WO2021120104A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021120104A1
WO2021120104A1 PCT/CN2019/126629 CN2019126629W WO2021120104A1 WO 2021120104 A1 WO2021120104 A1 WO 2021120104A1 CN 2019126629 W CN2019126629 W CN 2019126629W WO 2021120104 A1 WO2021120104 A1 WO 2021120104A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
conductive structure
substrate
orthographic projection
inclined portion
Prior art date
Application number
PCT/CN2019/126629
Other languages
English (en)
French (fr)
Inventor
石博
徐元杰
宋文华
李挺
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2019/126629 priority Critical patent/WO2021120104A1/zh
Priority to US17/040,238 priority patent/US11378846B2/en
Priority to CN201980003155.1A priority patent/CN113287062B/zh
Publication of WO2021120104A1 publication Critical patent/WO2021120104A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element

Definitions

  • the embodiments of the present disclosure relate to a display substrate, a preparation method thereof, and a display device.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the color filter substrate and the array substrate need to be bonded together.
  • the array substrate and the color filter substrate are bonded together by the frame sealing glue, and silicon balls, silicon balls, etc. need to be added to the frame sealing glue.
  • Supports such as glass fiber are used to support the cell thickness of the liquid crystal panel.
  • the frame sealant not only plays the role of bonding the array substrate and the color film substrate and supporting the thickness of the box, but also used to seal the liquid crystal.
  • the coating range of the frame sealant is around the color film substrate, that is, outside the display area In the frame sealant area. Therefore, the frame sealant is a key material in the cell manufacturing process of thin film transistor liquid crystal displays.
  • At least one embodiment of the present disclosure provides a display substrate.
  • the display substrate includes a work area and a sealant setting area located outside the work area.
  • the display substrate further includes a base substrate, which is arranged on the liner.
  • the first conductive structure on the first side of the base substrate, and the second conductive structure disposed on the side of the first conductive structure away from the base substrate; the first conductive structure and the second conductive structure Are located in the area where the sealant is set;
  • the second conductive structure includes at least an inclined portion inclined with respect to the main surface of the base substrate, and the inclined portion is configured to make the The light incident on the inclined portion on the second side opposite to the first side is at least partially emitted from directly above the first conductive structure after being reflected by the inclined portion.
  • the orthographic projection of the inclined portion on the base substrate and the orthographic projection of the first conductive structure on the base substrate at least partially overlap.
  • the first conductive structure includes a first inclined surface, the first inclined surface is inclined with respect to the main surface of the base substrate, and the inclined portion is located at the The orthographic projection on the base substrate and the orthographic projection of the first inclined surface on the base substrate at least partially overlap.
  • the display substrate provided by at least one embodiment of the present disclosure further includes a boss provided on the base substrate, wherein the surface of the boss away from the base substrate is on the base substrate.
  • the orthographic projection is located in the orthographic projection of the surface of the boss close to the base substrate on the base substrate; the portion corresponding to the first inclined surface is provided on the first side surface of the boss .
  • the second conductive structure includes a first part and a second part arranged in a direction parallel to the main surface of the base substrate, and the first part and the second part are arranged in a direction parallel to the main surface of the base substrate.
  • Each of the second parts includes the inclined portion.
  • the first part and the second part are spaced apart from each other, and the orthographic projection of the first conductive structure on the base substrate is located at the edge of the first part.
  • the orthographic projection of the end of the inclined part close to the base substrate on the base substrate and the end of the second part of the inclined part close to the base substrate are on the base substrate. Between the orthographic projections on the substrate.
  • the orthographic projection of the first conductive structure on the base substrate and the orthographic projection of the inclined portion of the first part on the base substrate The projections at least partially overlap, and/or the orthographic projection of the first conductive structure on the base substrate and the orthographic projection of the inclined portion of the second part on the base substrate at least partially overlap.
  • the orthographic projection of the first conductive structure on the base substrate is located between the orthographic projection of the first part on the base substrate and the second The two parts are between the orthographic projections on the base substrate.
  • the first conductive structure includes a first inclined surface and a second inclined surface in a direction parallel to the base substrate, and the first inclined surface And the second inclined surface is inclined with respect to the main surface of the base substrate.
  • the display substrate provided by at least one embodiment of the present disclosure further includes a boss provided on the base substrate, wherein the surface of the boss away from the base substrate is on the front surface of the base substrate.
  • the projection is located in the orthographic projection of the surface of the boss close to the base substrate on the base substrate; the portion corresponding to the first inclined surface is disposed on the first side surface of the boss, so The portion corresponding to the second inclined surface is provided on a second side surface of the boss opposite to the first side surface.
  • the portion corresponding to the first inclined surface is parallel to the inclined portion of the first portion, and the portion corresponding to the second inclined surface is parallel to the The inclined portions of the second part are parallel.
  • an insulating layer is provided between the first conductive structure and the second conductive structure,
  • the insulating layer has a protrusion protruding to a side away from the base substrate; the orthographic projection of the surface of the protrusion away from the base substrate on the base substrate is on the protrusion
  • the surface of the part close to the base substrate is in an orthographic projection on the base substrate; the inclined part is provided on the side surface of the convex part.
  • the first part and the second part are connected to each other; the first conductive structure includes a first conductive structure that is spaced apart from each other in a direction parallel to the base substrate.
  • the third part and the fourth part are connected to each other; the first conductive structure includes a first conductive structure that is spaced apart from each other in a direction parallel to the base substrate.
  • the orthographic projection of the end of the inclined portion of the first part away from the base substrate on the base substrate is on the third part
  • the orthographic projection of the end of the inclined portion of the second part away from the base substrate on the base substrate is in the orthographic projection of the fourth part on the base substrate. In the orthographic projection on the base substrate.
  • the orthographic projection of the second conductive structure on the base substrate is located between the orthographic projection of the third part on the base substrate and the The fourth part is between the orthographic projections on the base substrate.
  • an insulating layer is provided between the first conductive structure and the second conductive structure,
  • the insulating layer has a recessed portion recessed toward the side close to the base substrate; on a plane perpendicular to the main surface of the base substrate, the cross-sectional shape of the recessed portion is a trapezoid, and the trapezoid is far away
  • the side length of the side of the base substrate is greater than the side length of the side of the trapezoid close to the base substrate; the inclined portion of the first part is disposed on the first side surface of the recessed part, and the second part
  • the inclined portion of is provided on a second side surface of the recessed portion opposite to the first side surface.
  • the included angle between the inclined portion and the normal line of the main surface of the base substrate passing through the end portion is 20° to 80°.
  • the included angle between the inclined portion and the normal line of the main surface of the base substrate passing through the end portion is 40°-60°.
  • the light incident on the inclined portion from the second side of the base substrate opposite to the first side and the substrate is vertical.
  • a first electrode and a second electrode are provided in the working area, the first conductive structure and the first electrode are formed by the same patterning process, and The second conductive structure and the second electrode are formed by the same patterning process.
  • a thin film transistor is provided in the working area, and the thin film transistor includes a gate electrode and a source electrode/drain electrode; the first electrode is the gate electrode, The second electrode is the source electrode/drain electrode; or, the first electrode is the source electrode/drain electrode, and the second electrode is the gate.
  • the first conductive structure and the second conductive structure are configured to transmit data signals, gate scan signals, common electrode signals, clock signals, and gate control signals. , GOA forward scan signal, GOA reverse scan signal or trigger signal.
  • At least one embodiment of the present disclosure further provides a display device, which includes the display substrate described in any one of the above and an opposing substrate that is boxed with the display substrate, wherein the display substrate and the opposing substrate The substrate is connected by the frame sealant disposed in the frame sealant setting area. In a direction perpendicular to the base substrate, the first conductive structure and the second conductive structure are located between the base substrate and the base substrate. Between the frame sealing glue.
  • At least one embodiment of the present disclosure also provides a method for preparing a display substrate, the display substrate including a work area and a frame sealant setting area located outside the work area, and the preparation method includes: providing a base substrate; A first conductive structure is formed on the first side of the base substrate; a second conductive structure is formed on the side of the first conductive structure away from the base substrate; wherein, the first conductive structure and the second conductive structure
  • the conductive structures are all located in the area where the frame sealant is set;
  • the second conductive structure includes at least an inclined portion that is inclined with respect to the main surface of the base substrate, and the inclined portion is configured to make the AND from the base substrate
  • the light incident on the inclined portion from the second side opposite to the first side is at least partially emitted from directly above the first conductive structure after being reflected by the inclined portion.
  • the method before forming the first conductive structure, further includes forming a boss on the base substrate, and the boss is far from the liner.
  • the orthographic projection of the surface of the base substrate on the base substrate is located in the orthographic projection of the surface of the boss close to the base substrate on the base substrate, and the first surface of the base substrate is Forming the first conductive structure on one side includes: forming the first conductive structure on the surface of the boss.
  • the preparation method provided by at least one embodiment of the present disclosure further includes: after forming the first conductive structure and before forming the second conductive structure, forming an insulating layer on the first conductive structure, wherein: The insulating layer has a protrusion protruding to a side away from the base substrate; the orthographic projection of the surface of the protrusion away from the base substrate on the base substrate is on the protrusion The surface of the part close to the base substrate is in an orthographic projection on the base substrate; the inclined part is provided on the side surface of the convex part.
  • the preparation method provided by at least one embodiment of the present disclosure further includes: after forming the first conductive structure and before forming the second conductive structure, forming an insulating layer on the first conductive structure, wherein:
  • the first conductive structure includes a third portion and a fourth portion that are spaced apart from each other in a direction parallel to the base substrate;
  • the insulating layer has a recessed portion that is recessed toward a side close to the base substrate;
  • the orthographic projection of the surface of the recessed portion close to the base substrate on the base substrate is within the orthographic projection of the surface of the recessed portion away from the base substrate on the base substrate;
  • the inclined portion is provided on the side surface of the recessed portion.
  • FIG. 1 is a schematic diagram of a planar structure of a display substrate
  • Fig. 2 is a schematic diagram of a cross-sectional structure formed by cutting A-A' in Fig. 1;
  • FIG. 3 is a schematic diagram of a planar structure of another display substrate
  • Fig. 4 is a schematic diagram of a cross-sectional structure formed by cutting B-B' in Fig. 3;
  • 5A is a schematic diagram of a cross-sectional structure of a display substrate provided by an embodiment of the present disclosure
  • 5B is a schematic cross-sectional structure diagram of still another display substrate provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a manufacturing method of a display substrate provided by an embodiment of the disclosure.
  • the market has higher and higher requirements for curved display, and the curved display panel is usually made by bending the panel after being thinned.
  • the adhesiveness of the frame sealant included in the display panel will be affected.
  • the frame sealant is prone to breakage under the condition of mechanical vibration. ), the sealant on the four corners of the display panel is likely to fall off.
  • the peeling of the frame sealant will have a serious impact on the display panel, for example, it is easy to cause liquid crystal leakage in the liquid crystal display panel. Therefore, it is necessary to enhance the cohesiveness of the frame sealant.
  • the higher the curability of the frame sealant the stronger the cohesiveness. Therefore, it is necessary to improve the curing performance of the frame sealant.
  • the main components of commonly used sealant are epoxy resin and acrylic resin.
  • epoxy resin is a thermosetting resin
  • acrylic resin is a light-curing resin.
  • Acrylic resin needs to be cured by ultraviolet light.
  • the light curing ability can increase the proportion of the hollow area between the signal traces at the coating position of the frame sealant, so that more ultraviolet light is irradiated to the frame sealant.
  • the width of the metal wire is usually narrowed or the number of the metal wire is reduced to increase the proportion of the hollow area between the signal traces at the position where the sealant is applied. However, this will cause the metal wire The resistance becomes larger, thereby affecting the conductive properties of the metal wire.
  • FIG. 1 is a schematic diagram of a plan structure of a display substrate
  • FIG. 2 is a schematic diagram of a cross-sectional structure formed by cutting A-A' in FIG. Metal trace 02, the lower metal trace 02 is provided with an insulating layer 04, and the insulation layer 04 is provided with an upper metal trace 03, and the upper metal traces 03 are separated from each other in a direction parallel to the main surface of the base substrate 01 And two opposite parts.
  • the orthographic projection of the upper metal trace 03 on the base substrate 01 and the orthographic projection of the lower metal trace 02 on the base substrate 01 have overlapping parts, and they are incident from the side of the base substrate 01 away from the lower metal trace 02
  • the light cannot pass through the lower metal trace 02, so that the light cannot reach the frame sealant setting area directly above the lower metal trace 02 to irradiate the frame sealant, which affects the adhesion of the frame sealant and causes the mechanical vibration Under conditions, the sealant is prone to breakage or fall off.
  • orthographic projection of the upper metal trace 03 on the base substrate 01 and the orthographic projection of the lower metal trace 02 on the base substrate 01 can only intersect without The overlapped part, or the orthographic projection of the upper metal trace 03 on the base substrate 01 and the orthographic projection of the lower metal trace 02 on the base substrate 01 may not intersect and have no overlapping part, which is not limited here.
