WO2021120654A1 - 一种具有双层隔热涂层的玻璃及制备方法 - Google Patents

一种具有双层隔热涂层的玻璃及制备方法 Download PDF

Info

Publication number
WO2021120654A1
WO2021120654A1 PCT/CN2020/110056 CN2020110056W WO2021120654A1 WO 2021120654 A1 WO2021120654 A1 WO 2021120654A1 CN 2020110056 W CN2020110056 W CN 2020110056W WO 2021120654 A1 WO2021120654 A1 WO 2021120654A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
heat
coating
insulation coating
glass
Prior art date
Application number
PCT/CN2020/110056
Other languages
English (en)
French (fr)
Inventor
李青寒
陈旭光
韩蕊
Original Assignee
深圳市绿光纳米材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绿光纳米材料技术有限公司 filed Critical 深圳市绿光纳米材料技术有限公司
Publication of WO2021120654A1 publication Critical patent/WO2021120654A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints

Definitions

  • This application relates to the technical field of glass, in particular to a glass with a double-layer thermal insulation coating and a preparation method.
  • Glass heat insulation coating is a kind of coating prepared by processing a variety of nano-powder materials.
  • the nano-materials used have special optical properties, that is, they have a high barrier rate in the infrared and ultraviolet regions.
  • the area has a high transmittance. Utilizing the transparent and heat-insulating properties of the material, mixing with environmentally-friendly high-performance resins, and through special processing techniques, energy-saving and environmentally-friendly heat-insulating coatings can be prepared.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • WO3 tungsten oxide
  • the present application provides a glass with a double-layer thermal insulation coating to solve the problem of poor thermal insulation performance of the glass.
  • a glass with a double-layer thermal insulation coating which includes a glass substrate on which a first thermal insulation coating and a second thermal insulation coating are provided, and the second insulation
  • the thermal coating is located on the first thermal insulation coating
  • the first thermal insulation coating includes a plurality of light-absorbing layer spots coated on the glass substrate
  • the second thermal insulation coating includes A plurality of reflective layer spots on the light-absorbing layer spots
  • the reflective layer spots are arranged in an array or orderly arranged in a predetermined pattern.
  • the reflective layer spots are configured to reflect sunlight or other visible light.
  • the spots of the light-absorbing layer are configured to absorb the remaining light that is not reflected by the reflective spot layer, including ultraviolet, visible, and infrared.
  • the set reflective layer spots can reflect sunlight, thereby indirectly reducing light transmission through the glass, thereby improving the heat insulation performance of the glass.
  • the set of light-absorbing layer spots can absorb the remaining solar rays that are not reflected by the reflective spot layer, including ultraviolet, visible and infrared, so that it can effectively block ultraviolet, visible and infrared in solar radiation, thereby ensuring the heat insulation performance of the glass .
  • the mutual cooperation of the first thermal insulation coating and the second thermal insulation coating can effectively improve the thermal insulation effect of the glass.
  • the spots on the absorption layer and the spots on the reflection layer are arranged in an array or sorted according to a predetermined pattern, which can adjust the light transmittance according to actual needs, thereby greatly improving the applicability of the glass.
  • the total area of the spots on the glass substrate accounts for 35%-95% of the area of the coating area.
  • the total area of spots on the glass substrate accounts for 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%.
  • the total area of the spots on the glass substrate accounts for 35%-95% of the area of the coating area.
  • the heat-insulating amount and visible light transmittance of the glass can be adjusted according to the area of the spot. In some cases, when the visible light transmittance of the heat-insulating coating glass is less than 65%, the glass will not have chromatic aberration, thereby further expanding the applicability of the glass and improving the practicality of the glass.
  • the shapes of the reflective layer spots and the light-absorbing layer spots may be selected from a circle, a polygon, or a combination of a circle and a polygon.
  • the coating thickness of the reflective layer spots and the light-absorbing layer spots may be 5 micrometers to 30 micrometers, such as 10, 15, 20, or 25 micrometers, or any value in between.
  • the area of a single spot is 5 square millimeters to 3000 square millimeters, such as 50, 100, 200, 500, 1000, 1200, 1500, 2000, or 2500 square millimeters, or any value in between.
  • the light transmittance can be conveniently controlled through different coating shapes or combinations.
  • the first thermal barrier coating is configured to block ultraviolet, visible and infrared radiation.
  • the total heat rejection rate can reach 96%-100%, such as 97%, 98%, or 99%.
  • the first heat-insulating coating can block the ultraviolet, visible and infrared radiation passing through the second heat-insulating coating, and the heat blocking rate is 96%-100%, so it can effectively improve the glass Thermal insulation performance in actual use.
  • the first heat-insulating coating and the second heat-insulating coating are both nano-material layer spots.
  • the first heat-insulating coating and the second heat-insulating coating can be set to have a thinner thickness, thereby effectively reducing the materials used and improving the efficiency.
  • the pattern of the first thermal barrier coating and the second thermal barrier coating are the same but not completely overlapped.
  • a groove is formed on the surface of the first thermal insulation coating, and the second thermal insulation coating is coated on the surface of the groove of the first thermal insulation coating.
