WO2021120425A1 - 一种毫米波全双工无人机通信中继传输方法 - Google Patents

一种毫米波全双工无人机通信中继传输方法 Download PDF

Info

Publication number
WO2021120425A1
WO2021120425A1 PCT/CN2020/079336 CN2020079336W WO2021120425A1 WO 2021120425 A1 WO2021120425 A1 WO 2021120425A1 CN 2020079336 W CN2020079336 W CN 2020079336W WO 2021120425 A1 WO2021120425 A1 WO 2021120425A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
base station
user
beamforming vector
beamforming
Prior art date
Application number
PCT/CN2020/079336
Other languages
English (en)
French (fr)
Inventor
肖振宇
朱立鹏
刘珂
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2021120425A1 publication Critical patent/WO2021120425A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention belongs to the technical field of millimeter wave communication, and specifically relates to a communication relay transmission method for millimeter wave full-duplex drones.
  • millimeter wave communications with rich frequency band resources (30-300GHz) to provide technical support for post 5G and 6G networks.
  • millimeter wave communication has high propagation loss, beamforming technology can be used to effectively improve the signal-to-noise ratio.
  • the short wavelength of millimeter wave signals enables the deployment of large-scale antennas in a small space to achieve high array gain.
  • ground obstacles often hinder the establishment of line-of-sight links, resulting in severe attenuation of the received signal power even if beamforming technology is applied, which limits the coverage capability of the millimeter wave mobile communication system.
  • UAVs can operate in higher air and are more likely to establish line-of-sight communication links with ground users.
  • UAVs may be subject to strong interference from nearby facilities and equipment, such as nearby base stations, ground equipment, and other aircraft. Interference control has become a key challenge for UAV communication.
  • the combination of the two will have unique advantages.
  • the weak diffraction ability and high propagation loss of millimeter-wave signals have limited coverage, while UAVs can be deployed flexibly, build multi-hop networks, and expand the coverage of millimeter-wave communication networks.
  • UAVs have a higher operating height than ground base stations, making it easier to establish a line-of-sight link.
  • millimeter wave communication uses a large-scale antenna array, and the obtained directional beam can effectively increase the channel gain and effectively suppress the interference of UAVs.
  • the space deployment, beamforming, and resource allocation methods of UAVs used as communication relays need to be further explored.
  • the present invention proposes a millimeter-wave full-duplex drone communication relay transmission method.
  • the full-duplex drone relay technology is adopted in millimeter wave communications, and the drone position, beamforming and power control are optimized by optimizing the position of the drone, beamforming, and power control. Large communication capacity.
  • Step 1 Establish a spatial location model of base stations, drones and users
  • the spatial position model includes the distance, launch angle and arrival angle from the base station to the UAV; and the distance, launch angle and arrival angle from the UAV to the user;
  • (x V , y V , h V ) are the UAV coordinates;
  • d B2V is the distance from the base station to the UAV;
  • ⁇ B represents the launch pitch angle at the base station;
  • ⁇ B represents the launch azimuth angle at the base station;
  • ⁇ r represents The pitch angle of arrival at the UAV;
  • ⁇ r represents the azimuth angle of arrival at the UAV;
  • the distance, launch angle and arrival angle of the drone to the user is the distance, launch angle and arrival angle of the drone to the user:
  • (x U ,y U ,0) are the user coordinates
  • d V2U is the distance from the drone to the user
  • ⁇ t represents the launch pitch angle of the drone
  • ⁇ t represents the launch azimuth angle of the drone
  • ⁇ U It represents the pitch angle of arrival at the user
  • ⁇ U represents the azimuth angle of arrival at the user.
  • Step 2 Use the spatial position model to establish a channel model of the downlink communication system from the ground base station to the user with the UAV as the relay;
  • the channel model includes the channel matrix from the base station to the UAV link, and the channel matrix from the UAV to the user link;
  • the channel matrix H B2V of the link from the base station to the UAV is:
  • is the large-scale attenuation coefficient, and ⁇ is the normalization constant of the channel matrix power.
  • a( ⁇ ) is the pointing vector of the uniform planar array antenna:
  • d is the distance between adjacent antennas
  • the channel matrix H V2U of the UAV-to-user link is:
  • Step 3 Using the channel model in the simultaneous same-frequency full-duplex mode, the ground base station transmits signals to the UAV, and the UAV transmits signals to the user equipment;
  • the signal y 1 received by the drone is:
  • the signal y 2 received by the user equipment is:
  • n 2 is the power at the user equipment The zero mean Gaussian white noise.
  • Step four the link to the UAV up rate based on the received signal R B2V UAV reception signal and the user equipment, the base station calculates the UAV to the user rate R V2U up link to the base station and the user may Reach rate R B2U ;
  • the reachability rate R B2V of the link from the base station to the UAV is expressed as:
  • the reachability rate of the UAV to the user link R V2U is expressed as:
  • Step 5 Construct the objective function when the reachability rate R B2U from the base station to the user reaches the maximum, and design the constraint conditions of the UAV position, beamforming and signal power allocation;
  • the objective function is as follows:
  • the constraint conditions for the distribution of the transmitted signal power are:
  • Step 6 Calculate the optimal position of the UAV under the constraints of ideal beamforming
  • the array gain under ideal beamforming is substituted into the expressions of the reachability rate of the base station to the UAV link and the UAV to the user link, and the reachability rate of the base station to the UAV under the ideal beamforming is obtained.
  • Step 7 Fix the UAV according to the optimal position, and calculate the beamforming vector of the base station, the beamforming vector of the user, and the beamforming vector of the UAV's transmitter and receiver respectively;
  • Step 701 Set the optimal beamforming vector of the base station and the user as a pointing vector pointing to the UAV relay;
  • Step 702 Initialize the beamforming vector at the receiving end and the beamforming vector at the transmitting end of the UAV relay to the direction vectors pointing to the base station and the user, respectively:
  • the step size ⁇ is reduced by design, so that the full-duplex UAV relay self-interference suppression is reduced by ⁇ times in each iteration, and finally approaches 0;
  • the counter k is incremented by one, and the optimization process is repeated until convergence; the final beamforming vector optimization result of the UAV relay transmitter is obtained as And the beamforming vector optimization result at the receiving end is
  • Step 704 Optimize the beamforming vector results of the transmitting end of the UAV relay respectively And the receiving end beamforming vector optimization result Perform constant modulus normalization:
  • Step 8 Substitute the optimal position of the UAV and the optimal beamforming vector at the receiving and sending ends into the objective function, and calculate the optimal transmit power of the base station and UAV to maximize the system reachability and reduce power waste .
  • the reachability rates of the base station to the UAV link and the UAV to the user link are calculated respectively:
  • This objective function is solved to obtain the optimal position of the UAV and the optimal power setting under the optimal beamforming vector of the transmitting and receiving ends to ensure that the total transmission power of the base station and the UAV is the smallest under the same reachability rate. .
  • the optimal transmission power of the base station and UAV is:
  • a millimeter-wave full-duplex drone communication relay transmission method of the present invention adopts a full-duplex drone relay, which expands the coverage of millimeter-wave communications and improves the communication capacity of the system;
  • a millimeter wave full-duplex UAV communication relay transmission method of the present invention proposes an optimal UAV relay position deployment under an ideal beam
  • the invention is a millimeter wave full-duplex UAV communication relay transmission method, and an alternate self-interference suppression algorithm is proposed to alternately optimize the UAV transmission beamforming vector and the receiving beamforming vector;
  • a millimeter-wave full-duplex UAV communication relay transmission method of the present invention proposes optimal power control under a given arbitrary UAV relay position and beamforming.
  • Figure 1 is a flowchart of a millimeter wave full-duplex UAV communication relay transmission method of the present invention
  • Fig. 2 is a downlink communication link model constructed by the present invention for the UAV relay to overcome the obstruction of ground buildings;
  • Figure 3 shows the present invention when When, the system reachability rate varies with the base station transmit signal power under several different methods
  • Figure 4 shows the present invention when When, the system reachability rate varies with the power of the full-duplex UAV relay transmission signal under several different methods
  • Figure 6 shows the present invention when At the time, the system reachability rate varies with the distance from the base station to the user under several different methods.
  • the invention discloses a millimeter-wave full-duplex UAV communication relay transmission method.
  • the method includes constructing a communication scenario from a ground base station to a ground user using the UAV as a relay, and is designed under ideal beamforming conditions
  • the optimal position of the UAV, the beamforming vector is optimized for a given UAV position, and the power of the base station and UAV transmission signal is optimized for the given beamforming vector to reduce the UAV relay self-interference and expand It improves the coverage of millimeter wave communication and improves the communication capacity of the system; it is a full-duplex UAV relay position deployment, beamforming and power control technology.
  • Step 1 Establish a spatial location model of base stations, drones and users.
  • each planar antenna array is parallel to the xOy plane.
  • the user coordinates are (x U ,y U ,0), and the drone coordinates are (x V ,y V ,h V ). From this, the distance, launch angle and arrival angle from the base station to the drone can be obtained:
  • d B2V is the distance from the base station to the UAV; ⁇ B represents the launch pitch angle at the base station; ⁇ B represents the launch azimuth angle at the base station; ⁇ r represents the arrival pitch angle at the UAV; ⁇ r represents the drone location Azimuth of arrival;
  • d V2U is the distance from the drone to the user
  • ⁇ t represents the launch pitch angle of the drone
  • ⁇ t represents the launch azimuth angle of the drone
  • ⁇ U represents the arrival pitch angle of the user
  • ⁇ U represents The azimuth of arrival at the user.
  • Step 2 Use the spatial location model to establish a channel model for the downlink communication system from the ground base station to the ground user with the UAV as the relay.
  • the base station, drone relay, and user equipment are equipped with uniform planar antenna arrays to overcome path loss.
  • the number of base station transmitting antennas is M B ⁇ N B
  • the number of user receiving antennas is M U ⁇ N U.
  • the human-machine relay is equipped with a transmitting antenna of M t ⁇ N t and a receiving antenna of M r ⁇ N r.
  • the base station-to-UAV link and the UAV-to-user link can be expressed as the superposition of multipath components with different launch angles and arrival angles, and air-to-ground communication
  • the line-of-sight link is very easy to implement, so it is assumed that the line-of-sight path dominates the space-to-ground transmission.
  • the channel matrices of the base station-to-UAV link and the UAV-to-user link are defined as:
  • is the large-scale attenuation coefficient
  • is the normalization constant of the channel matrix power
  • d is the distance between adjacent antennas
  • the far-field condition that is, R ⁇ 2D 2 / ⁇ , is no longer valid in the line-of-sight path of the UAV relay self-interference channel, where R is the distance between the transmitting and receiving antennas, and D is the antenna aperture diameter. Therefore, the self-interference channel needs to use the near-field model:
  • r m,n is the distance between the m-th transmitting antenna and the n-th receiving antenna.
  • Step 3 In the simultaneous and same frequency full duplex mode, the ground base station transmits a signal to the UAV with a certain power, and the UAV transmits a signal to the user equipment with a certain power.
  • the signal received by the drone is:
  • n 1 is the power at the UAV Zero-mean Gaussian white noise
  • Represents the base station beamforming vector Represents the beamforming vector at the receiving end of the UAV
  • n 1 is the power at the UAV The zero mean Gaussian white noise.
  • the signal received by the user equipment is:
  • n 2 is the power at the user equipment The zero mean Gaussian white noise.
  • Step 4 Calculate the reachability rate of the link from the base station to the drone and the link from the drone to the user based on the received signal from the drone and the user equipment.
  • the reachability rates of the base station to the UAV link and the UAV to the user link are respectively expressed as:
  • the reachability from the base station to the user is the minimum of the base station UAV link and the UAV to user link reachability rate, namely:
  • R B2U min ⁇ R B2V ,R V2U ⁇
  • Step 5 Construct the objective function: When the reachability of the system reaches the maximum, design the UAV position deployment, beamforming and signal power distribution.
  • the analog beamforming vector has constant modulus constraints:
  • the objective function is as follows:
  • Step 6 Solve the optimal position of the UAV under ideal beamforming conditions
  • Step 601 Define that under ideal beamforming, the base station-to-UAV link and the UAV-to-user link can obtain all the array gains, and the self-interference of the full-duplex UAV relay is 0, that is:
  • Step 602 Calculate the upper bound of the reachability rate from the base station to the drone and the drone to the user under the ideal beamforming:
  • Step 603 Solve the optimal position of the UAV under ideal beamforming:
  • the parameters a, b, and c can be calculated by the following formula:
  • Step 7 Fix the UAV according to the optimal position, and calculate the beamforming vector of the base station, the beamforming vector of the user, and the beamforming vector of the UAV's transmitter and receiver respectively;
  • Step 701 in order to respectively maximize the effective channel gain of the base station to the UAV link And the effective channel gain of the UAV to the user link First calculate the optimal beamforming vector at the base station and the user, which is the pointing vector to the UAV relay:
  • Step 702 At the UAV relay, in order to maximize the effective channel gain from the base station to the UAV link And the effective channel gain of the UAV to the user link Initialize the receiving end beamforming vector and the transmitting end beamforming vector of the UAV relay, which are the pointing vectors to the base station and the user respectively:
  • Step 704 Given the beamforming vector at the receiving end obtained in step 703 Optimizing the beamforming vector at the transmitting end maximizes the signal power at the receiving end of the UAV-to-user link while suppressing self-interference:
  • Step 705 Design a self-interference suppression factor to ensure that the full-duplex UAV relay self-interference is gradually reduced during the iteration process:
  • is the reduction step size of the self-interference suppression factor, so that the full-duplex UAV relay self-interference suppression is reduced by ⁇ times each iteration, and finally approaches 0;
  • Step 707 After the iteration is terminated, the transmission beamforming vector of the UAV relay is obtained And receive beamforming vector And normalize the constant modulus separately:
  • Step 8 Substitute the optimal position of the drone in step 6 and the optimal beamforming vectors at the receiving and transmitting ends in step 7 into the objective function of step 5, and calculate the optimal transmit power of the base station and the drone to maximize Improve the reachability of the system and reduce power waste.
  • the optimal transmission power of the base station and UAV is:
  • the carrier frequency is 38GHz
  • the users are distributed on a disk with a radius of 500m with the base station as the center. Inside, all points in the curve are the average reachability rate calculated from the 10 3 random distribution of users and channel generation calculations.
  • the "ideal upper bound” corresponds to the upper bound of the reachability rate under the ideal beamforming in step 6; the "invention method” corresponds to the location deployment, beamforming and and The reachability rate obtained by the power control method; “random position + alternating beamforming” corresponds to the UAV randomly distributed in the area (x V ,y V ) ⁇ [0,x U ] ⁇ [0,y U ], and The reachability rate obtained by using the beamforming in step 7 and the optimal power control in step 8; "optimal position + pointing beamforming” corresponds to the UAV deployed in the optimal position in step 6, and the pointing vector is used The reachability rate obtained as the beamforming vector and the optimal power control in step eight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种毫米波全双工无人机通信中继传输方法,属于毫米波通信技术领域。所述方法包括构建以无人机为中继的地面基站到地面用户的通信场景,利用空间位置模型,建立以无人机为中继的地面基站到用户的下行通信系统的信道模型;在同时同频全双工模式下,地面基站向无人机发射信号,无人机向用户设备发射信号;在理想波束赋形条件下设计无人机的最优位置,给定无人机的位置优化波束赋形向量,给定波束赋形向量最优化基站和无人机发射信号的功率。该方法针对以无人机为中继的下行传输系统,扩大了毫米波通信的覆盖范围,提升了系统通信容量,提出了给定任意无人机中继位置及波束赋形下的最优功率控制。

