WO2021120982A1 - 一种制备间苯二胺的方法 - Google Patents

一种制备间苯二胺的方法 Download PDF

Info

Publication number
WO2021120982A1
WO2021120982A1 PCT/CN2020/130379 CN2020130379W WO2021120982A1 WO 2021120982 A1 WO2021120982 A1 WO 2021120982A1 CN 2020130379 W CN2020130379 W CN 2020130379W WO 2021120982 A1 WO2021120982 A1 WO 2021120982A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
phenylenediamine
isophthalamide
preparing
added
Prior art date
Application number
PCT/CN2020/130379
Other languages
English (en)
French (fr)
Inventor
罗先金
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2021120982A1 publication Critical patent/WO2021120982A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/50Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/28Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing six-membered aromatic rings, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds

Definitions

  • the present invention relates to a method for industrially producing m-phenylenediamine, in particular to a method for preparing m-phenylenediamine.
  • M-phenylenediamine is an important organic synthetic raw material, mainly used as dye intermediates, curing agents for epoxy resins, accelerators for cement, petroleum additives and raw materials for manufacturing medicines. It has a wide range of uses.
  • the process will generate a large amount of waste acid (about ten tons of waste acid is produced when one ton of dinitrobenzene is produced).
  • waste acid about ten tons of waste acid is produced when one ton of dinitrobenzene is produced.
  • the research focus of many researchers is still limited to the benzene nitration process, using solid acid catalysis to avoid the generation of a large amount of waste acid, but the yield is very low and the effect is not good.
  • the purpose of the present invention is to provide a method for preparing m-phenylenediamine in order to overcome the above-mentioned defects in the prior art.
  • a method for preparing m-phenylenediamine includes the following steps:
  • step (1) includes the following steps:
  • step (1-1) the reaction is performed by heating in the presence of a catalyst, air and ammonia gas.
  • the catalyst is a V/Cr catalyst.
  • step (1-1) the molar ratio of air: ammonia: m-xylene is 7:6:1.
  • the heating temperature is 350-450°C.
  • step (1-2) isophthalonitrile is dissolved in an alcohol solvent, an alkaline aqueous solution is added, the temperature is raised to reflux for reaction, the solvent is evaporated to dryness, and recrystallization is performed to obtain isophthalamide.
  • the alcohol solvent includes methanol, ethanol, propanol, isopropanol or ethylene glycol.
  • the alkaline aqueous solution includes sodium carbonate aqueous solution, potassium carbonate aqueous solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution or ammonia water.
  • step (1) includes the following steps:
  • Isophthalic acid is esterified with alcohol under acid catalysis to obtain isophthalic acid ester;
  • step (1-b) isophthalic acid is added to the alcohol, acidic catalyst is added, the temperature is raised to reflux for esterification, and the produced water is continuously removed. When no more water is produced, the esterification ends, and the steam is removed. The remaining alcohol solvents are added with water, slurried, cooled, filtered, and dried to obtain isophthalate.
  • the alcohol solvent described in (1-b-I) includes methanol, ethanol or isopropanol.
  • the acid catalyst includes concentrated sulfuric acid, p-toluenesulfonic acid or acidic ion exchange resin.
  • step (1-c) the isophthalate is dissolved in an alcohol reagent, ammonia gas is slowly introduced, the reaction is raised, and then the temperature is lowered to a lower temperature, filtered, washed, and the intermediate Phthalamide.
  • the alcohol reagent includes methanol, ethanol, propanol, isopropanol or ethylene glycol.
  • step (1-c) the molar ratio of isophthalate to ammonia gas is 1:2-50.
  • step (1-c) the temperature is raised to 30-100° C. after the ammonia gas is introduced, and the reaction is performed until all the isophthalates disappear.
  • step (1-c) the temperature is lowered to room temperature after the reaction.
  • step (2) isophthalamide is added to the alkaline solution at 0-35°C, hypohalite or halogen is added dropwise at this temperature, and the temperature is raised to 35 ⁇ 100°C, then lower the temperature, neutralize and filter to obtain m-phenylenediamine.
  • step (2) isophthalamide is added to the alkaline solution at 2-15°C, hypohalite or halogen is added dropwise at this temperature, and then the temperature is raised to 35°C, and the temperature is kept for 30°C. Minutes later, the temperature was raised to 75°C, then the temperature was lowered, neutralized, and filtered to obtain m-phenylenediamine.