  • the second thermal insulation coating is coated on the groove surface of the first thermal insulation coating, which can reduce the reflected light reflected by the second thermal insulation coating from entering the adjacent first thermal insulation coating. Indirectly caused the poor thermal insulation performance of the first thermal insulation coating.
  • a method for preparing the glass according to the first aspect which includes the following steps:
  • Step 1 Prepare the mask
  • Step 2 Attach the masking film to the glass substrate, and sequentially apply the heat-insulating paints of the first heat-insulating coating and the second heat-insulating coating on the masking film;
  • Step 3 curing the thermal insulation coating, removing the masking film, and leaving the first thermal insulation coating and the second thermal insulation coating on the glass surface.
  • the masking film is a plastic film, such as a PET or PE film.
  • the thickness of the mask is 5 micrometers to 30 micrometers, such as 10 micrometers, 15 micrometers, 20 micrometers, or 25 micrometers.
  • Many holes are punched in the film through a mold.
  • the shape of the holes is a circle, a polygon, or a combination of a circle and a polygon, and the holes can be arranged in an array.
  • the total area of the holes on the mask occupies 35%-95% of the area of the coating area, and the area of a single hole is 5 square millimeters to 3000 square millimeters.
  • the spots on the reflective layer can reflect sunlight, which can indirectly reduce the light passing through the glass and improve the heat insulation performance of the glass.
  • the set of light-absorbing layer spots can absorb the remaining solar rays that are not reflected by the reflective spot layer, including ultraviolet, visible and infrared, and the heat blocking rate is 96%-100%, so it can effectively block the ultraviolet, visible and infrared in solar radiation , So as to ensure the heat insulation performance of the glass.
  • the mutual cooperation of the first heat insulation coating and the second heat insulation coating can effectively improve the heat insulation effect of the glass.
  • the spots on the absorption layer and the spots on the reflection layer are arranged in an array or sorted in a predetermined pattern, so that the light transmittance can be adjusted according to actual needs, thereby greatly improving the applicability of the glass.
  • Figure 1 is a side view of a glass substrate and a first thermal insulation coating in an embodiment of the present application
  • Figure 2 is a schematic plan view of a glass substrate and spots in an embodiment of the present application
  • FIG. 3 is a schematic diagram of the overall structure of the glass substrate and the circular spots in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the overall structure of the glass substrate combined with large and small round spots in an embodiment of the present application
  • FIG. 5 is a schematic diagram of the overall structure of the glass substrate and hexagonal spots in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the structure of the first thermal insulation coating and the second thermal insulation coating in another embodiment of the present application.
  • a glass with a double-layer thermal insulation coating includes a glass substrate 1 on which a first thermal insulation coating 2 and a second thermal insulation coating 3 are provided.
  • the first thermal barrier coating 2 includes a plurality of light-absorbing layer spots coated on the glass substrate 1
  • the second thermal barrier coating 3 includes reflective layer spots coated on the light-absorbing layer spots.
  • the spots of the reflective layer are coated on the spots of the light-absorbing layer and have the same shape and size as the spots of the light-absorbing layer. In the case where the spots on the light-absorbing layer overlap with the spots on the reflective layer, the whole can be referred to as spot 4.
  • the total area of the spots 4 on the glass substrate 1 accounts for 35-95% of the area of the glass substrate 1, for example, the area of a single spot 4 is 5 square millimeters to 3000 square millimeters.
  • the first thermal insulation coating 2 and the second thermal insulation coating 3 are both nano-material layer spots.
  • the spots 4 on the glass substrate 1 may be circular, polygonal, or a combination of circular and polygonal shapes, and are arranged in an array or orderly arranged in a predetermined pattern.
  • the spots 4 are round, as shown in Figures 2 and 3.
  • the diameter D of the spot 4 is 20-30 mm
  • the minimum gap L between adjacent circular spots 4 is 1-10 mm, preferably 1-5 mm, such as 2, 3 or 4 mm.
  • the thickness of the circular spots 4 is 5 ⁇ m to 30 ⁇ m, for example, 10, 15, 20, or 25 ⁇ m.
  • the first thermal insulation coating 2 can enhance the adhesion with the glass substrate 1 and can absorb the remaining light that is not reflected by the reflective spot layer, including ultraviolet, visible and infrared.
  • the heat blocking rate of the first thermal insulation coating 2 is 96%-100%, so that it can effectively block ultraviolet, visible and infrared rays in solar radiation, thereby ensuring the thermal insulation performance of the glass.
  • the heat-insulating paint for the light-absorbing layer spots is composed of the following components in terms of mass percentage: 25%-55% of silicone resin; 5%-10% of infrared-absorbing nanomaterials, and the infrared absorption rate reaches more than 70%. 5% to 15% of nano-pigments that absorb visible light; 15% to 60% of solvent materials.
  • the silicone resin is a siloxane prepolymer.
  • the nano material may be at least one selected from the group consisting of iron oxide, tungsten oxide, indium tin oxide, and antimony tin oxide capable of absorbing infrared rays.
