WO2021118023A1 - 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창 - Google Patents

다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창 Download PDF

Info

Publication number
WO2021118023A1
WO2021118023A1 PCT/KR2020/012817 KR2020012817W WO2021118023A1 WO 2021118023 A1 WO2021118023 A1 WO 2021118023A1 KR 2020012817 W KR2020012817 W KR 2020012817W WO 2021118023 A1 WO2021118023 A1 WO 2021118023A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting
midsole
porous
fiber
low
Prior art date
Application number
PCT/KR2020/012817
Other languages
English (en)
French (fr)
Inventor
문신환
Original Assignee
문신환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190163025A external-priority patent/KR102127505B1/ko
Application filed by 문신환 filed Critical 문신환
Priority to CN202080079576.5A priority Critical patent/CN114761220B/zh
Priority to US17/779,762 priority patent/US20220410442A1/en
Publication of WO2021118023A1 publication Critical patent/WO2021118023A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/02Footwear characterised by the material made of fibres or fabrics made therefrom
    • A43B1/025Plant fibres
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/06Footwear characterised by the material made of wood, cork, card-board, paper or like fibrous material 
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/026Composites, e.g. carbon fibre or aramid fibre; the sole, one or more sole layers or sole part being made of a composite
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/06Footwear with health or hygienic arrangements ventilated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/0054Producing footwear by compression moulding, vulcanising or the like; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/50Footwear, e.g. shoes or parts thereof
    • B29L2031/504Soles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel

Definitions

  • the present invention relates to a method for manufacturing a porous shoe midsole and a porous shoe midsole using the same, and more specifically, to a method for manufacturing a porous shoe midsole having a high porosity and excellent ventilation and elasticity, and a porous shoe midsole using the same.
  • the shoe midsole is attached to the upper surface of the shoe sole in the upper that is combined with the sole of the shoe to close the curved part made of the groove of the sole of the shoe, and is used to improve the fit when inserting the shoe insole. I use it with a shoe insole.
  • the shoe midsole is made of one of the synthetic resin materials of urethane foam, PVC, TPR, or EVA, with excellent durability to stably support the weight of the wearer.
  • PVC polyurethane foam
  • TPR thermoplastic polyurethane foam
  • EVA urethane foam
  • the raw material is 40 kg of cotton, 80 kg of fiber of coconut husk, and 30 kg of polypropylene in a process of fine grinding and mixing by putting the weight of 30 kg of water into 3000 kg, and the mixed raw material is plate-shaped
  • the bonding material is applied again, and again, as above, at
  • Patent Registration No. 10-0661932 which is another prior art, a midsole manufactured by cutting a single disk-sponge composite, an iron core positioned on the lower surface of the midsole, and a reinforcing window positioned on the lower surface of the iron core, the midsole A sponge layer is formed to cover from the front end to the middle of the silver disk, and the material of the disk is any one selected from the group consisting of a paper compressed material, a fiber compressed material, and a non-woven fabric.
  • the thickness of the sponge is gradually tapered from a point less than the middle part at the front shaft end of the disc, and a temperature of 100° C. to 600° C.
  • the manufacturing process is complicated due to the multi-layer structure consisting of an iron core, a reinforcing window, a sponge layer, and an original plate.
  • ventilation is not smooth, so when exposed to a humid environment, A negative effect followed, in which the reproduction of various harmful bacteria was activated.
  • Patent Document 1 KR 10-1622706 B1 (2016.05.13.)
  • Patent Document 2 KR 10-0661932 B1 (2006.12.20.)
  • an object of the present invention is to provide a method for manufacturing a porous shoe midsole in which the central region (L2) has different densities and strengths from each other, and a porous shoe midsole using the same.
  • a feature of the present invention is the other surface step (S1) of mixing the low-melting-point fiber 12 and the high-melting-point fiber 14 to form a midsole 10 having porous pores 16;
  • the low melting point fiber (LMF) 12 is formed of a synthetic fiber yarn of 3 to 7 denier having a melting point of 140 ° C. or less, and the high melting point fiber 14 has a melting point of 160 to 250 ° C. or more. It is made of any one or more of 40 denier polyethylene yarn and polypropylene yarn, and the midsole 10 is put into a heated press mold at the melting point temperature of the low-melting fiber 12 at a pressure of 100 kg/cm2 to 120 kg/cm2. It is characterized in that it is provided for compression thermoforming.
  • the midsole 10 is cut to a size including the shoe midsole 100 region and the discarded part 200 region and thermoformed by compression in a press mold, and the midsole midsole part A cut-out groove 300 is formed at the boundary between 100 and the throwing part 200, and the shoe midsole part 100 is taken out from the press mold together with the throwing part 200 after compression thermoforming and cooled and hardened. It is characterized in that it is provided so that the shape is supported by the discarding part (200).
  • the porous shoe midsole using the porous shoe midsole manufacturing method according to the present invention is a low-melting-point fiber by mixing the low-melting-point fiber 12 and the high-melting-point fiber 14 to the midsole 10 having porous pores 16.
  • the porous voids 16 are formed between the high-melting-point fibers 14 by the melt adhesion of the low-melting-point fibers 12, and compression-adhered to the shoe midsole (100) It is characterized in that it comprises a configuration to form a.
  • the bottom edge region L1 of the shoe midsole 100 is compression thermoformed to a thinner thickness than the central region L2, so that the intaglio belt groove 110 to which the shoe upper 1 is attached is formed, and the edge region (L1) is characterized in that the low-melting-point fiber 12 and the high-melting-point fiber 14 are melt-bonded together to form a heterogeneous layer having a density and strength different from that of the central region (L2).
  • the reinforcing band groove 120 is formed at the bottom of the central region L2, and the reinforcing band groove 120 is melt-bonded with the low-melting fiber 12 and the high-melting fiber 14 together, compared to the central region L2. It is characterized in that it is formed as a high-density layer.
  • the reinforcing band groove 120 is formed in the region corresponding to the midfoot portion P2 and the back portion P3 of the central region L2 of the shoe midsole 100 to constitute the reinforcement plate 101, and the foot
  • the central region L2 corresponding to the front portion P1 is characterized in that the reinforcing band groove 120 is not formed and is formed as an elastic plate portion 102 that is flexibly bent and deformed in response to the bending motion of the toe bone during walking.
  • the present invention is adhesively fixed by compression thermoforming using the melting point temperature difference between the low-melting-point fiber and the high-melting-point fiber, and the rim (edge) portion of the midsole has high density and thus has high strength and durability. great.
  • the central region of the midsole has a low density as the high-melting-point fibers are point-adhered by the low-melting-point fibers, and thus has a high porosity, and thus the ventilation and elasticity are greatly improved. It is very useful as a midsole for functional shoes.
  • FIG. 1 is a flow chart showing a method for manufacturing a porous shoe midsole provided by the present invention.
  • Figure 2 is a schematic flow chart step by step of the porous shoe midsole manufacturing method according to the present invention.
  • Figure 3 is a block diagram showing a porous shoe midsole manufactured by the method of manufacturing a porous shoe midsole of the present invention.
  • Figure 4 is a longitudinal cross-sectional view showing the engraved band groove of the porous shoe midsole of the present invention.
  • Figure 5 is a configuration diagram showing a state in which the reinforcing band groove of the porous shoe midsole is formed.
  • Figure 6 is a bottom perspective view showing an example of a reinforcing band groove formed on the bottom surface of the porous shoe midsole.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a porous shoe midsole provided by the present invention
  • FIG. 2 is a flowchart schematically illustrating a method for manufacturing a porous shoe midsole according to the present invention.
  • the present invention relates to a method for manufacturing a porous shoe midsole and a porous shoe midsole using the same, which is adhered and fixed by compression thermoforming using a melting point temperature difference between a low-melting-point fiber and a high-melting-point fiber, so that it has excellent strength and water resistance, particularly low-melting-point fiber
  • the high-melting-point fiber is point-bonded by the high porosity and consists of a main configuration including the other surface step (S1) and the crack forming step (S2) in order to have ventilation and elasticity.
  • the other surface step (S1) according to the present invention is a step of mixing the low-melting-point fiber 12 and the high-melting-point fiber 14 to form the midsole 10 having porous pores 16 .
  • the low-melting fiber 12 and the high-melting fiber 14 are prepared in the form of mixed cotton, put into a cotton pad, and fixed to the tissue by needle punching while riding to a certain thickness, in this case, the thickness of the midsole 10 is described later.
  • the compression ratio in the thermoforming step (S2) it is formed in a size that is 2 to 4 times thicker than the final product, the thickness of the midsole of the shoe.
  • the low-melting-point fiber 12 is formed of a synthetic fiber yarn of 3 to 7 denier having a melting point of 140° C. or less
  • the high-melting point fiber 14 is a polyethylene yarn of 3 to 40 denier having a melting point of 160 to 250° C. or more, polypropylene consisting of one or more of the four
  • the heat-melting fiber 14 is applied to a polyethylene yarn to form a shoe midsole, a texture close to a fabric is provided, and by applying a polypropylene yarn to a shoe midsole, a texture close to paper is provided.
  • the heat melting point fiber 14 is formed to a thickness of 3 to 40 denier, it undergoes a thermoforming step (S2) to be described later to form the shoe midsole 100, which is the final product, between the heat melting point fibers 14.
  • S2 thermoforming step
  • a void is formed in the bar, where the heat melting point fiber 14 has an inverse relationship in that the larger the denier, the higher the porosity increases but the strength decreases, and the smaller the porosity is reduced but the strength is improved.
  • the hot-melting-point fiber 14 has a melting point temperature of 160 to 250° C. or higher
  • the low-melting-point fiber 12 for melt-bonding the hot melting point fiber 14 is less than 160° C., that is, while having a melting point temperature of 140° C. or less. It is formed from a synthetic fiber yarn with excellent adhesion.
  • the components and materials of the high-melting-point fiber 14 are specified in the above, it is not limited thereto, and a configuration in which monofilament yarns or synthetic filament yarns having different melting points are applied is also possible.