  • the alkaline solution includes NaOH solution, KOH solution or Ca(OH) 2 solution; hypohalite includes sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, sodium hypobromite, potassium hypobromite or calcium hypobromite; halogen includes Chlorine or bromine.
  • the method for preparing m-phenylenediamine of the present invention provides two process paths using m-xylene as starting materials to prepare m-phenylenediamine.
  • Route 1 Use meta-xylene as the starting material to prepare isophthalonitrile through ammoxidation, hydrolyze to prepare isophthalamide, and then react with hypohalite or halogen in an alkaline solvent to prepare isophthalic acid. amine.
  • Route 2 Use meta-xylene as the starting material to prepare isophthalic acid through oxidation, esterify with alcohol under acid catalysis to prepare isophthalic acid ester, and then pass ammonia gas in the alcohol solvent to obtain isophthalic acid Formamide is then reacted with hypohalite or halogen in an alkaline solvent to prepare m-phenylenediamine.
  • the reaction process is as follows:
  • R CH 3 , CH 3 CH 2 or (CH 3 ) 2 CH
  • compound 1 is m-xylene
  • compound 2 is isophthalonitrile
  • compound 3 is isophthalamide
  • compound 4 is isophthalic acid
  • compound 5 is methyl isobenzoate
  • the target product is isophthalic acid. amine.
  • the present invention uses two new process routes with meta-xylene as starting materials to prepare target products: the first route uses meta-xylene, ammonia and air as raw materials, adopts a fixed bed reactor, and prepares isophthalonitrile by ammoxidation. , The process yield of this step is high, the yield is more than 95%, and the excess ammonia gas is used as a carrier for recycling, and it will not produce three wastes. Then isophthalonitrile is hydrolyzed under alkaline conditions to obtain isophthalamide, with a yield of over 95%, and all solvents are recycled and used without generating three wastes.
  • isophthalamide is reacted with hypohalite or halogen in an alkaline solvent under alkaline conditions to produce the target product with a high yield (above 90%).
  • the salt-containing wastewater produced by this process is combined with The chlor-alkali plant can be used to produce hypochlorite and liquid caustic cyclically, and the hypochlorite and liquid caustic soda can be reused for degradation, achieving a zero-emission recycling process and clean production.
  • the second process route uses meta-xylene as raw material to obtain isophthalic acid through oxidation, with a yield of over 99%.
  • the esterification reaction of isophthalic acid under acid catalysis reaches 100%, and then the yield of isophthalamide is more than 90% prepared by aminolysis.
  • the last step of the first process route is used to process the isophthalamide through the process conditions.
  • the target product was successfully prepared by reacting with hypohalite or halogen in an alkaline solvent.
  • These two process routes successfully avoided the production of m-dinitrobenzene, which is an explosive substance in the current process, and avoided the current dangerous process, and at the same time, avoided the current process from generating a large amount of difficult-to-treat waste acid.
  • the three wastes in the whole process can achieve low emissions, or even zero emissions.
  • the method for preparing m-phenylenediamine in the present invention completely avoids the mixed acid nitration process, does not produce waste acid, and does not produce the highly explosive compound dinitrobenzene, and is safe, clean and efficient.
  • Fig. 1 is a schematic diagram of an apparatus for preparing isophthalonitrile in Example 1.
  • 1 is the micro pump
  • 2 is the ammonia source
  • 3 is the air compressor
  • 4 is the air flow meter
  • 5 is the ammonia flow meter
  • 6 is the air buffer tank
  • 7 is the ammonia buffer tank
  • 8 is the air preconditioning tank.
  • Heater, 9 is an ammonia preheater
  • 10 is a fixed bed reactor
  • 11 is a condenser
  • 12 is a receiving tank
  • 13 is an acid tank.
  • the preparation of m-phenylenediamine includes the following two process routes.
  • M-phenylenediamine is prepared by reacting isophthalamide with hypohalite or halogen in an alkaline solvent.
  • Isophthalic acid is esterified with alcohol under acid catalysis to obtain isophthalic acid ester;
  • M-phenylenediamine is prepared by reacting isophthalamide with hypohalite or halogen in an alkaline solvent.
  • the reaction process is as follows:
  • R CH 3 , CH 3 CH 2 or (CH 3 ) 2 CH
  • compound 1 is m-xylene
  • compound 2 is isophthalonitrile
  • compound 3 is isophthalamide
  • compound 4 is isophthalic acid
  • compound 5 is methyl isobenzoate
  • the target product is isophthalic acid. amine.