  • FIG. 3 is a schematic diagram of a plane structure of another display substrate
  • FIG. 4 is a schematic diagram of a cross-sectional structure formed by cutting B-B' in FIG. 3, as shown in combination with FIG. 3 and FIG. 4, the base substrate 01 is provided with
  • the lower metal wiring 02 is provided with an insulating layer 04 on the lower metal wiring 02
  • an upper metal wiring 03 is provided on the insulating layer 04.
  • the lower metal wiring 02 includes two parts spaced apart and opposed to each other.
  • the orthographic projection of the upper metal trace 03 on the base substrate 01 and the orthographic projection of the lower metal trace 02 on the base substrate 01 have overlapping parts, and they are incident from the side of the base substrate 01 away from the lower metal trace 02
  • the light cannot pass through the lower metal trace 02, so that the light cannot reach the frame sealant setting area directly above the lower metal trace 02 to irradiate the frame sealant, which affects the adhesion of the frame sealant and causes the mechanical vibration Under certain conditions, the sealant is prone to breakage or fall off.
  • orthographic projection of the upper metal trace 03 on the base substrate 01 and the orthographic projection of the lower metal trace 02 on the base substrate 01 may only intersect without overlapping parts, or the upper metal trace 03
  • the orthographic projection on the base substrate 01 and the orthographic projection of the lower metal trace 02 on the base substrate 01 may not intersect and have no overlapping parts, which are not limited here.
  • the display panel includes a work area and a frame sealant setting area located outside the work area.
  • the display substrate further includes: a base substrate and a first substrate disposed on the base substrate.
  • the first conductive structure on the side and the second conductive structure disposed on the side of the first conductive structure away from the base substrate; the first conductive structure and the second conductive structure are both located in the sealant setting area;
  • the second conductive structure is at least It includes an inclined part inclined with respect to the main surface of the base substrate, and the inclined part is configured such that the light incident on the inclined part from the second side of the base substrate opposite to the first side is reflected by the inclined part at least partially from the first conductive
  • the structure is emitted right above, so that at least part of the light incident from the second side of the base substrate opposite to the first side can reach the frame seal setting area directly above the first conductive structure and irradiate the frame sealant.
  • the adhesiveness of the frame sealant is improved, so that the frame sealant is not prone
  • the inclined portion of the second conductive structure and the first conductive structure are disposed in the sealant setting area, and it is not limited to the entire second conductive structure and the first conductive structure are all disposed in the sealant setting area.
  • the outer side of the working area is not limited to the outer edge of the display substrate, but may also be the middle area of the display substrate.
  • the central punching area is used as the working area, and the periphery of the central punching area may also be called the working area. Outside.
  • FIG. 5A is a schematic cross-sectional structure diagram of a display substrate provided by an embodiment of the present disclosure.
  • the display panel 100 includes a working area 100a and a sealant setting area 100b located outside the working area 100a, wherein,
  • the display substrate 100 further includes: a base substrate 101, a first conductive structure 102 disposed on a first side of the base substrate 101, and a second conductive structure 102 disposed on a side of the first conductive structure 102 away from the base substrate 101.
  • the first conductive structure 102 and the second conductive structure 103 are both located in the sealant setting area 100b;
  • the second conductive structure 103 includes at least an inclined portion 1031 inclined with respect to the main surface of the base substrate 101, and the inclined portion 1031 is configured as The light incident on the inclined portion 1031 from the second side of the base substrate 101 opposite to the first side is at least partially emitted from directly above the first conductive structure 102 after being reflected by the inclined portion 1031.
  • the display substrate with the above structure can realize that at least part of the light incident from the second side of the base substrate 101 opposite to the first side reaches the sealant setting area 100b directly above the first conductive structure 102 to irradiate the sealant ( (Not shown in the figure), which further improves the adhesion of the frame sealant, so that the frame sealant is not prone to breakage or fall off under the condition of mechanical vibration.
  • the materials of the first conductive structure 102 and the second conductive structure 103 may be conductive metals that reflect light.
  • the external light source is a line light source, which can ensure the uniformity of the incident light, so that the uniformity of the light irradiated to the frame sealing compound setting area 100b can be realized as a whole, and the uniformity of the final frame sealing compound can be guaranteed Therefore, the light incident from the second side of the base substrate 101 opposite to the first side to the inclined portion 1031 can be made perpendicular to the main surface of the base substrate 101.
  • a black matrix is provided on the opposing substrate of the box to the display substrate 100.
  • the black matrix is set on the sealant (not shown) away from the base substrate.
  • the light cannot be incident from the side where the black matrix is set, otherwise most of the light will be blocked, so that the light can reach the frame sealant and cannot play the role of curing the frame sealant.
  • the "inclined portion inclined with respect to the main surface of the base substrate” means that the inclined portion and the main surface of the base substrate are neither parallel nor perpendicular. That is, the angle between the inclined portion and the main surface of the base substrate may be (0°, 90°) or (90°, 180°).
  • the method of the inclined portion 1031 and the main surface of the base substrate 101 passing through the end is an acute angle.
  • the first conductive structure 102 and the second conductive structure 103 are located between the base substrate 101 and the sealant to be set in the sealant setting area 100b.
  • the orthographic projection of the inclined portion 1031 on the base substrate 101 and the orthographic projection of the first conductive structure 102 on the base substrate 101 at least partially overlap.
  • This structural design can more fully reflect light. Therefore, the light emitted from directly above the first conductive structure 102 increases.
  • the first conductive structure 102 includes a first inclined surface 102a.
  • the first inclined surface 102a is inclined with respect to the main surface of the base substrate 101.
  • the orthographic projection of the inclined portion 1031 on the base substrate 101 and the second The orthographic projection of an inclined surface 102a on the base substrate 101 at least partially overlaps.
  • the light C1 incident from the second side of the base substrate 101 opposite to the first side to the position C2 of the inclined portion 1031 of the second conductive structure 103 is reflected by the inclined portion 1031 and reaches the first The C3 position on the conductive structure 102, then the light is reflected by the first conductive structure 102 at the C3 position, and then at least partly exits from the C4 position directly above the first conductive structure 102, to the sealant setting area 100b, and finally irradiates the first conductive structure.
  • a conductive structure 102 is directly above the frame sealant.
  • FIG. 5B is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • the display substrate 100 further includes a boss 105 disposed on the base substrate 101, and the boss 105
  • the orthographic projection of the surface far away from the base substrate 101 on the base substrate 101 is located within the orthographic projection of the surface of the boss 105 close to the base substrate 101 on the base substrate 101; the corresponding part of the first inclined surface 102a is set in On the first side surface of the boss 105.
  • the boss 105 provides support for the first conductive structure 102, and the first inclined surface 102 a of the first conductive structure 102 is overlapped on the first side surface of the boss 105.
  • the first inclined surface 102 a is inclined with respect to the main surface of the base substrate 101.
  • the first conductive structure 102 with this structure can ensure that the total length of the first conductive structure 102 remains unchanged, that is, when the resistance of the first conductive structure 102 remains unchanged, so that the first conductive structure 102 can be shielded as little as possible.
  • the light makes as much light as possible enter the sealant setting area 100b.
  • FIG. 6 is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • the second conductive structure 103 includes a first portion 103 a and a second portion 103 b arranged in a direction parallel to the main surface of the base substrate 101, and both the first portion 103 a and the second portion 103 b include an inclined portion 1031.
  • the inclined portion 1031 of the first portion 103a and the inclined portion 1031 of the second portion 103b both enter the inclined portion 1031 from the second side of the base substrate 101 opposite to the first side and are perpendicular to the main surface of the base substrate 101.
  • the light from above is reflected, so that more light is emitted from directly above the first conductive structure 102 to the sealant setting area 100b.
  • the light rays perpendicular to the main surface of the base substrate 101 may be that the direction of light incidence is substantially perpendicular to the main surface of the base substrate 101, for example, the direction of light incidence is substantially perpendicular to the main surface of the base substrate 101.
  • the angle of the main surface of 80°-100° can be regarded as the direction of the light incident perpendicular to the main surface of the base substrate 101.
  • light incident on the inclined portion 1031 from the second side of the base substrate 101 opposite to the first side is reflected by the inclined portion 1031 and then reaches the first conductive structure 102 and is reflected by the first conductive structure 102 Then, at least part of the light exits from directly above the first conductive structure 102.
  • the light C1 incident at the position C2 of the inclined portion 1031 of the first portion 103a of the second conductive structure 103 from the second side of the base substrate 101 opposite to the first side is reflected by the inclined portion 1031
  • the light is reflected by the first conductive structure 102 at the position C3 and then at least partly exits from the position C4 directly above the first conductive structure 102 to the sealant setting area 100b, Finally, it is irradiated onto the sealant directly above the first conductive structure 102.
  • the light D1 incident at the position D2 of the inclined portion 1031 of the second portion 103b of the second conductive structure 103 from the second side of the base substrate 101 opposite to the first side passes through the inclined portion 1031. After reflection, it reaches the D3 position on the first conductive structure 102, and then the light reaches the D4 position of the inclined portion 1031 of the second portion 103b after being reflected by the first conductive structure 102 at the D3 position, and then the light passes through the tilt at the D4 position
  • the portion 1031 reflects and reaches the D5 position on the first conductive structure 102, and then the light is reflected again at the D5 position through the first conductive structure 102 and then at least partially exits from the D6 position directly above the first conductive structure 102 to the sealant
  • the setting area 100b is finally irradiated onto the sealant directly above the first conductive structure 102.
  • the number of times that light incident from the second side of the base substrate 101 opposite to the first side to the inclined portion 1031 of the second conductive structure 103 passes through the first conductive structure 102 and the second conductive structure 103 is not limited. As long as it is satisfied that at least part of the light is emitted from directly above the first conductive structure 102 and reaches the sealant setting area 100b directly above the first conductive structure 102, it is irradiated to the sealant (not shown in the figure).
  • the reflection of light by the second conductive structure 103 may also include the reflection of light by other parts except the inclined portion.
  • the first portion 103a and the second portion 103b included in the second conductive structure 103 are spaced apart from each other in a direction parallel to the base substrate 101, and the first conductive structure 102 is
  • the orthographic projection on the base substrate 101 is located at the end of the inclined portion 1031 of the first portion 103a that is close to the base substrate 101.
  • the orthographic projection on the base substrate 101 and the inclined portion 1031 of the second portion 103b near the base substrate 101 The ends are between the orthographic projections on the base substrate 101, so that the orthographic projection of the first conductive structure 102 on the base substrate 101 is located on the first portion 103a and the second portion 103b of the second conductive structure 103 on the substrate.
  • the light incident on the inclined portion 1031 from the second side of the base substrate 101 opposite to the first side is at least partially reflected from the first conductive structure 102 after being reflected by the inclined portion 1031.
  • first portion 103a and the second portion 103b included in the second conductive structure 103 are electrically connected in the entire circuit.
  • the orthographic projection of the first conductive structure 102 on the base substrate 101 and the orthographic projection of the inclined portion 1031 of the first portion 103 a included in the second conductive structure 103 on the base substrate 101 at least partially overlap.
  • the orthographic projection of the first conductive structure 102 on the base substrate 101 and the orthographic projection of the inclined portion 1031 of the second portion 103b included in the second conductive structure 103 on the base substrate 101 at least partially overlap. .
  • it may be the orthographic projection of the first conductive structure 102 on the base substrate 101, the orthographic projection of the inclined portion 1031 of the first portion 103a included in the second conductive structure 103 on the base substrate 101, and the orthographic projection of the second conductive structure 103 on the base substrate 101.
  • the orthographic projections of the inclined portion 1031 of the second portion 103b on the base substrate 101 all have overlapping areas.
  • the orthographic projection of the first conductive structure 102 on the base substrate 101 and the orthographic projection of the inclined portion 1031 of the first portion 103a of the second conductive structure 103 on the base substrate 101 and/or the inclined portion 1031 of the second portion 103b can reflect light more fully, so that the light emitted from directly above the first conductive structure 102 increases.
  • the cross-sectional shape of the first conductive structure 102 is a regular trapezoid, such as an isosceles trapezoid. If the process conditions permit, the first conductive structure 102 can be set to have a triangular cross-sectional shape, for example, an isosceles triangle, a right-angled triangle, and the like.
  • an insulating layer 104 is also provided between the first conductive structure 102 and the second conductive structure 103.
  • the first conductive structure 102 and the second conductive structure 103 are electrically isolated.
  • the insulating layer 104 has a protrusion protruding to the side away from the base substrate 101, and the orthographic projection of the surface of the protrusion away from the base substrate 101 on the base substrate 101 is on the protrusion near the base substrate 101.
  • the surface of is in the orthographic projection on the base substrate 101, and the insulating layer 104 has a first surface and a second surface that are inclined with respect to the main surface of the base substrate 101, and the second conductive structure 103 includes the inclined portion of the first portion 103a 1031 is overlapped on the first surface of the insulating layer 104, and the inclined portion 1031 of the second portion 103b included in the second conductive structure 103 is overlapped on the second surface of the insulating layer 104.
  • FIG. 7 is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • the orthographic projection of the first conductive structure 102 on the base substrate 101 is located on the second conductive structure 103. Between the orthographic projection of the part 103 a on the base substrate 101 and the orthographic projection of the second part 103 b on the base substrate 101.