Description

一种毫米波全双工无人机通信中继传输方法 技术领域
本发明属于毫米波通信技术领域,具体是一种毫米波全双工无人机通信中继传输方法。
背景技术
随着第五代通信系统的发展,高数据传输速率已经成为无线通信系统的关键性性能要求之一,传输数据的爆炸性增长为未来移动通信带来了巨大的挑战。据预测,在2030年前个人数据速率将会超过100Gbps,总数据传输量将达到5ZB/月。高数据速率、低延迟、低成本、高系统容量和大规模设备连接成为5G的目标。
为满足5G更高的性能需求,需要探索具有丰富频带资源(30-300GHz)的毫米波通信,为后5G和6G网络提供技术支持。由于毫米波通信有较高的传播损耗,可以采用波束赋形技术有效提高信噪比,而且,毫米波信号波长短,可实现在较小空间内部署大规模天线以实现高阵列增益。然而,地面障碍物经常阻碍视距链路的建立,导致即使应用波束赋形技术,接收信号功率依然衰减严重,限制了毫米波移动通信系统的覆盖能力。
另一方面,无人机通信在近些年引起了广泛关注,无人机将在后5G和6G通信中发挥重要作用。得益于无人机的机动性,它们可以灵活部署于沙漠、海洋和受灾地区等没有基础设施覆盖或基础设施被毁坏的区域。相比传统的地面基站,无人机可以在更高的空中运作,更有可能与地面用户建立视距通信链路。然而,无人机可能受到来自邻近设施、设备的强干扰,如邻近基站、地面设备和其他飞行器等,干扰控制成为了无人机通信的关键性挑战。
基于毫米波通信和无人机通信各自的特点,二者的结合将会具有独特的优势。首先,毫米波信号的弱绕射能力和高传播损耗导致覆盖范围受限,而无人机可以灵活部署,建立多跳网络,扩大毫米波通信网络覆盖范围。其次,无人机相比于地面基站作业高度更高,更容易建立视距链路。此外,毫米波通信采用大规模天线阵列,获取的定向波束可有效提高信道增益,并有效抑制无人机的干扰。但用作通信中继的无人机的空间部署、波束赋形以及资源分配方式还有待进一步探索。
发明内容
本发明提出一种毫米波全双工无人机通信中继传输方法,在毫米波通信中采用全双工无人机中继技术,通过优化无人机位置、波束赋形以及功率控制,增大通信容量。
具体步骤如下:
步骤一、建立基站、无人机和用户的空间位置模型;
空间位置模型包括基站到无人机的距离,发射角和到达角;以及无人机到用户的距离、 发射角和到达角;
基站到无人机的距离、发射角和到达角:
Figure PCTCN2020079336-appb-000001
(x V,y V,h V)为无人机坐标;d B2V为基站到无人机的距离;θ B代表基站处的发射俯仰角;φ B代表基站处的发射方位角;θ r代表无人机处的到达俯仰角;φ r代表无人机处的到达方位角;
无人机到用户的距离、发射角和到达角:
Figure PCTCN2020079336-appb-000002
(x U,y U,0)为用户坐标,d V2U为无人机到用户的距离,θ t代表无人机处的发射俯仰角,φ t代表无人机处的发射方位角,θ U代表用户处的到达俯仰角,φ U代表用户处的到达方位角。
步骤二、利用空间位置模型,建立以无人机为中继的地面基站到用户的下行通信系统的信道模型;
信道模型包括基站到无人机链路的信道矩阵,以及无人机到用户链路的信道矩阵;
基站到无人机链路的信道矩阵H B2V为:
Figure PCTCN2020079336-appb-000003
其中,
Figure PCTCN2020079336-appb-000004
为基站发射天线的数量;
Figure PCTCN2020079336-appb-000005
是无人机中继配备的接收天线数量;基站发射天线和无人机接收天线都采用均匀平面阵列。α是大尺度衰减系数,β是信道矩阵功率归一化常数。a(·)为均匀平面阵列天线的指向向量:
Figure PCTCN2020079336-appb-000006
其中,d是相邻天线之间的距离,λ是毫米波波长,特别地,对半波间距天线阵列来说d=λ/2。
无人机到用户链路的信道矩阵H V2U为:
Figure PCTCN2020079336-appb-000007
其中,
Figure PCTCN2020079336-appb-000008
为用户接收天线的数量;
Figure PCTCN2020079336-appb-000009
为无人机中继配备的发射天 线数量;用户接收天线和无人机发射天线都采用均匀平面阵列。
步骤三、利用信道模型在同时同频全双工模式下,地面基站向无人机发射信号,无人机向用户设备发射信号;
无人机接收到的信号y 1为:
Figure PCTCN2020079336-appb-000010
Figure PCTCN2020079336-appb-000011
代表无人机接收端波束赋形向量,
Figure PCTCN2020079336-appb-000012
代表基站波束赋形向量,P B为基站发射信号功率;s 1为基站发射信号,
Figure PCTCN2020079336-appb-000013
是无人机中继收发天线之间的自干扰信道矩阵,
Figure PCTCN2020079336-appb-000014
代表无人机发送端波束赋形向量,P V为无人机发射信号功率;s 2为无人机发射信号,n 1是无人机处功率为
Figure PCTCN2020079336-appb-000015
的零均值高斯白噪声;
用户设备接收的信号y 2为:
Figure PCTCN2020079336-appb-000016
其中
Figure PCTCN2020079336-appb-000017
是用户设备的波束赋形向量,n 2是用户设备处功率为
Figure PCTCN2020079336-appb-000018
的零均值高斯白噪声。
步骤四、根据无人机接收信号以及用户设备的接收信号,计算基站到无人机链路的可达率R B2V,无人机到用户链路的可达率R V2U和基站到用户的可达率R B2U
基站到无人机链路的可达率R B2V表示为:
Figure PCTCN2020079336-appb-000019
无人机到用户链路的可达率R V2U表示为:
Figure PCTCN2020079336-appb-000020
基站到用户的可达率R B2U为:R B2U=min{R B2V,R V2U};
步骤五、构建基站到用户的可达率R B2U达到最大时的目标函数,设计无人机位置、波束赋形以及信号功率分配的约束条件;
目标函数如下:
Figure PCTCN2020079336-appb-000021
无人机位置范围的约束条件为:
(x V,y V)∈[0,x U]×[0,y U]
波束赋形的约束条件为:
Figure PCTCN2020079336-appb-000022
Figure PCTCN2020079336-appb-000023
Figure PCTCN2020079336-appb-000024
Figure PCTCN2020079336-appb-000025
发射信号功率分配的约束条件为:
Figure PCTCN2020079336-appb-000026
Figure PCTCN2020079336-appb-000027
其中
Figure PCTCN2020079336-appb-000028
为基站的最大发射功率,
Figure PCTCN2020079336-appb-000029
为全双工无人机中继的最大发射功率。
步骤六、在理想波束赋形的约束条件下计算无人机的最优位置;
具体步骤如下:
首先、定义理想波束赋形下,基站到无人机链路和无人机到用户链路获得全部阵列增益,并且全双工无人机中继的自干扰为0,即:
Figure PCTCN2020079336-appb-000030
然后,将理想波束赋形下的阵列增益代入基站到无人机链路及无人机到用户链路的可达率表达式中,得到理想波束赋形下基站到无人机可达率的上界
Figure PCTCN2020079336-appb-000031
和无人机到用户的可达率的上界
Figure PCTCN2020079336-appb-000032
计算公式如下:
Figure PCTCN2020079336-appb-000033
Figure PCTCN2020079336-appb-000034
最后,根据理想波束赋形下的可达率上界,得到无人机最优位置的闭式解:
Figure PCTCN2020079336-appb-000035
Figure PCTCN2020079336-appb-000036
参数a,b,c由如下公式计算:
Figure PCTCN2020079336-appb-000037
步骤七、按照最优位置固定无人机,分别计算基站的波束赋形向量、用户的波束赋形向量、以及无人机的发送端和接收端的波束赋形向量;
具体步骤如下:
步骤701、将基站和用户的最优波束赋形向量设定为指向无人机中继的指向向量;
公式如下:
Figure PCTCN2020079336-appb-000038
Figure PCTCN2020079336-appb-000039
步骤702、将无人机中继的接收端波束赋形向量和发送端波束赋形向量,分别初始化为指向基站和用户的指向向量:
公式如下:
Figure PCTCN2020079336-appb-000040
Figure PCTCN2020079336-appb-000041
步骤703、计数器k=1开始迭代,利用基站和用户的最优波束赋形向量,交替优化无人机发送端波束赋形向量和接收端波束赋形向量;
首先,给定发送端波束赋形向量,优化接收端波束赋形向量使得基站到无人机链路的接收端信号功率最大化,同时抑制自干扰:
Figure PCTCN2020079336-appb-000042
Figure PCTCN2020079336-appb-000043
Figure PCTCN2020079336-appb-000044
其中
Figure PCTCN2020079336-appb-000045
是在第(k-1)轮迭代中求得的确定的接收端波束赋形向量,
Figure PCTCN2020079336-appb-000046
