前記リング状部材との間を接続する給電経路を流れる高周波電力の電圧を検出した結果に応じて当該高周波電力の大きさを調節する調節器とを備えたプラズマ処理装置により達成される。
 本発明によれば、ウエハ外周部におけるプラズマ処理特性の経時変化をより精密に検知することが可能なプラズマ処理装置を提供することができる。
ウエハのプラズマ処理によって形成される形状を示す概略図である。 プラズマ処理装置における試料台外周側部分の構成を拡大して模式的に示す縦断面図である プラズマ処理装置における試料台外周側部分の構成を拡大して模式的に示す縦断面図である 本発明の実施例に係るプラズマ処理装置の構成を模式的に示す縦断面図である。 図4に示す実施例の試料台外周側部分の構成を拡大して模式的に示す縦断面図である。 図5に示す試料台外周側部分のプラズマ処理による部材の消耗後の状態を模式的に示す縦断面図である。 ウエハの表面に配置された所定の厚さの膜をエッチング処理した後の形状を模式的に示す断面図である。 経時変化を抑制するための構成を備えた試料台の従来技術の構成の概略を模式的に示す縦断面図である。 本発明の実施例に係るプラズマ処理装置の電源周辺の別の変形例の構成を模式的に示す縦断面図である。
 ウエハ外周部における電界の分布とエッチング特性の変化について説明する。
 図7は、ウエハの表面に配置された所定の厚さの膜をエッチング処理した後の形状を模式的に示す断面図である。
 図7(a)において、ウエハ720の上面上方の空間には、所定の電位を有するプラズマ740が形成されると共にプラズマ740とウエハ720表面との間にはウエハ720表面に沿って所定の厚さのシースが形成された状態を示している。符号752はシースの界面を示しており、シース界面752とウエハ720の上面との間に形成されるシースの厚さ(シース界面752とウエハ720上面との間の距離)はウエハ720の下方の電極に供給された高周波電力の大きさによって変化する。
 プラズマ740中の荷電粒子753(本図では正電荷を有するもの)は、ウエハ720とプラズマ740との間に形成される電界中でクーロン力を受けて、シース中の等電位面751に垂直な方向にウエハ720に向かって誘引され加速される。図7(a)に示すように、等電位面751がウエハ720上面に対して平行である場合はプラズマ中の荷電粒子753がウエハ720表面の膜に対して垂直に入射して衝突する。この衝突の際のエネルギーを利用して当該膜の材料を物理的あるいは化学的反応を用いて除去して形成される溝や穴等のパターンは、その側壁面の方向や形状が膜上面に垂直にされる。
 一方、図7(b)のように等電位面751がウエハ720上面に対して傾いている場合では荷電粒子753はウエハ720の膜上面に対して斜めに入射することになり、形成されるパターンの形状や方向は側壁面の方向や形状は処理形状に傾き(チルティング)が生起してしまう。特に、ウエハ720の外周縁近傍の部分では電界の集中が発生し易く、等電位面151がウエハ720の膜上面に対して傾きを生じてしまいチルティングが発生してしまい、ウエハ720の中央部分のパターンに対して方向や形状のバラつきが生じてしまう。
 ウエハ720の中心側部分に対するこのような外周縁近傍部分でパターンの傾きの大きさやそのバラつきの増大を抑制するために、ウエハ720の外周縁の外側でウエハ720を囲んで配置されたリング状の導電体あるいは半導体製の部材にバイアス電位を形成するための電力を供給して、リング状の部材またはこれの上方を覆う別の部材上方に所望の大きさのシースを形成してウエハ720の外周縁部分のシースの等電位面751をすることが従来から行われている。プラズマ740に面するこのようなリングはフォーカスリングと呼ばれ、フォーカスリングの上面の部材がウエハ720を処理中にプラズマ740の荷電粒子753に衝突されることにより削られたり、プラズマ740の粒子との相互作用により脱離したりする等の消耗が生じてしまう。このため、ウエハ720の処理の枚数や時間の増大に伴ってリングの上面上方に形成されるシースの等電位面751の高さが変化してしまい、上記チルティングの度合いも変化しまうという問題が生じる。
 チルティングを所望の許容範囲内の値にする上では、リングの部材の消耗の度合い等経時的な変化を抑制する、あるいは当該リング部材を適宜交換することが必要となる。このため、リングの部材の交換すべき時期を正確に把握するため当該部材の消耗の量を検知する機能が求められる。
 図8は、経時変化を抑制するための構成を備えた試料台の従来技術の構成の概略を模式的に示す縦断面図である。図8(a)では、試料台810の主要部を構成し円筒形状を有した金属等導体製の基材813上部の中央部分に外周側より上面が高くされた円筒形の凸部が備えられ、当該凸部上面にセラミクス等の誘電体材料から構成された誘電体膜811が配置され、その上面にウエハ720が載せられた状態が示されている。この状態で、ウエハ720は誘電体膜811内部に配置された膜状の電極である導体膜812に直流電源からの電力が供給されて形成された静電気力により誘電体膜811上面に吸着されて保持されている。
 基材813の上中央部の凸部の外周側は上面高さが低くされ凸部をリング上に囲む凹部となっており、円筒形を有した凸部の側壁とリング状の凹部との表面にはセラミクス等の誘電体材料から構成された被膜814が配置され、被膜813の上面上には、凸部を囲むリング状の部材であるフォーカスリング801,802,803が配置されている。これらのフォーカスリング801,802,803は上下方向に重ねられて相互に接合され一体の部材として構成された部材であり、ウエハ720が誘電体膜811上に載せられ保持された状態でウエハ720の外周側でこれを囲むように凹部上に配置される。
 基材813は整合器832を介して第2の高周波電源831と電気的に接続され、ウエハ720が処理されている間に、高周波電源831が出力した高周波電力が供給される。フォーカスリング801は高周波電力について基材813と電気的に接続され基材813と同電位にされる。この構成において、プラズマ740と面するフォーカスリング803が消耗し上面の高さが低下する(図上下方に変動する)に伴ってシース界面152の形状、例えばウエハ720上面に対する相対的な高さ位置は変化しても、フォーカスリング802はプラズマ740による削れ等の消耗が小さいためウエハ120上およびフォーカスリング802内部に位置する特定のシース内の等電位面751の分布は変動が抑制される。