  • the low-melting-point fiber 12 is first melted at a lower temperature than the high-melting-point fiber 14 in the thermoforming step (S2) to be described later as it is formed of a low melting material having a melting point of 140° C. or less.
  • the melting point fibers 14 are molded to form porous pores 16 therein in a point-adhesive state (a portion shown as 'A' in FIG. 3).
  • the mixing amount of the low-melting-point fiber 12 is reduced compared to the high-melting-point fiber 14, the porosity of the final result, the midsole of the shoe increases, but the hardness decreases, and as the mixing amount of the low-melting-point fiber 12 increases, the porosity decreases, but the hardness Since has a mutually organic relationship to increase, it is possible to appropriately adjust the amount of the low-melting fiber 12 according to the type of shoe used in the shoe midsole produced by the present invention. For example, when applied to relatively hard shoes such as military boots, safety shoes, and formal shoes, the mixing ratio of the low-melting fiber 12 is increased, and in lightweight and highly elastic shoes such as running shoes or sports shoes, the mixing ratio of the low-melting fiber 12 is increased. It would be desirable to lower it to increase ventilation.
  • the midsole 10 is compression thermoformed at the melting point temperature of the low-melting-point fiber 12, and the high-melting-point fiber 14 is formed by the melt adhesion of the low-melting-point fiber 12.
  • the midsole 10 is thermoformed by compression at a pressure of 100 kg/cm2 to 120 kg/cm2 at the melting point temperature of the low-melting fiber 12 by putting the midsole 10 into a heated press mold.
  • the midsole 10 that has undergone the step S1 is in an uncompressed state with a thickness of 7 to 12 mm, and is compressed and thermoformed in the thermoforming step (S2) to a thickness of 2 to 5 mm and simultaneously compressed to a high melting point fiber (14). ) are adhesively fixed by the low-melting fiber 12 and manufactured as a shoe midsole in the form of a compression plate having a certain strength.
  • the compression thermoforming time of the thermoforming step (S2) is delayed, the low melting point fibers 12 are excessively melted and agglomerated with each other to form a film, resulting in a decrease in porosity, and conversely, if the compression thermoforming time is short, the applied Since all of the low-melting-point fibers 12 cannot be melted, leading to a decrease in strength, preferably, the compression thermoforming time is set to 20 to 40 seconds to obtain an optimal bonding state between the low-melting-point fibers 12 and the high-melting-point fibers 14. to form
  • the shoe midsole manufactured by this manufacturing method has excellent air permeability, and the strength and elasticity of the midsole are improved, so that it has excellent shape retention even when manufactured as an ergonomic and three-dimensional midsole according to the curvature of the sole. Therefore, when applied as a midsole for hard shoes such as formal shoes or military boots, it has the advantage of providing a pleasant and comfortable fit due to its ergonomic shape with excellent breathability.
  • the midsole 10 is cut to a size including the shoe midsole 100 region and the discarded part 200 region and thermoformed by compression in a press mold, and the midsole midsole part A cutting groove 300 is formed at the boundary between 100 and the discarding part 200 .
  • the cut-out groove 300 is thinly formed to a thickness of 10-20% based on the thickness of the midsole for footwear, which is the final product, and when it is cooled and hardened after compression heat, the midfoot midsole part 100 and the discarded part with the cut-out groove 300 as a boundary (200) is separated.
  • the shoe midsole part 100 is taken out from the press mold together with the throwing part 200 after compression thermoforming, and the shape is supported by the throwing part 200 during cooling and hardening. . Accordingly, after compression thermoforming, deformation due to bending is prevented while taking out the shoe midsole part 100, and the shape is supported by the discard part 200 even during cooling and hardening, thereby preventing distortion and deformation.
  • FIG. 3 is a configuration diagram showing a porous shoe midsole manufactured by the method for manufacturing a porous shoe midsole of the present invention
  • FIG. 4 is a longitudinal cross-sectional view showing an intaglio band groove of the porous shoe midsole of the present invention
  • FIG. 5 is a reinforcing band groove of the porous shoe midsole It is a configuration diagram showing the state in which the
  • the porous shoe midsole using the porous shoe midsole manufacturing method according to the present invention is a low-melting-point fiber (12) mixed with a low-melting-point fiber (12) and a high-melting-point fiber (14) into a midsole (10) having porous pores (16). ) by compression thermoforming at a melting point temperature of the low-melting-point fiber 12 by the melt-adhesive force of the high-melting-point fibers 14 to form a porous void 16 between the high-melting-point fibers 14 and compression-adhesive to form the shoe midsole 100 including the configuration to
  • the porous shoe midsole is a configuration formed by the porous shoe midsole manufacturing method, a detailed description of the manufacturing method will be omitted.
  • the bottom edge region L1 of the shoe midsole 100 is compression thermoformed to a thinner thickness than the central region L2, so that the intaglio belt groove 110 to which the shoe upper 1 is attached in the shoe manufacturing process is formed.
  • the edge region (L1) is formed as a heterogeneous layer having a thickness, density, and strength different from that of the central region (L2) by melt-bonding the low-melting-point fiber 12 and the high-melting-point fiber 14 together.
  • the intaglio band groove 110 is formed in the bottom edge region L1 of the midsole 10, and the intaglio The band groove 110 is recessed to a depth of 1.6-2.4mm in consideration of the 1.6-2.4mm thickness of the shoe upper 1 .
  • the central region L2 is formed to have a thickness 1.5 to 3 times greater than that of the edge region L1.
  • the thick central region L2 has a lower density than the relatively thin edge region L1, but has high air permeability, elasticity, and flexibility.
  • the shoe upper 1 when the shoe upper 1 is coupled to cover the edge of the bottom surface of the midsole 10 during the manufacturing process of the shoe, the shoe upper 1 is attached to the intaglio belt groove 110 as shown in FIG. 4, and the shoe upper 1 is attached.
  • the flatness of the bottom surface of the midsole 10 is maintained even after, the fixing force with the sole of the shoe is strong, and the shape of the midsole can be maintained even after wearing the shoe.
  • FIG. 5 is a configuration diagram showing an example in which a reinforcement belt groove is formed in the porous shoe midsole provided in the present invention
  • FIG. 6 is a bottom perspective view showing an example in which a reinforcement belt groove is formed on the bottom surface of the porous shoe midsole, the central region (L2) )
  • a reinforcing band groove 120 is formed at the bottom, and the reinforcing band groove 120 is formed as a high-density layer compared to the central region L2 by melting the low-melting fiber 12 and the high-melting fiber 14 together. is thin, but has high strength and low breathability.
  • Reinforcement band groove 120 is compression thermoformed to a thickness 10-50% thinner than that of the central region (L2), and is arranged in a grid shape over the entire region of the central region (L2) as shown in FIG. By reinforcing the foot, the midfoot part (P2) and the back part (P3) of the sole are stably supported.
  • the reinforcing band groove 120 is the central region L2 of the shoe midsole 100, the midfoot portion P2 and the heel portion P3. ) is formed in the region corresponding to the reinforcing plate portion 101, and the central region (L2) corresponding to the forefoot portion P1 may be composed of an elastic plate portion 102 in which the reinforcing belt groove 120 is not formed. .
  • the reinforcing band groove 120 having high strength is not formed in the forefoot portion so that it is flexibly deformed while having an elastic force in response to the bending motion of the toe bone during walking.
  • the midsole 100 of the shoe has high strength by the reinforcing belt groove 120 in the region corresponding to the midfoot portion P2 and the back foot portion P3, whereas the region corresponding to the forefoot portion P1 is flexible
  • the action of the sole of the shoe is soft when walking, providing a soft feeling of wearing to accommodate the bending motion of the toe bone, and has the effect of providing relatively higher ventilation to the pressure-pressing part where sweat is generated.
  • FIG. 7 and 8 are extracts of the results of testing air permeability and moisture permeability by providing a sample of the present invention to FITI (Fabric Inspection Testing Institute), an accredited testing research institute in Korea, in order to objectively examine air permeability and moisture permeability.
  • the tested sample corresponds to the central region L2 of FIG. 3 .
  • the volume (cm3) of air passing through 1 cm2 of fabric in 1 second under the condition of a pressure difference of 200 Pa was 302.3 (cm3/cm2/s).
  • the shoe midsole manufactured by the manufacturing method of the present invention has high strength to prevent distortion of the shoe sole and has excellent breathability and moisture permeability, so it can be widely used as a sole for functional shoes.
  • porous shoe midsole manufacturing method according to the present invention and the porous shoe midsole using the same have excellent strength due to high density in the rim (edge) portion of the midsole, and the central region of the midsole has excellent ventilation, so its utility as a midsole for functional shoes is very high. high invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Epidemiology (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