是第k轮迭代中无人机接收端波束赋形向量w r的自干扰抑制因子;
然后,给定第k轮迭代得到的接收端波束赋形向量
Figure PCTCN2020079336-appb-000047
优化发送端波束赋形向量使得无人机到用户链路的接收端信号功率最大化,同时抑制自干扰:
Figure PCTCN2020079336-appb-000048
Figure PCTCN2020079336-appb-000049
Figure PCTCN2020079336-appb-000050
其中
Figure PCTCN2020079336-appb-000051
是第k轮迭代中无人机发送端波束赋形向量w t的自干扰抑制因子;
针对自干扰抑制因子,通过设计减小步长κ,使得全双工无人机中继自干扰抑制每次迭代减小κ倍,最终趋近于0;
Figure PCTCN2020079336-appb-000052
每次迭代过后令计数器k自增1,重复优化过程直至收敛;最终得到无人机中继的发射端波束赋形向量优化结果为
Figure PCTCN2020079336-appb-000053
和接收端波束赋形向量优化结果为
Figure PCTCN2020079336-appb-000054
步骤704、分别对无人机中继的发射端波束赋形向量优化结果
Figure PCTCN2020079336-appb-000055
和接收端波束赋形向量优化结果
Figure PCTCN2020079336-appb-000056
进行恒模归一化:
Figure PCTCN2020079336-appb-000057
Figure PCTCN2020079336-appb-000058
步骤八、将无人机最优位置和收发两端的最优波束赋形向量代入目标函数中,计算基站和无人机的最优发射功率,以最大化系统可达率,并减小功率浪费。
首先,在无人机收发两端所得的最优波束赋形向量的条件下,分别计算基站到无人机链路和无人机到用户链路的可达率:
Figure PCTCN2020079336-appb-000059
Figure PCTCN2020079336-appb-000060
其中
Figure PCTCN2020079336-appb-000061
然后,对最大化基站到用户的可达率
Figure PCTCN2020079336-appb-000062
这个目标函数进行求解,得到无人机最优位置和收发两端波最优束赋形向量下的最优功率设置,保证在相同的可达率下,基站和无人机的总发射功率最小。
此时,基站和无人机的最优发射功率为:
Figure PCTCN2020079336-appb-000063
Figure PCTCN2020079336-appb-000064
其中a′=G SIG V2U
Figure PCTCN2020079336-appb-000065
本发明的优点在于:
1、本发明一种毫米波全双工无人机通信中继传输方法,采用全双工无人机中继,扩大了毫米波通信的覆盖范围,提升了系统通信容量;
2、本发明一种毫米波全双工无人机通信中继传输方法,提出了理想波束下的最优无人机中继位置部署;
3、本发明一种毫米波全双工无人机通信中继传输方法,提出了一种交替自干扰抑制算法,交替最优化无人机发射波束赋形向量和接收波束赋形向量;
4、本发明一种毫米波全双工无人机通信中继传输方法,提出了给定任意无人机中继位置及波束赋形下的最优功率控制。
附图说明
图1是本发明一种毫米波全双工无人机通信中继传输方法的流程图;
图2是本发明构建的无人机中继克服地面建筑物阻挡的下行通信链路模型;
图3是本发明展示了当
Figure PCTCN2020079336-appb-000066
时,几种不同方法下系统可达率随基站发射信号功率的变化图;
图4是本发明展示了当
Figure PCTCN2020079336-appb-000067
时,几种不同方法下系统可达率随全双工无人机中继发射信号功率的变化图;
图5是本发明展示了当
Figure PCTCN2020079336-appb-000068
M t=N t=M r=N r=N a时,几种不同方法下系统可达率随双工无人机中继天线阵列规模的变化图。
图6是本发明展示了当
Figure PCTCN2020079336-appb-000069
时,几种不同方法下系统可达率随基站到用户的距离的变化图。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明公开了一种毫米波全双工无人机通信中继传输方法,所述方法包括构建以无人机为中继的地面基站到地面用户的通信场景,在理想波束赋形条件下设计无人机的最优位置,给定无人机的位置优化波束赋形向量,给定波束赋形向量最优化基站和无人机发射信号的功率,减小无人机中继自干扰,扩大了毫米波通信的覆盖范围,提升了系统通信容量;是一种全双工无人机中继位置部署、波束赋形及功率控制技术。
如图1所示,具体步骤如下:
步骤一、建立基站、无人机和用户的空间位置模型。
如图2所示,以基站为原点,x,y,z轴分别指向东、北、垂直向上,假设基站和用户的高度均为零,各平面天线阵列与xOy平面平行。用户坐标为(x U,y U,0),无人机坐标为(x V,y V,h V),由此可以得到基站到无人机的距离、发射角和到达角:
Figure PCTCN2020079336-appb-000070
d B2V为基站到无人机的距离;θ B代表基站处的发射俯仰角;φ B代表基站处的发射方位角;θ r代表无人机处的到达俯仰角;φ r代表无人机处的到达方位角;
同理可得无人机到用户的距离、发射角和到达角:
Figure PCTCN2020079336-appb-000071
其中,d V2U为无人机到用户的距离,θ t代表无人机处的发射俯仰角,φ t代表无人机处的发射方位角,θ U代表用户处的到达俯仰角,φ U代表用户处的到达方位角。
步骤二、利用空间位置模型,针对以无人机为中继的地面基站到地面用户的下行通信系统建立信道模型。
如图2所示,基站、无人机中继和用户设备为克服路径损耗都配备均匀平面天线阵列,基站发射天线数为M B×N B,用户接收天线数为M U×N U,无人机中继配备M t×N t的发射天 线和M r×N r的接收天线。由于远场毫米波信道的方向性和稀疏性,基站到无人机链路和无人机到用户链路可以表示为具有不同发射角和到达角的多径分量的叠加,且空对地通信的视距链路是很容易实现的,因此假设空对地传输是视距路径占优的。
基站到无人机链路和无人机到用户链路的信道矩阵定义分别为:
Figure PCTCN2020079336-appb-000072
Figure PCTCN2020079336-appb-000073
其中,
Figure PCTCN2020079336-appb-000074
α是大尺度衰减系数,β是信道矩阵功率归一化常数。定义a(·)为均匀平面阵列天线的指向向量:
Figure PCTCN2020079336-appb-000075
其中,d是相邻天线之间的距离,λ是毫米波波长,特别地,对半波间距天线阵列来说d=λ/2。
而远场条件,即R≥2D 2/λ,在无人机中继自干扰信道视距路径中不再成立,这里R是收发天线之间的距离,D是天线孔径直径。因此自干扰信道需要使用近场模型:
Figure PCTCN2020079336-appb-000076
其中r m,n是第m根发射天线和第n根接收天线之间的距离。
步骤三、在同时同频全双工模式下,地面基站以一定功率向无人机发射信号,无人机以一定功率向用户设备发射信号。
基站以功率P B向无人机发射信号s 1,同时,无人机以功率P V向用户设备发射信号s 2,其中s i满足
Figure PCTCN2020079336-appb-000077
i=1,2。
无人机接收到的信号为:
Figure PCTCN2020079336-appb-000078
其中
Figure PCTCN2020079336-appb-000079
是基站与无人机之间的信道矩阵,
Figure PCTCN2020079336-appb-000080
是无人机中继收发天线之间的自干扰信道矩阵,n 1是无人机处功率为
Figure PCTCN2020079336-appb-000081
的零均值高斯白噪声,
Figure PCTCN2020079336-appb-000082
代表基站波束赋形向量,
Figure PCTCN2020079336-appb-000083
代表无人机接收端波束赋形向量,
Figure PCTCN2020079336-appb-000084
代表无人机发送端波束赋形向量,n 1是无人机处功率为
Figure PCTCN2020079336-appb-000085
的零均值高斯白噪声。
用户设备接收到的信号为:
Figure PCTCN2020079336-appb-000086
其中
Figure PCTCN2020079336-appb-000087
是无人机与用户设备之间的信道矩阵,
Figure PCTCN2020079336-appb-000088
是用户设备的波束赋形向量,n 2是用户设备处功率为
Figure PCTCN2020079336-appb-000089
的零均值高斯白噪声。
步骤四、根据无人机接收信号以及用户设备的接收信号,计算基站到无人机链路和无人 机到用户链路的可达率。
基站到无人机链路和无人机到用户链路的可达率分别表示为:
Figure PCTCN2020079336-appb-000090
Figure PCTCN2020079336-appb-000091
因此基站到用户的可达即为基站无人机链路和无人机到用户链路可达率的最小值,即:
R B2U=min{R B2V,R V2U}
步骤五、构建目标函数:当系统的可达率达到最大时,设计无人机位置部署、波束赋形以及信号功率分配。
对于本发明提出的毫米波全双工无人机中继,由于无人机电池容量受限,使用模拟波束赋形比数字波束赋形更为合适,模拟波束赋形向量有恒模约束:
Figure PCTCN2020079336-appb-000092
