WO2021120635A1 - 用于化学机械平坦化设备的抛光头压力控制设备及方法 - Google Patents

用于化学机械平坦化设备的抛光头压力控制设备及方法 Download PDF

Info

Publication number
WO2021120635A1
WO2021120635A1 PCT/CN2020/106752 CN2020106752W WO2021120635A1 WO 2021120635 A1 WO2021120635 A1 WO 2021120635A1 CN 2020106752 W CN2020106752 W CN 2020106752W WO 2021120635 A1 WO2021120635 A1 WO 2021120635A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensor
polishing head
gas
control valve
Prior art date
Application number
PCT/CN2020/106752
Other languages
English (en)
French (fr)
Inventor
蔡宁远
朱铭
Original Assignee
杭州众硅电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州众硅电子科技有限公司 filed Critical 杭州众硅电子科技有限公司
Publication of WO2021120635A1 publication Critical patent/WO2021120635A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories

Definitions

  • the present invention relates to semiconductor equipment, in particular to a polishing head pressure control equipment and method for chemical mechanical planarization equipment.
  • Chemical Mechanical Planarization (CMP) equipment usually includes a semiconductor equipment front-end module (EFEM), a polishing unit, and a cleaning unit.
  • EFEM semiconductor equipment front-end module
  • polishing unit usually includes a polishing unit, and a cleaning unit.
  • the downforce is generated by inflating the airbag (Membrane) in the polishing head to act on the polished wafer, so as to ensure that the friction between the wafer and the polishing pad can meet the process requirements.
  • the current technology usually uses an electric proportional valve to adjust the pressure of the airbag cavity in the polishing head, and the pressure sensor arranged at the outlet of the electric proportional valve is used as the feedback element in the closed loop.
  • the pressure sensor arranged at the outlet of the electric proportional valve is used as the feedback element in the closed loop.
  • the invention provides a polishing head pressure control device and method for chemical mechanical planarization equipment, which can quickly respond and accurately control the pressure of the polishing head airbag cavity, and solve the problem that the outlet pressure of the electrical proportional valve is higher than the actual pressure of the airbag cavity This leads to the slow response of the pressure control process of the airbag cavity of the polishing head.
  • the present invention provides a polishing head pressure control device for chemical mechanical planarization equipment, and the polishing head pressure control device includes:
  • Air source which is connected to the airbag cavity of the polishing head through a gas path, and is used to provide inflation gas to the airbag cavity;
  • the control valve is arranged on the gas path between the gas source and the air bag cavity, and the gas flow in the air path can be controlled by adjusting the opening of the control valve, and the gas pressure in the air bag cavity can be further adjusted;
  • the first pressure sensor which is arranged on the outlet gas path of the control valve, is used to detect the gas pressure in the gas path at the outlet of the control valve;
  • the second pressure sensor which is arranged on the inlet gas path of the airbag cavity, is used to detect the gas pressure in the gas path at the inlet of the airbag cavity;
  • the controller whose circuit is connected to the control valve, the first pressure sensor, and the second pressure sensor, is used to perform real-time closed-loop calculations according to the PID algorithm according to the pressure values fed back by the first pressure sensor and the second pressure sensor, and adjust the control valve
  • the opening degree adjusts the gas pressure in the airbag cavity.
  • the present invention also provides a chemical mechanical planarization device, which includes a front-end module, a polishing unit, and a cleaning unit.
  • the polishing unit includes a polishing head, and the polishing head includes the polishing head pressure control device.
  • the present invention also provides a polishing head pressure control method for chemical mechanical planarization equipment.
  • the controller performs PID closed-loop calculation according to the pressure feedback value obtained by the first pressure sensor and/or the second pressure sensor in combination with the pressure setting value, Adjust the opening of the control valve to adjust the gas pressure in the airbag cavity.
  • the pressure feedback value is:
  • W is the pressure feedback value
  • a is the weight of the first pressure sensor
  • W1 is the pressure measurement value of the first pressure sensor
  • b is the weight of the second pressure sensor
  • W2 is the pressure measurement value of the second pressure sensor.
  • T is the pressure setting value
  • P is the pressure value detected by the second pressure sensor
  • x is the set threshold value
  • a is the weight of the first pressure sensor
  • b is the weight of the second pressure sensor.
  • T is the pressure setting value
  • P is the pressure value detected by the second pressure sensor
  • x is the set threshold value
  • a is the weight of the first pressure sensor
  • b is the weight of the second pressure sensor.
  • the invention can quickly respond and accurately control the pressure of the airbag cavity of the polishing head, avoid the falsely high outlet pressure of the control valve in the inflation stage, ensure high precision and low error pressure control, and realize the stable control of the pressure of the airbag cavity of the polishing head.
  • Fig. 1 is a schematic structural diagram of a polishing head pressure control device for a chemical mechanical planarization device in an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a polishing head pressure control device for a chemical mechanical planarization device in another embodiment of the present invention.
  • Figure 3 is a schematic diagram of the closed loop control of the present invention.
  • Fig. 4 is a flow chart of a polishing head pressure control method for a chemical mechanical planarization device in an embodiment of the present invention.
  • the present invention adds an additional one on the air path between the air source and the airbag cavity of the polishing head.
  • the pressure sensor is arranged near the airbag cavity to better monitor the actual gas pressure in the airbag cavity of the polishing head, so as to provide the electric proportional valve with more accurate monitoring results.
  • a polishing head pressure control device for a chemical mechanical planarization device is provided, and the polishing head pressure control device includes:
  • Air source 1 which is connected to the airbag cavity 7 of the polishing head through a gas path, and is used to provide inflation gas to the airbag cavity 7;
  • An electric proportional valve 2 which includes a built-in controller 3, a control valve 4, and a first pressure sensor 5.
  • the controller 3 is electrically connected to the control valve 4 and the first pressure sensor 5.
  • the control valve 4 Set on the gas path between the gas source 1 and the airbag cavity 7, the gas flow in the air path can be controlled by adjusting the opening of the control valve 4, thereby controlling the amount of gas entering the airbag cavity 7, and further adjusting the airbag cavity 7 Gas pressure
  • the first pressure sensor 5 is arranged on the outlet gas path of the control valve 4, and is mainly used to detect the gas pressure in the gas path at the outlet of the control valve 4 and transmit the detected gas pressure value to the controller 3;
  • the second pressure sensor 6 is arranged on the inlet gas path of the airbag cavity 7 and is connected to the controller 3 in the electric proportional valve 2 in a circuit.
  • the second pressure sensor 6 is used to detect the pressure at the inlet of the airbag cavity 7 The gas pressure in the gas path, and the detected gas pressure value is transmitted to the controller 3.