 しかし、図8(b)に消耗前の形状を破線、消耗後の形状を実線として例示するように、下方に配置されたフォーカスリング801がその内周壁面が大きく消耗した場合は、フォーカスリング801の内周縁部とウエハ720の外周縁部との距離が水平方向(図上左右方向)に変動することになり、これに伴ってウエハ720外周縁部上方およびフォーカスリング802内部を通る等電位面151の分布は変化することになる。このことから、ウエハ720のエッチング処理の結果としての回路パターンの形状とそのウエハ720上面の面内方向についての分布が経時的に変化してしまうことを抑制するためには、このようなウエハ720外周に配置されたリング状の部材の消耗による形状の変化の量を精密に検出して、その結果に応じてウエハ720の処理の条件を調節する、あるいは予め定められる許容範囲を超えたことを適宜検出してこのような部材の交換の遅れを抑制することが望ましい。一方、最も下方に位置するフォーカスリング801は金属あるいはSi等の半導体で構成され基材813を通して供給される高周波電力に対して導電体であり、これが消耗しても供給される高周波電力の変化を精度良く検出することが困難であった。
 図9は、別の従来技術に係る試料台の構成の概略を模式的に示す縦断面図である。図9(a)においては、試料台810の基材813の凸部の外周を囲む凹部上に、ウエハ720外周縁を囲む導体リング922と、当該導体リング922の上面及び内外周側壁面を覆って配置されたセラミクスあるいは石英等誘電体製の誘電体カバーリング923とが示されている。さらに、第2の高周波電源831とプラズマ740との間の等価回路上での導体リング922とプラズマ740との間のインピーダンス値及びその変化を検出してプラズマ740に面した誘電体カバーリング923の部分の消耗を検出する構成を備えている。
 本図の試料台810は、整合器832と導体リング922との間の給電経路に電気的に接続されたインピーダンス検出器936により給電経路上での高周波電力に係るインピーダンスを検出し、検出した結果に応じて給電経路上の負荷インピーダンス調整器935の動作を調節することで導体リング122に印加する電力を調節する機能を備えている。このような構成においては、図9(b)のように導体リング922を覆う誘電体カバーリング923の部材が消耗した際に、等価回路上の誘電体カバーリング923の静電容量301及び302の変化の量を誘電体カバーリング923の上面及び内側側の側面の消耗の量に相当するパラメータとして検出することができる。更に、検出された部材の消耗の量に合わせて導体リング922に印加する高周波電力の大きさを調節して導体リング922上面あるいは内周側壁面を覆う誘電体製カバーリング922上方に形成されるシースの等電位面751の高さ位置およびこれに応じて変化するウエハ720外周縁部上方の等電位面751の傾きを調節する機能を備えている。
 このような構成では、誘電体カバーリング923の最もウエハ720の外周縁と水平方向(図上左右方向)に隙間を開けて位置する内周側壁面923aは当該外周縁に最も近い箇所であり等電位面751が通過する箇所であるため、当該内周側側面923aが消耗することによる等電位面751の水平方向の分布に最も大きく影響する。しかしながら、本図の構成においては、プラズマ740と第2の高周波電源731との間の等価回路において、誘電体カバーリング923は一体の静電容量として機能する部分であり、内周側壁面923aの特定の部分の消耗を他のプラズマ740に面して消耗する部分、例えば上面部分と区別して検出することは困難であるため、等電位面751の分布を精度良く所望のものに実現することができなかった。
 このように、上記従来の技術では、ウエハ720の外周縁部近傍での部材の消耗、特にはウエハ720外周縁部上の電界変化に最も強い影響を与える部材の特定の部分の消耗を検出し、これに基づいて等電位面の高さの分布あるいは電界の分布を十分に精度良く所望のものに実現することに困難があった。以下、このような課題を解決する本発明の実施形態を、図面を用いて説明する。
 以下、本発明の実施例を図1ないし図5を用いて説明する。
 まず、図1を用いて本実施例に係るプラズマ処理装置及びプラズマ処理方法の概要について説明する。図1は、本発明の実施例に係るプラズマ処理装置の構成の概略を模試的に示す縦断面図である。
 本実施例のプラズマ処理装置は、少なくとも一部に円筒形状を有した真空容器101と、真空容器101の上方に配置され真空容器101内部の空間である処理室内にプラズマ140を形成するための電界または磁界を生成するプラズマ形成部と、真空容器101下方で真空容器101と連結されて配置され当該真空容器101内部の処理室を排気して減圧するターボ分子ポンプ等の真空ポンプを有する排気部とを備えている。真空容器101内部にはその上部であって処理室上方に配置され円板状の形状を有する上部電極102と、上部電極102の下方に上部電極102と平行となるように隙間を開けて配置され円板形状を有する誘電体製のシャワープレート107と、シャワープレート107の下方に配置され略円筒形状を有する試料台110と、試料台110の下方の真空容器101の底面に配置され排気部の入り口と連通して処理室内のガスやプラズマの粒子が通って排出される円形の真空排気口108とを備えている。
 真空容器101の上部には、図示しないガス導入管と接続され、ガス導入管とシャワープレート107及び上部電極102との間の隙間との間を連通するガス導入路が配置されている。ガス源と連結されたガス導入管を通して処理用のガスが真空容器101内部のガス導入路を通り上部電極102とシャワープレート107との間の隙間に流入して拡散された後、シャワープレート107の中央部に配置された複数の貫通孔から真空容器101内の処理室内部上方から供給される。
 上部電極102は、第1の高周波電源104と同軸ケーブル等の電界電波経路を介して電気的に接続され、プラズマを形成するための第1の高周波電力が第1の高周波電源104から供給され、当該第1の高周波電力の電界が上部電極102及びシャワープレート107を通して処理室内に放射される。処理室内に導入された処理用のガスの原子または分子は、電界の作用を受けて励起され解離または電離しプラズマ140を発生させる。真空容器101上部の円筒形の側壁の外周側及び上方を囲んで配置される2個のコイル106が生起する磁界は、処理室内においてその上下方向の中心軸回りで軸対称かつ下向きに末広がりに磁力性を有し、当該磁界の強度及び向きとその分布とによってプラズマ140の処理室内での強度や分布が処理に適したものに調節される。