Figure PCTCN2020079336-appb-000093
Figure PCTCN2020079336-appb-000094
Figure PCTCN2020079336-appb-000095
基站到用户的可达率之和达到最大化,也就是目标函数如下:
Figure PCTCN2020079336-appb-000096
需要满足上述恒模约束,无人机位置范围约束以及最大发射功率约束:
(x V,y V)∈[0,x U]×[0,y U]
Figure PCTCN2020079336-appb-000097
Figure PCTCN2020079336-appb-000098
其中
Figure PCTCN2020079336-appb-000099
Figure PCTCN2020079336-appb-000100
分别为基站和全双工无人机中继的最大发射功率。
步骤六、求解理想波束赋形条件下无人机的最优位置;
具体步骤如下:
步骤601、定义在理想波束赋形下,基站到无人机链路和无人机到用户链路可以获得全部阵列增益,并且全双工无人机中继的自干扰为0,即:
Figure PCTCN2020079336-appb-000101
步骤602、在理想波束赋形下,计算基站到无人机和无人机到用户的可达率的上界:
Figure PCTCN2020079336-appb-000102
Figure PCTCN2020079336-appb-000103
步骤603、在理想波束赋形下,求解无人机的最优位置:
Figure PCTCN2020079336-appb-000104
Figure PCTCN2020079336-appb-000105
其中参数a,b,c可由如下公式计算:
Figure PCTCN2020079336-appb-000106
步骤七、按照最优位置固定无人机,分别计算基站的波束赋形向量、用户的波束赋形向量、以及无人机的发送端和接收端的波束赋形向量;
具体步骤如下:
步骤701、为了分别最大化基站到无人机链路的有效信道增益
Figure PCTCN2020079336-appb-000107
及无人机到用户链路的有效信道增益
Figure PCTCN2020079336-appb-000108
先计算基站和用户处的最优波束赋形向量,为指向无人机中继的指向向量:
Figure PCTCN2020079336-appb-000109
Figure PCTCN2020079336-appb-000110
步骤702、在无人机中继处,为了最大化基站到无人机链路的有效信道增益
Figure PCTCN2020079336-appb-000111
及无人机到用户链路的有效信道增益
Figure PCTCN2020079336-appb-000112
初始化无人机中继的接收端波束赋形向量和发送端波束赋形向量,分别为指向基站和用户的指向向量:
Figure PCTCN2020079336-appb-000113
Figure PCTCN2020079336-appb-000114
步骤703、开始迭代过程,从计数器k=1开始,交替优化无人机发送端波束赋形向量和接收端波束赋形向量;
给定发送端波束赋形向量,优化接收端波束赋形向量使得基站到无人机链路的接收端信号功率最大化,同时抑制自干扰:
Figure PCTCN2020079336-appb-000115
Figure PCTCN2020079336-appb-000116
Figure PCTCN2020079336-appb-000117
其中
Figure PCTCN2020079336-appb-000118
是在第(k-1)轮迭代中求得的确定的发送端波束赋形向量,
Figure PCTCN2020079336-appb-000119
是第k轮迭代中w r的自干扰抑制因子,该抑制因子在每轮迭代中逐渐减小,具体在步骤705中说明;该问题可用标准凸优化工具求解,记为
Figure PCTCN2020079336-appb-000120
步骤704、给定步骤703中求得的接收端波束赋形向量
Figure PCTCN2020079336-appb-000121
优化发送端波束赋形向量使得无人机到用户链路的接收端信号功率最大化,同时抑制自干扰:
Figure PCTCN2020079336-appb-000122
Figure PCTCN2020079336-appb-000123
Figure PCTCN2020079336-appb-000124
其中
Figure PCTCN2020079336-appb-000125
是第k轮迭代中w t的自干扰抑制因子,抑制因子在每轮迭代中逐渐减小,具体在步骤705中说明。该问题可用标准凸优化工具求解,记为
Figure PCTCN2020079336-appb-000126
步骤705、设计自干扰抑制因子,保证在迭代过程中全双工无人机中继自干扰逐渐减小:
Figure PCTCN2020079336-appb-000127
其中κ是自干扰抑制因子的减小步长,使得全双工无人机中继自干扰抑制因此每次迭代减小κ倍,最终趋近于0;
步骤706、重复步骤703和704直至收敛,即可达率不再上升,每次迭代过后令计数器k增大1个单位:k=k+1。
步骤707、迭代终止后,得到无人机中继的发射波束赋形向量
Figure PCTCN2020079336-appb-000128
和接收波束赋形向量
Figure PCTCN2020079336-appb-000129
并分别进行恒模归一化:
Figure PCTCN2020079336-appb-000130
Figure PCTCN2020079336-appb-000131
步骤八、将步骤六中的无人机最优位置和步骤七中的收发两端的最优波束赋形向量代入步骤五的目标函数中,计算基站和无人机的最优发射功率,以最大化系统可达率,并减小功率浪费。
首先、计算在所得波束赋形向量的条件下基站到无人机链路和无人机到用户链路的可达率:
Figure PCTCN2020079336-appb-000132
Figure PCTCN2020079336-appb-000133
其中
Figure PCTCN2020079336-appb-000134
然后、为了最大化可达率
Figure PCTCN2020079336-appb-000135
求解给定无人机位置和波束赋形向量的条件下的最优功率设置,并保证在相同的可达率条件下,基站和无人机的总发射功率最小,避免功率浪费。
此时,基站和无人机的最优发射功率为:
Figure PCTCN2020079336-appb-000136
Figure PCTCN2020079336-appb-000137
其中a′=G SIG V2U
Figure PCTCN2020079336-appb-000138
实施例:
本发明全双工无人机通信中继位置部署,波束赋形以及功率控制方法的系统可达率性能,仿真参数设置如下:无人机高度h V=100m,无人机和用户处的噪声功率相同,即σ 1=σ 2=σ,信道矩阵中大尺度衰减系数α=3,信道矩阵功率归一化常数β在距离d=100m时满足归一化条件
Figure PCTCN2020079336-appb-000139
载波频率为38GHz,基站和用户端的天线规模为M B×N B=M U×N U=16×16,减小步长κ=10,用户分布在以基站为圆心,半径为500m的圆盘内,曲线中的所有点均为 10 3次用户随机分布和信道生成计算得到的平均可达率。
图3到图6中的四条曲线,“理想上界”对应步骤六中的理想波束赋形下的可达率上界;“发明方法”对应本发明所提的位置部署,波束赋形以及及功率控制方法所得的可达率;“随机位置+交替波束赋形”对应无人机在区域(x V,y V)∈[0,x U]×[0,y U]内随机分布,并采用步骤七中的波束赋形和步骤八中的最优功率控制得到的可达率;“最优位置+指向波束赋形”对应无人机部署在步骤六中最优位置,并采用指向向量作为波束赋形向量和步骤八中的最优功率控制得到的可达率。
如图3所示,当
Figure PCTCN2020079336-appb-000140
M t×N t=M r×N r=4×4时,几种不同方法下系统可达率随基站发射信号功率的变化,“发明方法”非常接近理想波束赋形下的可达率上界,并且性能明显优于“随机位置+交替波束赋形”和“最优位置+指向波束赋形”两种方法,体现了本发明毫米波全双工无人机中继系统中位置部署,波束赋形以及功率控制方法的优势;
如图4所示,当
Figure PCTCN2020079336-appb-000141
M t×N t=M r×N r=4×4时,几种不同方法下系统可达率随全双工无人机中继发射信号功率的变化,“发明方法”非常接近理想波束赋形下的可达率上界,并且性能明显优于“随机位置+交替波束赋形”和“最优位置+指向波束赋形”两种方法,体现了本发明毫米波全双工无人机中继系统中位置部署,波束赋形以及功率控制方法的优势;
如图5所示,当
Figure PCTCN2020079336-appb-000142
M t=N t=M r=N r=N a时,几种不同方法下系统可达率随双工无人机中继天线阵列规模的变化,“发明方法”非常接近理想波束赋形下的可达率上界,并且性能明显优于“随机位置+交替波束赋形”和“最优位置+指向波束赋形”两种方法,体现了本发明毫米波全双工无人机中继系统中位置部署,波束赋形以及功率控制方法的优势,随着天线数增大,可达率提高,并且更接近理想上界,证明了天线数量提升有利于消除自干扰,提升基站到无人机链路和无人机到用户链路的有效信道增益;
如图6所示,当
Figure PCTCN2020079336-appb-000143
M t×N t=M r×N r=4×4时,几种不同方法下系统可达率随基站到用户的距离的变化,“发明方法”非常接近理想波束赋形下的可达率上界,并且性能明显优于“随机位置+交替波束赋形”和“最优位置+指向波束赋形”两种方法,体现了本发明毫米波全双工无人机中继系统中位置部署,波束赋形以及功率控制方法的优势。