  • the infrared absorption rate of the nanomaterial is 5%-20%.
  • the nanopigment may be at least one selected from carbon and iron chromium crystals capable of shielding visible light. In one embodiment, the visible light blocking rate of the nanopigment is as high as 96%-100%.
  • the solvent material may be at least one selected from isopropanol, n-butanol, and propylene glycol methyl ether.
  • the thermal insulation coating of the second thermal insulation coating 3 is composed of the following components in terms of mass percentage: 25%-55% of silicone resin; 3%-15% of nanomaterials reflecting infrared and visible light, for example, in one embodiment ,
  • the infrared reflectance is 80%-95%; the ultraviolet absorbing material is 2%-8%; the solvent material is 10%-60%.
  • the silicone resin is a siloxane prepolymer.
  • the nano material may be at least one selected from copper sulfide, zinc selenide, and titanium dioxide capable of reflecting infrared rays.
  • the infrared reflectance of the nanomaterial is 80%-95%, so that it is possible to reduce the impact of the human body on the body caused by the long-term exposure of infrared rays.
  • the ultraviolet absorbing material can be selected from 2,3,4,4'-tetrahydroxybenzophenone or 2-hydroxy-4-methoxybenzophenone 2,3,4,4'-tetrahydroxybenzophenone, which can absorb ultraviolet rays. Benzophenone or 2-hydroxy-4-methoxybenzophenone. In one embodiment, the ultraviolet absorption rate of the ultraviolet absorbing material is 99%-100%.
  • the solvent material may be at least one selected from isopropanol, n-butanol, and propylene glycol methyl ether.
  • a heat insulation device for glass with a double-layer heat-insulating coating which includes a masking film for the construction of a double-layer heat-insulating coating glass.
  • the masking film includes a film, which is a plastic film or a film that can be closely adhered to glass, and the thickness of the film is 5 ⁇ m to 30 ⁇ m.
  • the holes are arranged regularly, and the shapes are circles, polygons, or a combination of circles and polygons.
  • the diaphragm includes a plurality of holes, the total area of a single hole is 35%-95% of the area of the coating area, and the total area corresponding to the spots 4 on the glass substrate 1 accounts for 35%-95% of the area of the coating area.
  • a method for preparing a glass with a double-layer thermal insulation coating includes the following steps:
  • Step 1 Prepare a mask, which is a plastic film made of plastic material such as PET or PE or a film that can be closely adhered to glass, with a thickness of 5 to 30 microns; a lot of holes and hole shapes are punched on the mask through a mold It is a circle, a polygon, or a combination of a circle and a polygon; the holes can be arranged in an array, and the area of a single hole is 5 square millimeters to 3000 square millimeters, and the total area accounts for 35%-95% of the area of the coating area;
  • Step 2 Paste the masking film on the glass, and sequentially apply the heat-insulating paints of the first heat-insulating coating 2 and the second heat-insulating coating 3 on the masking film;
  • Step 3 Curing the thermal insulation coating of the first thermal insulation coating 2 and the second thermal insulation coating 3, and remove the part of the masking film not covered by the first thermal insulation coating 2 and the second thermal insulation coating 3, so that A spot-like first thermal insulation coating 2 and a second thermal insulation coating 3 are left on the glass surface.
  • the heat blocking rate and visible light transmittance of the two heat-insulating coated glasses are determined by the ratio of the total area of the holes on the mask to the area of the coating area (or the total area of the spots 4 occupies the area of the coating area).
  • the reflective layer spots on the surface can reflect infrared rays, absorb ultraviolet rays, resist acid rain, and anti-ultraviolet aging.
  • the light-absorbing layer on the inner layer can resist the ultraviolet rays in the solar radiation passing through the second thermal insulation coating 3 , Visible light and infrared radiation are blocked, so as to achieve a heat blocking rate of 96%-100%, which effectively guarantees the heat insulation performance of the glass.
  • the heat insulation capacity and visible light transmittance of the glass can be easily adjusted to obtain heat-insulating coated glass with uniform color and reduce the insulation.
  • the thermal coating has the defect of chromatic aberration.
  • the shape of the spots 4 is a combination of large round spots and small round spots, and the large round spots and small round spots are arranged in an array.
  • the diameter of the big round spot is 30mm
  • the gap between the big round spot and the big round spot is 4mm
  • the diameter of the small round spot is 14mm
  • the distance between the small round spot and the big round spot is 2mm
  • the color of the spot 4 is gray.
  • the thickness of the spots 4 is between 5 microns and 30 microns.
  • the spot 4 on the glass substrate 1 has a hexagonal shape, the side length of the spot 4 is 25 mm, the gap is 2 mm, and the color of the spot 4 is gray. In one embodiment, the thickness of the spots 4 is 5 micrometers to 30 micrometers.
  • the first thermal barrier coating 2 and the second thermal barrier coating 3 have the same shape, but do not completely overlap.
  • the first thermal insulation coating 2 is coated on the glass substrate 1, the symmetrical end edges of the first thermal insulation coating 2 extend upward in the direction away from the glass substrate 1, and the second thermal insulation coating 3 is coated on the glass substrate 1.
  • the two ends of the first thermal insulation coating 2 will cover the two ends of the second thermal insulation coating 3.
  • the shielding effect improves the barrier rate of the first thermal insulation coating 2 for shielding visible light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