 さらに、真空排気口108を介して接続される排気部の図示しないターボ分子ポンプ等の真空排気手段の動作により、処理室内のプラズマや処理用ガスの粒子が真空排気口108を通して処理室外部に排出される。シャワープレート107の貫通孔のガス導入口を通り処理室内に供給される処理用ガスの流量またはその速度と真空排気口108を通して排気される処理室内部のガスの粒子の流量または速度とのバランスにより処理室内部は、処理の工程の各々に適した所定の真空度の圧力に減圧され維持される。また、排気部のターボ分子ポンプの入り口の上流側には、図示しない排気量調整器を備え、真空排気口108からの排気の流量あるいは速度を、真空排気口108を含む排気の流路の断面積を増減することにより調節する。
 本実施例の試料台110は、円板または円筒形状を有した部材であって金属製の部材である基材113を内部に備えている。基材113の上部の中央部には上方に凸形状を有した円筒形部分を有し、当該凸部の周囲は、これをリング状に囲む凹み部を有している。試料台110の基材113の凸部上面を除く側壁及び凹み部上面は誘電体膜114によって被覆されている。基材113の凸部の円形の上面は溶射によって形成された誘電体を含む材料の膜である誘電体膜111により被覆されており、その上面の中心部に処理対象の円板状の試料であるウエハ120が載せられて保持される載置面を構成する。誘電体膜111が覆う凸部上面はウエハ120の形状に合わせて実質的に円形を有してシャワープレート107と対向している。
 誘電体膜111の内部には導体材料から構成された導体膜112が配置されており、高周波フィルタ134を介して直流電源133が電気的に接続され、膜状の電極として構成されている。直流電源133から印加される直流電圧によって、ウエハ120は試料台110の誘電体膜111上面に静電吸着され、固定される。
 試料台110の基材113は整合器132を介して第2の高周波電源131が電気的に接続されて、第2の高周波電源131が形成する第2の高周波電力が供給される電極として機能する。詳細には、ウエハ120が誘電体膜111上に載せられ保持された状態でプラズマ140が処理室内に生成されると、第2の高周波電源131からは第2の高周波電力が基材に供給され、当該第2の高周波電力によってウエハ120上面上方にプラズマ140との間で結合された電界を発生させ、プラズマ140とウエハ140上面との間にプラズマシースを形成する。
 プラズマシースは所定の電位を有するプラズマ140の界面とこれに面する導体である基材またはウエハ120との間で電位が変化する領域であって、ウエハ120または基材とプラズマとのの電位の差に応じてプラズマ140中の荷電粒子は、プラズマシースを通りウエハ120上面に誘引されて衝突する。この際に、ウエハ120上面に予め形成されていた膜構造のプラズマに面する層の表面は荷電粒子の衝突によってエネルギーを与えられ当該層を形成する材料は反応を生起して表面から脱離し、当該層のエッチングが進行する。
 次に、図2を用いて、試料台110の外周部周辺の構成の詳細を説明する。図2は、図1に示す実施例に係るプラズマ処理装置の試料台の上部外周部分の構成の概略を拡大して模式的に示す縦断面図である。なお、図1に示すものと同じ符号が付された箇所について、必要のない限り説明は省略する。
 本図において、試料台110の上面かつウエハ載置面である誘電体膜111の外周側のリング状の箇所は、基材113の高さが凹まされて低くされ、基材113または誘電体膜111上面との間に段差を有している。この段差の外周側のリング状の部分、すなわち凹み部の底面の上方かつウエハ120の外周側の箇所には、誘電体膜114が配置され、さらにその上に例えば石英やアルミナのような誘電体製の材料で構成されるリング状の部材である絶縁リング121及び絶縁リング121の上面上方に配置され、金属または導体材料で構成される導体リング122が配置されている。
 導体リング122には、第2の高周波電源131から整合器132を介して基材113に接続される給電経路を構成する配線上での整合器132と基材との間の箇所から分岐して別の配線が給電経路として電気的に接続されている。分岐された給電経路の配線上には負荷インピーダンス調整器135が配置されている。導体リング122は、その下面が絶縁リング121上面に接して載せられており、絶縁リング121の上方に載せられた石英、アルミナ等の誘電体製の誘電体カバーリング123の底面から上方に凹まされて形成されたリング状の凹み部の内側に収納されて配置されている。
 導体リング122は、内周及び外周側壁面と上面とを誘電体カバーリング123に覆われることで、試料台110あるいは第2の高周波電源に電気的に接続されている基材113から絶縁される。これにより、導体リング122には試料台110と異なる高周波電力の印加を可能としている。
 さらに、上面が平面である構造を持つ誘電体カバーリング123が導体リング122の内外周の側壁面及び上面を覆って絶縁リング121及び導体リング122上に載せられて配置される。導体リング122は、誘電体カバーリング123に上面及び側面がプラズマ140に対して覆われて曝露されない。そのため、導体リング122を構成する金属元素が真空容器101内に放出されず、ウエハ120の金属汚染が抑制される。
 本実施例の誘電体カバーリング124は、リング状の内周側の部分はその平坦な上面を有する外周側の部分から内周側に向かって高さが低くされ縦断面がテーパー状の形状を有している。さらに、内周側の部分の最内周端部の上面は水平方向に平坦にされて試料台110の凸部の円筒形の側壁と僅かな隙間を空けた位置に置かれ、誘電体膜111の上面に載せられた状態でウエハ120の外周縁の下方に最内周端部の平坦な上面が位置するように配置される。