  • the controller 3 built in the electric proportional valve 2 performs closed-loop control according to the PID algorithm according to the pressure values fed back by the first pressure sensor 5 and the second pressure sensor 6, and adjusts the opening of the control valve 4, so as to be better and more accurate
  • the gas pressure in the airbag cavity 7 is adjusted accordingly.
  • the controller 3, the control valve 4 and the first pressure sensor 5 are packaged together to form an electric proportional valve 2.
  • the controller 3, the control valve 4, and the first pressure sensor 5 may also be relatively independent devices.
  • polishing head pressure control device for chemical mechanical planarization equipment
  • the polishing head pressure control device includes:
  • Air source 1 which is connected to the airbag cavity 7 of the polishing head through a gas path, and is used to provide inflation gas to the airbag cavity 7;
  • the control valve 4 is arranged on the gas path between the air source 1 and the air bag cavity 7.
  • the control valve 4 is a valve without closed-loop calculation.
  • the valve itself will only proportionally control the opening according to the electrical signal.
  • By adjusting the control valve The opening of 4 can control the gas flow in the gas path, thereby controlling the amount of gas entering the airbag cavity 7, and further adjusting the gas pressure in the airbag cavity 7;
  • the controller 3 whose circuit is connected to the control valve 4, the first pressure sensor 5 and the second pressure sensor 6, is used for real-time closed-loop calculation and adjustment according to the pressure values fed back by the first pressure sensor 5 and the second pressure sensor 6
  • the opening degree of the valve 4 is controlled, so as to adjust the gas pressure in the airbag cavity 7 better and more accurately.
  • the controller 3 can be an industrial computer, a PLC or a single-chip computer.
  • the present invention uses two pressure sensors to simultaneously acquire the real-time pressure at both ends of the gas source and the gas path of the airbag cavity.
  • the gas pressure value detected by the pressure sensor is used as the feedback value and fed back to the controller.
  • PID algorithm performs closed-loop control, judges whether the current pressure of the air bag cavity is close to the set value according to the feedback value, and controls the opening of the control valve in the gas circuit accordingly, so as to control the gas delivery volume and the gas circuit The on-off.
  • the controller controls the opening of the control valve to increase to increase the gas delivery to the airbag cavity; if the current airbag cavity is determined according to the feedback value When the pressure of is close to the set value, the controller controls the control valve to reduce the opening; if it is determined according to the feedback value that the current pressure of the airbag cavity has reached the set value, the controller controls the control valve to close the gas path.
  • a closed-loop control loop in which the pressure sensor at the inlet of the airbag cavity is a feedback value is used to avoid the false high pressure at the outlet of the control valve during the inflation phase.
  • the pressure sensor at the outlet of the control valve is closed-loop control with a feedback value. Loop to ensure the final high-precision and low-error pressure control. According to the relationship between the current pressure and the set pressure, the feedback value of the closed loop loop can be flexibly switched between the two sensors.
  • a polishing head pressure control method for a chemical mechanical planarization device which includes the following steps:
  • Step S1 the host computer issues a pressure setting value to the controller
  • Step S2 the controller receives the pressure values detected by the first pressure sensor and the second pressure sensor, and the controller determines whether the pressure value detected by the second pressure sensor is close to the pressure set value, if yes, proceed to step S3, if not, Go to step S4;
  • the pressure setting value is T and the pressure value detected by the second pressure sensor is P. If the absolute value of the difference between the pressure setting value and the pressure value detected by the second pressure sensor is less than If a certain threshold is set, it can be determined that the real-time pressure value at this time is close to the pressure setting value;
  • Step S3 The controller uses the pressure value detected by the first pressure sensor as the feedback value, and continues to the next pressure setting, and skips to step S1;
  • Step S4 The controller uses the pressure value detected by the second pressure sensor as the feedback value, and jumps to step S2.
  • the controller can determine the pressure according to the pressure reading of the second pressure sensor. It is judged whether the pressure in the cavity of the airbag cavity is close to the pressure setting value. If the current pressure of the airbag cavity is significantly different from the pressure setting value, before reaching the pressure setting value, the feedback value in the closed-loop control loop will be dominated by the pressure reading of the second pressure sensor. After the pressure reading of is close to the pressure setting value, the feedback value in the closed-loop control loop is converted from the pressure reading of the second pressure sensor to the pressure reading of the first pressure sensor.
  • the controller receives the pressure values detected by the first pressure sensor and the second pressure sensor, and the controller still sets the pressure of the second pressure sensor
  • the pressure measurement value is used as the pressure value in the cavity of the airbag cavity to determine whether the pressure value detected by the second pressure sensor is close to the pressure setting value, but then, the controller no longer uses the measurement value of a single pressure sensor as the feedback value , But integrate the measured values of the first pressure sensor and the second pressure sensor to match different weights to form a total feedback value.
  • W is the total feedback value
  • a is the weight of the first pressure sensor
  • W1 is the pressure measurement value of the first pressure sensor
  • b is the weight of the second pressure sensor
  • W2 is the pressure measurement value of the second pressure sensor
  • a+ b 1.
  • the weight of the second pressure sensor accounts for the main part, and the weight b of the second pressure sensor is 0.51 ⁇ 0.99
  • the present invention is based on the pressure control scheme of the closed-loop control loop of two sensors, and changes the influence of the respective feedback values of the two sensors on the closed-loop control loop according to the current pressure to achieve the purpose of shortening the control period.
  • the pressure is controlled in a closed loop mainly through the feedback value of the pressure sensor set at the inlet of the airbag cavity to avoid the control process being affected by the outlet of the control valve.
  • the influence caused by the inconsistency between the pressure and the actual pressure of the airbag cavity After the cavity pressure of the airbag cavity is close to the set value, the closed loop circuit will take the reading of the pressure sensor set on the outlet gas path of the control valve as the feedback value. Adjust the pressure to achieve stable control of the pressure.
  • the controller is connected to two pressure sensors at the same time, so that the controller can obtain the real-time pressure at both ends of the gas circuit at the same time;
  • the feedback value of the closed-loop control loop can be flexibly switched between the two pressure sensors to achieve stable pressure control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