一种具有双层隔热涂层的玻璃及制备方法。所述玻璃包括玻璃基板(1),所述玻璃基板(1)上设有第一隔热涂层(2)和第二隔热涂层(3),所述第二隔热涂层(3)位于所述第一隔热涂层(2)上,所述第一隔热涂层(2)包括涂覆在所述玻璃基板(1)上的复数个吸光层斑点,所述第二隔热涂层(3)包括涂覆在吸光层斑点上的复数个反射层斑点,所述反射层斑点呈阵列排列或按预定图案排列。具有双层隔热涂层的玻璃具有隔热性能优良、施工较为方便且透光率可调整的效果。

Description

一种具有双层隔热涂层的玻璃及制备方法 技术领域
本申请涉及玻璃技术领域,尤其涉及一种具有双层隔热涂层的玻璃及制备方法。
背景技术
玻璃隔热涂料是采用多种纳米粉体材料加工制备的一种涂料,其中所采用的纳米材料本身具有特殊的光学性能,即在红外光区、紫外光区有很高的阻隔率,在可见光区有很高的透过率。利用该材料的透明隔热特性,与环保型高性能树脂混合,经过特殊的加工工艺处理,能制备出节能环保的隔热保温涂料。
现有技术中,传统玻璃隔热涂层主要由透明树脂和能够吸收红外线的纳米材料组成,如氧化铟锡(ITO)、氧化锑锡(ATO)和氧化钨(WO3)等。
上述中的现有技术方案存在以下缺陷:由于玻璃和隔热涂层的双重透明特性,使得玻璃隔热涂料在使用过程中,透光率较高,针对此,玻璃的隔热性效果较差。
发明内容
针对上述问题,本申请提供了一种具有双层隔热涂层的玻璃,以解决玻璃隔热性能较差的问题。
在第一方面,提供了一种具有双层隔热涂层的玻璃,其包括玻璃基板,所述玻璃基板上设有第一隔热涂层与第二隔热涂层,所述第二隔热涂层位于所述第一隔热涂层上,所述第一隔热涂层包括涂覆在所述玻璃基板上的复数个吸光层斑点,所述第二隔热涂层包括涂覆在吸光层斑点上的复数个反射层斑点,所述反射层斑点呈阵列排列或按预定图案有序排列。本申请具有使玻璃隔热性能优良、且透光率可调整的效果。在一个实施方案中,所述反射层斑点设置用于反射太阳光或其它可见光。在另一个实施方案中,所述吸光层斑点设置用于吸收未被反射斑点层反射的剩余光线,包括紫外线、可见光和红外线等。
采用上述技术方案,设置的反射层斑点能够反射太阳光,从而能间接减少光线透过玻璃,从而来提高玻璃的隔热性能。另外,设置的吸光层斑点,能吸收未被反射斑点层反射的剩余太阳光线,包括紫外线、可见光和红外线,使得能够有效阻隔太阳辐射中的紫外线、可见光、红外线,从而能保证玻璃的隔热性能。通过第一隔热涂层与第二隔热涂层的相互配合,能够有效提高玻璃的隔热效果。同时,吸收层斑点、反射层斑点以阵列排列或按预定图案排序,能根据实际需要调整透光率的大小,进而能使玻璃的适用性大大提高。
在一个实施方案中,所述玻璃基板上斑点的总面积占涂覆区域面积的35%-95%。例 如,所述玻璃基板上斑点的总面积占涂覆区域面积的35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%。
采用上述技术方案,玻璃基板上斑点的总面积占涂覆区域面积的35%-95%。对应于隔热涂层玻璃的热量阻隔率,可以根据斑点的面积来调整玻璃的隔热量以及可见光透过率。在一些情况下,当隔热涂层玻璃可见光透过率低于65%时,玻璃就不会存在色差,从而进一步扩大玻璃的适用性,提高玻璃的实用性。
在一个实施方案中,所述反射层斑点和所述吸光层斑点的形状可以选自圆形、多边形或圆形与多边形的组合。在一个实施方案中,所述反射层斑点和所述吸光层斑点的涂层厚度可以为5微米至30微米,例如10、15、20或25微米,或其间的任意值。在另一实施方案中,单个斑点的面积为5平方毫米至3000平方毫米,例如50、100、200、500、1000、1200、1500、2000或2500平方毫米,或其间的任意值。
采用上述技术方案,通过不同的涂层形状或组合,能够方便地控制透光率。
在一个实施方案中,所述第一隔热涂层设置为阻隔紫外线、可见光、红外线辐射。在一个实施方案中,在与第二隔热涂层配合的情况下,总的热量阻隔率能达到96%-100%,例如97%、98%或99%。
采用上述技术方案,设置的第一隔热涂层能够对透过第二隔热涂层的紫外线、可见光、红外线辐射进行阻隔,且热量阻隔率为96%-100%,因此能有效提高玻璃在实际使用中的隔热性能。
在一个实施方案中,所述第一隔热涂层与第二隔热涂层均为纳米材料层斑点。