  • step (1-1) the reaction is performed by heating in the presence of a catalyst, air and ammonia gas.
  • the catalyst is a V/Cr catalyst.
  • step (1-1) the molar ratio of air: ammonia: m-xylene is 7:6:1.
  • the heating temperature is 350-450°C.
  • step (1-2) isophthalonitrile is dissolved in an alcohol solvent, an alkaline aqueous solution is added, the temperature is raised to reflux for reaction, the solvent is evaporated to dryness, and recrystallization is performed to obtain isophthalamide.
  • the alcohol solvent includes methanol, ethanol, propanol, isopropanol or ethylene glycol.
  • the alkaline aqueous solution includes sodium carbonate aqueous solution, potassium carbonate aqueous solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution or ammonia water.
  • step (1-b) isophthalic acid is added to the alcohol, acidic catalyst is added, the temperature is raised to reflux for esterification, and the produced water is continuously removed. When no more water is produced, the esterification ends, and the steam is removed. The remaining alcohol solvents are added with water, slurried, cooled, filtered, and dried to obtain isophthalate.
  • the alcohol solvent described in (1-b-I) includes methanol, ethanol or isopropanol.
  • the acid catalyst includes concentrated sulfuric acid, p-toluenesulfonic acid or acidic ion exchange resin.
  • step (1-c) the isophthalate is dissolved in an alcohol reagent, ammonia gas is slowly introduced, the reaction is raised, and then the temperature is lowered to a lower temperature, filtered, washed, and the intermediate Phthalamide.
  • the alcohol reagent includes methanol, ethanol, propanol, isopropanol or ethylene glycol.
  • step (1-c) the molar ratio of isophthalate to ammonia gas is 1:2-50.
  • step (1-c) the temperature is raised to 30-100° C. after the ammonia gas is introduced, and the reaction is performed until all the isophthalates disappear.
  • step (1-c) the temperature is lowered to room temperature after the reaction.
  • step (2) isophthalamide is added to the alkaline solution at 0-35°C, hypohalite or halogen is added dropwise at this temperature, and then the temperature is raised to 35-100°C, Then the temperature is lowered, neutralized, and filtered to obtain m-phenylenediamine.
  • step (2) isophthalamide is added to the alkaline solution at 2-15°C, hypohalite or halogen is added dropwise at this temperature, the temperature is raised to 35°C, and the temperature is kept for 30 minutes After that, the temperature is raised to 75°C, and then the temperature is lowered, neutralized, and filtered to obtain m-phenylenediamine.
  • the alkaline solution includes NaOH solution, KOH solution or Ca(OH) 2 solution
  • hypohalite includes sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, sodium hypobromite, potassium hypobromite or calcium hypobromite
  • Halogen includes chlorine or bromine.
  • FIG. 1 The apparatus shown in Figure 1 was used to prepare isophthalonitrile.
  • 1 is the micro pump
  • 2 is the ammonia source
  • 3 is the air compressor
  • 4 is the air flow meter
  • 5 is the ammonia flow meter
  • 6 is the air buffer tank
  • 7 is the ammonia buffer tank
  • 8 is the air preconditioning tank.
  • Heater, 9 is an ammonia preheater
  • 10 is a fixed bed reactor
  • 11 is a condenser
  • 12 is a receiving tank
  • 13 is an acid tank.
  • the ammonia source 2, the ammonia flow meter 5, the ammonia buffer tank 7 and the ammonia preheater 9 are connected in sequence, the air compressor 3, the air flow meter 4, the air buffer tank 6 and the air preheater 8 are connected in sequence, and the air The outlets of the preheater 8 and the air preheater 8 are connected to the fixed bed reactor 10, and the fixed bed reactor 10 is connected to the condenser 11, the receiving tank 12 and the acid tank 13 in sequence.
  • the micro pump 1 is used to remove the m-xylene Pump into the ammonia preheater 9.
  • the specific operation method start the air compressor 3, adjust the flow rate, turn on the heating switch, set the temperature of each section, wait for the internal catalyst layer of the fixed bed reactor 10 to be preheated to the set temperature of 395°C, and start metering ammonia gas. After the temperature of the catalyst layer inside the fixed bed reactor 10 stabilizes at 395° C. for 5 minutes, m-xylene is introduced.
  • the third step Preparation of m-phenylenediamine (target product)
  • the isophthalamide (compound 3) can be prepared by using the same method as the third step of route one to obtain the target product m-phenylenediamine (target product).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种制备间苯二胺的方法,包括以下步骤:(1)以间二甲苯为起始原料,制备间苯二甲酰胺;(2)间苯二甲酰胺在碱性溶剂中与次卤酸盐或卤素反应,制备得到间苯二胺。与现有技术相比,本发明制备间苯二胺的方法完全避开了混酸硝化工艺,不会产生废酸,也不会出现强爆炸性化合物二硝基苯,安全清洁高效。