 本実施例の誘電体カバーリング124の外周側の部分の平坦な上面であって、そのリング状の平坦な部分の内周端部分を含む上面にはSiもしくはSiCの導体材料で構成される平板リング状の部材である導体カバーリング124が載置されている。本実施例では、導体カバーリング124は導体リング122の上面の上方に配置され、その上方から見た投影面が少なくとも導体リング122の全体を覆う寸法と形状とを備えている。さらに、導体カバーリング124の外周側の部分には、誘電体カバーリング123の外周の側壁面を覆うように下向きに延在した円筒形の部分を有していても良い。
 誘電体カバーリング123と導体カバーリング124とを着脱可能に構成することで、これらの片方が消耗した場合に消耗した方の部材のみを交換することができる。また、誘電体カバーリング123と導体カバーリング124とを接着剤等により接着すれば、これら部材間の熱伝導性が向上し処理中の一方の部材の過度な昇温を抑制することができる。両者を着脱可能とするか接着するかは、所望する効果に応じて使用者が選択することができる。
 ウエハ120に印加される電力(ウエハ電力)と導体リング122に印加される電力(エッジ電力)の大きさは、分岐されて導体リング122に接続された給電経路上に配置された回路である負荷インピーダンス調整器135によって調整される。本実施例では、これらの電力の大きさの比率と第2の高周波電源131から発生させる電力の大きさを負荷インピーダンス調整器135の回路定数を増減して調節することで、実質的にウエハ電力を所定の許容される範囲内の値に保ったままエッジ電力の大きさを所望のものに変化させる。
 また、分岐された給電経路上にはインピーダンスの大きさをを測定するためのインピーダンス検出器136が接続されていても良い。インピーダンス検出器136は負荷インピーダンス調整器135と導体リング122との間の給電経路上の箇所に電気的に接続されて配置され、導体リング122に印加される高周波電力の電流値、直流電圧値もしくはピークトゥピーク電圧(Vpp)値のいずれか、或いはその複数を検出する。以下では、Vpp値を用いて給電経路上での箇所のインピーダンスの変化を検出する場合について記述する。検出されたVpp値は図示しない記憶媒体等に保存され、装置の使用者はこの値を図示しない装置の管理・操作用インターフェースから確認することができる。このような検出器は、負荷インピーダンス調整器135の内部に特定の回路あるいは素子として配置されていても良い。
 プラズマ処理時には、ウエハ電力によって、ウエハ120とプラズマ140との間に電位差(バイアス電位)が生じ、ウエハ120上方に電界が形成される。これと同様にエッジ電力によって、誘電体カバーリング123を、もしくは誘電体カバーリング123と導体カバーリング124の双方を介して、誘電体カバーリング123と導体カバーリング124の上方に電界が形成される。エッジ電力は、ウエハ120の外周側の部分の上方の処理室の空間において、プラズマシース中の等電位面151がウエハ120上面に平行になるように制御される。これによってウエハ120外周側部分の上面のエッチング後の形状の傾き(チルティング)が抑制される。
 続いて図3を用いて、プラズマ処理を繰り返してウエハ外周部付近の部材が消耗した後のウエハ外周部付近の状態の変化を説明する。図3は、図2に示す実施例の試料台の上部外周部分の部材が消耗した状態の構成の概略を模試的に示す縦断面図である。
 プラズマ処理によって消耗する部分は、プラズマ140に面する箇所である、導体カバーリング124の上面及び、誘電体カバーリング123の導体リング122の内側側面を覆う部分123aが主である。ウエハ120に近い誘電体カバーリングの内周側部分のテーパー状部分および平坦な内周端縁部分の上面である内側側面123aの消耗はウエハ120の外周側部分の上面上での等電位面151の高さの分布に影響を与える。そこで、導体カバーリング124の消耗による影響を抑制して内側側面123aの消耗を検出する。
 ここで、エッジ電力を供給する回路上において、負荷インピーダンス調整器135とプラズマ140との間の部分におけるインピーダンス成分を考える。負荷インピーダンス調整器135を介して大きさが制御されたエッジ電力は、導体リング122、誘電体カバーリング123、導体カバーリング124を順に介し、プラズマ140と電気的に結合する。
 プラズマ140と結合する第2の高周波電源131との間の電気的結合を表す等価回路上において、導体リング122及び導体カバーリング124は導体であるため、インピーダンス成分としては表れない。即ち、導体カバーリング124が消耗した場合にもこの回路のインピーダンス成分は変化しない。
 一方、誘電体カバーリング123の上面及び内側側面と内側に収納されて配置されている導体リング122の表面との間の誘電体カバーリング123の誘電体の材料の部分は、それぞれ静電容量301及び302を構成すると考えることができる。そして、誘電体カバーリングの内側側面123aの消耗は、静電容量302の増大としてインピーダンス成分を変化させる。このことから、エッジ電力を供給する回路におけるインピーダンス変化を検出することで、導体カバーリング124の消耗の影響を抑制しつつ誘電体カバーリング123の内側側面123aの部分の消耗の量を検出することが可能であると考えられる。
 本実施例において、誘電体カバーリング123の内側側面123aの消耗を検出する構成を以下説明する。まず、誘電体カバーリング123の誘電体製の部材の消耗が発生する前に、具体的には誘電体カバーリング123を処理室内に配置してから最初の製品用の半導体デバイスを製造するためのウエハ120の処理を開始する前に、当該製品用のウエハ120を処理する条件で、当該製品用のウエハ120と同じ構造を有する別のウエハ120をプラズマ140を用いて処理し、エッジ電力を供給する回路に接続されるインピーダンス検出器136を用いて、任意の誘電体製カバーリング123の使用を開始した初期のVpp値を測定する。上記の通り、この際のウエハ120の処理の条件(標準処理条件)は、実際に製品用のウエハ120を処理する条件(実処理条件)と同一、もしくは少なくともウエハ電力とエッジ電力とが実処理条件と同一であることが望ましい。検出されたされた初期のVppの値は図示しない記憶媒体等の記憶装置に保存される。