用于化学机械平坦化设备的抛光头压力控制设备及方法,在控制阀(4)的出口气路上设置第一压力传感器(5),在气囊容腔(7)的进口气路上设置第二压力传感器(6),控制器(3)根据第一压力传感器(5)和第二压力传感器(7)反馈的压力值进行实时闭环运算,调节控制阀(4)的开度,调节气囊容腔(7)中的气体压力,能够快速响应且精确控制抛光头气囊容腔(7)的压力,避免充气阶段控制阀(4)出口压力虚高,确保高精度和低误差压力控制,实现对抛光头气囊容腔(7)压力的稳定控制。

Description

用于化学机械平坦化设备的抛光头压力控制设备及方法 技术领域
本发明涉及半导体设备,尤其涉及一种用于化学机械平坦化设备的抛光头压力控制设备及方法。
背景技术
化学机械平坦化(Chemical Mechanical Planarization,CMP)设备通常包括半导体设备前端模块(EFEM)、抛光单元和清洗单元。现有的抛光单元在工作过程中,通过对抛光头内的气囊(Membrane)充气产生下压力作用于被抛晶圆,以保证晶圆与抛光垫之间的摩擦力能够符合工艺需求。
当前技术通常采用由电气比例阀对抛光头内的气囊容腔进行压力调节,由设置在电气比例阀出口部位的压力传感器作为闭环回路中的反馈元件,但是因为气囊容腔体积大以及气囊本身会形变等原因,会导致电气比例阀出口处的压力在气囊容腔的实际压力未能达到目标压力的情况下,过早地被电气比例阀控制器认为到达了目标压力而停止了压力供给。这导致在压力变化曲线在上升阶段中会有一段存在斜率较低的现象,在实际工艺中就造成了压力未能及时到达目标值而影响了工艺,造成工作效率下降与良品率的下降。
发明内容
本发明提供一种用于化学机械平坦化设备的抛光头压力控制设备及方法,能够快速响应且精确控制抛光头气囊容腔的压力,解决因电气比例阀出口压力高于气囊容腔的实际压力而导致抛光头气囊容腔压力控制流程响应慢的问题。
为了达到上述目的,本发明提供一种用于化学机械平坦化设备的抛光头压力控制设备,所述的抛光头压力控制设备包含:
气源,其通过气路连接抛光头的气囊容腔,用于给气囊容腔提供充气气体;
控制阀,其设置在气源和气囊容腔的气路上,通过调整控制阀的开度可以控制气路中的气体流量,进一步调整气囊容腔中的气体压力;
第一压力传感器,其设置在控制阀的出口气路上,用于检测控制阀出口处的气路中的气体压力;
第二压力传感器,其设置在气囊容腔的进口气路上,用于检测气囊容腔进口处的气路中的气体压力;
控制器,其电路连接所述的控制阀、第一压力传感器和第二压力传感器,用于根据第一压力 传感器和第二压力传感器反馈的压力值根据PID算法进行实时闭环运算,调节控制阀的开度,调节气囊容腔中的气体压力。
本发明还提供一种化学机械平坦化设备,包含前端模块、抛光单元和清洗单元,所述的抛光单元包含抛光头,所述的抛光头包含所述的抛光头压力控制设备。
本发明还提供一种用于化学机械平坦化设备的抛光头压力控制方法,控制器根据第一压力传感器和/或第二压力传感器获取的压力反馈值,结合压力设定值进行PID闭环运算,调节控制阀的开度,从而调节气囊容腔中的气体压力。
所述的压力反馈值为:
W=a×W1+b×W2;
其中,W是压力反馈值,a是第一压力传感器的权重,W1是第一压力传感器的压力测量值,b是第二压力传感器的权重,W2是第二压力传感器的压力测量值。
当|T-P|/T≤x%时,a=0,b=1,当|T-P|/T>x%时,a=1,b=0;
其中,T为压力设定值,P为第二压力传感器检测得到的压力值,x为设定的阈值,a是第一压力传感器的权重,b是第二压力传感器的权重。
当|T-P|/T≤x%时,a=0.01~0.49,b=0.51~0.99,当|T-P|/T>x%时,a=0.51~0.99,b=0.01~0.49;
其中,T为压力设定值,P为第二压力传感器检测得到的压力值,x为设定的阈值,a是第一压力传感器的权重,b是第二压力传感器的权重。
本发明能够快速响应且精确控制抛光头气囊容腔的压力,避免充气阶段控制阀出口压力虚高,确保高精度和低误差压力控制,实现对抛光头气囊容腔压力的稳定控制。
附图说明