  • the orthographic projection of the first conductive structure 102 on the base substrate 101 and the inclined portion 1031 of the first portion 103a of the second conductive structure 103, the second conductive structure 103 The orthographic projection of the inclined portion 1031 of the second part 103b on the base substrate 101 does not overlap, and does not overlap the whole of the first part 103a and the second part 103b, that is, it can be realized that the first conductive structure 102 basically has The light is emitted, and the light is not blocked by the second conductive structure 103, thereby increasing the amount of light emitted from directly above the first conductive structure 102.
  • FIG. 8 is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • the display substrate 100 further includes a boss 105 disposed on the base substrate 101, and the orthographic projection of the surface of the boss 105 away from the base substrate 101 on the base substrate 101 is located on the boss 105
  • the surface close to the base substrate 101 is in the orthographic projection on the base substrate 101, the portion corresponding to the first inclined surface 102a of the first conductive structure 102 is disposed on the first side surface of the boss 105, and the first conductive structure 102 is located on the first side surface of the boss 105.
  • the portions corresponding to the two inclined surfaces 102b are provided on the second side surface of the boss 105 opposite to the first side surface.
  • the boss 105 provides support for the first conductive structure 102, the first inclined surface 102a of the first conductive structure 102 overlaps the first side surface of the boss 105, and the second inclined surface of the first conductive structure 102 102b overlaps on the second side surface of the boss 105.
  • the first conductive structure 102 includes a first inclined surface 102a and a second inclined surface 102b arranged in a direction parallel to the main surface of the base substrate 101, the first inclined surface 102a and the second inclined surface 102a.
  • the surface 102b is inclined with respect to the main surface of the base substrate 101.
  • the first conductive structure 102 with this structure can ensure that the total length of the first conductive structure 102 remains unchanged, that is, when the resistance of the first conductive structure 102 remains unchanged, so that the first conductive structure 102 can be shielded as little as possible.
  • the light makes as much light as possible enter the sealant setting area 100b.
  • the material of the boss 105 is an inorganic insulating material, and the formation of the boss 105 does not require additional process steps.
  • an inorganic insulating layer will be added between the base substrate and the gate. This inorganic insulation can be achieved through a patterning process.
  • the layer can include the boss 105.
  • the first inclined surface 102a of the first conductive structure 102 and the inclined portion 1031 of the first portion 103a of the second conductive structure 103 are parallel, and the second inclined surface of the first conductive structure 102
  • the surface 102b is parallel to the inclined portion 1031 of the second portion 103b of the second conductive structure 103.
  • the design of this structure can make it more convenient for the light incident on the inclined portion 1031 from the second side of the base substrate 101 opposite to the first side to reach the first conductive structure 102 after being reflected by the inclined portion 1031 and pass through the first conductive structure. After reflection 102, at least part of it exits directly above the first conductive structure 102.
  • FIG. 9 is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • the first portion 103a and the second portion 103b of the second conductive structure 103 are connected to each other, and the first conductive structure 102 includes a third part 1021 and a fourth part 1022 spaced apart from each other in a direction parallel to the base substrate 101.
  • the end of the inclined portion 1031 of the first portion 103a of the second conductive structure 103 far from the base substrate 101 is projected on the base substrate 101 in orthographic projection on the third portion 1021 of the first conductive structure 102.
  • the end of the inclined portion 1031 of the second portion 103b of the second conductive structure 103 far from the base substrate 101 is projected on the base substrate 101 in the orthographic projection of the first conductive structure 102
  • the fourth part 1022 is in the orthographic projection on the base substrate 101.
  • the design of this structure can be more convenient for the light incident on the inclined portion 1031 from the second side of the base substrate 101 opposite to the first side through the inclined portion 1031.
  • the first conductive structure 102 After reflection, it reaches the first conductive structure 102, and after being reflected by the first conductive structure 102, it is at least partially emitted from directly above the first conductive structure 102, or more conveniently from the second side of the base substrate 101 opposite to the first side At least part of the light incident on the inclined portion 1031 exits directly above the first conductive structure 102.
  • the light F1 incident at the position F2 of the inclined portion 1031 of the first portion 103a of the second conductive structure 103 from the second side of the base substrate 101 opposite to the first side is reflected by the inclined portion 1031
  • the light is reflected by the first conductive structure 102 at the F3 position, and then at least partly exits from the F4 position directly above the first conductive structure 102 to the sealant setting area 100b, Finally, it is irradiated onto the sealant directly above the first conductive structure 102.
  • the light G1 incident at the position G2 of the inclined portion 1031 of the second portion 103b of the second conductive structure 103 from the second side of the base substrate 101 opposite to the first side passes through the inclined portion 1031. After the reflection, at least part of it directly exits from the position G3 directly above the first conductive structure 102 to the sealant setting area 100b, and finally irradiates the sealant directly above the first conductive structure 102.
  • FIG. 10 is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • the orthographic projection of the entire second conductive structure 103 on the base substrate 101 is located on the first conductive structure 102.
  • the design of this structure can reduce the shielding of the first conductive structure by the second conductive structure , So that the light emitted from directly above the first conductive structure 102 increases.
  • an insulating layer 104 is provided between the first conductive structure 102 and the second conductive structure 103. It has a recessed portion that is recessed toward the side close to the base substrate 101.
  • the cross-sectional shape of the recess is a trapezoid, and the side of the trapezoid away from the base substrate 101 is longer than the side of the trapezoid close to the base substrate 101. long.
  • the inclined portion 1031 of the first portion 103a of the second conductive structure 103 is provided on the first side surface of the recessed portion, and the inclined portion 1031 of the second portion 103b of the second conductive structure 103 is provided on the first side surface of the recessed portion. On the opposite second side surface.
  • the included angle of the normal of the main surface is 20° ⁇ 80°.
  • the included angle ⁇ in Fig. 7 is 20° ⁇ 80°; as shown in Fig. 10, the included angle ⁇ in Fig. 10 It is 20° ⁇ 80°.
  • the included angle of the normal of the main surface is 40°-60°.
  • the included angle ⁇ in Fig. 7 is 40°-60°; as shown in Fig. 10, the included angle ⁇ in Fig. 10 It is 40° ⁇ 60°.
  • the angle is 40°, 45°, 50°, 55° or 60°.
  • the above-mentioned included angle range can be more convenient to realize that the inclined portion 1031 is at least partially reflected from the first conductive structure after the light incident on the inclined portion 1031 from the second side of the base substrate 101 opposite to the first side is reflected by the inclined portion 1031. Shooting directly above 102.
  • the first electrode 201 and the second electrode 202 are arranged in the working area 100a, and the first conductive structure 102 and the first electrode 201 adopt the same pattern in the sealant arrangement area 100b.
  • the second conductive structure 103 and the second electrode 202 are formed using the same patterning process.
  • the display substrate 100 is an array substrate, and a base substrate 101 of the array substrate is formed with data lines and gate scanning lines that cross horizontally and vertically, and a plurality of pixel units are surrounded and formed.
  • a thin film transistor (TFT) switch and a pixel electrode are formed in each pixel unit.
  • the TFT switch includes a gate electrode, an active layer, a source electrode, and a drain electrode. At the intersection of the data line and the gate scan line, the gate is connected to the gate scan line, the source electrode is connected to the data line, the drain electrode is connected to the pixel electrode, and the source and drain electrodes pass through the active layer at the gate voltage The bottom is turned on, thereby connecting the data line and the pixel electrode.
  • the array substrate is also provided with a common electrode line penetrating each pixel unit, and the common electrode line is connected with the common electrode at the peripheral edge of the array substrate to provide a constant voltage for the common electrode.
  • An insulating material such as a gate insulating layer and a passivation layer can be arranged between the conductive material structures of the display substrate to maintain insulation.
  • the first electrode may be any one of a gate, a source electrode, a drain electrode, a pixel electrode, a common electrode, etc.
  • the second electrode may be another one of the foregoing electrodes that is different from the first electrode.
  • the first electrode is a gate
  • the second electrode is a source/drain electrode
  • the first electrode is a source/drain electrode
  • the second electrode is a gate
  • a light emitting diode for example, a light emitting diode, a VDD line, a VSS line, etc. are provided in the work area 100a of the display substrate 100.
  • the first electrode is any one of the VDD line, the VSS line, the anode, and the cathode
  • the second electrode may be the other one selected from the first electrode mentioned above.
  • a light emitting diode is provided in the working area 100a of the display substrate 100, and the light emitting diode includes an anode and a cathode.
  • the first electrode is an anode and the second electrode is a cathode; or, the second electrode is an anode and the first electrode is a cathode.
  • the first conductive structure and the second conductive structure are configured to transmit data signals, gate scan signals, common electrode signals (COM), clock signals (CLK), gate control signals, GOA forward scan signals (VSD), GOA Reverse scan signal (VDS) or trigger signal (STV), etc.
  • COM common electrode signals
  • CLK clock signals
  • VSD GOA forward scan signals
  • VDS GOA Reverse scan signal
  • STV trigger signal
  • the data signal is the source signal (source signal, Vdata signal).
  • the gate control signal includes: a gate-on signal (VGH) and a gate-off signal (VGL).
  • the trigger signal (STV) is also called a gate start signal or a vertical synchronization signal.
  • the first conductive structure and the second conductive structure may transmit the same signal or different signals.
  • FIG. 11 is provided by an embodiment of the present disclosure.
  • the counter substrate 200 is a color filter substrate
  • the color filter substrate includes a black matrix formed in a grid shape, and color filter resin is filled between the black matrixes, and the regions formed by the black matrix grids correspond to respective pixel units.
  • An electric field for driving the twisting of the liquid crystal layer is formed between the common electrode and the pixel electrode on the array substrate.
  • columnar spacers are usually formed on the black matrix of the color filter substrate. After the box is aligned, the columnar spacers abut against the TFT switch of the array substrate to maintain the array. The distance between the substrate and the color filter substrate.
  • the display device 300 may be any product or component with a display function, such as a liquid crystal panel, electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • a display function such as a liquid crystal panel, electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • FIG. 12 is a flowchart of a method for manufacturing a display substrate provided by an embodiment of the present disclosure.
  • the display substrate includes a work area and a frame sealant setting area located outside the work area.
  • the preparation method includes the following steps:
  • a second conductive structure is formed on the side of the first conductive structure far away from the base substrate; wherein both the first conductive structure and the second conductive structure are located in the area where the sealant is set; the second conductive structure at least includes An inclined portion in which the main surface of the substrate is inclined, and the inclined portion is configured such that the light incident on the inclined portion from the second side of the base substrate opposite to the first side is reflected by the inclined portion and is at least partially emitted from directly above the first conductive structure .
  • a first electrode and a second electrode are arranged in the working area, the first conductive structure and the first electrode in the sealant setting area are formed by the same patterning process, and the second conductive structure in the sealant setting area And the second electrode are formed by the same patterning process.
  • the first conductive structure and the second conductive structure are configured to transmit data signals, gate scan signals, common electrode signals (COM), clock signals (CLK), gate control signals, GOA forward scan signals (VSD), GOA Reverse scan signal (VDS) or trigger signal (STV), etc.
  • COM common electrode signals
  • CLK clock signals
  • VSD GOA forward scan signals
  • VDS GOA Reverse scan signal
  • STV trigger signal
  • the data signal is the source signal (source signal, Vdata signal).
  • the gate control signal includes: a gate-on signal (VGH) and a gate-off signal (VGL).
  • the trigger signal (STV) is also called a gate start signal or a vertical synchronization signal.
  • the first conductive structure and the second conductive structure may transmit the same signal or different signals.
  • the display substrate is an array substrate, and a base substrate of the array substrate is formed with data lines and gate scanning lines that cross horizontally and vertically, and a plurality of pixel units are surrounded and formed.
  • a thin film transistor (TFT) switch and a pixel electrode are formed in each pixel unit.
  • the TFT switch includes a gate electrode, an active layer, a source electrode, and a drain electrode.
  • the array substrate is also provided with a common electrode line penetrating each pixel unit, and the common electrode line is connected with the common electrode at the peripheral edge of the array substrate to provide a constant voltage for the common electrode.
  • An insulating material such as a gate insulating layer and a passivation layer can be provided between the conductive material structures of the display substrate to maintain insulation.
  • the first electrode may be any one of a gate electrode, a source electrode, a drain electrode, a pixel electrode, and a common electrode.
  • the first conductive structure and the first electrode are formed in the same process step;
  • the second electrode may be the electrode described above. The other one is different from the first electrode, and the second conductive structure and the second electrode are formed in the same process step.
  • the first electrode is a gate, the first conductive structure and the gate are formed in the same process step, the second electrode is a source/drain electrode, and the second conductive structure and the source/drain electrode are formed in the same process step Or, the first electrode is a source electrode/drain electrode, the first conductive structure and the source electrode/drain electrode are formed in the same process step, the second electrode is a gate, and the second conductive structure and the gate are formed in the same process step .
  • light emitting diodes VDD lines, VSS lines, etc. are provided in the work area of the display substrate.
  • the first electrode is any one of the VDD line, the VSS line, the anode, and the cathode
  • the second electrode may be the other one selected from the first electrode mentioned above.
  • a light emitting diode is provided in the working area of the display substrate, the light emitting diode includes an anode and a cathode, the first electrode is an anode, the first conductive structure and the anode are formed in the same process step, the second electrode is a cathode, and the second conductive structure is formed in the same process step.