 初期のVpp値を検出した後、製品用のウエハ120を実処理条件で処理する。複数枚のウエハ120を処理するに伴って、誘電体カバーリング123の内側側面123aが消耗し、第2の高周波電源からの電力が供給される導体リング122の表面と処理室内のプラズマ140に面する内側側面123aとの間の誘電体製カバーリング123の誘電体製の材料から構成される部材の厚さが減少する。このことにより内側側面123aを通る誘電体製カバーリング123の部分の等価回路上の静電容量302が変化し(一般的には増大し)インピーダンスが変化する。
 ウエハ120の処理の終了後に、再度、標準処理条件で製品用のウエハ120と同じ構造を有する別のウエハ120を処理し、この際の消耗時のVpp値を測定する。この時、静電容量302の増大により回路のインピーダンスが低下することから消耗時のVpp値は増大する。消耗時のVppと初期のVpp値との差から、回路における静電容量302の変化量が算出される。誘電体カバーリング123の内側側面123aと導体リング122の表面との間の部材の消耗の量および材料がその表面の方向について均等であると見做せる場合には、Vpp(およびその差)の値と材料の誘電率や内側側面123aの面積等から消耗量が検出される。そして、検出された誘電体カバーリング123の内側側面123aの消耗の量を用いて、より精密な誘電体カバーリング123の消耗の進行の推測とその交換の時期の推定を行うことができる。さらに、Vppの変化の量を用いて導体リング122に供給する第2の高周波電力の量を負荷インピーダンス調整器135の動作をより精度良く調節することで、ウエハ120の外周縁部近傍の処理形状のチルティングのばらつきを低減し、処理の歩留まりまたは効率を向上させることができる。
 すなわち、誘電体カバーリング123の内側側面123aが消耗すると標準処理条件でのVpp値が変化する。さらに、ウエハ120および誘電体カバーリング123上面上方に形成されるプラズマシース内の等電位面151のウエハ120の径方向、周方向の高さの分布、形状が変化して、その影響によりウエハ120外周部の上面上方の等電位面151の形状と当該等電位面151に垂直に入射してウエハ120上面に予め形成された膜の表面に衝突する荷電粒子の作用により加工されるエッチング形状のチルティングが変化する。このため、誘電体カバーリング123の消耗が進行するに伴って、ウエハ120表面の形状のチルティングが許容値を超える虞がある。
 本実施例では、このようなチルティングを許容範囲内に維持するために、エッジ電力を適切に調節する。まず、消耗の進行に伴ってエッチング形状のチルティングが許容範囲の上限または下限値に対応するVppの値と初期のVppの値との間の変化量ΔVpp_limを、予め製品用のものと同等のウエハ120を処理して検出する。さらに、消耗して誘電体カバーリング123の内側側面123aの消耗による高さ(厚さ)の変化に伴って変化するVppの値または変化の量とに対応したチルティング量が0となる等電位面151の形状を実現できるエッジ電力値も予め求めておく。このような検出の際のウエハ120の処理の条件は上記の標準処理条件と同じまたはこれと同等と見做せるものである。
 誘電体カバーリング123の消耗が進行し、標準処理条件でのVpp値の変化量が、予め設定したΔVpp_limより小さい値であるΔVpp_set以上になったことが、インピーダンス検出器136からの出力から検出された場合には、予め求められた誘電体カバーリング123の内側側面123aの消耗に伴うVppの値とその変化の量と最適なチルティングを実現するエッジ電力との関係を用いて、導体リング122に供給するエッジ電力の大きさを初期のエッチング形状を実現できる値に変化させる。本実施例では、消耗した誘電体カバーリング123の静電容量に対応してチルティングが0になるエッジ電力が導体リング122に供給されるように第2の高周波電力131の出力または負荷インピーダンス調整器135の回路の定数が調節される。
 これにより、ウエハ120の外周部上面および誘電体カバーリング123の上面上方の等電位面151の高さ位置がウエハ120の半径方向について水平となるように調節され、ウエハ120を処理する枚数の増大とこれに伴って消耗する誘電体カバーリング123の部材の厚さ(静電容量)の値の変化に応じて、複数枚のウエハ120の間でチルティングが一定となるよう調節される。この結果、長期間にわたりウエハ120の処理後の形状のチルティングを許容される範囲内にし形状のバラつきが抑えられて処理の歩留まりが向上する。
 さらには、誘電体カバーリング123の消耗による交換の時期を、給電経路上のインピーダンスの変化から高い精度で推定することができる。即ち、任意の構造のウエハ120を所定の条件で処理する場合の誘電体カバーリング123の内側側面123aの消耗が進行しVppの変化の量がΔVpp_limに達して交換が必要になる場合の限界のVpp値を予め求めておき、標準処理条件でのVppの値がその値を超えたことが検出された場合に当該誘電体カバーリング123を交換すべき時期として用いることができる。さらにまた、インピーダンス検出器136が検出するVppの値が限界Vpp値に近づいた、即ち交換時期に近づいたことを、図示しないプラズマ処理装置に備えられた報知器から報知する、例えばCRTや液晶のモニター上に警告あるいは報告を表示する機能を備えることで、部材の交換を装置の使用者に促すことが可能である。
 誘電体カバーリング123の部材の消耗をより精度よく検知することのできる変形例を図4に示す。図4は、図2に示す実施例に係るプラズマ処理装置の変形例の試料台の外周部の構成の概略を模式的に示す縦断面図である。
 本例は、導体リング122の形状をその内側側面402が誘電体カバーリング123の内側側面123aと平行となるように構成し、その他の構成は第1の実施例と同等のものにされている。この変形例においては、誘電体カバーリング123の断面がテーパー状の形状を有している内周側部分の上面である内側側面123aと平行となるように、導体リング122の内側側面が傾斜面を有して外側に向かって厚さが大きくされる形状を備えている。さらに、誘電体カバーリング123の内側側面123aの厚さの平均を小さくし、内側側面123aを構成する誘電体カバーリング123の誘電体製の部材の静電容量401を大きくすることができる。これにより、当該部材の消耗に伴うインピーダンス変化も大きくなり、部材の消耗の量をより精度よく検出できる。