采用上述技术方案,由于纳米材料层斑点的厚度较小,因此第一隔热涂层与第二隔热涂层可以设置为具有较薄的厚度,从而有效减少所用的材料并提高效率。
在一个实施方案中,所述第一隔热涂层与第二隔热涂层图案相同但不完全重叠。在另一实施方案中,所述第一隔热涂层表面形成有凹槽,所述第二隔热涂层涂覆在第一隔热涂层的凹槽表面。
采用上述技术方案,第二隔热涂层涂覆在第一隔热涂层的凹槽表面上,能够减少经第二隔热涂层反射的反射光进入相邻的第一隔热涂层而间接造成第一隔热涂层隔热性能较差的情况。
在另一方面,提供了一种制备根据第一方面所述的玻璃的方法,其包括以下步骤:
步骤1:制备遮掩膜;
步骤2:将遮掩膜贴到玻璃基板上,并将第一隔热涂层、第二隔热涂层的隔热涂料依次涂覆 于遮掩膜上;
步骤3:使隔热涂料固化,除去所述遮掩膜,在玻璃表面留下第一隔热涂层和第二隔热涂层。
在一个实施方案中,所述遮掩膜为塑料膜,例如PET或PE膜。在一个实施方案中,所述遮掩膜的厚度为5微米至30微米,例如10微米、15微米、20微米或25微米。薄膜上通过模具打出许多个孔洞,孔洞的形状为圆形、多边形或圆形与多边形的组合,孔洞可以按阵列排列。遮掩膜上孔洞的总面积占涂覆区域面积的35%-95%,单个孔洞的面积为5平方毫米至3000平方毫米。
综上所述,本申请的有益技术效果至少为:
1.设置的反射层斑点能够反射阳光,从而能间接减少光线透过玻璃,提高玻璃的隔热性能。设置的吸光层斑点能吸收未被反射斑点层反射的剩余太阳光线,包括紫外线、可见光和红外线,且热量阻隔率为96%-100%,因此,能够有效阻隔太阳辐射中的紫外线、可见光、红外线,从而能保证玻璃的隔热性能。所述第一隔热涂层与第二隔热涂层的相互配合能有效提高玻璃的隔热效果。同时,吸收层斑点、反射层斑点以阵列排列或按预定图案排序,使得能够根据实际需要调整透光率,从而大幅提升玻璃的适用性。
2.设置的膜片与孔洞的相互配合,便于将第一隔热涂层与第二隔热涂层的涂料涂在孔洞上。此施工方式较为简单,可方便地调整可见光透光率。
附图说明
图1是本申请一个实施方案中玻璃基板与第一隔热涂层的侧视图;
图2是本申请一个实施方案中玻璃基板与斑点的平面示意图;
图3是本申请一个实施方案中玻璃基板与圆形斑点的整体结构示意图;
图4是本申请一个实施方案中玻璃基板与大小圆斑点组合的整体结构示意图;
图5是本申请一个实施方案中玻璃基板与六边形斑点的整体结构示意图;
图6是本申请另一实施方案中第一隔热涂层与第二隔热涂层的结构示意图。
附图标记:1、玻璃基板;2、第一隔热涂层;3、第二隔热涂层;4、斑点。
具体实施方式
以下结合附图对本申请作进一步详细说明。
如图1所示,一种具有双层隔热涂层的玻璃包括玻璃基板1,在玻璃基板1上设有第一隔热涂层2与第二隔热涂层3。在一个实施方案中,第一隔热涂层2包括涂覆在玻璃基板1上的复数个吸光层斑点,第二隔热涂层3包括涂覆在吸光层斑点上的反射层斑点。在一个 实施方案中,反射层斑点涂覆在吸光层斑点上并与吸光层斑点的形状大小相同。在吸光层斑点与反射层斑点重叠的情况下,其整体可称为斑点4。
在一个实施方案中,玻璃基板1上斑点4的总面积占玻璃基板1面积的35-95%,例如,单个斑点4的面积为5平方毫米至3000平方毫米。在一个实施方案中,第一隔热涂层2与第二隔热涂层3均为纳米材料层斑点。
玻璃基板1上的斑点4可以为圆形、多边形或圆形与多边形的组合,按阵列排列或按按预定图案有序排列。在一个实施方案中,斑点4为圆形,如图2、3所示。在一个实施方案中,斑点4的直径D为20-30mm,相邻圆形斑点4之间的最小间隙L为1-10mm,优选为1-5mm,例如2、3或4mm。在一个实施方案中,圆形斑点4的厚度为5微米至30微米,例如为10、15、20或25微米。
第一隔热涂层2能增强与玻璃基板1之间的附着力,能吸收未被反射斑点层反射的剩余光线,包括紫外线、可见光和红外线。在一个实施方案中,第一隔热涂层2的热量阻隔率为96%-100%,使得能够有效阻隔太阳辐射中的紫外线、可见光、红外线,从而能保证玻璃的隔热性能。在一个实施方案中,吸光层斑点的隔热涂料按质量百分比,由以下组分组成:有机硅树脂25%—55%;吸收红外线的纳米材料5%—10%,红外吸收率达到70%以上;吸收可见光的纳米颜料5%—15%;溶剂材料15%—60%。