본 발명은 높은 공극률을 갖고 통풍성 및 탄성이 우수한 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창을 제공코자 하는 것이다. 즉, 본 발명은 저융점 섬유(12)와 고융점 섬유(14)를 혼합하여 다공성 공극(16)을 가진 중창지(10)를 형성하는 타면단계(S1); 상기 중창지(10)를 저융점 섬유(12)의 용융점 온도로 압축 열성형하여, 저융점 섬유(12)의 용융 접착력에 의해 고융점 섬유(14)들이 압축상태로 접착 고정되는 열성형단계(S2);를 포함하여 이루어지는 것을 특징으로 한다. 본 발명을 이용하면 저융점 섬유와 고융점 섬유 간에 융점 온도차를 이용하여 압축 열성형으로 접착 고정되어 강도와 내수성이 우수하고, 특히 저융점 섬유에 의해 고융점 섬유가 점 접착되어 높은 공극률을 갖고 통기성 및 탄성이 크게 향상되는 장점이 있다.

Description

다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창
본 발명은 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창으로서, 이를 보다 상세히 설명하면 높은 공극률을 갖고 통풍성 및 탄성이 우수한 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창에 관한 것이다.
통상적으로 신발중창은 신발의 바닥 창과 결합하는 갑피에 있어 신발 바닥 창의 상단면에 부착하여 신발 바닥창의 요홈으로 만들어진 굴곡부분을 폐쇄하고, 신발안창을 삽입 시 착용감을 좋게 하기 위하여 사용하고 있으며 신발중창 위에 신발안창을 얹어 사용하고 있다.
여기서, 신발중창은 착용자의 중량을 안정적으로 지지할 수 있도록 내구성이 우수한 발포우레탄계, 피브이씨(P.V.C), 티피알(T.P.R)계 또는 이브이에이계(E.V.A)의 합성수지재료 중 한 종류의 재료로 제작되고 있고, 근자에는 환경오염을 고려하여 재활용 섬유나 폐섬유로부터 얻어지는 면(cotton)을 원료로 제작되는 신발중창이 개발 제안되었으나, 강도가 약하고 통풍이 원활하지 못하는 실정이다.
이에 종래에 개시된 특허등록번호 제10-1622706호에서, 원료는 면 40kg, 야자수열매 껍질의 섬유질 80kg, 폴리프로필렌 30kg 중량을 물 3000kg에 투입하여 미세 분쇄 및 혼합하는 과정과, 상기 혼합된 원료를 판상의 시트로 건조하는 공정과, 수분산성 결합재로서 입자의 크기는 0.1㎛ 내지 1.5㎛로 하며, 고형분의 함량이 10% 내지 40중량%로 점도가 80cps 이하의 결합재를 조성하는 과정과, 상기 결합재를 상부분사와 하부흡입에 의해 균일하게 시트 내부로 분사하는 과정과, 상기 시트와 결합재가 혼합된 혼합 시트를 온도 180℃ 내지 200℃에서 프레스에 가압 하중 80톤으로 체류시간 4분의 조건으로 1차 성형하고, 이후 다시 상기 결합재를 도포처리를 하고, 다시 상기와 같이 온도 180℃ 내지 200℃에서 프레스에 가압 하중 80톤으로 체류시간 4분의 조건으로 2차로 성형하는 과정을 포함하는 기술이 선 등록된바 있지만, 면과 양자수, 폴리프로필렌을 물과 혼합하면서 미세 분쇄하는 과정 및 강도유지를 위해 1, 2차에 걸쳐 성형과정을 거쳐야 하므로 제조공정이 지연 및 생산성 저하로 이어지는 문제점이 따랐다.
또한, 다른 종래기술인 특허등록번호 제10-0661932호에서, 단일 원판-스펀지 복합체를 오려서 제조되는 중창과 상기 중창의 하면에 위치하는 철심 및 상기 철심의 하면에 위치하는 보강창을 포함하며, 상기 중창은 원판의 앞축단에서 중간 부위까지를 덮도록 스펀지층을 형성시키고, 상기 원판의 재질은 종이를 압축시킨 재질, 섬유를 압축시킨 재질 및 부직포 재질로 이루어진 군에서 선택되는 어느 하나의 것으로 구성되는 조립 신발 중창에 있어서, 상기 스펀지의 두께는 상기 원판의 앞축단에서 중간 부위에 못 미치는 지점에서부터 점점 가늘어 져 상기 중간 부위에는 그 두께가 없을 정도로 100℃ 내지 600℃의 온도를 가하고, 롤러를 이용하여 스펀지가 원판에 압착되도록 하는 기술이 선 등록된바 있지만, 철심, 보강창, 스펀지층, 원판으로 이루어지는 복층구조로 인해 제조공정이 복잡하고, 특히 복층구조의 특성상 통풍이 원활하지 못하여 습한 환경에 노출 시 각종 유해한 세균의 번식이 활성화되는 폐단이 따랐다.
<선행기술문헌>
(특허문헌 1) KR 10-1622706 B1 (2016.05.13.)
(특허문헌 2) KR 10-0661932 B1 (2006.12.20.)
본 발명에서는 상기한 종래 기술의 제반 문제점들을 해결코자 새로운 기술을 창안한 것으로서, 저융점 섬유와 고융점 섬유 간에 융점 온도차를 이용하여 압축 열성형으로 접착 고정시키되, 신발중창의 가장자리영역(L1)과 중앙영역(L2)이 서로 상이한 밀도와 강도를 갖도록 한 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창을 제공하는 것에 그 목적이 있다.
또한, 신발중창을 압축 열성형 시 저융점 섬유에 의해 고융점 섬유가 점 접착되어 중창의 중앙영역(L2)이 높은 공극률을 갖도록 한 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창을 제공하는 것에 그 목적이 있다.
이러한 목적을 달성하기 위해 본 발명의 특징은, 저융점 섬유(12)와 고융점 섬유(14)를 혼합하여 다공성 공극(16)을 가진 중창지(10)를 형성하는 타면단계(S1); 상기 중창지(10)를 저융점 섬유(12)의 용융점 온도로 압축 열성형하여, 저융점 섬유(12)의 용융 접착력에 의해 고융점 섬유(14)들을 압축상태로 접착 고정하는 열성형단계(S2);를 포함하여 이루어지는 것을 특징으로 한다.
이때, 상기 저융점 섬유(Low Melting Fiber, LMF)(12)는 융점이 140℃이하인 3~7데니어의 합성섬유사로 형성되고, 상기 고융점 섬유(14)는 융점이 160~250℃이상인 3~40데니어의 폴리에틸렌사, 폴리프로필렌사 중 어느 하나 이상으로 이루어지며, 상기 중창지(10)는 히팅된 프레스금형에 투입되어 저융점 섬유(12)의 용융점 온도에서 100kg/cm²내지 120kg/cm²압력으로 압축 열성형되도록 구비되는 것을 특징으로 한다.
또한, 상기 열성형단계(S2)에서, 상기 중창지(10)은 신발 중창부(100) 영역과 버림부(200) 영역을 포함하는 사이즈로 재단되어 프레스금형에서 압축 열성형되고, 중발 중창부(100)와 버림부(200) 경계에는 따내기홈(300)이 형성되며, 상기 신발 중창부(100)는 압축 열성형 후, 버림부(200)와 함께 프레스금형에서 취출되어 냉각 경화되는 동안 버림부(200)에 의해 형상이 지지되도록 구비되는 것을 특징으로 한다.
그리고, 본 발명에 따른 다공성 신발중창 제조방법을 이용한 다공성 신발중창은, 저융점 섬유(12)와 고융점 섬유(14)를 혼합하여 다공성 공극(16)을 가진 중창지(10)를 저융점 섬유(12)의 용융점 온도로 압축 열성형하여, 저융점 섬유(12)의 용융 접착력에 의해 고융점 섬유(14)들 사이에 다공성 공극(16)이 형성된 상태로 압축 접착되어 신발 중창부(100)를 형성하는 구성을 포함하여 이루어지는 것을 특징으로 한다.
