WO2021117775A1 - 導電性フィルム及びその巻回体 - Google Patents

導電性フィルム及びその巻回体 Download PDF

Info

Publication number
WO2021117775A1
WO2021117775A1 PCT/JP2020/045889 JP2020045889W WO2021117775A1 WO 2021117775 A1 WO2021117775 A1 WO 2021117775A1 JP 2020045889 W JP2020045889 W JP 2020045889W WO 2021117775 A1 WO2021117775 A1 WO 2021117775A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
conductive
base material
outermost layer
free energy
Prior art date
Application number
PCT/JP2020/045889
Other languages
English (en)
French (fr)
Inventor
常治 田中
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2021564005A priority Critical patent/JP7518094B2/ja
Priority to US17/783,840 priority patent/US11815957B2/en
Priority to CN202080085135.6A priority patent/CN114868209A/zh
Priority to EP20900273.2A priority patent/EP4075452A4/en
Publication of WO2021117775A1 publication Critical patent/WO2021117775A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a conductive film and a wound body thereof.
  • ITO indium tin oxide
  • ITO Since ITO has a low conductivity peculiar to the material, it is necessary to thicken the film in order to exhibit high conductivity, and the transmittance decreases accordingly. In addition, it is difficult for a conductive film using ITO to simultaneously exhibit high transmittance, conductivity, and flexibility because cracks are likely to occur due to deformation such as bending, bending, and bending due to the thickening of the film.
  • Patent Document 1 describes the crystallite diameter measured by X-ray diffraction of the metal fine particle sintered film and the cross section of the metal fine particle sintered film for the purpose of improving the adhesion and conductivity between the metal fine particle sintered film and the base material. It is disclosed to specify the void ratio of.
  • Patent Document 2 a method of providing a thickness adjusting pattern on a portion of a support on which a functional pattern is not formed is provided for the purpose of suppressing concentration of pressure on the functional pattern when stacked.
  • Patent Document 3 discloses an inverting offset printing apparatus for electronic materials.
  • Patent Document 4 discloses a conductive film having excellent adhesion between the conductive layer and the hard coat layer and also having excellent conductivity, and the conductive layer is intended to prevent blocking when the film is wound.
  • the surface free energy of the hard coat layer forming the conductive layer is specified.
  • the conductive film obtained as described above is wound around a winding body after production, and is stored and distributed. Further, even after being rewound from the wound body, various handling such as stacking and storing a plurality of sheets can be considered.
  • a conductive portion such as a thin metal wire formed on the surface of the conductive film, such as a wound body
  • the conductivity formed on the surface of the conductive film comes into contact with another member, for example, the back surface of the conductive film. It has become clear that there is a problem that a part of the part moves to the back surface and peeling occurs.
  • Patent Document 4 poor adhesion between the conductive layer and the hard coat layer is improved for the purpose of preventing blocking when the film is wound, but the conductive layer in Patent Document 4 is on the hard coat layer. It is a layer containing a conductive material formed in, a transparent conductive layer containing a resin binder, and a uniform layer. Therefore, it cannot be applied to the conductive layer composed of the fine wire pattern, and there is a problem that a part of the fine wire pattern formed on the front surface moves to the back surface.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a conductive film containing a fine line pattern and a wound body of the conductive film, which can suppress set-off.
  • the present inventors have diligently studied to solve the above problems. As a result, they have found that the above problems can be solved by adjusting the surface free energies on both sides of the base material, and have completed the present invention.
  • the present invention is as follows. [1] A conductive film having a base material and a conductive portion formed on the first surface of the base material and containing at least a fine line pattern. The surface free energy SFE 1 of the first surface is larger than the surface free energy SFE 2 of the second surface of the base material opposite to the first surface. Conductive film. [2] The difference (SFE 1- SFE 2 ) between the surface free energy SFE 1 and the surface free energy SFE 2 is 1 mJ / m 2 or more. The conductive film according to [1]. [3] The surface free energy SFE 1 is 40 to 50 mJ / m 2 . The conductive film according to [1] or [2].
  • the base material has a layer containing a silicon compound as the outermost layer on the first surface side.
  • the conductive film according to any one of [1] to [3].
  • the surface free energy SFE 2 is 11 to 42 mJ / m 2 .
  • the base material has a layer containing at least one selected from the group consisting of melamine compounds, alkyd compounds, fluorine compounds, and silicone compounds as the outermost layer on the second surface side.
  • the conductive film is a long film having a short side of 10 mm or more and 2000 mm or less and a long side of 1.0 m or more and 2000 m or less.
  • the conductive film is wound in the long direction.
  • the wound body according to [7].
  • a conductive film containing a fine line pattern and a wound body of the conductive film which can suppress set-off.