在一个实施方案中,有机硅树脂为硅氧烷预聚体。纳米材料可以为选自能够吸收红外线的氧化铁、氧化钨、氧化铟锡、氧化锑锡中的至少一种。例如,在一个实施方案中,纳米材料的红外线吸收率为5%-20%。纳米颜料可以为选自能够遮蔽可见光的碳、铁铬晶体中的至少一种。在一个实施方案中,纳米颜料的可见光阻隔率高达96%-100%。溶剂材料可以为选自异丙醇、正丁醇、丙二醇甲醚中的至少一种。
第二隔热涂层3的隔热涂料按质量百分比,由以下组分组成:有机硅树脂25%—55%;反射红外线和可见光的纳米材料3%-15%,例如,在一个实施方案中,其红外线反射率为80%-95%;紫外线吸收材料2%-8%;溶剂材料10%—60%。
在一个实施方案中,有机硅树脂为硅氧烷预聚体。纳米材料可以为选自能够反射红外线的硫化铜、硒化锌、二氧化钛中的至少一种。在一个实施方案中,纳米材料的红外反射率为80%-95%,使得能够减少人体长时间因受到红外线的照射而对身体造成的影响。紫外线吸收材料可以选自能够吸收紫外线的2,3,4,4'-四羟基二苯甲酮或2-羟基-4-甲氧基二苯甲2,3,4,4'-四羟基二苯甲酮或2-羟基-4-甲氧基二苯甲酮。在一个实施方案中,紫外线吸收材料的紫外线吸收率为99%-100%。溶剂材料可以为选自异丙醇、正丁醇、丙二醇甲醚中的至少 一种。
在一个实施方案中,提供了一种具有双层隔热涂层的玻璃的隔热装置,其包括双层隔热涂层玻璃施工用的遮掩膜。在一个实施方案中,遮掩膜包括膜片,膜片为塑料薄膜或能够和玻璃紧密贴合的薄膜,膜片厚度为5微米至30微米。孔洞规则排列,形状为圆形、多边形或圆形与多边形的组合。膜片包括复数个孔洞,单个孔洞的总面积为涂覆区域面积的35%-95%,对应于玻璃基板1上斑点4的总面积占涂覆区域面积的35%-95%。
在一个实施方案中,提供了一种制备具有双层隔热涂层的玻璃方法,其包括以下步骤:
步骤1:制备遮掩膜,其为PET或PE等塑料材质的塑料薄膜或能够与玻璃紧密贴合的薄膜,厚度为5微米至30微米;在遮掩膜上通过模具打出许多个孔洞,孔洞的形状为圆形、多边形或圆形与多边形的组合;所述孔洞可以按阵列排列,其单个孔洞的面积为5平方毫米至3000平方毫米,总面积占涂覆区域面积的35%-95%;
步骤2:将遮掩膜贴到玻璃上,并将第一隔热涂层2、第二隔热涂层3的隔热涂料依次涂覆于遮掩膜上;
步骤3:使第一隔热涂层2、第二隔热涂层3的隔热涂料固化,去除遮掩膜没有被第一隔热涂层2、第二隔热涂层3覆盖的部分,使得在玻璃表面留下斑点状的第一隔热涂层2和第二隔热涂层3。
通过此方式,两隔热涂层玻璃的热量阻隔率和可见光透过率由遮掩膜上孔洞的总面积与涂覆区域面积(或斑点4的总面积占涂覆区域面积)之比决定。
在玻璃使用过程中,处于表层的反射层斑点能够反射红外线,吸收紫外线,抗酸雨腐蚀、抗紫外老化,处于里层的吸光层能够对透过第二隔热涂层3的太阳辐射中的紫外线、可见光、红外线辐射进行阻隔,从而能够达到96%-100%的热量阻隔率,有效保证玻璃的隔热性能。另外,通过改变反射层斑点、吸收层斑点的形状以及覆盖在玻璃基板1上的面积,能够方便地调整玻璃的隔热量以及可见光透过率,获得颜色均匀的隔热涂层玻璃,减少隔热涂层存在色差的缺陷。
在另一实施方案中,如图4所示,斑点4的形状为大圆斑点与小圆斑点的组合,且大圆斑点与小圆斑点之间按阵列排列。在一个具体的实施方案中,大圆斑点的直径为30mm,大圆斑点与大圆斑点之间的间隙为4mm,小圆斑点的直径为14mm,小圆斑点与大圆斑点的距离为2mm,斑点4颜色为灰色。在一个实施方案中,斑点4的厚度在5微米至30微米之间。
在另一实施方案中,如图5所示,玻璃基板1上的斑点4形状为六边形,斑点4的边长为25mm,间隙为2mm,斑点4的颜色为灰色。在一个实施方案中,斑点4的厚度为5微米至30微米。
在另一实施方案中,如图6所示,第一隔热涂层2与第二隔热涂层3形状一致,但不完全重叠。例如,第一隔热涂层2涂覆在玻璃基板1上,第一隔热涂层2相对称的两端边缘沿远离玻璃基板1的方向向上延伸,第二隔热涂层3涂覆在第一隔热涂层2的相对称的边缘侧之间,即第一隔热涂层2的两端会将第二隔热涂层3的两端掩盖住。以该方式,能避免第二隔热涂层3两端侧壁上的反射光反射在相邻的第一隔热涂层2上,间接能提高相邻之间第一隔热涂层2的遮蔽效果,提高第一隔热涂层2遮蔽可见光的阻隔率。
本具体实施方式的实施方案均为本申请的较佳实施方案,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (11)