Description

一种制备间苯二胺的方法 技术领域
本发明涉及工业生产间苯二胺的方法,尤其是涉及一种制备间苯二胺的方法。
背景技术
间苯二胺是一种重要的有机合成原料,主要用作染料中间体、环氧树脂的固化剂、水泥的促凝剂、石油添加剂及制造医药的原料,用途非常广阔。
目前工业上主要采用混酸硝化苯制备间二硝基苯,然后还原得到间苯二胺,在该工艺路线中,主要有两个温度过程,35℃时产生一硝基苯,然后升温至90℃左右生产二硝基苯,同时释放大量热量,温度很难控制,容易导致温度失控现象,二硝基苯极易爆炸,如果发生温度失控现象,会发生爆炸事故,该工艺多次发生过极具破坏性的爆炸。同时该工艺会产生大量的废酸(生产一吨二硝基苯产生约十吨左右的废酸)。目前许多研究者研究的重点依然是局限于苯硝化工艺,采用固体酸催化来避免大量废酸的产生,但是收率很低,效果不好。还有采用微通道反应器来硝化苯避免温度失控而发生爆炸的危险,收率不高且只能小规模实验,不能大规模生产。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种制备间苯二胺的方法。
本发明的目的可以通过以下技术方案来实现:
一种制备间苯二胺的方法,包括以下步骤:
(1)以间二甲苯为起始原料,制备间苯二甲酰胺;
(2)间苯二甲酰胺在碱性溶剂中与次卤酸盐或卤素反应,制备得到所述的间苯二胺。
作为本发明的一种实施方式,步骤(1)中,包括以下步骤:
(1-1)以间二甲苯为起始原料,经过氨氧化制备间苯二甲腈;
(1-2)将间苯二甲腈水解制备间苯二甲酰胺。
优选地,步骤(1-1)中,在催化剂、空气和氨气存在下,加热进行反应。
优选地,步骤(1-1)中,所述的催化剂为V/Cr催化剂。
优选地,步骤(1-1)中,所述的空气:氨:间二甲苯的摩尔比之比为7:6:1。
优选地,加热的温度为350~450℃。
优选地,步骤(1-2)中,间苯二甲腈溶解在醇类溶剂中,加入碱性水溶液,升温回流进行反应,然后蒸干溶剂,重结晶,得到间苯二甲酰胺。
优选地,步骤(1-2)中,所述的醇类溶剂包括甲醇、乙醇、丙醇、异丙醇或乙二醇。
优选地,步骤(1-2)中,所述的碱性水溶液包括碳酸钠水溶液、碳酸钾水溶液、氢氧化钠水溶液、氢氧化钾水溶液或氨水。
作为本发明的另一种实施方式,步骤(1)中,包括以下步骤:
(1-a)以间二甲苯为起始原料,经过氧化制备间苯二甲酸;
(1-b)间苯二甲酸在酸催化下与醇酯化得到间苯二甲酸酯;
(1-c)间苯二甲酸酯溶解在醇类试剂中,通入氨气,制得间苯二甲酰胺。
优选地,步骤(1-b)中,将间苯二甲酸加入到醇中,加入酸性催化剂,升温回流进行酯化,不断去除生产的水,当不再产生水时,酯化结束,蒸除剩下的醇类溶剂,加水,打浆冷却过滤,烘干得到间苯二甲酸酯。
优选地,步骤(1-b)中,(1-b-I)所述的醇类溶剂包括甲醇、乙醇或异丙醇。
优选地,步骤(1-b)中,所述的酸性催化剂包括浓硫酸、对甲基苯磺酸或酸性离子交换树脂。
优选地,步骤(1-c)中,将间苯二甲酸酯溶解在醇类试剂中,慢慢通入氨气,升温反应,然后降温到较低的温度,过滤,洗涤,制得间苯二甲酰胺。
优选地,步骤(1-c)中,醇类试剂包括甲醇、乙醇、丙醇、异丙醇或乙二醇。
优选地,步骤(1-c)中,间苯二甲酸酯与氨气的摩尔比为1:2~50。
优选地,步骤(1-c)中,通入氨气后升温至30~100℃,并反应至间苯二甲酸酯全部消失。
优选地,步骤(1-c)中,反应后降温至室温。
作为本发明的一种实施方式,步骤(2)中,间苯二甲酰胺在0~35℃下,加到碱性溶液中,在此温度下加入次卤酸盐或滴加卤素,升温至35~100℃,然后降温,中和,过滤,得到间苯二胺。
优选地,步骤(2)中,间苯二甲酰胺在2~15℃下,加到碱性溶液中,在此温 度下加入次卤酸盐或滴加卤素,然后升温至35℃,保温30分钟后,再升温至75℃,然后降温,中和,过滤,得到间苯二胺。
优选地,碱性溶液包括NaOH溶液、KOH溶液或Ca(OH) 2溶液;次卤酸盐包括次氯酸钠、次氯酸钾、次氯酸钙、次溴酸钠、次溴酸钾或次溴酸钙;卤素包括氯气或溴素。
本发明制备间苯二胺的方法提供了两种以间二甲苯为起始原料的工艺路径来制备间苯二胺。
路线一:以间二甲苯为起始原料经过氨氧化制备间苯二甲腈,水解制备间苯二甲酰胺,然后在碱性溶剂中与次卤酸盐或卤素反应的方法来制备间苯二胺。
路线二:以间二甲苯为起始原料经过氧化制备间苯二甲酸,在酸催化下与醇酯化制备间苯二甲酸酯,然后在醇类溶剂中通入氨气,得到间苯二甲酰胺,然后在碱性溶剂中与次卤酸盐或卤素反应来制备间苯二胺。
反应过程如下所示:
Figure PCTCN2020130379-appb-000001
其中:R=CH 3,CH 3CH 2或(CH 3) 2CH
其中化合物1为间二甲苯,化合物2为间苯二甲腈,化合物3为间苯二甲酰胺,化合物4为间苯二甲酸,化合物5为间二苯甲酸甲酯,目标产物为间苯二胺。
本发明以间二甲苯为起始原料的两条新工艺路线制备目标产品:第一条路线以间二甲苯、氨气和空气为原料,采用固定床反应器,氨氧化制备间苯二甲腈,该步工艺收率高,收率达95%以上,过量氨气做载体回收套用,不会产生三废。然后 间苯二甲腈在碱性条件下水解制得间苯二甲酰胺,收率达95%以上,全部溶剂回收套用,不产生三废。最后间苯二甲酰胺在碱性条件下,采用在碱性溶剂中与次卤酸盐或卤素反应反应,高收率(90%以上)地生产目标产品,该步工艺产生的含盐废水与氯碱厂配套,可以循环生产次氯酸盐和液碱,次氯酸盐和液碱重新利用做降解用,做到零排放的循环工艺,清洁生产。第二条工艺路线,以间二甲苯为原料,氧化得到间苯二甲酸,收率达99%以上。间苯二甲酸在酸催化下酯化反应达100%,然后氨解制备间苯二甲酰胺收率达90%以上,然后采用第一条工艺路线的最后一步工艺条件将间苯二甲酰胺经在碱性溶剂中与次卤酸盐或卤素反应成功制备目标产品。这两条工艺路线成功都规避了目前的工艺中出现的易爆炸物质间二硝基苯的产生,避免了目前的危险工艺,同时也避免了目前工艺产生大量的难处理的废酸。整个过程的三废可以做到低排放,甚至达到零排放。
与现有技术相比,本发明制备间苯二胺的方法完全避开了混酸硝化工艺,不会产生废酸,也不会出现强爆炸性化合物二硝基苯,安全清洁高效。
附图说明
图1为实施例1制备间苯二甲腈的装置示意图。
图中,1为微量泵,2为氨气源,3为空气压缩机,4为空气流量计,5为氨气流量计,6为空气缓冲罐,7为氨气缓冲罐,8为空气预热器,9为氨气预热器,10为固定床反应器,11为冷凝器,12为接收罐,13为酸液罐。
具体实施方式
制备间苯二胺包括以下两条工艺路线。
路线一:
(1)以间二甲苯为起始原料,制备间苯二甲酰胺:
(1-1)以间二甲苯为起始原料经过氨氧化制备间苯二甲腈;
(1-2)间苯二甲腈水解制备间苯二甲酰胺;
(2)间苯二甲酰胺在碱性溶剂中与次卤酸盐或卤素反应的方法来制备间苯二胺。
路线二:
(1)以间二甲苯为起始原料,制备间苯二甲酰胺:
(1-a)以间二甲苯为起始原料,经过氧化制备间苯二甲酸;
(1-b)间苯二甲酸在酸催化下与醇酯化得到间苯二甲酸酯;
(1-c)间苯二甲酸酯溶解在醇类试剂中,通入氨气,制得间苯二甲酰胺;
(2)间苯二甲酰胺在碱性溶剂中与次卤酸盐或卤素反应的方法来制备间苯二胺。
反应过程如下所示:
Figure PCTCN2020130379-appb-000002
其中:R=CH 3,CH 3CH 2或(CH 3) 2CH
其中化合物1为间二甲苯,化合物2为间苯二甲腈,化合物3为间苯二甲酰胺,化合物4为间苯二甲酸,化合物5为间二苯甲酸甲酯,目标产物为间苯二胺。
对于上述路线一:
优选地,步骤(1-1)中,在催化剂、空气和氨气存在下,加热进行反应。
优选地,步骤(1-1)中,所述的催化剂为V/Cr催化剂。
优选地,步骤(1-1)中,所述的空气:氨:间二甲苯的摩尔比之比为7:6:1。
优选地,加热的温度为350~450℃。
优选地,步骤(1-2)中,间苯二甲腈溶解在醇类溶剂中,加入碱性水溶液,升温回流进行反应,然后蒸干溶剂,重结晶,得到间苯二甲酰胺。
优选地,步骤(1-2)中,所述的醇类溶剂包括甲醇、乙醇、丙醇、异丙醇或乙二醇。
优选地,步骤(1-2)中,所述的碱性水溶液包括碳酸钠水溶液、碳酸钾水溶液、氢氧化钠水溶液、氢氧化钾水溶液或氨水。
对于上述路线二:
优选地,步骤(1-b)中,将间苯二甲酸加入到醇中,加入酸性催化剂,升温回流进行酯化,不断去除生产的水,当不再产生水时,酯化结束,蒸除剩下的醇类溶剂,加水,打浆冷却过滤,烘干得到间苯二甲酸酯。
优选地,步骤(1-b)中,(1-b-I)所述的醇类溶剂包括甲醇、乙醇或异丙醇。
优选地,步骤(1-b)中,所述的酸性催化剂包括浓硫酸、对甲基苯磺酸或酸性离子交换树脂。
优选地,步骤(1-c)中,将间苯二甲酸酯溶解在醇类试剂中,慢慢通入氨气,升温反应,然后降温到较低的温度,过滤,洗涤,制得间苯二甲酰胺。
优选地,步骤(1-c)中,醇类试剂包括甲醇、乙醇、丙醇、异丙醇或乙二醇。
优选地,步骤(1-c)中,间苯二甲酸酯与氨气的摩尔比为1:2~50。
优选地,步骤(1-c)中,通入氨气后升温至30~100℃,并反应至间苯二甲酸酯全部消失。
优选地,步骤(1-c)中,反应后降温至室温。