  • FIG. 3 is a partial cross-sectional view of I-I'of the conductive film of FIG. It is a partial top view which shows the relationship between the aperture ratio and the pitch of a conductive film.
  • FIG. 3 is a partial cross-sectional view of I-I'of the conductive film of FIG. It is a partial top view which shows the relationship between the aperture ratio and the pitch of a conductive film.
  • the present embodiment will be described in detail, but the present invention is not limited thereto, and various modifications can be made without departing from the gist thereof. Is.
  • the conductive film of the present embodiment has a base material and a conductive portion formed on the first surface of the base material and including at least a fine line pattern, and the surface free energy SFE 1 on the first surface is first. It is larger than the surface free energy SFE 2 of the second surface of the base material opposite to the surface.
  • FIG. 1 shows a schematic cross-sectional view showing one aspect of the conductive film of the present embodiment.
  • the conductive film 100 of the present embodiment has a base material 10 and a conductive portion 20.
  • the base material 10 may be a single-layer film or a laminated film.
  • FIG. 1 shows an example when the base material 10 is a laminated film.
  • the base material 10 shown in FIG. 1 includes a core layer 11, an outermost layer 12 on the first surface 10a side, and an outermost layer 13 on the second surface 10b side.
  • the conductive portion 20 is formed on the first surface 10a. As shown in FIG. 1, the conductive portion 20 includes at least a pattern composed of fine lines, and may include a partially uniform metal layer.
  • FIG. 2 shows the winding body 200 of the conductive film 100. Note that FIG. 2 shows a schematic view with set-off for convenience of explanation, but in reality, the winding body 200 of the present embodiment suppresses set-off as shown in FIG. ..
  • FIG. 2 shows a winding body 200 in which the conductive film 100 is wound so that the first surface 10a faces inward and the second surface 10b faces outward.
  • a wound body 200 may be a wound body of a conductive film 100 having a length of as much as 2000 m, if necessary. Therefore, a corresponding load is applied between the conductive films of the wound body 200, and the conductive portion 20 is in close contact with the second surface 10b. It is called set-off that the conductive portion 20 partially adheres to the second surface 10b due to the close contact between the conductive portion 20 and the second surface 10b. When such set-off occurs, the conductive portion is broken, and defective products are generated due to the adhesion of the conductive substance to the unnecessary surface (second surface 10b).
  • the surface free energy SFE 1 on the front surface (first surface 10a) of the base material is made larger than the surface free energy SFE 2 on the back surface (second surface 10b).
  • the adhesiveness of the conductive portion to the first surface 10a is ensured, and the releasability of the conductive portion to the second surface 10b is ensured.
  • the second surface 10b is formed. It is possible to prevent the conductive portion from adhering (set-off).
  • the conductive portion 20 in the conductive film 100 of the present embodiment includes a fine line pattern.
  • the thin line pattern tends to set off easily when the conductive films 100 are overlapped with each other and the conductive portion 20 and the second surface 10b are in contact with each other.
  • set-off is a phenomenon in which the layer of the conductive portion 20 is destroyed by adhesion to the second surface 10b, and in order to suppress it, in addition to the adhesive force with the first surface 10a, the conductive portion layer itself Strength is required. Therefore, when the conductive layer is a uniform solid film, set-off is suppressed by the strength of the entire film.
  • the conductive portion 20 does not have the set-off suppression mechanism due to the film strength described above due to the fineness of the fine wire.
  • the difference in surface free energy SFE 2 (SFE 1 -SFE 2) is preferably 1 mJ / m 2 or more, more preferably 5 mJ / m 2 or more, more preferably 10 mJ / m it is 2 or more, particularly preferably 16 mJ / m 2 or more, most preferably 20 mJ / m 2 or more.
  • the difference (SFE 1- SFE 2 ) is 1 mJ / m 2 or more, the set-off tends to be further suppressed and the yield of the conductive film tends to be further improved.
  • the upper limit of the difference in surface free energy SFE 2 is not particularly limited, preferably at 100 mJ / m 2 or less, and more preferably not more than 40 mJ / m 2. By doing so, the adhesiveness of the first surface 10a is improved too much, and on the contrary, it is possible to suppress contamination of dust and the like.
  • the surface free energy SFE 1 is preferably 20 to 100 mJ / m 2 , more preferably 20 to 75 mJ / m 2 , and even more preferably 20 to 50 mJ / m 2 .
  • the surface free energy SFE 1 is 40 mJ / m 2 or more, the adhesion of the conductive portion 20 to the first surface 10a tends to be further improved.
  • the surface free energy SFE 1 is 100 mJ / m 2 or less, contamination such as dust tends to be further suppressed.