图1是本发明的一个实施例中的一种用于化学机械平坦化设备的抛光头压力控制设备的结构示意图。
图2是本发明的另一个实施例中的一种用于化学机械平坦化设备的抛光头压力控制设备的结构示意图。
图3是本发明的闭环控制示意图。
图4是本发明的一个实施例中的一种用于化学机械平坦化设备的抛光头压力控制方法的流程图。
具体实施方式
以下根据图1~图4,具体说明本发明的较佳实施例。
为了解决因电气比例阀出口压力高于气囊容腔的实际压力而导致抛光头气囊容腔压力控制流程响应慢的问题,本发明在气源与抛光头的气囊容腔之间的气路上增设一个压力传感器,将该压力传感器设置在靠近气囊容腔处,以便更好地监测抛光头的气囊容腔中的实际气体压力,从而提供给电气比例阀更精确的监测结果。
如图1所示,在本发明的一个实施例中,提供了一种用于化学机械平坦化设备的抛光头压力控制设备,该抛光头压力控制设备包含:
气源1,其通过气路连接抛光头的气囊容腔7,用于给气囊容腔7提供充气气体;
电气比例阀2,其包含内置的控制器3、控制阀4和第一压力传感器5,所述的控制器3电路连接所述的控制阀4和第一压力传感器5,所述的控制阀4设置在气源1和气囊容腔7的气路上,通过调整控制阀4的开度可以控制气路中的气体流量,从而控制进入气囊容腔7的气体量,进一步调整气囊容腔7中的气体压力,所述的第一压力传感器5设置在控制阀4的出口气路上,主要用于检测控制阀4出口处的气路中的气体压力,并将检测到的气体压力值传输给控制器3;
第二压力传感器6,其设置在气囊容腔7的进口气路上,并电路连接所述的电气比例阀2中的控制器3,该第二压力传感器6用于检测气囊容腔7进口处的气路中的气体压力,并将检测到的气体压力值传输给控制器3。
所述的电气比例阀2中内置的控制器3根据第一压力传感器5和第二压力传感器6反馈的压力值,根据PID算法进行闭环控制,调节控制阀4的开度,从而更好更精确地调节气囊容腔7中的气体压力。
图1所述的实施例中,所述的控制器3、控制阀4和第一压力传感器5是封装在一起的,共同构成了电气比例阀2。所述的控制器3、控制阀4和第一压力传感器5也可以采用各自相对独立的器件。
如图2所示,在本发明的另一个实施例中,提供了另一种用于化学机械平坦化设备的抛光头压力控制设备,该抛光头压力控制设备包含:
气源1,其通过气路连接抛光头的气囊容腔7,用于给气囊容腔7提供充气气体;
控制阀4,其设置在气源1和气囊容腔7的气路上,所述的控制阀4是不带闭环运算的阀,阀门本身只会根据电信号按比例控制开度,通过调整控制阀4的开度可以控制气路中的气体流量,从而控制进入气囊容腔7的气体量,进一步调整气囊容腔7中的气体压力;
第一压力传感器5,其设置在控制阀4的出口气路上,用于检测控制阀4出口处的气路中的 气体压力,并将检测到的气体压力值传输给控制器3;
第二压力传感器6,其设置在气囊容腔7的进口气路上,用于检测气囊容腔7进口处的气路中的气体压力,并将检测到的气体压力值传输给控制器3;
控制器3,其电路连接所述的控制阀4、第一压力传感器5和第二压力传感器6,用于根据第一压力传感器5和第二压力传感器6反馈的压力值进行实时闭环运算,调节控制阀4的开度,从而更好更精确地调节气囊容腔7中的气体压力。
在本实施例中,所述的控制器3可以采用工控机,也可以是PLC或者是单片机。
如图3所示,本发明是采用两个压力传感器同时获取气源和气囊容腔的气路两端的实时压力,压力传感器检测到的气体压力值作为反馈值,反馈给控制器,控制器根据PID算法进行闭环控制,根据反馈值来判断当前气囊容腔的压力的大小与设定值是否接近,并相应控制气路中控制阀的开度,从而控制气路的输气量的大小和气路的通断。如果根据反馈值判定当前气囊容腔的压力距离设定值还较远,则控制器控制控制阀的开度增大,加大对气囊容腔的气体输送;如果根据反馈值判定当前气囊容腔的压力已经接近设定值,则控制器控制控制阀减小开度;如果根据反馈值判定当前气囊容腔的压力已经达到设定值,则控制器控制控制阀关闭气路输送。通过设置在气囊容腔进口处的压力传感器的读数为反馈值的闭环控制回路来避免充气阶段控制阀出口压力虚高,通过设置在控制例阀出口处的压力传感器的读数为反馈值的闭环控制回路来确保最后的高精度和低误差压力控制,根据当前压力与设定压力之间的关系,闭环回路的反馈值在两个传感器之间灵活切换。