对于在碱性溶剂中与次卤酸盐或卤素反应来制备间苯二胺:
优选地,步骤(2)中,间苯二甲酰胺在0~35℃下,加到碱性溶液中,在此温度下加入次卤酸盐或滴加卤素,然后升温至35~100℃,然后降温,中和,过滤,得到间苯二胺。
优选地,步骤(2)中,间苯二甲酰胺在2~15℃下,加到碱性溶液中,在此温度下加入次卤酸盐或滴加卤素,升温至35℃,保温30分钟后,再升温至75℃,然后降温,中和,过滤,得到间苯二胺。
优选地,所述的碱性溶液包括NaOH溶液、KOH溶液或Ca(OH) 2溶液;次卤酸盐包括次氯酸钠、次氯酸钾、次氯酸钙、次溴酸钠、次溴酸钾或次溴酸钙;卤素包括氯气或溴素。
下面结合附图和具体实施例对本发明进行详细说明。
实施例1(路线一)
第一步:间苯二甲腈(化合物2)的制备
采用图1的装置制备间苯二甲腈。图中,1为微量泵,2为氨气源,3为空气压缩机,4为空气流量计,5为氨气流量计,6为空气缓冲罐,7为氨气缓冲罐,8为空气预热器,9为氨气预热器,10为固定床反应器,11为冷凝器,12为接收罐, 13为酸液罐。氨气源2、氨气流量计5、氨气缓冲罐7和氨气预热器9依次连接,空气压缩机3、空气流量计4、空气缓冲罐6和空气预热器8依次连接,空气预热器8和空气预热器8的出口与固定床反应器10连接,固定床反应器10与冷凝器11、接收罐12和酸液罐13依次连接,微量泵1用于将间二甲苯泵入氨气预热器9中。具体操作方法:启动空气压缩机3,调节好流量,打开加热开关,设定好各段的温度,等固定床反应器10内部催化剂层预热到设定温度395℃,开始通计量氨气,待固定床反应器10内部催化剂层温度稳定在395℃5分钟后再进间二甲苯,采用空气:氨:间二甲苯=7:6:1的工艺条件制备间苯二甲腈。间苯二甲腈的收率97%。
实施例2
路线一:第二步:间苯二甲酰胺(化合物3)的制备
间苯二甲腈128g溶解在600ml甲醇溶液中,加入20g碳酸钠水溶液,升温回流5~6小时后达到终点,蒸干甲醇,重结晶得到156g间苯二甲酰胺(化合物3)。收率95.1%。
实施例3间苯二甲酰胺(化合物3)的制备
间苯二甲腈128g溶解在500ml乙醇溶液中,加入5g氢氧化钠,滴加50ml氨水,升温回流5~6小时后达到终点,蒸干溶剂,重结晶得到157.6g间苯二甲酰胺(化合物3)。收率96.1%。
实施例4
第三步:间苯二胺(目标产品)的制备
82g间苯二甲酰胺(化合物3)在10℃加到10mol/L NaOH 200ml和735g 10%次氯酸钠溶液中,加完后升温至35℃,然后保温30分钟,升温至75℃,降温中和过滤,得到50.9g间苯二胺(目标产品)。收率94.2%。
实施例5间苯二胺(目标产品)的制备
将82g间苯二甲酰胺(化合物3)加到15mol/L NaOH 280ml中,冷却到5℃,在此温度下通入70g氯气,通完后升温至35℃,然后保温30分钟,升温至75℃,降温中和过滤,得到51.7g间苯二胺(目标产品)。收率95.8%。
实施例6间苯二胺(目标产品)的制备
82g间苯二甲酰胺(化合物3)在10℃加到10mol/L NaOH 200ml和711g 10%次氯酸钙溶液中,加完后升温至35℃,然后保温30分钟,升温至75℃,降温中和 过滤,得到51.9g间苯二胺(目标产品)。收率96.2%。
实施例7间苯二胺(目标产品)的制备
将82g间苯二甲酰胺(化合物3)加到15mol/L NaOH 280ml中,冷却到5℃,在此温度下通入158g溴素,通完后升温至35℃,然后保温30分钟,升温至75℃,降温中和过滤,得到51.8g间苯二胺(目标产品)。收率96.0%。
实施例8(路线二)
参考Gazzetta Chimica Italiana,78,511-16;1948,采用高锰酸钾作为氧化剂氧化间二甲苯制得间苯二甲酸(化合物4)。
实施例9
83g间苯二甲酸(化合物4)加到500ml甲醇中,加入2ml浓硫酸,升温回流12小时,不断去除生产的水,当回流温度达到66℃以上,酯化结束,蒸除剩下的甲醇,加50ml水,打浆冷却过滤,洗涤,烘干得到96.5g间二苯甲酸甲酯(化合物5)。收率99.5%。
实施例10
83g间苯二甲酸(化合物4)加到500ml甲醇中,加入20g阳离子交换树脂,升温回流10小时,不断去除生产的水,当回流温度达到66℃以上,酯化结束,过滤,蒸除剩下的甲醇,打浆冷却过滤,洗涤,烘干得到96.7g间二苯甲酸甲酯(化合物5)。收率99.5%。
实施例11
48.5g间二苯甲酸甲酯(化合物5)溶解300ml乙二醇中,慢慢通入氨气,升温至60℃,反应7小时后,降温至10℃左右,过滤,洗涤,得到36.9g间苯二甲酰胺(化合物3)。收率90%。