  • the structure and the cathode are formed in the same process step; or, the second electrode is an anode, the second conductive structure and the anode are formed in the same process step, the first electrode is a cathode, and the first conductive structure and the cathode are formed in the same process step.
  • the base substrate may be a flexible base substrate or a rigid base substrate
  • the base substrate may be a glass substrate, a quartz substrate, a plastic substrate, or the like.
  • the display substrate prepared by the above-mentioned preparation method can realize that at least part of the light incident from the second side of the base substrate opposite to the first side reaches the frame sealant setting area directly above the first conductive structure to irradiate the frame sealant. Therefore, the adhesiveness of the frame sealant is improved, so that the frame sealant is not prone to breakage or fall off under the condition of mechanical vibration.
  • the method before forming the first conductive structure, further includes forming a boss on the base substrate, and the boss is far away from the substrate.
  • the orthographic projection of the surface of the substrate on the base substrate is within the orthographic projection of the surface of the boss close to the base substrate on the base substrate.
  • forming the first conductive structure on the first side of the base substrate includes: forming the first conductive structure on the surface of the boss.
  • the first conductive structure includes a first inclined surface and a first inclined surface arranged in a direction parallel to the base substrate. Two inclined surfaces, the first inclined surface and the second inclined surface are inclined with respect to the main surface of the base substrate.
  • the first conductive structure with this structure can make the first conductive structure shield the light as little as possible while ensuring that the total length of the first conductive structure remains unchanged, so that as much light as possible enters into the sealant setting area.
  • the boss provides support for the first conductive structure
  • the first inclined surface of the first conductive structure is overlapped on the first side surface of the boss
  • the second inclined surface of the first conductive structure is overlapped on the first side surface of the boss. On the second side surface.
  • the cross-sectional shape of the first conductive structure is a regular trapezoid, such as an isosceles trapezoid. If the process conditions permit, the first conductive structure can be set to have a triangular cross-sectional shape, for example, an isosceles triangle, a right triangle, and the like.
  • the material of the boss is an inorganic insulating material, and the formation of the boss can be done without adding process steps.
  • an inorganic insulating layer will be added between the base substrate and the gate. This inorganic insulation can be achieved through a patterning process.
  • the layer can include the boss.
  • the preparation method of the display substrate further includes: after forming the first conductive structure and before forming the second conductive structure, forming an insulating layer on the first conductive structure, wherein the insulating layer has a direction away from Protruding part protruding from one side of the base substrate; the orthographic projection of the surface of the protrusion away from the base substrate on the base substrate is in the orthographic projection of the surface of the protrusion near the base substrate on the base substrate ;
  • the inclined portion is provided on the side surface of the convex portion.
  • the insulating layer has a first surface and a second surface that are inclined with respect to the main surface of the base substrate, and the inclined portion of the first part of the second conductive structure overlaps the first surface of the insulating layer, and the second conductive structure The inclined portion of the included second part overlaps on the second surface of the insulating layer.
  • the method for preparing the display substrate further includes: after forming the first conductive structure and before forming the second conductive structure, forming an insulating layer on the first conductive structure, wherein the first conductive structure includes The third part and the fourth part spaced apart from each other in a direction parallel to the base substrate; the insulating layer has a recessed portion recessed toward the side close to the base substrate; the surface of the recessed part close to the base substrate is on the base substrate The orthographic projection of the upper part is in the orthographic projection of the surface of the recessed part away from the base substrate on the base substrate; the inclined part is arranged on the side surface of the recessed part.
  • the orthographic projection of the end of the inclined portion of the first part of the second conductive structure away from the base substrate on the base substrate is within the orthographic projection of the third part of the first conductive structure on the base substrate, and the second conductive structure
  • the orthographic projection of the end of the inclined portion of the second part of the structure away from the base substrate on the base substrate is within the orthographic projection of the fourth part of the first conductive structure on the base substrate.
  • the design of this structure can be more It is convenient for the light incident on the inclined portion from the second side of the base substrate opposite to the first side to reach the first conductive structure after being reflected by the inclined portion, and at least partly from the front of the first conductive structure after being reflected by the first conductive structure.
  • the light emitted from the upper side, or more conveniently, the light incident on the inclined portion from the second side of the base substrate opposite to the first side is at least partially emitted from directly above the first conductive structure.
  • the orthographic projection of the whole of the second conductive structure on the base substrate may be located in the orthographic projection of the third part of the first conductive structure on the base substrate and the fourth part of the first conductive structure on the base substrate.
  • the design of this structure can reduce the shielding of the first conductive structure by the second conductive structure, so that the light emitted from directly above the first conductive structure increases.
  • the cross-sectional shape of the recess is a trapezoid, and the side length of the side away from the base substrate of the trapezoid is smaller than the side length of the side close to the base substrate of the trapezoid.
  • the inclined portion of the first part of the second conductive structure is provided on the first side surface of the recessed portion, and the inclined portion of the second portion of the second conductive structure is provided on the second side surface of the recessed portion opposite to the first side surface on.