이때, 상기 신발 중창부(100) 저면 가장자리영역(L1)은 중앙영역(L2) 대비 얇은 두께로 압축 열성형되어, 신발갑피(1)가 부착되는 음각띠홈(110)이 형성되고, 상기 가장자리영역(L1)은 저융점 섬유(12)와 고융점 섬유(14)가 함께 용융 접합되어 중앙영역(L2)과 상이한 밀도와 강도를 가진 이종계층으로 형성되는 것을 특징으로 한다.
또한, 상기 중앙영역(L2) 바닥에 보강띠홈(120)이 형성되고, 상기 보강띠홈(120)은 저융점 섬유(12)와 고융점 섬유(14)가 함께 용융 접합되어 중앙영역(L2) 대비 고밀도층으로 형성되는 것을 특징으로 한다.
또한, 상기 보강띠홈(120)는 신발 중창부(100)의 중앙영역(L2)은 발중간부(P2) 및 발뒤부(P3)와 대응하는 영역에 형성되어 보강판부(101)를 구성하고, 발앞부(P1)와 대응하는 중앙영역(L2)은 보강띠홈(120)가 미형성되어 보행 시 발가락뼈의 굽힘 동작에 대응하여 유연하게 굽힘 변형되는 탄성판부(102)로 형성되는 것을 특징으로 한다.
상술한 과제 해결을 위한 구체적인 수단에 의하면, 본 발명은 저융점 섬유와 고융점 섬유 간에 융점 온도차를 이용하여 압축 열성형으로 접착 고정되되, 중창의 테두리(가장자리)부분은 밀도가 높아 강도와 내구성이 우수하다.
또한, 중창의 중앙영역은 저융점 섬유에 의해 고융점 섬유가 점 접착됨에 따라 밀도가 낮아 높은 공극률을 갖게 되며, 따라서 통풍성과 탄성이 크게 향상되는 등 기능성 신발의 중창으로 활용도가 매우 높다.
도 1은 본 발명에서 제공하는 다공성 신발중창 제조방법을 나타내는 순서도.
도 2는 본 발명에 따른 다공성 신발중창 제조방법을 단계적으로 도식화 한 순서도.
도 3은 본 발명의 다공성 신발중창 제조방법으로 제조된 다공성 신발중창을 나타내는 구성도.
도 4는 본 발명의 다공성 신발중창의 음각띠홈을 나타내는 종단면도.
도 5는 다공성 신발중창의 보강띠홈을 형성한 상태를 나타내는 구성도.
도 6은 다공성 신발중창의 저면에 보강띠홈이 형성된 일예롤 도시한 저면사시도.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 명세서에서 사용되는 정도의 용어 약, 실질적으로 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
도 1은 본 발명에서 제공하는 다공성 신발중창 제조방법을 나타내는 순서도이고, 도 2는 본 발명에 따른 다공성 신발중창 제조방법을 단계적으로 도식화 한 순서도이다.
본 발명은 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창에 관련되며, 이는 저융점 섬유와 고융점 섬유 간에 융점 온도차를 이용하여 압축 열성형으로 접착 고정되어 강도와 내수성이 우수하고, 특히 저융점 섬유에 의해 고융점 섬유가 점 접착되어 높은 공극률을 갖고 통풍성 및 탄성을 갖도록 하기 위해 타면단계(S1), 결열성형단계(S2)를 포함하는 주요구성으로 이루어진다.
1. 타면단계(S1)
본 발명에 따른 타면단계(S1)는 저융점 섬유(12)와 고융점 섬유(14)를 혼합하여 다공성 공극(16)을 가진 중창지(10)를 형성하는 단계이다.
상기 저융점 섬유(12)와 고융점 섬유(14)는 혼합 솜 형태로 준비되고, 이를 타면기에 투입하여 일정한 두께로 타면하면서 니들 펀칭하여 조직을 고정하며, 이때 중창지(10) 두께는 후술하는 열성형단계(S2)에서 압축률을 고려하여 최종 산출물인 신발 중창 두께 대비 2~4배 두꺼운 사이즈로 형성된다.
그리고 상기 저융점 섬유(12)는 융점이 140℃이하인 3~7데니어의 합성섬유사로 형성되고, 상기 고융점 섬유(14)는 융점이 160~250℃이상인 3~40데니어의 폴리에틸렌사, 폴리프로필렌사 중 어느 하나 이상으로 이루어진다. 여기서 열고융점 섬유(14)를 폴리에틸렌사로 적용하여 신발 중창을 형성시 직물에 가까운 질감이 제공되고, 폴리프로필렌사로 적용하여 신발 중창을 제조시 종이에 가까운 질감을 제공하게 된다.
또, 상기 열고융점 섬유(14)는 3~40데니어의 굵기로 형성됨에 따라 후술하는 열성형단계(S2)를 거쳐 최종 산출물인 신발 중창부(100)를 형성 시, 열고융점 섬유(14)사이에 공극이 형성되는바, 여기서 열고융점 섬유(14) 데니어가 클수록 공극률이 증가되나 강도가 저하되고, 작을수록 공극률을 축소되나 강도가 향상되는 상호 반비례관계를 가지므로, 신발용 중창에 필요한 통기성과 강도를 동시에 만족시기 위하여 3~40데니어의 굵기의 고융점 섬유(14)를 사용하는 것이 바람직하다.
한편, 상기 열고융점 섬유(14)는 융점 온도가 160~250 ℃이상이므로, 열고융점 섬유(14)를 용융 접착하는 저융점 섬유(12)는 160℃ 미만 즉, 140℃이하 융점 온도를 가지면서 접착성이 우수한 합성섬유사로 형성된다. 그리고 상기에서 고융점 섬유(14)의 성분 및 소재를 특정하고 있지만, 이에 국한되지 않고 용융점이 서로 상이한 모노 필라멘트사 또는 합성 필라멘트사를 적용하는 구성도 가능하다.
이처럼, 상기 저융점 섬유(12)는 융점이 140℃이하인 낮은 로우멜팅(low melting) 소재로 형성됨에 따라 후술하는 열성형단계(S2)에서 고융점 섬유(14) 대비 낮은 온도에서 먼저 용융되어 고융점 섬유(14)들을 점 접착(도 3에서 'A'로 도시된 부분) 상태로 내부에 다공성 공극(16)이 형성되도록 성형된다.
그리고, 상기 고융점 섬유(14) 대비 저융점 섬유(12) 혼합량이 감소되면 최종 결과물인 신발 중창의 공극률은 증가되나 경도가 저하되고, 저융점 섬유(12) 혼합량이 증가할수록 공극률은 축소되나 경도가 높아지는 상호 유기적인 관계를 가지므로, 본 발명에 의해 생산되는 신발 중창이 사용되는 신발의 종류에 따라 적절히 저융점 섬유(12) 양을 조절할 수 있다. 일예로 군화, 안전화, 정장화와 같이 비교적 단단한 신발에 적용할 경우는 저융점 섬유(12)의 배합비중을 높이고, 러닝화나 운동화와 같은 경량이며 신축성이 높은 신발에는 저융점 섬유(12)의 배합비율을 낮추어 통풍성을 높이는 것이 바람직할 것이다.
2. 열성형단계(S2)
본 발명에 따른 열성형단계(S2)는, 상기 중창지(10)를 저융점 섬유(12)의 용융점 온도로 압축 열성형하여, 저융점 섬유(12)의 용융 접착력에 의해 고융점 섬유(14)들을 압축상태로 접착 고정하는 단계이다. 중창지(10)는 상기 중창지(10)는 히팅된 프레스금형에 투입되어 저융점 섬유(12)의 용융점 온도에서 100kg/cm²내지 120kg/cm²압력으로 압축 열성형된다.
일예로서, 상기 S1단계를 거친 중창지(10)는 7~12mm 두께의 미압축상태이고, 이를 열성형단계(S2)에서 압축 열성형하여 2~5mm 두께로 압축함과 동시에 고융점 섬유(14)들이 저융점 섬유(12)에 의해 접착 고정되어 일정 강도를 갖는 압축판 형태의 신발 중창으로 제조된다.
이때, 상기 열성형단계(S2)의 압축 열성형 시간이 지연되면 저융점 섬유(12)가 과도하게 용융되어 서로 뭉치면서 막을 형성하여 공극률 저하현상을 초래하고, 반대로 압축 열성형 시간이 짧으면 도포된 저융점 섬유(12)가 모두 용융되지 못하여 강도 저하로 이어지므로, 바람직하게는 압축 열성형 시간이 20 ~ 40초로 설정하여 저융점 섬유(12)와 고융점 섬유(14) 간에 최적의 접착상태를 형성하도록 한다.