实施例12
48.5g间二苯甲酸甲酯(化合物5)溶解300ml乙醇中,慢慢通入氨气,升温至60~63℃,反应8小时后,蒸出溶剂,得到38.5g间苯二甲酰胺(化合物3)。收率94.0%。
实施例13
然后将间苯二甲酰胺(化合物3)采用路线一第三步同样的方法可以制得目标产品间苯二胺(目标产品)。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。 熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种制备间苯二胺的方法,其特征在于,包括以下步骤:
    (1)以间二甲苯为起始原料,制备间苯二甲酰胺;
    (2)间苯二甲酰胺在碱性溶剂中与次卤酸盐或卤素反应,制备得到所述的间苯二胺。
  2. 根据权利要求1所述的一种制备间苯二胺的方法,其特征在于,步骤(1)中,包括以下步骤:
    (1-1)以间二甲苯为起始原料,经过氨氧化制备间苯二甲腈;
    (1-2)将间苯二甲腈水解制备间苯二甲酰胺。
  3. 根据权利要求2所述的一种制备间苯二胺的方法,其特征在于,步骤(1-2)中,间苯二甲腈溶解在醇类溶剂中,加入碱性水溶液,升温回流进行反应,然后蒸干溶剂,重结晶,得到间苯二甲酰胺。
  4. 根据权利要求3所述的一种制备间苯二胺的方法,其特征在于,步骤(1-2)中,包括以下条件中的一项或多项:
    (1-2-I)所述的醇类溶剂包括甲醇、乙醇、丙醇、异丙醇或乙二醇;
    (1-2-II)所述的碱性水溶液包括碳酸钠水溶液、碳酸钾水溶液、氢氧化钠水溶液、氢氧化钾水溶液或氨水。
  5. 根据权利要求1所述的一种制备间苯二胺的方法,其特征在于,步骤(1)中,包括以下步骤:
    (1-a)以间二甲苯为起始原料,经过氧化制备间苯二甲酸;
    (1-b)间苯二甲酸在酸催化下与醇酯化得到间苯二甲酸酯;
    (1-c)间苯二甲酸酯溶解在醇类试剂中,通入氨气,制得间苯二甲酰胺。
  6. 根据权利要求5所述的一种制备间苯二胺的方法,其特征在于,步骤(1-b)中,将间苯二甲酸加入到醇中,加入酸性催化剂,升温回流进行酯化,不断去除生产的水,当不再产生水时,酯化结束,蒸除剩下的醇类溶剂,加水,打浆冷却过滤,烘干得到间苯二甲酸酯。
  7. 根据权利要求5所述的一种制备间苯二胺的方法,其特征在于,步骤(1-c)中,将间苯二甲酸酯溶解在醇类试剂中,慢慢通入氨气,升温反应,然后降温到较低的温度,过滤,洗涤,制得间苯二甲酰胺。
  8. 根据权利要求7所述的一种制备间苯二胺的方法,其特征在于,步骤(1-c)中,步骤(1-c)中,包括以下条件中的一项或多项:
    (1-c-I)醇类试剂包括甲醇、乙醇、丙醇、异丙醇或乙二醇;
    (1-c-II)间苯二甲酸酯与氨气的摩尔量之比为1:2.0~50;
    (1-c-III)通入氨气后升温至30~100℃,并反应至间苯二甲酸酯全部消失;
    (1-c-IV)反应后降温至室温。
  9. 根据权利要求1所述的一种制备间苯二胺的方法,其特征在于,步骤(2)中,间苯二甲酰胺在0~35℃下,碱性溶液中,加入次卤酸盐或滴加卤素,加完后升温至35~100℃,然后降温,中和,过滤,得到间苯二胺。
  10. 根据权利要求9所述的一种制备间苯二胺的方法,其特征在于,步骤(2)中,包括以下条件中的一项或多项:
    (2-I)间苯二甲酰胺在2~15℃下,加到碱性溶液中,在此温度下加入次卤酸盐或滴加卤素,然后升温至35℃,保温30分钟后,再升温至75℃,然后降温,中和,过滤,得到间苯二胺;
    (2-II)所述的碱性溶液包括NaOH溶液、KOH溶液或Ca(OH) 2溶液;次卤酸盐包括次氯酸钠、次氯酸钾、次氯酸钙、次溴酸钠、次溴酸钾或次溴酸钙;卤素包括氯气或溴素。
PCT/CN2020/130379 2019-12-16 2020-11-20 一种制备间苯二胺的方法 WO2021120982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911296334.7A CN111100012B (zh) 2019-12-16 2019-12-16 一种制备间苯二胺的方法
CN201911296334.7 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021120982A1 true WO2021120982A1 (zh) 2021-06-24