  • the embodiments of the present disclosure provide a display substrate and a preparation method thereof, and the display device has at least one of the following beneficial effects:
  • the display substrate provided by at least one embodiment of the present disclosure can realize that at least part of the light is emitted from directly above the first conductive structure to the area where the frame sealant is set to irradiate the frame sealant, thereby improving the adhesion of the frame sealant , So that the sealant is not easy to be damaged or fall off under the condition of mechanical vibration.
  • the orthographic projection of the first conductive structure on the base substrate and the orthographic projection of the first portion of the second conductive structure on the base substrate and/or the second portion at least partially overlap, which can more fully reflect the light, thereby increasing the light emitted from directly above the first conductive structure.
  • the orthographic projection of the first conductive structure on the base substrate and the inclined portion of the first part of the second conductive structure does not overlap, and does not overlap with the entirety of the first part and the second part, that is, it can be realized that there is basically light directly above the first conductive structure The light is emitted, and the light is not blocked by the second conductive structure, thereby increasing the amount of light emitted from directly above the first conductive structure.
  • the display substrate provided by at least one embodiment of the present disclosure includes a boss provided on the base substrate, a portion corresponding to the first inclined surface of the first conductive structure is provided on the first side surface of the boss, and the first The portion corresponding to the second inclined surface of the conductive structure is disposed on the second side surface of the boss opposite to the first side surface.
  • the boss provides support for the first conductive structure.
  • the first inclined surface of the first conductive structure Overlap on the first side surface of the boss, the second inclined surface of the first conductive structure overlaps on the second side surface of the boss, the boss can support the first conductive structure and reduce the first The resistance of the conductive structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开的实施例提供一种显示基板、显示基板的制备方法和显示装置,该显示基板(100)包括工作区域(100a)和位于工作区域(100a)外侧的封框胶设置区域(100b),其中,该显示基板(100)还包括:衬底基板(101)、设置在衬底基板(101)的第一侧的第一导电结构(102)、以及设置在第一导电结构(102)的远离衬底基板(101)的一侧的第二导电结构(103);第一导电结构(102)和第二导电结构(103)均位于封框胶设置区域(100b);第二导电结构(103)至少包括相对于衬底基板(101)的主表面倾斜的倾斜部(1031),该倾斜部(1031)配置为使得从衬底基板(101)的与第一侧相反的第二侧入射至倾斜部(1031)的光线经倾斜部(1031)反射后至少部分从第一导电结构(102)的正上方出射,从而可以实现至少部分光线从第一导电结构(102)的正上方出射至封框胶设置区域(100b)照射至封框胶,进而提高了封框胶的粘结性,使得在机械振动的条件下封框胶不容易发生破损或者脱落。

Description

显示基板及其制备方法、显示装置 技术领域
本公开的实施例涉及一种显示基板及其制备方法、显示装置。
背景技术
随着光电技术与半导体制造技术的发展,在显示装置中,例如,薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,简称TFT-LCD)凭借其高品质画质、高空间利用率、低消耗功率、无辐射等优越特性在当前的显示器市场中占据着主导地位。
例如,在薄膜晶体管液晶显示器的制作过程中需要将彩膜基板和阵列基板进行对盒粘结,阵列基板和彩膜基板依靠封框胶黏合在一起,且需要在封框胶中添加硅球、玻璃纤维等支撑物,用于支撑液晶面板的盒厚。封框胶不仅起到粘接阵列基板和彩膜基板以及支撑盒厚的作用,还用于密封液晶,一般封框胶所涂布的范围在彩膜基板的周围,亦即,在显示区外的封框胶区域中。因此,封框胶是薄膜晶体管液晶显示器成盒制作工艺中的关键材料。
发明内容
本公开至少一实施例提供一种显示基板,该显示基板包括工作区域和位于所述工作区域外侧的封框胶设置区域,其中,所述显示基板还包括:衬底基板、设置在所述衬底基板的第一侧的第一导电结构、以及设置在所述第一导电结构的远离所述衬底基板的一侧的第二导电结构;所述第一导电结构和所述第二导电结构均位于所述封框胶设置区域;所述第二导电结构至少包括相对于所述衬底基板的主表面倾斜的倾斜部,所述倾斜部配置为使得从所述衬底基板的与所述第一侧相反的第二侧入射至所述倾斜部的光线经所述倾斜部反射后至少部分从所述第一导电结构的正上方出射。
例如,在本公开至少一实施例提供的显示基板中,所述倾斜部在所述衬底基板上的正投影和所述第一导电结构在所述衬底基板上的正投影至少部分重合。
例如,在本公开至少一实施例提供的显示基板中,所述第一导电结构包 括第一倾斜面,所述第一倾斜面相对于所述衬底基板的主表面倾斜,所述倾斜部在所述衬底基板上的正投影和所述第一倾斜面在所述衬底基板上的正投影至少部分重合。
例如,本公开至少一实施例提供的显示基板,还包括设置在所述衬底基板上的凸台,其中,所述凸台的远离所述衬底基板的表面在所述衬底基板上的正投影位于所述凸台的靠近所述衬底基板的表面在所述衬底基板上的正投影内;所述第一倾斜面对应的部分设置在所述凸台的第一侧表面上。
例如,在本公开至少一实施例提供的显示基板中,所述第二导电结构包括在平行于所述衬底基板的主表面的方向上设置的第一部分和第二部分,所述第一部分和所述第二部分均包括所述倾斜部。
例如,在本公开至少一实施例提供的显示基板中,所述第一部分和所述第二部分相互间隔,所述第一导电结构在所述衬底基板上的正投影位于所述第一部分的所述倾斜部的靠近所述衬底基板的端部在所述衬底基板上的正投影和所述第二部分的所述倾斜部的靠近所述衬底基板的端部在所述衬底基板上的正投影之间。
例如,在本公开至少一实施例提供的显示基板中,所述第一导电结构在所述衬底基板上的正投影和所述第一部分的所述倾斜部在所述衬底基板上的正投影至少部分重合,和/或,所述第一导电结构在所述衬底基板上的正投影和所述第二部分的所述倾斜部在所述衬底基板上的正投影至少部分重合。
例如,在本公开至少一实施例提供的显示基板中,所述第一导电结构在所述衬底基板上的正投影位于所述第一部分在所述衬底基板上的正投影和所述第二部分在所述衬底基板上的正投影之间。
例如,在本公开至少一实施例提供的显示基板中,所述第一导电结构包括在平行于所述衬底基板的方向上的第一倾斜面和第二倾斜面,所述第一倾斜面和所述第二倾斜面相对于所述衬底基板的主表面倾斜。
例如,本公开至少一实施例提供的显示基板还包括设置在所述衬底基板上的凸台,其中,所述凸台的远离所述衬底基板的表面在所述衬底基板上的正投影位于所述凸台的靠近所述衬底基板的表面在所述衬底基板上的正投影内;所述第一倾斜面对应的部分设置于所述凸台的第一侧表面,所述第二倾斜面对应的部分设置于所述凸台的与所述第一侧表面相对的第二侧表面。
例如,在本公开至少一实施例提供的显示基板中,所述第一倾斜面对应 的部分和所述第一部分的所述倾斜部平行,所述第二倾斜面对应的部分和所述第二部分的倾斜部平行。
例如,在本公开至少一实施例提供的显示基板中,在垂直于所述衬底基板的主表面的方向上,所述第一导电结构和所述第二导电结构之间设置有绝缘层,所述绝缘层具有向远离所述衬底基板的一侧突出的凸起部;所述凸起部的远离所述衬底基板的表面在所述衬底基板上的正投影在所述凸起部的靠近所述衬底基板的表面在所述衬底基板上的正投影内;所述倾斜部设置在所述凸起部的侧表面上。
例如,在本公开至少一实施例提供的显示基板中,所述第一部分和所述第二部分相互连接;所述第一导电结构包括在平行于所述衬底基板的方向上相互间隔的第三部分和第四部分。
例如,在本公开至少一实施例提供的显示基板中,所述第一部分的所述倾斜部的远离所述衬底基板的端部在所述衬底基板上的正投影在所述第三部分在所述衬底基板上的正投影内,所述第二部分的所述倾斜部的远离所述衬底基板的端部在所述衬底基板上的正投影在所述第四部分在所述衬底基板上的正投影内。
例如,在本公开至少一实施例提供的显示基板中,所述第二导电结构在所述衬底基板上的正投影位于所述第三部分在所述衬底基板上的正投影和所述第四部分在所述衬底基板上的正投影之间。
例如,在本公开至少一实施例提供的显示基板中,在垂直于所述衬底基板的主表面的方向上,所述第一导电结构和所述第二导电结构之间设置有绝缘层,所述绝缘层具有向靠近所述衬底基板的一侧凹陷的凹陷部;在垂直于所述衬底基板的主表面的平面上,所述凹陷部的截面形状为梯形,所述梯形的远离衬底基板的边的边长大于所述梯形的靠近所述衬底基板的边的边长;所述第一部分的倾斜部设置在所述凹陷部的第一侧表面上,所述第二部分的倾斜部设置在所述凹陷部的与所述第一侧表面相对的第二侧表面上。
例如,在本公开至少一实施例提供的显示基板中,在所述倾斜部的远离所述衬底基板的一侧,在所述倾斜部的靠近所述衬底基板一侧的端部处,所述倾斜部和经过所述端部的所述衬底基板的主表面的法线的夹角为20°~80°。
例如,在本公开至少一实施例提供的显示基板中,在所述倾斜部的远离 所述衬底基板的一侧,在所述倾斜部的靠近所述衬底基板一侧的端部处,所述倾斜部和经过所述端部的所述衬底基板的主表面的法线的夹角为40°~60°。
例如,在本公开至少一实施例提供的显示基板中,从所述衬底基板的与所述第一侧相反的所述第二侧入射至所述倾斜部的所述光线与所述衬底基板的主表面垂直。
例如,在本公开至少一实施例提供的显示基板中,所述工作区域中设置有第一电极和第二电极,所述第一导电结构和所述第一电极采用同一构图工艺形成,所述第二导电结构和所述第二电极采用同一构图工艺形成。
例如,在本公开至少一实施例提供的显示基板中,所述工作区域中设置有薄膜晶体管,所述薄膜晶体管包括栅极和源电极/漏电极;所述第一电极为所述栅极,所述第二电极为所述源电极/漏电极;或者,所述第一电极为所述源电极/漏电极,所述第二电极为所述栅极。
例如,在本公开至少一实施例提供的显示基板中,所述第一导电结构和所述第二导电结构配置为传输数据信号、栅极扫描信号、公共电极信号、时钟信号、栅极控制信号、GOA正向扫描信号、GOA反向扫描信号或者触发信号。
本公开至少一实施例还提供一种显示装置,该显示装置包括上述任一项所述的显示基板和与所述显示基板对盒的对置基板,其中,所述显示基板和所述对置基板通过设置在所述封框胶设置区域中的封框胶连接,在垂直于所述衬底基板的方向上,所述第一导电结构和所述第二导电结构位于所述衬底基板和所述封框胶之间。
本公开至少一实施例还提供一种显示基板的制备方法,所述显示基板包括工作区域和位于所述工作区域外侧的封框胶设置区域,所述制备方法包括:提供衬底基板;在所述衬底基板的第一侧形成第一导电结构;在所述第一导电结构的远离所述衬底基板的一侧形成第二导电结构;其中,所述第一导电结构和所述第二导电结构均位于所述封框胶设置区域;所述第二导电结构至少包括相对于所述衬底基板的主表面倾斜的倾斜部,所述倾斜部配置为使得从所述衬底基板的与所述第一侧相反的第二侧入射至所述倾斜部的光线经所述倾斜部反射后至少部分从所述第一导电结构的正上方出射。
例如,在本公开至少一实施例提供的制备方法中,在形成所述第一导电 结构之前,所述方法还包括在所述衬底基板上形成凸台,所述凸台的远离所述衬底基板的表面在所述衬底基板上的正投影位于所述凸台的靠近所述衬底基板的表面在所述衬底基板上的正投影内,所述在所述衬底基板的第一侧形成第一导电结构包括:在所述凸台的表面形成所述第一导电结构。
例如,本公开至少一实施例提供的制备方法,还包括:在形成所述第一导电结构之后且在形成所述第二导电结构之前,在所述第一导电结构上形成绝缘层,其中,所述绝缘层具有向远离所述衬底基板的一侧突出的凸起部;所述凸起部的远离所述衬底基板的表面在所述衬底基板上的正投影在所述凸起部的靠近所述衬底基板的表面在所述衬底基板上的正投影内;所述倾斜部设置在所述凸起部的侧表面上。
例如,本公开至少一实施例提供的制备方法,还包括:在形成所述第一导电结构之后且在形成所述第二导电结构之前,在所述第一导电结构上形成绝缘层,其中,所述第一导电结构包括在平行于所述衬底基板的方向上相互间隔的第三部分和第四部分;所述绝缘层具有向靠近所述衬底基板的一侧凹陷的凹陷部;所述凹陷部的靠近所述衬底基板的表面在所述衬底基板上的正投影在所述凹陷部的远离所述衬底基板的表面在所述衬底基板上的正投影内;所述倾斜部设置在所述凹陷部的侧表面上。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种显示基板的平面结构示意图;