 また、上記実施例及び変形例を応用し、導体リング122及び導体カバーリング124の形状を工夫することによって、消耗が検知される部分を任意に制限することができる。図5は、図2に示す実施例に係るプラズマ処理装置の別の変形例の試料台の外周部の構成の概略を模式的に示す縦断面図である。
 本例では、図2に示す導体リング122の内周側壁の下部を内周側にフランジ状に延在させたフランジ部502を備え、導体リング122は、フランジ部502が導体リング122を覆って配置された誘電体カバーリング123の下方で内側側面123aから誘電体カバーリング123の上面が平坦な内周縁部の下方まで延在した形状を備えている。さらに、導体カバーリング124は、誘電体カバーリング123の外周側部分の平坦な上面のみでなく、内周側部分のテーパー状の形状の上面である内側側面123aの全体を覆って、導体カバーリング124の内周縁部は誘電体カバーリング123の内周縁部の平坦な上面まで達して延在している。
 本例においては、誘電体カバーリング123のうち、導体カバーリング124に覆われた部分、即ち外周側部分の上面及び内側側面123aは消耗が抑制されてこれらの部分と導体リング122の上面との間の誘電体カバーリング123の部材の静電容量によるインピーダンスの変化は抑制される。一方で、導体カバーリング124に覆われない部分、即ち誘電体カバーリング123の内周縁部の消耗が、静電容量501の変化としてインピーダンス検出器135によりVppの変化に基づいて検出される。
 本例では、誘電体カバーリング123の内周縁部の消耗が他の箇所と比べてプラズマ140を用いたウエハ120の処理の時間あるいは処理されたウエハ120の枚数の増加に伴って大きく進行することで、インピーダンス検出器136によるVppの変化として検出される。誘電体カバーリング123の特定の箇所の消耗の量が他の箇所の消耗の影響を抑制して精度良く検出され、誘電体カバーリング123の交換の時期の推定をより正確に行うことができる。さらに、当該消耗量とこれに対応するVppの値とその変化の量の検出の精度が高められることで、ウエハ120を処理する枚数の増大とこれに伴って消耗する誘電体カバーリング123の部材の厚さ(静電容量)の値の変化に応じて、ウエハ120の外周部上面および誘電体カバーリング123の上面上方の等電位面151の高さ位置がウエハ120の半径方向について水平にして複数枚のウエハ120の間でチルティングが一定となるように調節される本例のプラズマ処理装置では、長期間にわたりウエハ120の処理後の形状のチルティングを許容される範囲内にし形状のバラつきが抑えられて処理の歩留まりが向上する。
 上記の例の作用・効果は、ウエハ電力及びエッジ電力の各々を独立した電源が供給する構成であっても得ることができる。図6は、図1に示す実施例のさらに別の変形例に係るプラズマ処理装置の構成の概略を示す縦断面図である。本図においても、図1に示した実施例と同じ符号が付された箇所についての説明は、必要のない限り省くものとする。
 本変形例では、図6に示すように、導体リング122に第2の高周波電源131は接続されず、独立した第3の高周波電源601が、整合器602を介して接続されている。この構成を用いれば、ウエハ電力とエッジ電力の周波数を変更することや、或いはウエハ電力とエッジ電力の周波数を同じくして、さらに各々が出力する電力の位相を同期させる、あるいは所定の値の位相差を有するように調節することが可能となる。また、第3の高周波電源601を直流電源に置き換え、エッジ電力に直流電力を印加することも可能である。
 上記の例において、導体カバーリング124の材料は、SiもしくはSiCと記載した。これは特に半導体デバイスを処理する際の金属汚染を予防する観点に基づくものである。しかし、金属汚染を考慮する必要がない場合には、例えばアルミニウムなどの金属材料を用いても、上記の実施例と同様の効果が得られることは容易に推測される。
 また、本実施例では平行平板型プラズマ処理装置の一形態を用いたプラズマ処理について例示したが、本発明の効果はプラズマ処理におけるプラズマ生成方法によって限定されるものではない。例えば誘導結合型プラズマ処理装置や、ECR共鳴型プラズマ処理装置においても、或いは本実施例と異なる機構を備える平行平板型プラズマ処理装置であっても、本発明と同様の試料台外周部周辺の構成によって同様の効果が得られる。
101…真空容器
102…上部電極
103…絶縁リング
104…第1の高周波電源
105…接地
106…コイル
107…シャワープレート
108…真空排気口
110…試料台
111…誘電体膜
112…導体膜
113…誘電体膜
120…ウエハ
121…絶縁リング
122…導体リング
123…誘電体カバーリング
123a…内側側面
124…導体カバーリング
131…第2の高周波電源
132…整合器
133…直流電源
134…高周波フィルタ
135…負荷インピーダンス調整器
136…インピーダンス検出器
140…プラズマ
151…等電位面
152…シース界面。

Claims (6)

  1.  真空容器内部に配置され内部でプラズマが形成される処理室と、この処理室内の下部に配置され前記プラズマを用いた処理対象のウエハが載せられる試料台であって上部の中央部に配置された凸状部の上面に前記ウエハが載せられる試料台と、当該試料台内部に配置され前記ウエハの処理中に高周波電力が供給される電極と、前記試料台の前記凸状部の外周側で前記上面を囲んで配置された導体製のリング状部材と、このリング状部材と前記処理室との間及び前記試料台の上面との間で前記リング状部材を対して覆って配置された誘電体製の第1のリング状カバーと、前記処理室と第1のリング状カバーの上面との間でこれを覆って配置され導体製の第2のリング状カバーと、前記ウエハの処理中に前記導体製のリング状部材に高周波電力を供給する高周波電源と前記リング状部材との間を接続する給電経路を流れる高周波電力の電圧を検出した結果に応じて当該高周波電力の大きさを調節する調節器とを備えたプラズマ処理装置。
  2.  請求項1に記載のプラズマ処理装置であって、
     前記導体製のリング状部材の内周側部分の表面が、当該リング状部材と前記試料台の凸状部との間で前記プラズマから当該リング状部材を覆う誘電体製の部材で覆われて当該部材の内周側部分の前記プラズマに面する表面と前記リング状部材の内周側部分の表面とが平行に配置されたプラズマ処理装置。
  3.  請求項2に記載のプラズマ処理装置であって、