Family

ID=70422852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130379 WO2021120982A1 (zh) 2019-12-16 2020-11-20 一种制备间苯二胺的方法

Country Status (2)

Country Link
CN (1) CN111100012B (zh)
WO (1) WO2021120982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685301A (zh) * 2022-03-31 2022-07-01 山东省药学科学院 一种2-氨基丙二酰胺的生产改良方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100012B (zh) * 2019-12-16 2021-01-22 上海交通大学 一种制备间苯二胺的方法
CN111440074A (zh) * 2020-03-24 2020-07-24 深圳有为技术控股集团有限公司 霍夫曼重排法制备间苯二胺
CN113620832A (zh) * 2020-05-07 2021-11-09 鲁南制药集团股份有限公司 一种非布司他中间体的制备方法
CN112279773B (zh) * 2020-10-29 2022-01-07 山东兴强化工产业技术研究院有限公司 一种高品质间苯二胺的合成方法
CN112174828B (zh) * 2020-10-29 2022-01-07 山东兴强化工产业技术研究院有限公司 一种制备间苯二胺的方法
CN112300009A (zh) * 2020-10-29 2021-02-02 山东兴强化工产业技术研究院有限公司 一种间苯二胺的制备方法
CN115385879A (zh) * 2022-09-14 2022-11-25 广东工业大学 一种呋喃基二胺及其合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380844B2 (ja) * 1999-07-26 2009-12-09 三菱瓦斯化学株式会社 芳香族ジカルボン酸ジアミドの製造方法
CN110437080A (zh) * 2019-08-13 2019-11-12 上海哈峰新材料科技有限公司 间苯二胺的制备方法
CN111100012A (zh) * 2019-12-16 2020-05-05 上海交通大学 一种制备间苯二胺的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722547A (en) * 1951-12-28 1955-11-01 California Research Corp Oxidation of organic compounds
DE2313496C3 (de) * 1973-03-19 1979-07-19 Akzo Gmbh, 5600 Wuppertal Verfahren zur Herstellung von m- und p- Phenylendiamin
JP3981768B2 (ja) * 1994-06-08 2007-09-26 三菱瓦斯化学株式会社 芳香族ジカルボン酸ジアミドの製造法
WO2004003044A2 (en) * 2002-06-28 2004-01-08 Jean-Marie Lehn Dynamers: polymeric materials exhibiting reversible formation and component exchange
EP1636166A2 (en) * 2003-06-23 2006-03-22 Nippon Shokubai Co., Ltd. Method for production of fluorinated phenylenediamine
CN1244551C (zh) * 2004-06-18 2006-03-08 江苏天音化工股份有限公司 苯二甲腈分离提纯方法
CN102993026B (zh) * 2012-11-28 2015-03-04 张家港市大伟助剂有限公司 对苯二胺的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380844B2 (ja) * 1999-07-26 2009-12-09 三菱瓦斯化学株式会社 芳香族ジカルボン酸ジアミドの製造方法
CN110437080A (zh) * 2019-08-13 2019-11-12 上海哈峰新材料科技有限公司 间苯二胺的制备方法
CN111100012A (zh) * 2019-12-16 2020-05-05 上海交通大学 一种制备间苯二胺的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685301A (zh) * 2022-03-31 2022-07-01 山东省药学科学院 一种2-氨基丙二酰胺的生产改良方法

Also Published As

Publication number Publication date
CN111100012B (zh) 2021-01-22
CN111100012A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021120982A1 (zh) 一种制备间苯二胺的方法
CN108191669A (zh) 一种1,2,4,5-四氨基苯的合成方法及应用
CN102675203A (zh) 一种吖啶类化合物的制备方法
CN101402625A (zh) 一种芳香族双醚二酐单体的制备方法
WO2022199226A1 (zh) 一种3,3',4,4'-四氨基联苯的制备方法
CN101735167B (zh) 6-硝基糖精的制备方法
CN112812019B (zh) 一种邻苯二胺的制备方法
JP6458006B2 (ja) 断熱ニトロ化によるニトロベンゼン調製のためのプロセス
CN108101800A (zh) 一种邻氨基苯甲酸的合成方法
WO2023104063A1 (zh) 一种碘佛醇水解物的制备方法
CN102863316A (zh) 乙二醇生产设备
WO2023039940A1 (zh) 一种制备n,n,n-三特戊酰化-1,3,5-三氨基苯的方法
CN107857703B (zh) 一种连续化生产硝基甲烷的反应器及方法
CN111763149B (zh) 一种苯二胺及苯二胺无机盐的制备方法
CN202201846U (zh) H酸生产中的萘-2,7-二磺酸管式连续硝化装置
CN1986518A (zh) 4,4’-二硝基二苯醚的制备方法
CN104016890A (zh) 一种固相连续反应制备1-氨基-4萘磺酸钠的方法
CN112961132A (zh) 一种在微通道连续流反应器中制备单氯代邻苯二甲酸酐的方法
CN106977408A (zh) 副品红隐色基的制备方法
CN111018720B (zh) 间苯二胺的制备方法
CN111635318B (zh) 二氧化硅基磺酸在提高甲苯一硝化反应p/o值中的应用
CN110105568A (zh) 一种利用芳烃硝化副产物生产pbi功能材料的方法
EP3083558A2 (en) Process for the production of phthalimides
CN112125775B (zh) 一种生产1,1,1,2-四氟乙烷联产羟基乙酸的方法及装置
CN117486670B (zh) 一种3,4,5-三氟溴苯的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903901

Country of ref document: EP

Kind code of ref document: A1