图2为在图1中的A-A’切割形成的截面结构示意图;
图3为另一种显示基板的平面结构示意图;
图4为在图3中的B-B’切割形成的截面结构示意图;
图5A为本公开一实施例提供的一种显示基板的截面结构示意图;
图5B为本公开一实施例提供的再一种显示基板的截面结构示意图;
图6为本公开一实施例提供的又一种显示基板的截面结构示意图;
图7为本公开一实施例提供的又一种显示基板的截面结构示意图;
图8为本公开一实施例提供的又一种显示基板的截面结构示意图;
图9为本公开一实施例提供的又一种显示基板的截面结构示意图;
图10为本公开一实施例提供的又一种显示基板的截面结构示意图;
图11为本公开一实施例提供的一种显示装置的框图;以及
图12为本公开一实施例提供的显示基板的制备方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,市场对曲面显示的要求越来越高,通常采用将面板减薄后弯曲的方式来制作曲面显示面板。但是显示面板被弯曲后,由于应力的存在,该显示面板包括的封框胶的粘接性会受到影响,在机械振动的条件下封框胶容易发生破损,且在进行水煮实验(PCT实验)时,显示面板的4个边角处的封框胶容易发生脱落。封框胶脱落会对显示面板造成严重的影响,例如,在液晶显示面板中易造成液晶泄露。因此,需要增强封框胶的粘结性,由于封框胶的固化性越高,其粘结性越强,因此,需要提高封框胶的固化性能。
常用的封框胶的主要成分是环氧树脂和亚克力树脂,其中,环氧树脂是热固化树脂,亚克力树脂是光固化树脂。亚克力树脂需要采用紫外光照进行固化,在对显示基板采用封框胶进行封装时,紫外光固化的过程中通常会存在部分封框胶无法被紫外光照射而被固化的情形,因此,为了增强紫外光照 固化的能力,可以提高封框胶涂覆位置的信号走线之间的镂空面积占比,从而使得更多的紫外光线照射至封框胶。但是,目前通常采用使得金属线的宽度变窄或者使得金属线的数量变少的方式来实现提高封框胶涂覆位置的信号走线之间的镂空面积占比,但是,这样会造成金属线的电阻变大,从而影响金属线的导电特性。
例如,图1为一种显示基板的平面结构示意图,图2为在图1中的A-A’切割形成的截面结构示意图,结合图1和图2所示,衬底基板01上设置有下金属走线02,下金属走线02上设置有绝缘层04,绝缘层04上设置有上金属走线03,上金属走线03包括在平行于衬底基板01的主表面的方向上相互间隔且相对的两个部分。上金属走线03在衬底基板01上的正投影和下金属走线02在衬底基板01上的正投影具有重叠部分,且从衬底基板01的远离下金属走线02的一侧入射的光线不能穿过下金属走线02,从而光线不能到达下金属走线02正上方的封框胶设置区域照射至封框胶,进而影响了封框胶的粘结性,使得在机械振动的条件下封框胶容易发生破损或者脱落,需要说明的是,上金属走线03在衬底基板01上的正投影和下金属走线02在衬底基板01上的正投影可以仅相交不具有重叠的部分,或者,上金属走线03在衬底基板01上的正投影和下金属走线02在衬底基板01上的正投影可以不相交且不具有重叠的部分,在此不作限定。
例如,图3为另一种显示基板的平面结构示意图,图4为在图3中的B-B’切割形成的截面结构示意图,结合图3和图4所示,衬底基板01上设置有下金属走线02,下金属走线02上设置有绝缘层04,绝缘层04上设置有上金属走线03,下金属走线02包括相互间隔且相对的两个部分。上金属走线03在衬底基板01上的正投影和下金属走线02在衬底基板01上的正投影具有重叠部分,且从衬底基板01的远离下金属走线02的一侧入射的光线不能穿过下金属走线02,从而光线不能到达下金属走线02正上方的封框胶设置区域照射至封框胶,进而影响了封框胶的粘结性,使得在机械振动的条件下封框胶容易发生破损或者脱落。需要说明的是,上金属走线03在衬底基板01上的正投影和下金属走线02在衬底基板01上的正投影可以仅相交不具有重叠的部分,或者,上金属走线03在衬底基板01上的正投影和下金属走线02在衬底基板01上的正投影可以不相交且不具有重叠的部分,在此不作限定。
本公开至少一实施例提供一种显示基板,该显示面板包括工作区域和位于工作区域外侧的封框胶设置区域,其中,该显示基板还包括:衬底基板、设置在衬底基板的第一侧的第一导电结构、以及设置在第一导电结构的远离衬底基板的一侧的第二导电结构;第一导电结构和第二导电结构均位于封框胶设置区域;第二导电结构至少包括相对于衬底基板的主表面倾斜的倾斜部,倾斜部配置为使得从衬底基板的与第一侧相反的第二侧入射至倾斜部的光线经倾斜部反射后至少部分从第一导电结构的正上方出射,从而可以实现从衬底基板的与第一侧相反的第二侧入射入射的至少部分光线到达第一导电结构正上方的封框胶设置区域并照射至封框胶,进而提高了封框胶的粘结性,使得在机械振动的条件下封框胶不容易发生破损或者脱落。
需要说明的是,至少部分第二导电结构的倾斜部和第一导电结构设置在封框胶设置区域,不限于第二导电结构的整体和第一导电结构全部设置在封框胶设置区域。
还需要说明的是,工作区域的外侧不限于显示基板的外侧边缘,还可以是显示基板的中间区域,例如,中心打孔区作为工作区域,该中心打孔区的四周也可以称为工作区域的外侧。
例如,图5A为本公开一实施例提供的一种显示基板的截面结构示意图,如图5A所示,显示面板100包括工作区域100a和位于工作区域100a外侧的封框胶设置区域100b,其中,该显示基板100还包括:衬底基板101、设置在衬底基板101的第一侧的第一导电结构102、以及设置在第一导电结构102的远离衬底基板101的一侧的第二导电结构103;第一导电结构102和第二导电结构103均位于封框胶设置区域100b;第二导电结构103至少包括相对于衬底基板101的主表面倾斜的倾斜部1031,倾斜部1031配置为使得从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线经倾斜部1031反射后至少部分从第一导电结构102的正上方出射。具有上述结构的显示基板可以实现从衬底基板101的与第一侧相反的第二侧入射入射的至少部分光线到达第一导电结构102正上方的封框胶设置区域100b照射至封框胶(图中未示出),进而提高了封框胶的粘结性,使得在机械振动的条件下封框胶不容易发生破损或者脱落。
例如,第一导电结构102和第二导电结构103的材料可以是对光线具有反射作用的导电金属等。
例如,外部光源为线光源,线光源可以保证入射光线的均匀性,这样可以从整体上实现照射至封框胶设置区域100b的光线的均匀性,为最终形成的封框胶的均匀性提供保障,从而可以使得从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线与衬底基板101的主表面垂直。
例如,与显示基板100对盒的对置基板上设置有黑矩阵,在对盒显示基板和对置基板的过程中,黑矩阵设置在封框胶(图中未示出)的远离衬底基板101的一侧,光线不能从设置黑矩阵的一侧入射,否则大部分光线会被遮挡,从而光线能到达封框胶,不能起到使得封框胶固化的作用。
需要说明的是,“相对于衬底基板的主表面倾斜的倾斜部”是指倾斜部与衬底基板的主表面既不平行也不垂直。即倾斜部与衬底基板的主表面的夹角可以为(0°,90°)或者(90°,180°)。
例如,在倾斜部1031的远离衬底基板101的一侧,在倾斜部1031的靠近衬底基板101一侧的端部处,倾斜部1031和经过端部的衬底基板101的主表面的法线的夹角为锐角。
例如,在垂直于衬底基板101主表面的方向上,第一导电结构102和第二导电结构103位于衬底基板101和将要设置到封框胶设置区域100b的封框胶之间。
例如,如图5A所示,倾斜部1031在衬底基板101上的正投影和第一导电结构102在衬底基板101上的正投影至少部分重合,该结构设计可以更充分地对光线进行反射,从而使得从第一导电结构102的正上方出射的光线增多。
例如,如图5A所示,第一导电结构102包括第一倾斜面102a,第一倾斜面102a相对于衬底基板101的主表面倾斜,倾斜部1031在衬底基板101上的正投影和第一倾斜面102a在衬底基板101上的正投影至少部分重合。
例如,如图5A所示,从衬底基板101的与第一侧相反的第二侧入射至第二导电结构103的倾斜部1031的C2位置处的光线C1经倾斜部1031反射后到达第一导电结构102上的C3位置,接着光线在C3位置处经过第一导电结构102反射后至少部分从第一导电结构102的正上方的C4位置出射,至封框胶设置区域100b,最终照射至第一导电结构102正上方的封框胶上。
例如,图5B为本公开一实施例提供的再一种显示基板的截面结构示意图,如图5B所示,该显示基板100还包括设置在衬底基板101上的凸台105, 该凸台105的远离衬底基板101的表面在衬底基板101上的正投影位于凸台105的靠近衬底基板101的表面在衬底基板101上的正投影内;第一倾斜面102a对应的部分设置在凸台105的第一侧表面上。该凸台105为第一导电结构102提供了支撑,第一导电结构102的第一倾斜面102a搭接在凸台105的第一侧表面上。第一倾斜面102a相对于衬底基板101的主表面倾斜。具有该结构的第一导电结构102可以在保证第一导电结构102总长度不变的情况下,即保证第一导电结构102电阻不变的情况下,使第一导电结构102尽可能少的遮挡光线,使得光线尽可能多的射入封框胶设置区域100b。
例如,图6为本公开一实施例提供的又一种显示基板的截面结构示意图。如图6所示,第二导电结构103包括在平行于衬底基板101的主表面的方向上设置的第一部分103a和第二部分103b,第一部分103a和第二部分103b均包括倾斜部1031。例如,第一部分103a的倾斜部1031和第二部分103b的倾斜部1031均对从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031且与衬底基板101的主表面垂直的光线进行反射,从而使得更多的光线从第一导电结构102的正上方出射至封框胶设置区域100b。
例如,在本公开的实施例中,与衬底基板101的主表面垂直的光线可以是光线入射的方向和衬底基板101的主表面基本垂直,例如,光线入射的方向和衬底基板101的主表面的夹角为80°~100°均可以认为是光线入射的方向和衬底基板101的主表面垂直。
例如,在一个示例中,从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线经倾斜部1031反射后到达第一导电结构102,并经第一导电结构102反射后至少部分从第一导电结构102的正上方出射。
例如,如图6所示,从衬底基板101的与第一侧相反的第二侧入射至第二导电结构103的第一部分103a的倾斜部1031的C2位置处的光线C1经倾斜部1031反射后到达第一导电结构102上的C3位置,接着光线在C3位置处经过第一导电结构102反射后至少部分从第一导电结构102的正上方的C4位置出射,至封框胶设置区域100b,最终照射至第一导电结构102正上方的封框胶上。
例如,如图6所示,从衬底基板101的与第一侧相反的第二侧入射至第二导电结构103的第二部分103b的倾斜部1031的D2位置处的光线D1经倾斜部1031反射后到达第一导电结构102上的D3位置,接着光线在D3位 置处经过第一导电结构102反射后到达第二部分103b的倾斜部1031的D4位置处,然后,光线在D4位置处经过倾斜部1031反射后到达第一导电结构102上的D5位置,接着光线在D5位置处经过第一导电结构102再次反射后至少部分从第一导电结构102的正上方的D6位置出射,至封框胶设置区域100b,最终照射至第一导电结构102正上方的封框胶上。
需要说明的是,从衬底基板101的与第一侧相反的第二侧入射至第二导电结构103的倾斜部1031的光线经过第一导电结构102和第二导电结构103反射的次数不作限制,只要满足至少部分光线从第一导电结构102的正上方出射,到达第一导电结构102正上方的封框胶设置区域100b照射至封框胶(图中未示出)即可。
还需要说明的是,第二导电结构103对光线的反射还可以包括除倾斜部之外的其他部分对光线的反射。
例如,如图6所示,至少在封框胶设置区域,第二导电结构103包括的第一部分103a和第二部分103b在平行于衬底基板101的方向上相互间隔,第一导电结构102在衬底基板101上的正投影位于第一部分103a的倾斜部1031的靠近衬底基板101的端部在衬底基板101上的正投影和第二部分103b的倾斜部1031的靠近衬底基板101的端部在衬底基板101上的正投影之间,这样可以实现第一导电结构102在衬底基板101上的正投影位于第二导电结构103包括的第一部分103a和第二部分103b在衬底基板101上的正投影限定的范围之内,从而实现从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线经倾斜部1031反射后至少部分从第一导电结构102的正上方出射。
例如,第二导电结构103包括的第一部分103a和第二部分103b在整个电路中是电连接的。
例如,如图6所示,第一导电结构102在衬底基板101上的正投影和第二导电结构103包括的第一部分103a的倾斜部1031在衬底基板101上的正投影至少部分重合。
例如,如图6所示,第一导电结构102在衬底基板101上的正投影和第二导电结构103包括的第二部分103b的倾斜部1031在衬底基板101上的正投影至少部分重合。
例如,可以是第一导电结构102在衬底基板101上的正投影和第二导电 结构103包括的第一部分103a的倾斜部1031在衬底基板101上的正投影以及第二导电结构103包括的第二部分103b的倾斜部1031在衬底基板101上的正投影均具有重合区域。
例如,第一导电结构102在衬底基板101上的正投影和第二导电结构103的第一部分103a的倾斜部1031在衬底基板101上的正投影和/或第二部分103b的倾斜部1031在衬底基板101上的正投影至少部分重合可以更充分地对光线进行反射,从而使得从第一导电结构102的正上方出射的光线增多。
例如,在图6所示的结构中,第一导电结构102的截面形状为正梯形,例如等腰梯形。在工艺条件允许的条件下可以将第一导电结构102设置为截面形状为三角形,例如,等腰三角形、直角三角形等。
例如,如图6所示,在垂直于衬底基板101的主表面的方向上,在第一导电结构102和第二导电结构103之间还设置有绝缘层104,该绝缘层104起到将第一导电结构102和第二导电结构103电性隔绝的作用。该绝缘层104具有向远离衬底基板101的一侧突出的凸起部,凸起部的远离衬底基板101的表面在衬底基板101上的正投影在凸起部的靠近衬底基板101的表面在衬底基板101上的正投影内,且绝缘层104具有相对于衬底基板101的主表面倾斜的第一表面和第二表面,第二导电结构103包括的第一部分103a的倾斜部1031搭接在绝缘层104的第一表面上,第二导电结构103包括的第二部分103b的倾斜部1031搭接在绝缘层104的第二表面上。
例如,图7为本公开一实施例提供的又一种显示基板的截面结构示意图,如图7所示,第一导电结构102在衬底基板101上的正投影位于第二导电结构103的第一部分103a在衬底基板101上的正投影和第二部分103b在衬底基板101上的正投影之间。
例如,当第一导电结构102的长度设置的很短时,第一导电结构102在衬底基板101上的正投影和第二导电结构103的第一部分103a的倾斜部1031、第二导电结构103第二部分103b的倾斜部1031在衬底基板101上的正投影没有重合,且和第一部分103a和第二部分103b的整体都没有重合,即可以实现第一导电结构102的正上方基本都有光线出射,而光线不被第二导电结构103遮挡,从而增大了光线从第一导电结构102的正上方的出射量。
例如,图8为本公开一实施例提供的又一种显示基板的截面结构示意图。如图8所示,该显示基板100还包括设置在衬底基板101上的凸台105,该 凸台105的远离衬底基板101的表面在衬底基板101上的正投影位于凸台105的靠近衬底基板101的表面在衬底基板101上的正投影内,第一导电结构102的第一倾斜面102a对应的部分设置于凸台105的第一侧表面,第一导电结构102的第二倾斜面102b对应的部分设置于凸台105的与第一侧表面相对的第二侧表面上。
例如,该凸台105为第一导电结构102提供了支撑,第一导电结构102的第一倾斜面102a搭接在凸台105的第一侧表面上,第一导电结构102的第二倾斜面102b搭接在凸台105的第二侧表面上。