如图4所示,在本发明的上述实施例中,提供了一种用于化学机械平坦化设备的抛光头压力控制方法,包含以下步骤:
步骤S1、上位机对控制器下达一个压力设定值;
步骤S2、控制器接收第一压力传感器和第二压力传感器检测得到的压力值,控制器判断第二压力传感器检测得到的压力值是否接近压力设定值,如果是,进行步骤S3,如果否,进行步骤S4;
在本实施例中,假设压力设定值为T,第二压力传感器检测得到的压力值为P,如果压力设定值和第二压力传感器检测得到的压力值之间的差值的绝对值小于某个设定的阈值,则可以判定此时的实时压力值接近压力设定值;
即,|T-P|/T≤x%,其中,x为设定的阈值,可以设为10,或者20,等等,根据具体需要进行设定;
步骤S3、控制器使用第一压力传感器检测得到的压力值作为反馈值,并持续到下一次压力 设定,跳转到步骤S1;
步骤S4、控制器使用第二压力传感器检测得到的压力值作为反馈值,并跳转到步骤S2。
因为第二压力传感器设置在气囊容腔的进口气路上,该第二压力传感器的压力读数可以较为准确地反映气囊容腔的腔体内的真实压力,所以控制器根据第二压力传感器的压力读数来判断气囊容腔的腔体内的压力大小是否接近压力设定值。如果气囊容腔的腔体当前压力与压力设定值相差较大,在到达接近压力设定值之前,闭环控制回路中的反馈值将由第二压力传感器的压力读数为主导,当第二压力传感器的压力读数接近压力设定值之后,闭环控制回路中的反馈值由第二压力传感器的压力读数转为第一压力传感器的压力读数。
在本发明的另一个实施例中,上位机对控制器下达一个压力设定值后,控制器接收第一压力传感器和第二压力传感器检测得到的压力值,控制器仍然将第二压力传感器的压力测量值作为气囊容腔的腔体内的压力值,判断第二压力传感器检测得到的压力值是否接近压力设定值,但是接下来,控制器不再使用单一的压力传感器的测量值作为反馈值,而是综合第一压力传感器和第二压力传感器的测量数值,匹配不同的权重,形成一个总反馈值。
所述的总反馈值为:W=a×W1+b×W2;
其中,W是总反馈值,a是第一压力传感器的权重,W1是第一压力传感器的压力测量值,b是第二压力传感器的权重,W2是第二压力传感器的压力测量值,a+b=1。
如果气囊容腔的腔体当前压力与压力设定值相差较大,在到达接近压力设定值之前,第二压力传感器的数值的权重占主体部分,取第二压力传感器的权重b为0.51~0.99,当气囊容腔的腔体当前压力接近压力设定值之后,第一压力传感器和第二压力传感器两者之间的权重大小将会在几个控制周期内有一个切换过程(切换过程是一个a与b之间此消彼长的过程,但切换过程中维持a+b=1),以达到减少切换所产生的对控制稳定性的影响,随后第一压力传感器的数值的权重占主体部分,取第一压力传感器的权重a为0.51~0.99,一直持续到下一次压力设定。
本发明基于两个传感器的闭环控制回路的压力控制方案,根据当前压力改变两个传感器各自的反馈值对闭环控制回路的影响来达到缩短控制周期的目的。在抛光头的气囊容腔的腔体压力接近设定值之前,主要通过设置在气囊容腔的进口气路上的压力传感器的读数为反馈值对压力进行闭环控制,避免控制过程受到控制阀的出口压力与气囊容腔的腔体实际压力不一致而造成的影响,在气囊容腔的腔体压力接近设定值后,闭环回路将会以设置在控制阀出口气路上的压力传感器的读数为反馈值对压力进行调整,实现对压力的稳定控制。
本发明具有以下优点:
1、控制器同时连接两个压力传感器,让控制器能够同时获取气路内两端的实时压力;
2、通过设置在气囊容腔的进口气路上的压力传感器的读数为反馈值的闭环控制回路来避免充气阶段控制阀出口压力虚高;
3、通过设置在控制阀出口气路上的压力传感器的读数为反馈值的闭环控制回路来确保最后的高精度和低误差压力控制;
4、根据气囊容腔的腔体当前压力与设定压力值之间的关系,闭环控制回路的反馈值在两个压力传感器之间灵活切换,实现对压力的稳定控制。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (6)