Claims (4)

  1. 一种毫米波全双工无人机通信中继传输方法,其特征在于,具体步骤如下:
    步骤一、建立基站、无人机和用户的空间位置模型;
    空间位置模型包括基站到无人机的距离,发射角和到达角;以及无人机到用户的距离、发射角和到达角;
    步骤二、利用空间位置模型,建立以无人机为中继的地面基站到用户的下行通信系统的信道模型;
    信道模型包括基站到无人机链路的信道矩阵,以及无人机到用户链路的信道矩阵;
    基站到无人机链路的信道矩阵H B2V为:
    Figure PCTCN2020079336-appb-100001
    其中,
    Figure PCTCN2020079336-appb-100002
    为基站发射天线的数量;
    Figure PCTCN2020079336-appb-100003
    是无人机中继配备的接收天线数量;基站发射天线和无人机接收天线都采用均匀平面阵列;α是大尺度衰减系数,β是信道矩阵功率归一化常数;a(·)为均匀平面阵列天线的指向向量:
    Figure PCTCN2020079336-appb-100004
    其中,d是相邻天线之间的距离,λ是毫米波波长,特别地,对半波间距天线阵列来说d=λ/2;
    θ B代表基站处的发射俯仰角;φ B代表基站处的发射方位角;θ r代表无人机处的到达俯仰角;φ r代表无人机处的到达方位角;
    无人机到用户链路的信道矩阵H V2U为:
    Figure PCTCN2020079336-appb-100005
    其中,
    Figure PCTCN2020079336-appb-100006
    为用户接收天线的数量;
    Figure PCTCN2020079336-appb-100007
    为无人机中继配备的发射天线数量;用户接收天线和无人机发射天线都采用均匀平面阵列;
    θ t代表无人机处的发射俯仰角,φ t代表无人机处的发射方位角,θ U代表用户处的到达俯仰角,φ U代表用户处的到达方位角;
    步骤三、利用信道模型在同时同频全双工模式下,地面基站向无人机发射信号,无人机向用户设备发射信号;
    无人机接收到的信号y 1为:
    Figure PCTCN2020079336-appb-100008
    Figure PCTCN2020079336-appb-100009
    代表无人机接收端波束赋形向量,
    Figure PCTCN2020079336-appb-100010
    代表基站波束赋形向量,P B为基站发射信号功率;s 1为基站发射信号,
    Figure PCTCN2020079336-appb-100011
    是无人机中继收发天线之间的自干扰信道矩阵,
    Figure PCTCN2020079336-appb-100012
    代表无人机发送端波束赋形向量,P V为无人机发射信号功率;s 2为无人 机发射信号,n 1是无人机处功率为
    Figure PCTCN2020079336-appb-100013
    的零均值高斯白噪声;
    用户设备接收的信号y 2为:
    Figure PCTCN2020079336-appb-100014
    其中
    Figure PCTCN2020079336-appb-100015
    是用户设备的波束赋形向量,n 2是用户设备处功率为
    Figure PCTCN2020079336-appb-100016
    的零均值高斯白噪声;
    步骤四、根据无人机接收信号以及用户设备的接收信号,计算基站到无人机链路的可达率R B2V,无人机到用户链路的可达率R V2U和基站到用户的可达率R B2U
    基站到无人机链路的可达率R B2V表示为:
    Figure PCTCN2020079336-appb-100017
    无人机到用户链路的可达率R V2U表示为:
    Figure PCTCN2020079336-appb-100018
    基站到用户的可达率R B2U为:R B2U=min{R B2V,R V2U};
    步骤五、构建基站到用户的可达率R B2U达到最大时的目标函数,设计无人机位置、波束赋形以及信号功率分配的约束条件;
    目标函数如下:
    Figure PCTCN2020079336-appb-100019
    (x V,y V,h V)为无人机坐标;
    无人机位置范围的约束条件为:
    (x V,y V)∈[0,x U]×[0,y U]
    (x U,y U,0)为用户坐标;
    波束赋形的约束条件为:
    Figure PCTCN2020079336-appb-100020
    Figure PCTCN2020079336-appb-100021
    Figure PCTCN2020079336-appb-100022
    Figure PCTCN2020079336-appb-100023
    发射信号功率分配的约束条件为:
    Figure PCTCN2020079336-appb-100024
    Figure PCTCN2020079336-appb-100025
    其中
    Figure PCTCN2020079336-appb-100026
    为基站的最大发射功率,
    Figure PCTCN2020079336-appb-100027
    为全双工无人机中继的最大发射功率;
    步骤六、在理想波束赋形的约束条件下计算无人机的最优位置;
    具体如下:
    首先、定义理想波束赋形下,基站到无人机链路和无人机到用户链路获得全部阵列增益,并且全双工无人机中继的自干扰为0,即:
    Figure PCTCN2020079336-appb-100028
    然后,将理想波束赋形下的阵列增益代入基站到无人机链路及无人机到用户链路的可达率表达式中,得到理想波束赋形下基站到无人机可达率的上界
    Figure PCTCN2020079336-appb-100029
    和无人机到用户的可达率的上界
    Figure PCTCN2020079336-appb-100030
    计算公式如下:
    Figure PCTCN2020079336-appb-100031
    Figure PCTCN2020079336-appb-100032
    最后,根据理想波束赋形下的可达率上界,得到无人机最优位置的闭式解:
    Figure PCTCN2020079336-appb-100033
    Figure PCTCN2020079336-appb-100034
    参数a,b,c由如下公式计算:
    Figure PCTCN2020079336-appb-100035
    步骤七、按照最优位置固定无人机,分别计算基站的波束赋形向量、用户的波束赋形向量、以及无人机的发送端和接收端的波束赋形向量;
    步骤八、将无人机最优位置和收发两端的最优波束赋形向量代入目标函数中,计算基站和无人机的最优发射功率,以最大化系统可达率,并减小功率浪费;
    首先,在无人机收发两端所得的最优波束赋形向量的条件下,分别计算基站到无人机链路和无人机到用户链路的可达率:
    Figure PCTCN2020079336-appb-100036
    Figure PCTCN2020079336-appb-100037
    其中
    Figure PCTCN2020079336-appb-100038
    然后,对最大化基站到用户的可达率
    Figure PCTCN2020079336-appb-100039
    这个目标函数进行求解,得到无人机最优位置和收发两端波最优束赋形向量下的最优功率设置,保证在相同的可达率下,基站和无人机的总发射功率最小;
    此时,基站和无人机的最优发射功率为:
    Figure PCTCN2020079336-appb-100040
    其中a′=G SIG V2U
    Figure PCTCN2020079336-appb-100041
  2. 如权利要求1所述的一种毫米波全双工无人机通信中继传输方法,其特征在于,所述的步骤一中,基站到无人机的距离、发射角和到达角计算如下:
    Figure PCTCN2020079336-appb-100042
    d B2V为基站到无人机的距离;
    无人机到用户的距离、发射角和到达角计算如下:
    Figure PCTCN2020079336-appb-100043
    d V2U为无人机到用户的距离。
  3. 如权利要求1所述的一种毫米波全双工无人机通信中继传输方法,其特征在于,所述的步骤七具体如下:
    步骤701、将基站和用户的最优波束赋形向量设定为指向无人机中继的指向向量;
    公式如下:
    Figure PCTCN2020079336-appb-100044
    Figure PCTCN2020079336-appb-100045
    步骤702、将无人机中继的接收端波束赋形向量和发送端波束赋形向量,分别初始化为指向基站和用户的指向向量:
    公式如下:
    Figure PCTCN2020079336-appb-100046
    Figure PCTCN2020079336-appb-100047
    步骤703、计数器k=1开始迭代,利用基站和用户的最优波束赋形向量,交替优化无人机发送端波束赋形向量和接收端波束赋形向量;
    步骤704、分别对无人机中继的发射端波束赋形向量优化结果
    Figure PCTCN2020079336-appb-100048
    和接收端波束赋形向量优化结果
    Figure PCTCN2020079336-appb-100049
    进行恒模归一化:
    Figure PCTCN2020079336-appb-100050
  4. 如权利要求1所述的一种毫米波全双工无人机通信中继传输方法,其特征在于,所述的步骤703具体为:
    首先,给定发送端波束赋形向量,优化接收端波束赋形向量使得基站到无人机链路的接收端信号功率最大化,同时抑制自干扰:
    Figure PCTCN2020079336-appb-100051
    Figure PCTCN2020079336-appb-100052
    Figure PCTCN2020079336-appb-100053
    其中
    Figure PCTCN2020079336-appb-100054
    是在第(k-1)轮迭代中求得的确定的接收端波束赋形向量,
    Figure PCTCN2020079336-appb-100055
    是第k轮迭代中无人机接收端波束赋形向量w r的自干扰抑制因子;
    然后,给定第k轮迭代得到的接收端波束赋形向量
    Figure PCTCN2020079336-appb-100056
    优化发送端波束赋形向量使得无人机到用户链路的接收端信号功率最大化,同时抑制自干扰:
    Figure PCTCN2020079336-appb-100057
    Figure PCTCN2020079336-appb-100058
    Figure PCTCN2020079336-appb-100059
    其中
    Figure PCTCN2020079336-appb-100060
    是第k轮迭代中无人机发送端波束赋形向量w t的自干扰抑制因子;
    针对自干扰抑制因子,通过设计减小步长κ,使得全双工无人机中继自干扰抑制每次迭代减小κ倍,最终趋近于0;
    Figure PCTCN2020079336-appb-100061
    每次迭代过后令计数器k自增1,重复优化过程直至收敛;最终得到无人机中继的发射端波束赋形向量优化结果为
    Figure PCTCN2020079336-appb-100062
    和接收端波束赋形向量优化结果为
    Figure PCTCN2020079336-appb-100063
PCT/CN2020/079336 2019-12-17 2020-03-13 一种毫米波全双工无人机通信中继传输方法 WO2021120425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911302590.2A CN111010223B (zh) 2019-12-17 2019-12-17 一种毫米波全双工无人机通信中继传输方法
CN201911302590.2 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021120425A1 true WO2021120425A1 (zh) 2021-06-24

Family

ID=70115939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079336 WO2021120425A1 (zh) 2019-12-17 2020-03-13 一种毫米波全双工无人机通信中继传输方法

Country Status (2)