例如,如图8所示,第一导电结构102包括在平行于衬底基板101的主表面的方向上设置的第一倾斜面102a和第二倾斜面102b,第一倾斜面102a和第二倾斜面102b相对于衬底基板101的主表面倾斜。具有该结构的第一导电结构102可以在保证第一导电结构102总长度不变的情况下,即保证第一导电结构102电阻不变的情况下,使第一导电结构102尽可能少的遮挡光线,使得光线尽可能多的射入封框胶设置区域100b。
例如,凸台105的材料为无机绝缘材料,该凸台105的形成可以不用增加工艺步骤。例如,在工作区域中为防止栅极中的金属离子,特别是铜离子扩散至衬底基板也会在衬底基板和栅极之间增加一层无机绝缘层,通过构图工艺可以实现该无机绝缘层即可包括该凸台105。
例如,在图6和图8所示的结构中,第一导电结构102的第一倾斜面102a和第二导电结构103的第一部分103a的倾斜部1031平行,第一导电结构102的第二倾斜面102b和第二导电结构103的第二部分103b的倾斜部1031平行。该种结构的设计可以更方便于从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线经倾斜部1031反射后到达第一导电结构102,并经第一导电结构102反射后至少部分从第一导电结构102的正上方出射。
例如,图9为本公开一实施例提供的又一种显示基板的截面结构示意图,如图9所示,第二导电结构103的第一部分103a和第二部分103b相互连接,且第一导电结构102包括在平行于衬底基板101的方向上相互间隔的第三部分1021和第四部分1022。
例如,如图9所示,第二导电结构103的第一部分103a的倾斜部1031的远离衬底基板101的端部在衬底基板101上的正投影在第一导电结构102的第三部分1021在衬底基板101上的正投影内,第二导电结构103的第二 部分103b的倾斜部1031的远离衬底基板101的端部在衬底基板101上的正投影在第一导电结构102的第四部分1022在衬底基板101上的正投影内,该种结构的设计可以更方便于从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线经倾斜部1031反射后到达第一导电结构102,并经第一导电结构102反射后至少部分从第一导电结构102的正上方出射,或者更方便于从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线至少部分从第一导电结构102的正上方出射。
例如,如图9所示,从衬底基板101的与第一侧相反的第二侧入射至第二导电结构103的第一部分103a的倾斜部1031的F2位置处的光线F1经倾斜部1031反射后到达第一导电结构102上的F3位置,接着光线在F3位置处经过第一导电结构102反射后至少部分从第一导电结构102的正上方的F4位置出射,至封框胶设置区域100b,最终照射至第一导电结构102正上方的封框胶上。
例如,如图9所示,从衬底基板101的与第一侧相反的第二侧入射至第二导电结构103的第二部分103b的倾斜部1031的G2位置处的光线G1经倾斜部1031反射后至少部分从第一导电结构102的正上方直接从G3位置出射,至封框胶设置区域100b,最终照射至第一导电结构102正上方的封框胶上。
例如,图10为本公开一实施例提供的又一种显示基板的截面结构示意图,如图10所示,第二导电结构103的整体在衬底基板101上的正投影位于第一导电结构102的第三部分1021在衬底基板101上的正投影和第四部分1022在衬底基板101上的正投影之间,该种结构的设计可以减小第二导电结构对第一导电结构的遮挡,使得从第一导电结构102的正上方出射的光线增多。
例如,在图9和图10所示的结构中,在垂直于衬底基板101的主表面的方向上,第一导电结构102和第二导电结构103之间设置有绝缘层104,绝缘层104具有向靠近衬底基板101的一侧凹陷的凹陷部。
例如,在垂直于衬底基板101的主表面的平面上,凹陷部的截面形状为梯形,该梯形的远离衬底基板101的边的边长大于该梯形的靠近衬底基板101的边的边长。
例如,第二导电结构103的第一部分103a的倾斜部1031设置在凹陷部 的第一侧表面上,第二导电结构103的第二部分103b的倾斜部1031设置在凹陷部的与第一侧表面相对的第二侧表面上。
例如,在上述任一示例中,在远离衬底基板101的一侧,在倾斜部1031的靠近衬底基板101一侧的端部处,倾斜部1031和经过该端部的衬底基板101的主表面的法线的夹角为20°~80°,例如,如图7所示,图7中的夹角β为20°~80°;如图10所示,图10中的夹角β为20°~80°。
例如,在上述任一示例中,在远离衬底基板101的一侧,在倾斜部1031的靠近衬底基板101一侧的端部处,倾斜部1031和经过该端部的衬底基板101的主表面的法线的夹角为40°~60°,例如,如图7所示,图7中的夹角β为40°~60°;如图10所示,图10中的夹角β为40°~60°。
例如,在远离衬底基板101的一侧,在倾斜部1031的靠近衬底基板101一侧的端部处,倾斜部1031和经过该端部的衬底基板101的主表面的法线的夹角为40°、45°、50°、55°或者60°。
例如,上述夹角范围可以更方便地实现倾斜部1031对从衬底基板101的与第一侧相反的第二侧入射至倾斜部1031的光线经倾斜部1031反射后至少部分从第一导电结构102的正上方出射。
例如,在图6所示的显示基板100中,工作区域100a中设置有第一电极201和第二电极202,在封框胶设置区域100b该第一导电结构102和第一电极201采用同一构图工艺形成,第二导电结构103和第二电极202采用同一构图工艺形成。
例如,该显示基板100为阵列基板,阵列基板的衬底基板101上形成有横纵交叉的数据线和栅极扫描线,围设形成多个像素单元。每个像素单元中形成有薄膜晶体管(TFT)开关和像素电极。TFT开关包括栅极、有源层、源电极和漏电极。在数据线与栅极扫描线的交叉处,栅极与栅极扫描线相连,源电极与数据线相连,漏电极与像素电极相连,源电极和漏电极通过有源层在栅极的开启电压下导通,从而连通数据线和像素电极。在阵列基板上还布设有贯穿各个像素单元的公共电极线,公共电极线在阵列基板的四周边缘与公共电极相连,为公共电极提供恒定电压。在显示基板的各层导电材料结构之间可以设置如栅极绝缘层和钝化层等绝缘材料保持绝缘。
例如,该第一电极可以是栅极、源电极、漏电极、像素电极和公共电极等中的任意一个,第二电极可以是上述电极中的与第一电极选择不同的另一 个。
例如,该第一电极为栅极,第二电极为源电极/漏电极;或者,第一电极为源电极/漏电极,第二电极为栅极。
例如,在显示基板100的工作区域100a中设置有发光二极管、VDD线、VSS线等。
例如,该第一电极为VDD线、VSS线、阳极、阴极中的任意一个,第二电极可以是上述中的与第一电极选择不同的另一个。
例如,在显示基板100的工作区域100a中设置有发光二极管,该发光二极管包括阳极和阴极,第一电极为阳极,第二电极为阴极;或者,第二电极为阳极,第一电极为阴极。
例如,第一导电结构和第二导电结构配置为传输数据信号、栅极扫描信号、公共电极信号(COM)、时钟信号(CLK)、栅极控制信号、GOA正向扫描信号(VSD)、GOA反向扫描信号(VDS)或者触发信号(STV)等。
例如,数据信号即为源极信号(source信号、Vdata信号)。
例如,栅极控制信号包括:栅极开启信号(VGH)和栅极关闭信号(VGL)。
例如,触发信号(STV)又称为栅极启动信号或者垂直同步信号。
例如,第一导电结构和第二导电结构可以传输相同的信号或者不同的信号。
本公开至少一实施例还提供一种显示装置,该显示装置包括上述任一实施例中的显示基板和与该显示基板对盒的对置基板,例如,图11为本公开一实施例提供的一种显示装置的框图,如图11所示,在该显示装置300中,显示基板100和对置基板200通过设置在封框胶设置区域中的封框胶400连接,在垂直于衬底基板的方向上,第一导电结构和第二导电结构位于衬底基板和封框胶400之间。
例如,该对置基板200为彩膜基板,彩膜基板包括形成有呈网格状的黑矩阵,黑矩阵之间填充有彩膜树脂,黑矩阵网格所形成的区域分别对应各个像素单元。公共电极与阵列基板上的像素电极之间形成驱动液晶层扭转的电场。为保持对盒后阵列基板和彩膜基板之间的距离,通常还在彩膜基板的黑矩阵上形成柱状隔垫物,对盒后,柱状隔垫物抵触在阵列基板的TFT开关上来保持阵列基板和彩膜基板之间的距离。
例如,该显示装置300可以为:液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开至少一实施例还提供一种显示基板的制备方法,例如,图12为本公开一实施例提供的显示基板的制备方法的流程图。如图12所示,该显示基板包括工作区域和位于工作区域外侧的封框胶设置区域,该制备方法包括以下步骤:
S11:提供衬底基板;
S12:在衬底基板的第一侧形成第一导电结构;
S13:在第一导电结构的远离衬底基板的一侧形成第二导电结构;其中,第一导电结构和第二导电结构均位于封框胶设置区域;第二导电结构至少包括相对于衬底基板的主表面倾斜的倾斜部,倾斜部配置为使得从衬底基板的与第一侧相反的第二侧入射至倾斜部的光线经倾斜部反射后至少部分从第一导电结构的正上方出射。
例如,在工作区域中设置有第一电极和第二电极,该封框胶设置区域中的第一导电结构和第一电极采用同一构图工艺形成,该封框胶设置区域中的第二导电结构和第二电极采用同一构图工艺形成。
例如,第一导电结构和第二导电结构配置为传输数据信号、栅极扫描信号、公共电极信号(COM)、时钟信号(CLK)、栅极控制信号、GOA正向扫描信号(VSD)、GOA反向扫描信号(VDS)或者触发信号(STV)等。
例如,数据信号即为源极信号(source信号、Vdata信号)。
例如,栅极控制信号包括:栅极开启信号(VGH)和栅极关闭信号(VGL)。
例如,触发信号(STV)又称为栅极启动信号或者垂直同步信号。
例如,第一导电结构和第二导电结构可以传输相同的信号或者不同的信号。
例如,该显示基板为阵列基板,阵列基板的衬底基板上形成有横纵交叉的数据线和栅极扫描线,围设形成多个像素单元。每个像素单元中形成有薄膜晶体管(TFT)开关和像素电极。TFT开关包括栅极、有源层、源电极和漏电极。在阵列基板上还布设有贯穿各个像素单元的公共电极线,公共电极线在阵列基板的四周边缘与公共电极相连,为公共电极提供恒定电压。在显 示基板的各层导电材料结构之间可以设置如栅极绝缘层和钝化层等绝缘材料保持绝缘。
例如,该第一电极可以是栅极、源电极、漏电极、像素电极和公共电极中的任意一个,该第一导电结构和第一电极在同一工艺步骤中形成;第二电极可以是上述电极中的与第一电极选择不同的另一个,该第二导电结构和第二电极在同一工艺步骤中形成。
例如,该第一电极为栅极,第一导电结构和栅极在同一工艺步骤中形成,第二电极为源电极/漏电极,第二导电结构和源电极/漏电极在同一工艺步骤中形成;或者,第一电极为源电极/漏电极,第一导电结构和源电极/漏电极在同一工艺步骤中形成,第二电极为栅极,第二导电结构和栅极在同一工艺步骤中形成。
例如,在显示基板的工作区域中设置有发光二极管、VDD线、VSS线等。
例如,该第一电极为VDD线、VSS线、阳极、阴极中的任意一个,第二电极可以是上述中的与第一电极选择不同的另一个。
例如,在显示基板的工作区域中设置有发光二极管,该发光二极管包括阳极和阴极,第一电极为阳极,第一导电结构和阳极在同一工艺步骤中形成,第二电极为阴极,第二导电结构和阴极在同一工艺步骤中形成;或者,第二电极为阳极,第二导电结构和阳极在同一工艺步骤中形成,第一电极为阴极,第一导电结构和阴极在同一工艺步骤中形成。
例如,该衬底基板可以是柔性衬底基板或者刚性衬底基板,该衬底基板可以为玻璃基板、石英基板以及塑料基板等。
例如,采用上述制备方法制备的显示基板可以实现从衬底基板的与第一侧相反的第二侧入射入射的至少部分光线到达第一导电结构正上方的封框胶设置区域照射至封框胶,进而提高了封框胶的粘结性,使得在机械振动的条件下封框胶不容易发生破损或者脱落。
例如,在本公开至少一实施例提供的显示基板的制备方法中,在一个示例中,在形成第一导电结构之前,该方法还包括在衬底基板上形成凸台,凸台的远离衬底基板的表面在衬底基板上的正投影位于凸台的靠近衬底基板的表面在衬底基板上的正投影内。
例如,在衬底基板的第一侧形成第一导电结构包括:在凸台的表面形成 第一导电结构,第一导电结构包括在平行于衬底基板的方向上设置的第一倾斜面和第二倾斜面,第一倾斜面和第二倾斜面相对于衬底基板的主表面倾斜。具有该结构的第一导电结构可以在保证第一导电结构总长度不变的情况下,使第一导电结构尽可能少的遮挡光线,使得光线尽可能多的射入封框胶设置区域。
例如,该凸台为第一导电结构提供了支撑,第一导电结构的第一倾斜面搭接在凸台的第一侧表面上,第一导电结构的第二倾斜面搭接在凸台的第二侧表面上。
例如,第一导电结构的截面形状为正梯形,例如等腰梯形。在工艺条件允许的条件下可以将第一导电结构设置为截面形状为三角形,例如,等腰三角形、直角三角形等。
例如,该凸台的材料为无机绝缘材料,该凸台的形成可以不用增加工艺步骤。例如,在工作区域中为防止栅极中的金属离子,特别是铜离子扩散至衬底基板也会在衬底基板和栅极之间增加一层无机绝缘层,通过构图工艺可以实现该无机绝缘层即可包括该凸台。
例如,在另一个示例中,该显示基板的制备方法还包括:在形成第一导电结构之后且在形成第二导电结构之前,在第一导电结构上形成绝缘层,其中,绝缘层具有向远离衬底基板的一侧突出的凸起部;凸起部的远离衬底基板的表面在衬底基板上的正投影在凸起部的靠近衬底基板的表面在衬底基板上的正投影内;倾斜部设置在所述凸起部的侧表面上。
例如,该绝缘层具有相对于衬底基板的主表面倾斜的第一表面和第二表面,第二导电结构包括的第一部分的倾斜部搭接在绝缘层的第一表面上,第二导电结构包括的第二部分的倾斜部搭接在绝缘层的第二表面上。
例如,在又一个示例中,该显示基板的制备方法还包括:在形成第一导电结构之后且在形成第二导电结构之前,在第一导电结构上形成绝缘层,其中,第一导电结构包括在平行于衬底基板的方向上相互间隔的第三部分和第四部分;绝缘层具有向靠近衬底基板的一侧凹陷的凹陷部;该凹陷部的靠近衬底基板的表面在衬底基板上的正投影在凹陷部的远离衬底基板的表面在衬底基板上的正投影内;倾斜部设置在凹陷部的侧表面上。
例如,第二导电结构的第一部分的倾斜部的远离衬底基板的端部在衬底基板上的正投影在第一导电结构的第三部分在衬底基板上的正投影内,第二 导电结构的第二部分的倾斜部的远离衬底基板的端部在衬底基板上的正投影在第一导电结构的第四部分在衬底基板上的正投影内,该种结构的设计可以更方便于从衬底基板的与第一侧相反的第二侧入射至倾斜部的光线经倾斜部反射后到达第一导电结构,并经第一导电结构反射后至少部分从第一导电结构的正上方出射,或者更方便于从衬底基板的与第一侧相反的第二侧入射至倾斜部的光线至少部分从第一导电结构的正上方出射。
例如,在该显示基板的制备方法中,还可以使得第二导电结构的整体在衬底基板上的正投影位于第一导电结构的第三部分在衬底基板上的正投影和第四部分在衬底基板上的正投影之间,该种结构的设计可以减小第二导电结构对第一导电结构的遮挡,使得从第一导电结构的正上方出射的光线增多。
例如,在垂直于衬底基板的主表面的平面上,凹陷部的截面形状为梯形,该梯形的远离衬底基板的边的边长小于该梯形的靠近衬底基板的边的边长。
例如,第二导电结构的第一部分的倾斜部设置在凹陷部的第一侧表面上,第二导电结构的第二部分的倾斜部设置在凹陷部的与第一侧表面相对的第二侧表面上。
本公开的实施例提供一种显示基板及其制备方法、显示装置具有以下至少一项有益效果:
(1)本公开至少一实施例提供的显示基板,可以实现至少部分光线从第一导电结构的正上方出射至封框胶设置区域照射至封框胶,进而提高了封框胶的粘结性,使得在机械振动的条件下封框胶不容易发生破损或者脱落。
(2)本公开至少一实施例提供的显示基板,第一导电结构在衬底基板上的正投影和第二导电结构第一部分的倾斜部在衬底基板上的正投影和/或第二部分的倾斜部在衬底基板上的正投影至少部分重合可以更充分地对光线进行反射,从而使得从第一导电结构的正上方出射的光线增多。
(3)本公开至少一实施例提供的显示基板,当第一导电结构的长度设置的很短时,第一导电结构在衬底基板上的正投影和第二导电结构的第一部分的倾斜部、第二导电结构第二部分的倾斜部在衬底基板上的正投影没有重合,且和第一部分和第二部分的整体都没有重合,即可以实现第一导电结构的正上方基本都有光线出射,而光线不被第二导电结构遮挡,从而增大了光线从第一导电结构的正上方的出射量。