  1. 一种用于化学机械平坦化设备的抛光头压力控制设备,其特征在于,所述的抛光头压力控制设备包含:
    气源,其通过气路连接抛光头的气囊容腔,用于给气囊容腔提供充气气体;
    控制阀,其设置在气源和气囊容腔的气路上,通过调整控制阀的开度可以控制气路中的气体流量,进一步调整气囊容腔中的气体压力;
    第一压力传感器,其设置在控制阀的出口气路上,用于检测控制阀出口处的气路中的气体压力;
    第二压力传感器,其设置在气囊容腔的进口气路上,用于检测气囊容腔进口处的气路中的气体压力;
    控制器,其电路连接所述的控制阀、第一压力传感器和第二压力传感器,用于根据第一压力传感器和第二压力传感器反馈的压力值根据PID算法进行实时闭环运算,调节控制阀的开度,调节气囊容腔中的气体压力。
  2. 一种化学机械平坦化设备,包含前端模块、抛光单元和清洗单元,所述的抛光单元包含抛光头,其特征在于,所述的抛光头包含如权利要求1所述的抛光头压力控制设备。
  3. 一种基于权利要求1所述的用于化学机械平坦化设备的抛光头压力控制设备的抛光头压力控制方法,其特征在于,控制器根据第一压力传感器和/或第二压力传感器获取的压力反馈值,结合压力设定值进行PID闭环运算,调节控制阀的开度,从而调节气囊容腔中的气体压力。
  4. 如权利要求3所述的用于化学机械平坦化设备的抛光头压力控制方法,其特征在于,所述的压力反馈值为:
    W=a×W1+b×W2;
    其中,W是压力反馈值,a是第一压力传感器的权重,W1是第一压力传感器的压力测量值,b是第二压力传感器的权重,W2是第二压力传感器的压力测量值。
  5. 如权利要求4所述的用于化学机械平坦化设备的抛光头压力控制方法,其特征在于,当|T-P|/T≤x%时,a=0,b=1,当|T-P|/T>x%时,a=1,b=0;
    其中,T为压力设定值,P为第二压力传感器检测得到的压力值,x为设定的阈值,a是第一压力传感器的权重,b是第二压力传感器的权重。
  6. 如权利要求4所述的用于化学机械平坦化设备的抛光头压力控制方法,其特征在于,当|T-P|/T≤x%时,a=0.01~0.49,b=0.51~0.99,当|T-P|/T>x%时,a=0.51~0.99,b=0.01~0.49;
    其中,T为压力设定值,P为第二压力传感器检测得到的压力值,x为设定的阈值,a是第一压力传感器的权重,b是第二压力传感器的权重。
PCT/CN2020/106752 2019-12-17 2020-08-04 用于化学机械平坦化设备的抛光头压力控制设备及方法 WO2021120635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911303301.0 2019-12-17
CN201911303301.0A CN110883680B (zh) 2019-12-17 2019-12-17 用于化学机械平坦化设备的抛光头压力控制设备及方法