     前記リング状部材の内周側部分を覆う誘電体製の部材が前記第1のリング状カバーと一体に構成されたプラズマ処理装置。
  4.  請求項1乃至3に記載のプラズマ処理装置であって、
     前記リング状部材の内周側部分を覆う前記誘電体製の部材の内周側部分が、前記導体性のリング状部材と前記膜状の電極との間に位置し外周側に向かって高さが高くされ傾斜した前記表面を有して当該誘電体製の部材の上下方向の厚さが大きくされ、当該傾斜した表面の外周側の上面にこれを覆って前記第2のリング状カバーが配置されたプラズマ処理装置。
  5.  請求項1乃至4の何れかに記載のプラズマ処理装置であって、
     前記導体性のリング状部材の上面が前記試料台の上面より高い位置に配置されたプラズマ処理装置。
  6.  請求項1乃至5の何れかに記載のプラズマ処理装置であって、
     前記導体製のリング状部材の下方で当該導体製のリング状部材と前記試料台内部の電極との間に配置されてこれらを絶縁する第3のリング状部材を備えたプラズマ処理装置。
PCT/JP2019/049535 2019-12-18 2019-12-18 プラズマ処理装置 WO2021124470A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/980,501 US20210249233A1 (en) 2019-12-18 2019-12-18 Plasma processing apparatus
KR1020207023260A KR102503478B1 (ko) 2019-12-18 2019-12-18 플라스마 처리 장치
CN201980015455.1A CN113348732B (zh) 2019-12-18 2019-12-18 等离子处理装置
JP2020545817A JP7043617B2 (ja) 2019-12-18 2019-12-18 プラズマ処理装置
PCT/JP2019/049535 WO2021124470A1 (ja) 2019-12-18 2019-12-18 プラズマ処理装置
TW109129343A TWI757849B (zh) 2019-12-18 2020-08-27 電漿處理裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049535 WO2021124470A1 (ja) 2019-12-18 2019-12-18 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2021124470A1 true WO2021124470A1 (ja) 2021-06-24

Family

ID=76477373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049535 WO2021124470A1 (ja) 2019-12-18 2019-12-18 プラズマ処理装置

Country Status (6)

Country Link
US (1) US20210249233A1 (ja)
JP (1) JP7043617B2 (ja)
KR (1) KR102503478B1 (ja)
CN (1) CN113348732B (ja)
TW (1) TWI757849B (ja)
WO (1) WO2021124470A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230067400A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Dry etcher uniformity control by tuning edge zone plasma sheath
US20230360889A1 (en) * 2022-05-03 2023-11-09 Tokyo Electron Limited Apparatus for Edge Control During Plasma Processing
WO2024019901A1 (en) * 2022-07-21 2024-01-25 Lam Research Corporation Precise feedback control of bias voltage tailored waveform for plasma etch processes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064460A (ja) * 2003-04-24 2005-03-10 Tokyo Electron Ltd プラズマ処理装置、フォーカスリング及び被処理体の載置装置
JP2005303099A (ja) * 2004-04-14 2005-10-27 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP2011108764A (ja) * 2009-11-16 2011-06-02 Hitachi High-Technologies Corp プラズマ処理装置
JP2017055100A (ja) * 2015-07-13 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation エッジに限局されたイオン軌道制御及びプラズマ動作を通じた、最端エッジにおけるシース及びウエハのプロフィール調整
JP2019192923A (ja) * 2019-06-06 2019-10-31 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676074B2 (ja) * 2001-02-15 2011-04-27 東京エレクトロン株式会社 フォーカスリング及びプラズマ処理装置
US20040261946A1 (en) * 2003-04-24 2004-12-30 Tokyo Electron Limited Plasma processing apparatus, focus ring, and susceptor
TWI488236B (zh) * 2003-09-05 2015-06-11 Tokyo Electron Ltd Focusing ring and plasma processing device