Country Link
CN (1) CN111010223B (zh)
WO (1) WO2021120425A1 (zh)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316215A (zh) * 2021-07-13 2021-08-27 山东协和学院 基于无线能量的数据传输方法及系统
CN113541757A (zh) * 2021-07-13 2021-10-22 北京航空航天大学 一种基于毫米波波束赋形的无人机机间安全通信方法
CN113708886A (zh) * 2021-08-25 2021-11-26 中国人民解放军陆军工程大学 无人机抗干扰通信系统及联合轨迹与波束成形优化方法
CN113709883A (zh) * 2021-08-30 2021-11-26 北京邮电大学 一种多无人机辅助工业场景下的动态资源分配方法及装置
CN113872655A (zh) * 2021-10-20 2021-12-31 上海交通大学 一种多播波束赋形快速计算方法
CN113939032A (zh) * 2021-12-06 2022-01-14 中国通信建设第四工程局有限公司 一种无人机通信系统及无人机通信系统资源分配优化方法
CN114006645A (zh) * 2021-09-07 2022-02-01 西北工业大学 一种认知无人机中继辅助的安全传输方法及系统
CN114039652A (zh) * 2021-11-24 2022-02-11 西北大学 基于建筑物几何分析的毫米波抗阻挡多无人机部署方法
CN114124264A (zh) * 2021-11-26 2022-03-01 江苏科技大学 基于智能反射面时变反射相位的无人机信道模型建立方法
CN114158010A (zh) * 2021-12-06 2022-03-08 中国通信建设第四工程局有限公司 无人机通信系统及基于神经网络的资源分配策略预测方法
CN114157333A (zh) * 2021-10-28 2022-03-08 电子科技大学长三角研究院(湖州) 一种新型的基于可重构智能表面的共生无线通信系统
CN114205050A (zh) * 2021-12-01 2022-03-18 南京理工大学 无人机隐蔽通信方法及装置
CN114221726A (zh) * 2021-12-16 2022-03-22 浙江建德通用航空研究院 ka频段无人机通信系统的下行链路同频干扰表征方法
CN114245448A (zh) * 2021-11-18 2022-03-25 国网福建省电力有限公司漳州供电公司 一种用于电力5g微基站的功率分配方法
CN114285461A (zh) * 2021-12-31 2022-04-05 东南大学 一种移动中继辅助的高速宽带mimo传输方法
CN114337902A (zh) * 2022-01-19 2022-04-12 北京交通大学 一种irs辅助的毫米波多小区间干扰的抑制方法
CN114554510A (zh) * 2022-01-25 2022-05-27 西北工业大学 一种无人机载基站下行链路最优决策参数配置方法
CN114553290A (zh) * 2022-01-07 2022-05-27 西安理工大学 基于mimo结构的无线紫外光通信跟踪保持方法
CN114665947A (zh) * 2022-02-24 2022-06-24 南京邮电大学 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法
CN114745031A (zh) * 2022-03-10 2022-07-12 西安电子科技大学 一种全双工mimo物理层安全传输方法
CN115037337A (zh) * 2022-06-09 2022-09-09 北京信息科技大学 一种智能反射面驱动的多用户协同传输方法
CN115118315A (zh) * 2022-06-15 2022-09-27 国家工业信息安全发展研究中心 一种低复杂度的通信网络系统、方法和可读介质
CN115173914A (zh) * 2022-07-15 2022-10-11 南通大学 一种多智能反射面辅助通信主被动波束赋形迭代优化方法
CN115189801A (zh) * 2022-06-29 2022-10-14 安徽农业大学 一种无人机网络中人工噪声增强的隐蔽通信设计方法
CN115209422A (zh) * 2022-06-17 2022-10-18 北京邮电大学 一种密集城区下无人机基站协同组网参数配置方法
CN115225142A (zh) * 2022-07-18 2022-10-21 中国人民解放军国防科技大学 多无人机通信中用户匹配与频谱资源联合优化方法及系统
CN115276747A (zh) * 2022-07-20 2022-11-01 华北电力大学(保定) 无人机辅助无线通信系统中位置和波束向量联合优化方法
CN115473560A (zh) * 2022-08-29 2022-12-13 西安电子科技大学 无人机通信雷达一体全双工中继传输系统、中继方法及节点
RU2786043C1 (ru) * 2021-12-20 2022-12-16 Федеральное государственное казенное военное образовательное учреждение высшего образования "Санкт-Петербургский военный ордена Жукова институт войск национальной гвардии Российской Федерации" Способ разнесенной передачи
CN115694602A (zh) * 2022-09-26 2023-02-03 电子科技大学 一种毫米波全双工无人机通信系统的联合优化方法
WO2023109108A1 (zh) * 2021-12-16 2023-06-22 中国矿业大学 基于全双工中继的uav空中计算系统及轨迹和功率优化方法
WO2023142802A1 (zh) * 2022-01-28 2023-08-03 广东省新一代通信与网络创新研究院 无人机中继系统的调度、轨迹和功率的联合优化方法
CN116709255A (zh) * 2023-08-04 2023-09-05 中国人民解放军军事科学院系统工程研究院 一种不完全信息条件下的中继无人机分布式选择方法
CN116744344A (zh) * 2023-08-15 2023-09-12 南京邮电大学 一种通信监测优化方法、装置、系统及存储介质
CN117200845A (zh) * 2023-09-12 2023-12-08 深圳大学 一种基于低频信号位置感知的毫米波波束对齐方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111556460B (zh) * 2020-04-28 2021-07-13 西安交通大学 非理想毫米波无线供电通信无人机网络的功率分配方法
CN111953397B (zh) * 2020-05-20 2021-09-17 南京航空航天大学 一种面向自由信道的全双工无人机中继通信方法
CN111726813B (zh) * 2020-05-29 2023-04-28 西安邮电大学 一种空中微基站无线回传方法及无线通信系统
US11349550B2 (en) * 2020-08-21 2022-05-31 Huawei Technologies Co., Ltd. Systems and methods for angular direction indication in wireless communication
CN112188588B (zh) * 2020-08-27 2022-07-05 清华大学 基于无人机网络的近海中继通信传输效率优化方法
CN112636804B (zh) * 2020-11-12 2022-08-26 北京航空航天大学 一种基于毫米波阵列的多无人机基站协同传输方法
CN113034981B (zh) * 2021-04-14 2022-07-08 北京航空航天大学 一种不确定信道环境中多中继无人机航迹规划方法、系统及存储介质
CN113301532B (zh) * 2021-05-26 2022-04-26 中南大学 一种用于无人机辅助毫米波应急通信网的信道分配方法
CN114025361B (zh) * 2021-10-20 2023-08-15 北京航空航天大学 面向协同中继任务的多无人机网络拓扑构造与规划方法
CN114268903B (zh) * 2021-12-28 2022-09-30 北京航空航天大学 一种地理信息辅助的无人机中继位置部署以及功率分配方法
CN115348610B (zh) * 2022-10-18 2023-03-24 成都市以太节点科技有限公司 一种毫米波多链路自适应通信方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419286A (zh) * 2018-01-18 2018-08-17 北京邮电大学 一种面对5g无人机通信联合波束与功率的分配算法
CN109257089A (zh) * 2018-09-11 2019-01-22 北京航空航天大学 应用于大范围临空监视系统的远距离低仰角链路传输方法
CN109347530A (zh) * 2018-10-22 2019-02-15 北京航空航天大学 临空阵列通信非正交多址接入上行传输方法
US20190116605A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated Beam management schemes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365386B (zh) * 2019-07-10 2022-06-17 中国水利水电第四工程局有限公司 无人机的通信增强方法和无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190116605A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated Beam management schemes
CN108419286A (zh) * 2018-01-18 2018-08-17 北京邮电大学 一种面对5g无人机通信联合波束与功率的分配算法
CN109257089A (zh) * 2018-09-11 2019-01-22 北京航空航天大学 应用于大范围临空监视系统的远距离低仰角链路传输方法