Publications (1)

Publication Number Publication Date
WO2021120635A1 true WO2021120635A1 (zh) 2021-06-24

Family

ID=69752220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106752 WO2021120635A1 (zh) 2019-12-17 2020-08-04 用于化学机械平坦化设备的抛光头压力控制设备及方法

Country Status (2)

Country Link
CN (1) CN110883680B (zh)
WO (1) WO2021120635A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166952A (zh) * 2021-12-08 2022-03-11 北京烁科精微电子装备有限公司 一种吸附检测装置及吸附检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110883680B (zh) * 2019-12-17 2021-08-10 杭州众硅电子科技有限公司 用于化学机械平坦化设备的抛光头压力控制设备及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288926A (ja) * 1999-04-08 2000-10-17 Fujikoshi Mach Corp 接着プレス装置及びウェーハの接着装置
CN102133730A (zh) * 2011-01-06 2011-07-27 清华大学 一种用于cmp抛光头多区的气压控制系统
CN203343870U (zh) * 2013-05-20 2013-12-18 洛阳单晶硅有限责任公司 一种充气式气囊压头
CN103567852A (zh) * 2012-07-23 2014-02-12 株式会社荏原制作所 压力控制装置、具有该压力控制装置的研磨装置及研磨方法
CN104772691A (zh) * 2014-01-09 2015-07-15 株式会社荏原制作所 压力控制装置及具有该压力控制装置的研磨装置
WO2015178110A1 (ja) * 2014-05-23 2015-11-26 株式会社荏原製作所 圧力校正用治具、及び、基板処理装置
CN106670899A (zh) * 2016-10-28 2017-05-17 中国电子科技集团公司第五十四研究所 一种气囊式电化学机械抛光头、抛光装置及抛光方法
CN108481189A (zh) * 2018-05-08 2018-09-04 厦门理工学院 可自调气压的气囊抛光头
CN110883680A (zh) * 2019-12-17 2020-03-17 杭州众硅电子科技有限公司 用于化学机械平坦化设备的抛光头压力控制设备及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226612A (ja) * 1993-01-28 1994-08-16 Toshiba Corp 研磨工具
US5762546A (en) * 1995-12-13 1998-06-09 Coburn Optical Industries, Inc. Pneumatically assisted conformal tool for an ophthalmic lens finer/polisher
KR100835834B1 (ko) * 2003-12-30 2008-06-05 동부일렉트로닉스 주식회사 화학기계적 연마장비의 웨이퍼 정렬장치
CN101758445B (zh) * 2009-12-17 2011-11-23 浙江工业大学 用于气囊抛光的脉动控制系统
CN102658517B (zh) * 2012-05-07 2014-07-02 浙江工业大学 一种用于气囊抛光的接触力实时控制系统
CN203070122U (zh) * 2013-01-18 2013-07-17 中山华帝燃具股份有限公司 一种用于燃气热水器测试的数控供燃气控制装置
CN104369064B (zh) * 2014-11-20 2017-01-25 苏州大学 一种气囊抛光工具、系统和方法
CN106806040B (zh) * 2015-11-27 2019-07-12 北京纳通科技集团有限公司 一种椎间融合器植入控制装置
JP7107648B2 (ja) * 2017-07-11 2022-07-27 株式会社堀場エステック 流体制御装置、流体制御システム、流体制御方法、及び、流体制御装置用プログラム
CN110543192A (zh) * 2018-10-31 2019-12-06 北京七星华创流量计有限公司 基于压力检测的质量流量控制方法及装置
CN109635771A (zh) * 2018-12-21 2019-04-16 邱礼璇 驾驶员防干扰系统
CN109685953B (zh) * 2019-01-08 2021-02-26 黄河水利职业技术学院 脸部识别安防控制方法
CN109976419B (zh) * 2019-02-27 2021-01-01 武汉中电节能有限公司 区域供冷供热蒸汽减温减压自动控制系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288926A (ja) * 1999-04-08 2000-10-17 Fujikoshi Mach Corp 接着プレス装置及びウェーハの接着装置
CN102133730A (zh) * 2011-01-06 2011-07-27 清华大学 一种用于cmp抛光头多区的气压控制系统
CN103567852A (zh) * 2012-07-23 2014-02-12 株式会社荏原制作所 压力控制装置、具有该压力控制装置的研磨装置及研磨方法
CN203343870U (zh) * 2013-05-20 2013-12-18 洛阳单晶硅有限责任公司 一种充气式气囊压头
CN104772691A (zh) * 2014-01-09 2015-07-15 株式会社荏原制作所 压力控制装置及具有该压力控制装置的研磨装置
WO2015178110A1 (ja) * 2014-05-23 2015-11-26 株式会社荏原製作所 圧力校正用治具、及び、基板処理装置
CN106670899A (zh) * 2016-10-28 2017-05-17 中国电子科技集团公司第五十四研究所 一种气囊式电化学机械抛光头、抛光装置及抛光方法
CN108481189A (zh) * 2018-05-08 2018-09-04 厦门理工学院 可自调气压的气囊抛光头
CN110883680A (zh) * 2019-12-17 2020-03-17 杭州众硅电子科技有限公司 用于化学机械平坦化设备的抛光头压力控制设备及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166952A (zh) * 2021-12-08 2022-03-11 北京烁科精微电子装备有限公司 一种吸附检测装置及吸附检测方法
CN114166952B (zh) * 2021-12-08 2023-08-29 北京晶亦精微科技股份有限公司 一种吸附检测装置及吸附检测方法