이러한 제조방법으로 제조된 신발중창은 통기성이 우수하면서 중창의 강도와 탄성이 향상되어 발바닥의 굴곡에 따라 인체공학적이고 입체적인 형상의 중창으로 제작하더라도 형상 유지력이 우수하다. 따라서 정장화나 군화와 같이 딱딱한 신발의 중창으로 적용 시 우수한 통기성과 함께 인체공학정인 형태로 인한 쾌적하고 편안한 착용감을 제공할 수 있는 장점이 있다.
또한, 상기 열성형단계(S2)에서, 상기 중창지(10)는 신발 중창부(100) 영역과 버림부(200) 영역을 포함하는 사이즈로 재단되어 프레스금형에서 압축 열성형되고, 중발 중창부(100)와 버림부(200) 경계에는 따내기홈(300)이 형성된다. 따내기홈(300)은 최종 산출물인 신발용 중창의 두께 기준 10~20% 두께로 얇게 형성되어, 압축 열성후 냉각 경화되면 따내기홈(300)을 경계로 중발 중창부(100)와 버림부(200)를 분리하게 된다.
즉, 도 2 (b)처럼 상기 신발 중창부(100)는 압축 열성형 후, 버림부(200)와 함께 프레스금형에서 취출되어 냉각 경화되는 동안 버림부(200)에 의해 형상이 지지되도록 구비된다. 이에 압축 열성형 후, 신발 중창부(100)를 취출하는 중에 휨에 의한 변형이 방지됨과 더불어 냉각 경화되는 중에도 버림부(200)에 의해 형상이 지지되어 뒤틀림 및 변형이 방지되는 이점이 있다.
도 3은 본 발명의 다공성 신발중창 제조방법으로 제조된 다공성 신발중창을 나타내는 구성도이고, 도 4는 본 발명의 다공성 신발중창의 음각띠홈을 나타내는 종단면도이며, 도 5는 다공성 신발중창의 보강띠홈을 형성한 상태를 나타내는 구성도이다.
본 발명에 따른 다공성 신발중창 제조방법을 이용한 다공성 신발중창은, 저융점 섬유(12)와 고융점 섬유(14)를 혼합하여 다공성 공극(16)을 가진 중창지(10)를 저융점 섬유(12)의 용융점 온도로 압축 열성형하여, 저융점 섬유(12)의 용융 접착력에 의해 고융점 섬유(14)들 사이에 다공성 공극(16)이 형성된 상태로 압축 접착되어 신발 중창부(100)를 형성하는 구성을 포함하여 이루어진다. 여기서 다공성 신발중창은 상기 다공성 신발중창 제조방법으로 형성되는 구성이므로, 제조방법에 대해 상세한 설명은 생략한다.
이때, 상기 신발 중창부(100) 저면 가장자리영역(L1)은 중앙영역(L2) 대비 얇은 두께로 압축 열성형되어, 신발 제작과정에서 신발갑피(1)가 부착되는 음각띠홈(110)이 형성되고, 상기 가장자리영역(L1)은 저융점 섬유(12)와 고융점 섬유(14)가 함께 용융 접합되어 중앙영역(L2)과 상이한 두께, 밀도 및 강도를 가진 이종계층으로 형성된다.
즉, 압축 열성형을 위한 금형장치의 하부 코어 바닥면 가장자리부를 중앙영역 대비 높게 형성하여 압축 열성형하므로, 중창지(10)의 저면 가장자리영역(L1)에 음각띠홈(110)가 형성되고, 음각띠홈(110)는 신발갑피(1)의 1.6 ~ 2.4mm 두께를 고려하여 1.6~2.4mm깊이로 함몰 형성된다. 이때 중앙영역(L2)은 가장자리영역(L1) 대비 1.5~ 3배 증가된 두께로 형성된다.
두께가 두꺼운 중앙영역(L2)은 상대적으로 두께가 얇은 가장자리영역(L1) 보다 밀도는 낮은 대신 공기투과도, 탄성 그리고 유연성이 높은 성질을 갖는다.
이에 신발 제조과정에서 중창지(10) 저면 가장자리부를 감싸도록 신발갑피(1)를 결합 시, 도 4처럼 신발갑피(1)가 음각띠홈(110)에 부착되어, 신발갑피(1)를 부착한 후에도 중창지(10) 저면 평탄도가 유지됨에 따라 이후 신발 바닥 창과의 고정력이 견고하고, 신발을 착용한 이후에도 중창의 형태를 그대로 유지시킬 수 있다.
도 5는 본 발명에서 제공하는 다공성 신발중창에 보강띠홈을 형성한 예시를 나타내는 구성도이고, 도 6은 다공성 신발중창의 저면에 보강띠홈이 형성된 일예롤 도시한 저면사시도로, 상기 중앙영역(L2) 바닥에 보강띠홈(120)이 형성되고, 상기 보강띠홈(120)은 저융점 섬유(12)와 고융점 섬유(14)가 함께 용융 접합되어 중앙영역(L2) 대비 고밀도층으로 형성되어, 두께는 얇은 대신 강도는 높고 통기성은 약하다.
보강띠홈(120)은 중앙영역(L2) 대비 10~50% 얇은 두께로 압축 열성형되고, 도 5 (a)와 같이 중앙영역(L2) 전체 영역에 격자형으로 배치되어 보행 시 휨에 대한 강도를 보강하므로 발바닥의 발중간부(P2) 및 발뒤부(P3)를 안정적으로 지지하게 된다.
다른 실시예로는 도 5 (b)와 도 6에 도시된 예와 같이, 상기 보강띠홈(120)은 신발 중창부(100)의 중앙영역(L2)은 발중간부(P2) 및 발뒤부(P3)와 대응하는 영역에 형성되어 보강판부(101)를 구성하고, 발앞부(P1)와 대응하는 중앙영역(L2)은 보강띠홈(120)이 형성되지 않는 탄성판부(102)로 구성할 수 있다. 이 경우 발앞부에는 강도가 높은 보강띠홈(120)이 미형성되어 보행시 발가락뼈의 굽힘 동작에 대응하여 탄성력을 가지면서 유연하게 굽힘 변형되도록 한다.
이처럼 신발 중창부(100)는 발중간부(P2) 및 발뒤부(P3)와 대응하는 영역은 보강띠홈(120)에 의해 높은 강도를 가지는데 반해, 발앞부(P1)와 대응하는 영역은 유연하게 탄성 변형되므로 보행 시 신발밑창의 굴신작용이 부드럽게 이루어져 발가락뼈의 굽힘 동작을 수용하도록 부드러운 착화감을 제공할 수 있을 뿐 아니라, 땀이 많이 발생하는 발압부에 상대적으로 더 높은 통기성을 제공하는 효과가 있다.
도 7과 도 8은 통기성과 투습성을 객관적으로 알아보기 위해, 대한민국의 공인 시험연구원인 FITI(Fabric Inspection Testing Institute)에 본 발명의 샘플을 제공하여 공기투과도와 투습도를 테스트한 결과를 발췌한 것이다. 테스트 한 샘플은 도 3의 중앙영역(L2)에 해당한다.
공기투과도의 경우 200Pa의 압력차를 갖는 조건에서 직물 1cm2를 통하여 1초 동안에 통과하는 공기의 체적(cm3)이 302.3(cm3/cm2/s)로 나타났다.
인체에서 발생한 땀의 수증기를 원단을 통해 외부로 방출시키는 성능인 투습도를 테스트한 결과 24시간 동안 1m2의 면적을 통해 4724g의 수중기가 방출된 결과를 얻었다.
이처럼 본 발명의 제조방법에 의해 제조된 신발중창은 신발밑창의 뒤틀림이 방지되는 높은 강도를 가지면서도 우수한 통기성과 투습성이 있으므로 기능성 신발의 밑창으로 널리 사용될 수 있어 산업상 이용가능성이 매우 큰 기술이다.
이상과 같이 본 발명의 상세한 설명에는 본 발명의 가장 바람직한 실시 예에 관하여 설명하였으나, 본 발명의 기술범위에 벗어나지 않는 범위 내에서는 다양한 변형실시도 가능하다 할 것이다. 따라서 본 발명의 보호범위는 상기 실시 예에 한정하여 정하여 질 것이 아니라 후술하는 특허청구범위의 기술들과 이들 기술로부터 균등한 기술수단들에까지 보호범위가 인정되어야 할 것이다.
본원 발명에 의한 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창은 중창의 테두리(가장자리)부분은 밀도가 높아 강도가 우수하고, 중창의 중앙영역은 통기성이 우수하여 기능성 신발의 중창으로써 그 활용도가 매우 높은 발명이다.