JP5357639B2 (ja) * 2009-06-24 2013-12-04 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
US9384992B2 (en) * 2012-02-09 2016-07-05 Tokyo Electron Limited Plasma processing method
JP6014408B2 (ja) * 2012-08-07 2016-10-25 株式会社日立ハイテクノロジーズ プラズマ処理装置及びプラズマ処理方法
JP2014108764A (ja) 2012-12-04 2014-06-12 Ashimori Ind Co Ltd シートベルト用リトラクタ
JP6539113B2 (ja) * 2015-05-28 2019-07-03 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP6764383B2 (ja) * 2017-09-20 2020-09-30 株式会社日立ハイテク プラズマ処理装置
JP2019109980A (ja) * 2017-12-15 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP7149068B2 (ja) * 2017-12-21 2022-10-06 株式会社日立ハイテク プラズマ処理装置およびプラズマ処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064460A (ja) * 2003-04-24 2005-03-10 Tokyo Electron Ltd プラズマ処理装置、フォーカスリング及び被処理体の載置装置
JP2005303099A (ja) * 2004-04-14 2005-10-27 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP2011108764A (ja) * 2009-11-16 2011-06-02 Hitachi High-Technologies Corp プラズマ処理装置
JP2017055100A (ja) * 2015-07-13 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation エッジに限局されたイオン軌道制御及びプラズマ動作を通じた、最端エッジにおけるシース及びウエハのプロフィール調整
JP2019192923A (ja) * 2019-06-06 2019-10-31 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法

Also Published As

Publication number Publication date
TWI757849B (zh) 2022-03-11
CN113348732A (zh) 2021-09-03
US20210249233A1 (en) 2021-08-12
JP7043617B2 (ja) 2022-03-29
KR20210080275A (ko) 2021-06-30
KR102503478B1 (ko) 2023-02-27
TW202126116A (zh) 2021-07-01
JPWO2021124470A1 (ja) 2021-12-23
CN113348732B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
US11908661B2 (en) Apparatus and methods for manipulating power at an edge ring in plasma process device
TWI505354B (zh) Dry etching apparatus and dry etching method
CN106997842B (zh) 控制电容耦合等离子体工艺设备的边缘环的射频振幅
US11004716B2 (en) Electrostatic chuck assembly and semiconductor manufacturing apparatus including the same
KR101654868B1 (ko) 플라즈마 처리 장치, 플라즈마 처리 방법, 프로그램을 기록한 기록매체
JP7043617B2 (ja) プラズマ処理装置
US8222157B2 (en) Hybrid RF capacitively and inductively coupled plasma source using multifrequency RF powers and methods of use thereof
JP5097632B2 (ja) プラズマエッチング処理装置
KR20190082721A (ko) 플라즈마 처리 장치
KR102149564B1 (ko) 이탈 제어 방법 및 플라즈마 처리 장치
JP7364758B2 (ja) プラズマ処理方法
CN109935511B (zh) 等离子体处理装置
KR20170012106A (ko) 플라즈마 처리 장치
US20210057187A1 (en) Substrate support unit and substrate processing apparatus including the same
JP2011108764A (ja) プラズマ処理装置
WO2019229784A1 (ja) プラズマ処理装置
US20040040663A1 (en) Plasma processing apparatus
US20220157576A1 (en) Plasma processing apparatus
WO2022180723A1 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545817

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956461

Country of ref document: EP

Kind code of ref document: A1