Also Published As

Publication number Publication date
CN110883680A (zh) 2020-03-17
CN110883680B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2021120635A1 (zh) 用于化学机械平坦化设备的抛光头压力控制设备及方法
US10012221B2 (en) High pressure bidirectional miniature electric gas pump
JP3606754B2 (ja) 真空圧力制御弁
TW200912270A (en) Pressure measurement instrument and method
KR20190011617A (ko) 센서 장착 웨이퍼 및 그의 보관 장치
CN101470447A (zh) 传输腔室压力控制系统及方法
CN101794990B (zh) 一种补偿直流自偏压的系统和方法
JP6595883B2 (ja) ポジショナ、および診断方法
CN106339011A (zh) 一种芯片温度检测和控制方法与装置
US20080097657A1 (en) Method and System for Wafer Temperature Control
TWI711809B (zh) 具校正功能之下壓力產生模組及下壓力校正方法
CN110069031B (zh) 一种高温敏感型压力传感控制系统与方法
CN205480206U (zh) 土压传感器校准装置的气源压力控制系统
JP2002313765A (ja) ブラシ洗浄装置及びその制御方法
CN106918378A (zh) 水位传感器自动检测系统
TW202119530A (zh) 應用等離子體加工系統進行加工的方法及等離子體加工系統
CN111397813A (zh) 基于气体质量流量控制技术的漏率测量设备和系统
KR101040537B1 (ko) 열병합발전 시스템의 보정장치 및 그 보정방법
CN213616023U (zh) 一种用于满足超薄片加工的磨抛机压力控制系统
CN202772414U (zh) 采用逻辑智能控制技术设计的激光器控制系统
CN112659114B (zh) 一种单通道自动充放气系统与气压稳定控制方法
CN212023866U (zh) 一种螺旋输送机恒功率控制系统
CN116649938B (zh) 一种基于蓝牙通信的血压测量系统
JP3124125B2 (ja) 流量制御装置
CN203587253U (zh) 一种大米抛光机压力检测电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903870

Country of ref document: EP

Kind code of ref document: A1