  1. 一种具有双层隔热涂层的玻璃,包括玻璃基板(1),其特征在于,所述玻璃基板(1)上设有第一隔热涂层(2)和第二隔热涂层(3),所述第二隔热涂层(3)位于所述第一隔热涂层(2)上,所述第一隔热涂层(2)包括涂覆在所述玻璃基板(1)上的复数个吸光层斑点,所述第二隔热涂层(3)包括涂覆在吸光层斑点上的复数个反射层斑点,所述反射层斑点呈阵列排列或按预定图案排列。
  2. 根据权利要求1所述的玻璃,其特征在于,所述玻璃基板(1)上的斑点的总面积占玻璃基板(1)面积的35%-95%。
  3. 根据权利要求1所述的玻璃,其特征在于,所述反射层斑点和吸光层斑点的形状选自圆形、多边形或圆形与多边形的组合。
  4. 根据权利要求1所述的玻璃,其特征在于,所述反射层斑点和所述吸光层斑点的厚度为5微米至30微米,面积为5平方毫米至3000平方毫米。
  5. 根据权利要求1所述的玻璃,其特征在于,所述第一隔热涂层(2)配置为阻隔紫外线、可见光和/或红外线辐射。
  6. 根据权利要求1所述的玻璃,其特征在于,所述第一隔热涂层(2)与第二隔热涂层(3)均为纳米材料层斑点。
  7. 根据权利要求1所述的玻璃,其特征在于,所述第一隔热涂层(2)与第二隔热涂层(3)具有相同的图案和不同的尺寸,所述第一隔热涂层(2)表面形成有凹槽,所述第二隔热涂层(3)涂覆在第一隔热涂层(2)的凹槽表面。
  8. 一种制备根据权利要求1所述的玻璃的方法,其包括以下步骤:
    步骤1:制备遮掩膜;
    步骤2:将遮掩膜贴到玻璃基板上,并将第一隔热涂层(2)、第二隔热涂层(3)的隔热涂料依次涂覆于遮掩膜上;
    步骤3:使隔热涂料固化,除去所述遮掩膜没有被第一隔热涂层2、第二隔热涂层3覆盖的部分,在玻璃表面留下第一隔热涂层和第二隔热涂层。
  9. 根据权利要求8所述的方法,其特征在于,所述遮掩膜为塑料膜或能够与玻璃紧密贴合的材料。
  10. 根据权利要求8所述的方法,其特征在于,在遮掩膜上通过模具打出多个孔洞,孔洞的形状为圆形、多边形或圆形与多边形的组合。
  11. 根据权利要求10所述的方法,其特征在于,所述遮掩膜的厚度为5微米至30微米。
PCT/CN2020/110056 2019-12-18 2020-08-19 一种具有双层隔热涂层的玻璃及制备方法 WO2021120654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922302133.5 2019-12-18
CN201922302133.5U CN211445537U (zh) 2019-12-18 2019-12-18 一种具有双层隔热涂层的玻璃及施工用的隔热装置