(4)本公开至少一实施例提供的显示基板,包括设置在衬底基板上的凸台,第一导电结构的第一倾斜面对应的部分设置于凸台的第一侧表面,第一导电结构的第二倾斜面对应的部分设置于凸台的与第一侧表面相对的第二侧表面上,该凸台为第一导电结构提供了支撑,第一导电结构的第一倾斜面搭接在凸台的第一侧表面上,第一导电结构的第二倾斜面搭接在凸台的第二侧表面上,该凸台可以实现对第一导电结构的支撑,且减少第一导电结构的电阻。
有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种显示基板,包括工作区域和位于所述工作区域外侧的封框胶设置区域,其中,
    所述显示基板还包括:衬底基板、设置在所述衬底基板的第一侧的第一导电结构、以及设置在所述第一导电结构的远离所述衬底基板的一侧的第二导电结构;
    所述第一导电结构和所述第二导电结构均位于所述封框胶设置区域;
    所述第二导电结构至少包括相对于所述衬底基板的主表面倾斜的倾斜部,所述倾斜部配置为使得从所述衬底基板的与所述第一侧相反的第二侧入射至所述倾斜部的光线经所述倾斜部反射后至少部分从所述第一导电结构的正上方出射。
  2. 根据权利要求1所述的显示基板,其中,所述倾斜部在所述衬底基板上的正投影和所述第一导电结构在所述衬底基板上的正投影至少部分重合。
  3. 根据权利要求2所述的显示基板,其中,所述第一导电结构包括第一倾斜面,所述第一倾斜面相对于所述衬底基板的主表面倾斜,所述倾斜部在所述衬底基板上的正投影和所述第一倾斜面在所述衬底基板上的正投影至少部分重合。
  4. 根据权利要求3所述的显示基板,还包括设置在所述衬底基板上的凸台,其中,所述凸台的远离所述衬底基板的表面在所述衬底基板上的正投影位于所述凸台的靠近所述衬底基板的表面在所述衬底基板上的正投影内;所述第一倾斜面对应的部分设置在所述凸台的第一侧表面上。
  5. 根据权利要求1所述的显示基板,其中,所述第二导电结构包括在平行于所述衬底基板的主表面的方向上设置的第一部分和第二部分,所述第一部分和所述第二部分均包括所述倾斜部。
  6. 根据权利要求5所述的显示基板,其中,所述第一部分和所述第二部分相互间隔,所述第一导电结构在所述衬底基板上的正投影位于所述第一部分的所述倾斜部的靠近所述衬底基板的端部在所述衬底基板上的正投影和所述第二部分的所述倾斜部的靠近所述衬底基板的端部在所述衬底基板上的正投影之间。
  7. 根据权利要求6所述的显示基板,其中,所述第一导电结构在所述衬底基板上的正投影和所述第一部分的所述倾斜部在所述衬底基板上的正投影至少部分重合,和/或,所述第一导电结构在所述衬底基板上的正投影和所述第二部分的所述倾斜部在所述衬底基板上的正投影至少部分重合。
  8. 根据权利要求6所述的显示基板,其中,所述第一导电结构在所述衬底基板上的正投影位于所述第一部分在所述衬底基板上的正投影和所述第二部分在所述衬底基板上的正投影之间。
  9. 根据权利要求6~8中任一项所述的显示基板,其中,所述第一导电结构包括在平行于所述衬底基板的方向上设置的第一倾斜面和第二倾斜面,所述第一倾斜面和所述第二倾斜面相对于所述衬底基板的主表面倾斜。
  10. 根据权利要求9所述的显示基板,还包括设置在所述衬底基板上的凸台,其中,
    所述凸台的远离所述衬底基板的表面在所述衬底基板上的正投影位于所述凸台的靠近所述衬底基板的表面在所述衬底基板上的正投影内;所述第一倾斜面对应的部分设置于所述凸台的第一侧表面,所述第二倾斜面对应的部分设置于所述凸台的与所述第一侧表面相对的第二侧表面。
  11. 根据权利要求9或10所述的显示基板,其中,所述第一倾斜面和所述第一部分的所述倾斜部平行,所述第二倾斜面和所述第二部分的所述倾斜部平行。
  12. 根据权利要求1~11中任一项所述的显示基板,其中,
    在垂直于所述衬底基板的主表面的方向上,所述第一导电结构和所述第二导电结构之间设置有绝缘层,所述绝缘层具有向远离所述衬底基板的一侧突出的凸起部;
    所述凸起部的远离所述衬底基板的表面在所述衬底基板上的正投影在所述凸起部的靠近所述衬底基板的表面在所述衬底基板上的正投影内;
    所述倾斜部设置在所述凸起部的侧表面上。
  13. 根据权利要求5所述的显示基板,其中,
    所述第一部分和所述第二部分相互连接;
    所述第一导电结构包括在平行于所述衬底基板的方向上相互间隔的第三部分和第四部分。
  14. 根据权利要求13所述的显示基板,其中,所述第一部分的所述倾斜部的远离所述衬底基板的端部在所述衬底基板上的正投影在所述第三部分在所述衬底基板上的正投影内,所述第二部分的所述倾斜部的远离所述衬底基板的端部在所述衬底基板上的正投影在所述第四部分在所述衬底基板上的正投影内。
  15. 根据权利要求13所述的显示基板,其中,所述第二导电结构在所述衬底基板上的正投影位于所述第三部分在所述衬底基板上的正投影和所述第四部分在所述衬底基板上的正投影之间。
  16. 根据权利要求13~15中任一项所述的显示基板,其中,
    在垂直于所述衬底基板的主表面的方向上,所述第一导电结构和所述第二导电结构之间设置有绝缘层,所述绝缘层具有向靠近所述衬底基板的一侧凹陷的凹陷部;
    在垂直于所述衬底基板的主表面的平面上,所述凹陷部的截面形状为梯形,所述梯形的远离衬底基板的边的边长大于所述梯形的靠近所述衬底基板的边的边长;
    所述第一部分的倾斜部设置在所述凹陷部的第一侧表面上,所述第二部分的倾斜部设置在所述凹陷部的与所述第一侧表面相对的第二侧表面上。
  17. 根据权利要求1~16中任一项所述的显示基板,其中,在所述倾斜部的远离所述衬底基板的一侧,在所述倾斜部的靠近所述衬底基板一侧的端部处,所述倾斜部和经过所述端部的所述衬底基板的主表面的法线的夹角为20°~80°。
  18. 根据权利要求17所述的显示基板,其中,在所述倾斜部的远离所述衬底基板的一侧,在所述倾斜部的靠近所述衬底基板一侧的端部处,所述倾斜部和经过所述端部的所述衬底基板的主表面的法线的夹角为40°~60°。
  19. 根据权利要求1~18中任一项所述的显示基板,其中,所述工作区域中设置有第一电极和第二电极,所述第一导电结构和所述第一电极采用同一构图工艺形成,所述第二导电结构和所述第二电极采用同一构图工艺形成。
  20. 根据权利要求19所述的显示基板,其中,所述工作区域中设置有薄膜晶体管,所述薄膜晶体管包括栅极和源电极/漏电极;所述第一电极为所述栅极,所述第二电极为所述源电极/漏电极;或者,所述第一电极为所述源电极/漏电极,所述第二电极为所述栅极。
  21. 根据权利要求1~18中任一项所述的显示基板,其中,所述第一导电结构和所述第二导电结构配置为传输数据信号、栅极扫描信号、公共电极信号、时钟信号、栅极控制信号、GOA正向扫描信号、GOA反向扫描信号或者触发信号。
  22. 一种显示装置,包括权利要求1~21中任一项所述的显示基板和与所述显示基板对盒的对置基板,其中,
    所述显示基板和所述对置基板通过设置在所述封框胶设置区域中的封框胶连接,
    在垂直于所述衬底基板的方向上,所述第一导电结构和所述第二导电结构位于所述衬底基板和所述封框胶之间。
  23. 一种显示基板的制备方法,所述显示基板包括工作区域和位于所述工作区域外侧的封框胶设置区域,所述制备方法包括:
    提供衬底基板;
    在所述衬底基板的第一侧形成第一导电结构;
    在所述第一导电结构的远离所述衬底基板的一侧形成第二导电结构;其中,
    所述第一导电结构和所述第二导电结构均位于所述封框胶设置区域;
    所述第二导电结构至少包括相对于所述衬底基板的主表面倾斜的倾斜部,所述倾斜部配置为使得从所述衬底基板的与所述第一侧相反的第二侧入射至所述倾斜部的光线经所述倾斜部反射后至少部分从所述第一导电结构的正上方出射。
  24. 根据权利要求23所述的制备方法,其中,
    在形成所述第一导电结构之前,所述方法还包括在所述衬底基板上形成凸台,所述凸台的远离所述衬底基板的表面在所述衬底基板上的正投影位于所述凸台的靠近所述衬底基板的表面在所述衬底基板上的正投影内,
    所述在所述衬底基板的第一侧形成第一导电结构包括:在所述凸台的表面形成所述第一导电结构。
  25. 根据权利要求24所述的制备方法,还包括:在形成所述第一导电结构之后且在形成所述第二导电结构之前,在所述第一导电结构上形成绝缘层,其中,
    所述绝缘层具有向远离所述衬底基板的一侧突出的凸起部;
    所述凸起部的远离所述衬底基板的表面在所述衬底基板上的正投影在所述凸起部的靠近所述衬底基板的表面在所述衬底基板上的正投影内;
    所述倾斜部设置在所述凸起部的侧表面上。
  26. 根据权利要求24所述的制备方法,还包括:在形成所述第一导电结构之后且在形成所述第二导电结构之前,在所述第一导电结构上形成绝缘层,其中,
    所述第一导电结构包括在平行于所述衬底基板的方向上相互间隔的第三部分和第四部分;
    所述绝缘层具有向靠近所述衬底基板的一侧凹陷的凹陷部;
    所述凹陷部的靠近所述衬底基板的表面在所述衬底基板上的正投影在所述凹陷部的远离所述衬底基板的表面在所述衬底基板上的正投影内;
    所述倾斜部设置在所述凹陷部的侧表面上。
PCT/CN2019/126629 2019-12-19 2019-12-19 显示基板及其制备方法、显示装置 WO2021120104A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/126629 WO2021120104A1 (zh) 2019-12-19 2019-12-19 显示基板及其制备方法、显示装置
US17/040,238 US11378846B2 (en) 2019-12-19 2019-12-19 Display substrate, manufacturing method thereof and display device
CN201980003155.1A CN113287062B (zh) 2019-12-19 2019-12-19 显示基板及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126629 WO2021120104A1 (zh) 2019-12-19 2019-12-19 显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021120104A1 true WO2021120104A1 (zh) 2021-06-24

Family

ID=76441752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126629 WO2021120104A1 (zh) 2019-12-19 2019-12-19 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US11378846B2 (zh)
CN (1) CN113287062B (zh)
WO (1) WO2021120104A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265247B (zh) * 2021-12-20 2023-05-12 绵阳惠科光电科技有限公司 封装胶、显示面板以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752823A (zh) * 2004-09-24 2006-03-29 三星电子株式会社 具有改进的密封的显示装置及其制造方法
JP2011033688A (ja) * 2009-07-30 2011-02-17 Casio Computer Co Ltd 液晶表示パネル及びその製造方法
CN103885252A (zh) * 2014-03-12 2014-06-25 京东方科技集团股份有限公司 显示面板和显示装置
JP2015087480A (ja) * 2013-10-29 2015-05-07 株式会社ジャパンディスプレイ 表示装置およびその製造方法
CN104635394A (zh) * 2015-02-13 2015-05-20 深圳市华星光电技术有限公司 阵列基板及液晶显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752823A (zh) * 2004-09-24 2006-03-29 三星电子株式会社 具有改进的密封的显示装置及其制造方法
JP2011033688A (ja) * 2009-07-30 2011-02-17 Casio Computer Co Ltd 液晶表示パネル及びその製造方法
JP2015087480A (ja) * 2013-10-29 2015-05-07 株式会社ジャパンディスプレイ 表示装置およびその製造方法
CN103885252A (zh) * 2014-03-12 2014-06-25 京东方科技集团股份有限公司 显示面板和显示装置
CN104635394A (zh) * 2015-02-13 2015-05-20 深圳市华星光电技术有限公司 阵列基板及液晶显示面板

Also Published As

Publication number Publication date
CN113287062B (zh) 2022-08-16
US11378846B2 (en) 2022-07-05
US20210191172A1 (en) 2021-06-24
CN113287062A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
US10209546B2 (en) Display panel and display device, and fabrication methods thereof
TW202032231A (zh) 顯示面板及顯示裝置
CN101183193B (zh) 电光装置、照明装置及电子设备
US8730424B2 (en) Display apparatus
TWI737182B (zh) 顯示面板、顯示裝置及顯示面板的製造方法
US20200075880A1 (en) Organic light-emitting diode display panel, method for fabricating the same and display device
TW201327304A (zh) 觸控顯示面板
US20190219853A1 (en) Coa substrate, manufacturing method therefor, display panel, and display device
WO2020211132A1 (zh) Oled显示装置
WO2020168634A1 (zh) 阵列基板、显示面板及显示装置
WO2021223293A1 (zh) 显示装置及电子设备
US6888609B2 (en) Liquid crystal display device
WO2021035984A1 (zh) 一种显示面板及其制作方法、显示装置
US20180292701A1 (en) Liquid crystal display
WO2021120104A1 (zh) 显示基板及其制备方法、显示装置
CN104991373B (zh) 液晶面板及其制作方法
TW201413329A (zh) 液晶顯示裝置
US20200328261A1 (en) Organic light emitting diode display device
US20200026121A1 (en) Display panel and display device
KR20150081562A (ko) 표시 패널 및 이를 포함하는 표시 장치
JP2005084228A (ja) 液晶表示装置
KR20180077940A (ko) 보더리스타입 표시장치
US20040036941A1 (en) Electro-optical device and electronic equipment
WO2020029363A1 (zh) 一种oled器件及其制备方法
CN218037593U (zh) 一种显示模组及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956362

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19956362

Country of ref document: EP

Kind code of ref document: A1