CN109347530A (zh) * 2018-10-22 2019-02-15 北京航空航天大学 临空阵列通信非正交多址接入上行传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU LIPENG; ZHANG JUN; XIAO ZHENYU; CAO XIANBIN; WU DAPENG OLIVER; XIA XIANG-GEN: "3-D Beamforming for Flexible Coverage in Millimeter-Wave UAV Communications", IEEE WIRELESS COMMUNICATIONS LETTERS, vol. 8, no. 3, 1 June 2019 (2019-06-01), Piscataway, NJ, USA, pages 837 - 840, XP011730964, ISSN: 2162-2337, DOI: 10.1109/LWC.2019.2895597 *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316215B (zh) * 2021-07-13 2022-10-11 山东协和学院 基于无线能量的数据传输方法及系统
CN113541757A (zh) * 2021-07-13 2021-10-22 北京航空航天大学 一种基于毫米波波束赋形的无人机机间安全通信方法
CN113316215A (zh) * 2021-07-13 2021-08-27 山东协和学院 基于无线能量的数据传输方法及系统
CN113708886A (zh) * 2021-08-25 2021-11-26 中国人民解放军陆军工程大学 无人机抗干扰通信系统及联合轨迹与波束成形优化方法
CN113709883A (zh) * 2021-08-30 2021-11-26 北京邮电大学 一种多无人机辅助工业场景下的动态资源分配方法及装置
CN113709883B (zh) * 2021-08-30 2023-12-05 北京邮电大学 一种多无人机辅助工业场景下的动态资源分配方法及装置
CN114006645A (zh) * 2021-09-07 2022-02-01 西北工业大学 一种认知无人机中继辅助的安全传输方法及系统
CN113872655B (zh) * 2021-10-20 2023-03-21 上海交通大学 一种多播波束赋形快速计算方法
CN113872655A (zh) * 2021-10-20 2021-12-31 上海交通大学 一种多播波束赋形快速计算方法
CN114157333A (zh) * 2021-10-28 2022-03-08 电子科技大学长三角研究院(湖州) 一种新型的基于可重构智能表面的共生无线通信系统
CN114245448A (zh) * 2021-11-18 2022-03-25 国网福建省电力有限公司漳州供电公司 一种用于电力5g微基站的功率分配方法
CN114039652A (zh) * 2021-11-24 2022-02-11 西北大学 基于建筑物几何分析的毫米波抗阻挡多无人机部署方法
CN114039652B (zh) * 2021-11-24 2024-03-08 西北大学 基于建筑物几何分析的毫米波抗阻挡多无人机部署方法
CN114124264A (zh) * 2021-11-26 2022-03-01 江苏科技大学 基于智能反射面时变反射相位的无人机信道模型建立方法
CN114124264B (zh) * 2021-11-26 2023-09-22 江苏科技大学 基于智能反射面时变反射相位的无人机信道模型建立方法
CN114205050B (zh) * 2021-12-01 2024-04-09 南京理工大学 无人机隐蔽通信方法及装置
CN114205050A (zh) * 2021-12-01 2022-03-18 南京理工大学 无人机隐蔽通信方法及装置
CN113939032A (zh) * 2021-12-06 2022-01-14 中国通信建设第四工程局有限公司 一种无人机通信系统及无人机通信系统资源分配优化方法
CN113939032B (zh) * 2021-12-06 2024-06-07 中国通信建设第四工程局有限公司 一种无人机通信系统及无人机通信系统资源分配优化方法
CN114158010B (zh) * 2021-12-06 2024-06-07 中国通信建设第四工程局有限公司 无人机通信系统及基于神经网络的资源分配策略预测方法
CN114158010A (zh) * 2021-12-06 2022-03-08 中国通信建设第四工程局有限公司 无人机通信系统及基于神经网络的资源分配策略预测方法
CN114221726A (zh) * 2021-12-16 2022-03-22 浙江建德通用航空研究院 ka频段无人机通信系统的下行链路同频干扰表征方法
WO2023109108A1 (zh) * 2021-12-16 2023-06-22 中国矿业大学 基于全双工中继的uav空中计算系统及轨迹和功率优化方法
CN114221726B (zh) * 2021-12-16 2024-04-12 浙江建德通用航空研究院 ka频段无人机通信系统的下行链路同频干扰表征方法
RU2786043C1 (ru) * 2021-12-20 2022-12-16 Федеральное государственное казенное военное образовательное учреждение высшего образования "Санкт-Петербургский военный ордена Жукова институт войск национальной гвардии Российской Федерации" Способ разнесенной передачи
CN114285461A (zh) * 2021-12-31 2022-04-05 东南大学 一种移动中继辅助的高速宽带mimo传输方法
CN114285461B (zh) * 2021-12-31 2024-01-30 东南大学 一种移动中继辅助的高速宽带mimo传输方法
CN114553290A (zh) * 2022-01-07 2022-05-27 西安理工大学 基于mimo结构的无线紫外光通信跟踪保持方法
CN114337902B (zh) * 2022-01-19 2023-10-31 北京交通大学 一种irs辅助的毫米波多小区间干扰的抑制方法
CN114337902A (zh) * 2022-01-19 2022-04-12 北京交通大学 一种irs辅助的毫米波多小区间干扰的抑制方法
CN114554510A (zh) * 2022-01-25 2022-05-27 西北工业大学 一种无人机载基站下行链路最优决策参数配置方法
CN114554510B (zh) * 2022-01-25 2023-07-21 西北工业大学 一种无人机载基站下行链路最优决策参数配置方法
WO2023142802A1 (zh) * 2022-01-28 2023-08-03 广东省新一代通信与网络创新研究院 无人机中继系统的调度、轨迹和功率的联合优化方法
CN114665947B (zh) * 2022-02-24 2023-07-25 南京邮电大学 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法
CN114665947A (zh) * 2022-02-24 2022-06-24 南京邮电大学 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法
CN114745031A (zh) * 2022-03-10 2022-07-12 西安电子科技大学 一种全双工mimo物理层安全传输方法
CN114745031B (zh) * 2022-03-10 2024-03-01 西安电子科技大学 一种全双工mimo物理层安全传输方法
CN115037337A (zh) * 2022-06-09 2022-09-09 北京信息科技大学 一种智能反射面驱动的多用户协同传输方法
CN115118315A (zh) * 2022-06-15 2022-09-27 国家工业信息安全发展研究中心 一种低复杂度的通信网络系统、方法和可读介质
CN115209422B (zh) * 2022-06-17 2024-05-24 北京邮电大学 一种密集城区下无人机基站协同组网参数配置方法
CN115209422A (zh) * 2022-06-17 2022-10-18 北京邮电大学 一种密集城区下无人机基站协同组网参数配置方法
CN115189801A (zh) * 2022-06-29 2022-10-14 安徽农业大学 一种无人机网络中人工噪声增强的隐蔽通信设计方法
CN115189801B (zh) * 2022-06-29 2024-04-12 安徽农业大学 一种无人机网络中人工噪声增强的隐蔽通信设计方法
CN115173914A (zh) * 2022-07-15 2022-10-11 南通大学 一种多智能反射面辅助通信主被动波束赋形迭代优化方法
CN115173914B (zh) * 2022-07-15 2023-12-26 南通大学 一种多智能反射面辅助通信主被动波束赋形迭代优化方法
CN115225142B (zh) * 2022-07-18 2023-09-26 中国人民解放军国防科技大学 多无人机通信中用户匹配与频谱资源联合优化方法及系统
CN115225142A (zh) * 2022-07-18 2022-10-21 中国人民解放军国防科技大学 多无人机通信中用户匹配与频谱资源联合优化方法及系统
CN115276747B (zh) * 2022-07-20 2024-05-03 华北电力大学(保定) 无人机辅助无线通信系统中位置和波束向量联合优化方法
CN115276747A (zh) * 2022-07-20 2022-11-01 华北电力大学(保定) 无人机辅助无线通信系统中位置和波束向量联合优化方法
CN115473560B (zh) * 2022-08-29 2024-02-06 西安电子科技大学 无人机通信雷达一体全双工中继传输系统、中继方法及节点
CN115473560A (zh) * 2022-08-29 2022-12-13 西安电子科技大学 无人机通信雷达一体全双工中继传输系统、中继方法及节点
CN115694602A (zh) * 2022-09-26 2023-02-03 电子科技大学 一种毫米波全双工无人机通信系统的联合优化方法
CN116709255B (zh) * 2023-08-04 2023-10-31 中国人民解放军军事科学院系统工程研究院 一种不完全信息条件下的中继无人机分布式选择方法
CN116709255A (zh) * 2023-08-04 2023-09-05 中国人民解放军军事科学院系统工程研究院 一种不完全信息条件下的中继无人机分布式选择方法
CN116744344B (zh) * 2023-08-15 2023-11-14 南京邮电大学 无人机主动通信监测优化方法、装置、系统及存储介质
CN116744344A (zh) * 2023-08-15 2023-09-12 南京邮电大学 一种通信监测优化方法、装置、系统及存储介质
CN117200845A (zh) * 2023-09-12 2023-12-08 深圳大学 一种基于低频信号位置感知的毫米波波束对齐方法