Publications (1)

Publication Number Publication Date
WO2021120654A1 true WO2021120654A1 (zh) 2021-06-24

Family

ID=72302912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110056 WO2021120654A1 (zh) 2019-12-18 2020-08-19 一种具有双层隔热涂层的玻璃及制备方法

Country Status (2)

Country Link
CN (1) CN211445537U (zh)
WO (1) WO2021120654A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418164B (zh) * 2022-09-16 2024-03-26 奥创特新(苏州)科技有限公司 一种高温热反射材料及其施工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858705A (zh) * 2010-04-30 2013-01-02 康宁股份有限公司 防眩光表面及其制备方法
CN104125883A (zh) * 2012-02-27 2014-10-29 法国圣戈班玻璃厂 带有遮阳和隔热功能的复合板
CN106987155A (zh) * 2015-09-30 2017-07-28 Toto株式会社 涂布膜形成方法及具备该涂布膜的功能材
US20180009706A1 (en) * 2015-03-20 2018-01-11 Schott Glass Technologies (Suzhou) Co. Ltd. Thin glass article with a non-uniformly ion-exchanged surface layer and method for producing such a thin glass article
CN107573726A (zh) * 2017-08-21 2018-01-12 福耀玻璃工业集团股份有限公司 一种隔热隔紫外玻璃及其制造方法
JP6266840B2 (ja) * 2015-04-20 2018-01-24 富士フイルム株式会社 構造物の製造方法
CN108751731A (zh) * 2018-08-21 2018-11-06 深圳市绿光纳米材料技术有限公司 一种玻璃隔热涂层及其施工方法
CN208857152U (zh) * 2018-08-21 2019-05-14 深圳市绿光纳米材料技术有限公司 一种玻璃隔热涂层及施工用的遮掩膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858705A (zh) * 2010-04-30 2013-01-02 康宁股份有限公司 防眩光表面及其制备方法
CN104125883A (zh) * 2012-02-27 2014-10-29 法国圣戈班玻璃厂 带有遮阳和隔热功能的复合板
US20180009706A1 (en) * 2015-03-20 2018-01-11 Schott Glass Technologies (Suzhou) Co. Ltd. Thin glass article with a non-uniformly ion-exchanged surface layer and method for producing such a thin glass article
JP6266840B2 (ja) * 2015-04-20 2018-01-24 富士フイルム株式会社 構造物の製造方法
CN106987155A (zh) * 2015-09-30 2017-07-28 Toto株式会社 涂布膜形成方法及具备该涂布膜的功能材
CN107573726A (zh) * 2017-08-21 2018-01-12 福耀玻璃工业集团股份有限公司 一种隔热隔紫外玻璃及其制造方法
CN108751731A (zh) * 2018-08-21 2018-11-06 深圳市绿光纳米材料技术有限公司 一种玻璃隔热涂层及其施工方法
CN208857152U (zh) * 2018-08-21 2019-05-14 深圳市绿光纳米材料技术有限公司 一种玻璃隔热涂层及施工用的遮掩膜

Also Published As

Publication number Publication date
CN211445537U (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
TWI672817B (zh) 太陽能電池的製造方法及製得的太陽能電池
US8908267B2 (en) Low-emissivity window films and coatings incorporating nanoscale wire grids
JP6074128B2 (ja) 光学体およびその製造方法、日射遮蔽部材、窓材、内装部材ならびに建具
CN101681937A (zh) 提供有改进的电极层的透明基底
TWI480572B (zh) A transparent conductive element, an input device, and a display device
CN109073803B (zh) 光学体、窗材料及卷帘
CN103568441B (zh) 一种低成本大面积薄膜超吸收体及其制备方法
TW201620692A (zh) 光學體、顯示裝置及光學體之製造方法
KR20140047530A (ko) 투명 도전성 필름 및 그 용도
US20140338846A1 (en) Electrostatically controllable device
TW201316047A (zh) 光學材、窗材、門窗件及日射遮蔽裝置
CN205028000U (zh) 一种防反射液晶显示装置
WO2021120654A1 (zh) 一种具有双层隔热涂层的玻璃及制备方法
CN109581570B (zh) 金属线栅及其制造方法、显示面板、显示装置
JP2013130593A (ja) 塗布液及び基板
KR20120053403A (ko) 박막형 태양전지 및 그 제조방법
CN103543571B (zh) 电扫描双通光孔径焦点可摆动液晶微透镜及其制备方法
CN110818274A (zh) 一种隔热涂层玻璃及其施工方法、隔热涂料
KR101733575B1 (ko) 태양전지용 파장변환 필름
Tang et al. Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics
JP5368011B2 (ja) 吸収型ワイヤグリッド偏光子
CN205374933U (zh) 贴固型液晶膜
CN109707294B (zh) 一种光驱动玻璃
CN201576148U (zh) 贴膜式塑胶型液晶膜
US8663732B2 (en) Light scattering inorganic substrates using monolayers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903292

Country of ref document: EP

Kind code of ref document: A1