Claims (7)

  1. 저융점 섬유(12)와 고융점 섬유(14)를 혼합하여 다공성 공극(16)을 가진 중창지(10)를 형성하는 타면단계(S1);
    상기 중창지(10)를 저융점 섬유(12)의 용융점 온도로 압축 열성형하여, 저융점 섬유(12)의 용융 접착력에 의해 고융점 섬유(14)들을 압축상태로 접착 고정하는 열성형단계(S2);를 포함하여 이루어지는 것을 특징으로 하는 다공성 신발중창 제조방법.
  2. 제 1항에 있어서,
    상기 저융점 섬유(12)는 융점이 140℃이하인 3~7데니어의 합성섬유사로 형성되고, 상기 고융점 섬유(14)는 융점이 160~250℃이상인 3~40데니어의 폴리에틸렌사, 폴리프로필렌사 중 어느 하나 이상으로 이루어지며, 상기 중창지(10)는 히팅된 프레스금형에 투입되어 저융점 섬유(12)의 용융점 온도에서 100kg/cm²내지 120kg/cm²압력으로 압축 열성형되도록 구비되는 것을 특징으로 하는 다공성 신발중창 제조방법.
  3. 제 1항에 있어서,
    상기 열성형단계(S2)에서, 상기 중창지(10)은 신발 중창부(100) 영역과 버림부(200) 영역을 포함하는 사이즈로 재단되어 프레스금형에서 압축 열성형되고, 중발 중창부(100)와 버림부(200) 경계에는 따내기홈(300)이 형성되며, 상기 신발 중창부(100)는 압축 열성형 후, 버림부(200)와 함께 프레스금형에서 취출되어 냉각 경화되는 동안 버림부(200)에 의해 형상이 지지되도록 구비되는 것을 특징으로 하는 다공성 신발중창 제조방법.
  4. 청구항 제 1항 내지 제 3항 중 어느 한 항의 다공성 신발중창 제조방법을 이용하여, 저융점 섬유(12)와 고융점 섬유(14)를 혼합하여 다공성 공극(16)을 가진 중창지(10)를 저융점 섬유(12)의 용융점 온도로 압축 열성형하여, 저융점 섬유(12)의 용융 접착력에 의해 고융점 섬유(14)들 사이에 다공성 공극(16)이 형성된 상태로 압축 접착되어 신발 중창부(100)를 형성하는 구성을 포함하여 이루어지는 것을 특징으로 하는 다공성 신발중창 제조방법을 이용한 다공성 신발중창.
  5. 제 4항에 있어서,
    상기 신발 중창부(100) 저면 가장자리영역(L1)은 중앙영역(L2) 대비 얇은 두께로 압축 열성형되어, 신발갑피(1)가 부착되는 음각띠홈(110)이 형성되고, 상기 가장자리영역(L1)은 저융점 섬유(12)와 고융점 섬유(14)가 함께 용융 접합되어 중앙영역(L2)과 상이한 밀도와 강도를 가진 이종계층으로 형성되는 것을 특징으로 하는 다공성 신발중창 제조방법을 이용한 다공성 신발중창.
  6. 제 4항에 있어서,
    상기 신발 중창부(100) 저면 가장자리영역(L1)을 제외한 중앙영역(L2)의 바닥에 보강띠홈(120)이 형성되고, 상기 보강띠홈(120)은 저융점 섬유(12)와 고융점 섬유(14)가 함께 용융 접합되어 중앙영역(L2) 대비 고밀도층으로 형성되는 것을 특징으로 하는 다공성 신발중창 제조방법을 이용한 다공성 신발중창.
  7. 제 6항에 있어서,
    상기 보강띠홈(120)은 신발 중창부(100)의 중앙영역(L2)에서 발중간부(P2) 및 발뒤부(P3)와 대응하는 영역에 형성되어 보강판부(101)를 구성하고, 발앞부(P1)와 대응하는 중앙영역(L2)은 보강띠홈(120)이 미형성되어 보행시 발가락뼈의 굽힘 동작에 대응하여 유연하게 굽힘 변형되는 탄성판부(102)로 형성되는 것을 특징으로 하는 다공성 신발중창 제조방법을 이용한 다공성 신발중창.
PCT/KR2020/012817 2019-12-09 2020-09-23 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창 WO2021118023A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080079576.5A CN114761220B (zh) 2019-12-09 2020-09-23 多孔性鞋中底制造方法及使用其的多孔性鞋中底
US17/779,762 US20220410442A1 (en) 2019-12-09 2020-09-23 Method for manufacturing porous midsole, and porous midsole using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0163025 2019-12-09
KR10-2020-0035232 2019-12-09
KR1020190163025A KR102127505B1 (ko) 2019-07-11 2019-12-09 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창
KR1020200035232A KR102263757B1 (ko) 2019-12-09 2020-03-23 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창