Also Published As

Publication number Publication date
CN111010223A (zh) 2020-04-14
CN111010223B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2021120425A1 (zh) 一种毫米波全双工无人机通信中继传输方法
Zhu et al. Millimeter-wave full-duplex UAV relay: Joint positioning, beamforming, and power control
Zhang et al. A survey on 5G millimeter wave communications for UAV-assisted wireless networks
CN113973305B (zh) 搭载于无人机上的智能反射面位置和波束联合优化方法
CN110266362B (zh) 一种基于毫米波的星群多波束接收的干扰抑制方法
CN113873575B (zh) 智能反射面辅助的非正交多址无人机空地通信网络节能优化方法
CN109586773B (zh) 临空通信毫米波非正交多址接入技术联合收发端波束赋形及功率分配方法
US7248897B2 (en) Method of optimizing radiation pattern of smart antenna
CN110535518B (zh) 一种宽波束发射波束形成优化设计方法
Alluhaibi et al. Capacity maximisation for hybrid digital-to-analog beamforming mm-wave systems
Liu et al. Access points in the air: Modeling and optimization of fixed-wing UAV network
CN110650525B (zh) 一种多波束分配功率mac协议通信方法
Mahmood et al. Spherical array-based joint beamforming and UAV positioning in massive MIMO systems
Yao et al. Multi-beam on-demand power allocation MAC protocol for MIMO terahertz communication networks
CN114630297B (zh) 一种携带智能反射面的无人机中继的位置优化方法
CN101783699B (zh) 多用户mimo系统中下行链路的信号发射方法和装置
CN114665947B (zh) 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法
CN116667890A (zh) 一种去蜂窝大规模mimo下行抗窃听传输方法
Prabhath et al. Intelligent reflecting surface orientation optimization to enhance the performance of wireless communications systems
Su et al. Energy Efficiency Optimization for D2D communications in UAV-assisted Networks with SWIPT
Ahmed et al. Maximizing Mobile Communication Efficiency with Smart Antenna Systems using Beam forming and DOA Algorithms
Cao et al. RIS-Assisted Coverage Extension for LEO Satellite Communication in Blockage Scenarios
Liu et al. Connectivity analysis of UAV-to-satellite communications in non-terrestrial networks
Okada et al. A study on antenna polarization plane for UL/DL drone access network
WO2022050187A1 (ja) 無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901345

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20901345

Country of ref document: EP

Kind code of ref document: A1