Publications (1)

Publication Number Publication Date
WO2021118023A1 true WO2021118023A1 (ko) 2021-06-17

Family

ID=76330850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012817 WO2021118023A1 (ko) 2019-12-09 2020-09-23 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창

Country Status (4)

Country Link
US (1) US20220410442A1 (ko)
KR (1) KR102263757B1 (ko)
CN (1) CN114761220B (ko)
WO (1) WO2021118023A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0158995B1 (ko) * 1996-05-17 1998-12-01 전인기 항균 방취 신발 중창용 보드 및 그의 제조방법
KR100187478B1 (ko) * 1997-02-25 1999-05-01 한정광 통풍기능을 갖는 천연소재의 신발중창 제조방법
KR200203611Y1 (ko) * 2000-06-14 2000-11-15 구기회 신발 중창
KR20020090938A (ko) * 2002-09-10 2002-12-05 (주) 바이오리텍스 폐섬유로 제조되는 고강도 통기성 신발중창과 그 제조법
KR20050065511A (ko) * 2005-06-07 2005-06-29 서근중 고기능성 신발용 중창 제조방법
KR102127505B1 (ko) * 2019-07-11 2020-07-07 문신환 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3337725A1 (de) * 1983-10-18 1985-04-25 Karl 5340 Bad Honnef Birkenstock Verfahren zur herstellung von verschleisszonen, stuetzbereichen oder von auslassungen an einer laufsohle oder einem fussbett
KR20020009127A (ko) * 2000-07-24 2002-02-01 임성조 측면 보강재가 구비된 이브이에이 미드솔의 신발중창 제조방법
US7207125B2 (en) * 2003-11-26 2007-04-24 Saucony, Inc. Grid midsole insert
KR100661932B1 (ko) 2004-10-29 2007-01-03 김상백 신발 중창
CN101347277A (zh) * 2007-07-16 2009-01-21 陈启贤 一种缓震透气鞋
US9731464B2 (en) * 2011-08-10 2017-08-15 Nike, Inc. Article of footwear formed from two preforms and method and mold for manufacturing same
KR101622706B1 (ko) 2014-01-07 2016-06-01 대진산업(주) 친환경 항균 신발중창의 성형체 제조방법
WO2015129555A1 (ja) * 2014-02-25 2015-09-03 ダイヤテックス株式会社 靴底、靴の中底、靴の本底及び靴
KR20170092063A (ko) * 2016-02-02 2017-08-10 이수정 탄발성이 우수한 기능성 신발의 제조방법
EP3795022B1 (en) * 2018-05-18 2022-09-21 ASICS Corporation Midsole and shoe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0158995B1 (ko) * 1996-05-17 1998-12-01 전인기 항균 방취 신발 중창용 보드 및 그의 제조방법
KR100187478B1 (ko) * 1997-02-25 1999-05-01 한정광 통풍기능을 갖는 천연소재의 신발중창 제조방법
KR200203611Y1 (ko) * 2000-06-14 2000-11-15 구기회 신발 중창
KR20020090938A (ko) * 2002-09-10 2002-12-05 (주) 바이오리텍스 폐섬유로 제조되는 고강도 통기성 신발중창과 그 제조법
KR20050065511A (ko) * 2005-06-07 2005-06-29 서근중 고기능성 신발용 중창 제조방법
KR102127505B1 (ko) * 2019-07-11 2020-07-07 문신환 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창

Also Published As

Publication number Publication date
CN114761220B (zh) 2024-03-05
US20220410442A1 (en) 2022-12-29
KR102263757B1 (ko) 2021-06-11
CN114761220A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
KR101173965B1 (ko) 복합체 슈즈 밑창, 이로 구성된 신발, 및 이의 제조 방법
KR101229018B1 (ko) 섬유 복합체, 및 이로 구성된 배리어 유닛, 복합체 슈즈 밑창, 및 신발
US7694440B1 (en) Insole cushioning device with repelling magnetic field
US3835558A (en) Insole
CA2209488C (en) Skate boot having an outsole with a rigid insert
US4843738A (en) Shoe insole
WO2021118023A1 (ko) 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창
EP1368148B1 (en) Laminate material for the protection of body parts and device comprising such laminate
KR102127505B1 (ko) 다공성 신발중창 제조방법 및 이를 이용한 다공성 신발중창
JPH08299001A (ja) 靴上部構造、特に靴上部構造への適用材料を造るための帯状複合面成形体
CZ20004882A3 (en) Sole structure for a shoe or an innersole
JP3561720B2 (ja) 靴及びその製造方法
GB9905753D0 (en) Sheet material for use in the manufacture of shoes, method of making same and shoe insole
JPH05176801A (ja) クッション性の通気靴
CN214710840U (zh) 鞋垫
KR20090002347U (ko) 신발 안창
JPH0122492Y2 (ko)
US2467247A (en) Top lift
JPS6116805Y2 (ko)
US1280957A (en) Substitute for shoe-soles and method of making the same.
GB2074091A (en) Material for use in footwear
CN2352004Y (zh) 鞋底的改良构造
JP2001149108A (ja) 靴用中敷
JP2001204504A (ja) 履物及び履物用中敷
JPH0626511U (ja) 履物のインソール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899835

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20899835

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02.08.2022)