  • the surface free energy SFE 1 can be adjusted by the material of the base material 10 when it has the outermost layer 12, and the material of the core layer 11 when the base material 10 does not have the outermost layer 12. It can also be adjusted by the surface roughness of the first surface 10a.
  • the surface roughness of the first surface 10a (arithmetic mean roughness Ra 1 ) is 0.1 nm or more and 20 nm or less, the range of the surface free energy SFE 1 described above can be maintained, and it is preferably 0.2 nm or more and 10 nm or less. It is preferable that the fine line pattern formed on the first surface 10a can be suppressed, and it is more preferably 0.3 nm or more and 5 nm or less.
  • the surface free energy SFE 2 is preferably 5 to 42 mJ / m 2 , more preferably 11 to 42 mJ / m 2 , still more preferably 11 to 30 mJ / m 2 , and particularly. It is preferably 11 to 25 mJ / m 2 .
  • the surface free energy SFE 2 is 5 mJ / m 2 or more, the second surface 10b can be further coated with another layer, or the second surface 10b can be bonded to the surface of another member. The ease of processing when performing additional processing tends to be improved. Further, when the surface free energy SFE 2 is low, the friction coefficient of the second surface 10b also tends to be low.
  • the surface free energy SFE 2 is 5 mJ / m 2 or more
  • the conveying means and the second surface 10b It is possible to suppress the occurrence of slippage with the conductive film 100, and further, the tension of the conductive film 100 or the base material 10 tends to be easily controlled by the conveying means.
  • tension control is particularly required in a printing method in which an ink is used to form a thin metal wire 21 on the surface of a base material 10 while transporting the base material 10.
  • the surface free energy SFE 2 when it has the outermost layer 13, and the material of the core layer 11 when the base material 10 does not have the outermost layer 13. It can also be adjusted by the surface roughness of the second surface 10b.
  • the surface roughness (arithmetic mean roughness Ra 2 ) of the second surface 10b is 0.1 nm or more and 20 nm or less, the range of the surface free energy SFE 2 described above can be maintained, and it is preferably 0.2 nm or more and 10 nm or less.
  • the fine line pattern formed on the first surface 10a and the second surface 10b can suppress defects when they are overlapped, preferably 0.3 nm or more and 5 nm or less. It is even more preferable to have it.
  • the arithmetic mean roughness Ra 1 and Ra 2 satisfy the following formula (5).
  • the formula (5) when the conductive film 100 is wound, the fine line pattern formed on the first surface 10a and the second surface 10b can be suppressed from being damaged when they are overlapped, which is preferable.
  • the difference between the surface roughness of the first surface 10a and the surface roughness of the second surface 10b is preferably small, and the absolute value
  • the following is preferable, and when it is 2 nm or less, the defect suppressing effect becomes remarkable, and it is preferable, and when it is 1 nm or less, it is further preferable.
  • the surface free energy defined in this embodiment will be described.
  • the molecules existing inside the resin exist in a stabilized state by the interaction with the surrounding molecules, but the molecules existing on the resin surface are stabilized by the surrounding molecules because they form the surface. There is little action. Therefore, the molecules existing on the surface have a larger free energy than the molecules existing inside. This energy is called surface free energy.
  • the surface free energy ⁇ of the material surface can be expressed by the following formula (1) based on the dispersion component ( ⁇ d ) and the polar component ( ⁇ p).
  • the surface free energy ⁇ SV of the solid and the surface free energy ⁇ LV of the liquid can be expressed by the following equations (2) and (3).
  • equation (4) it is known that the relationship of the following equation (4) is established when the contact angle obtained by dropping a certain solvent on the surface of a solid base material is ⁇ .
  • the contact angle ⁇ between the solvent and the first surface 10a or the second surface 10b is measured using two kinds of liquids whose surface free energy is known. Then, by substituting them into the above equation (4) and solving the simultaneous equations, the dispersion component ( ⁇ SV d ) and the polar component ( ⁇ SV p ) of the surface free energy of the first surface 10a or the second surface 10b can be obtained. It can be obtained, and the surface free energy ⁇ SV of a solid can be obtained by the equation (2).
  • the base material used in the present embodiment is not particularly limited, and for example, a transparent base material or an opaque base material can be used.
  • transparent means that the visible light transmittance is preferably 80% or more, more preferably 90% or more, and further preferably 95% or more.
  • the visible light transmittance can be measured according to JIS K 7361-1: 1997.
  • the opaque base material means a material having a visible light transmittance of less than 80%, and the opaque base material includes a semi-transparent base material that does not completely transmit visible light and a translucent base material that partially transmits visible light. included.
  • a transparent base material is preferable as the base material.
  • the base material may be made of one kind of material or may be one in which two or more kinds of materials are laminated. Further, when the base material is a laminate in which two or more kinds of materials are laminated, the base material is an organic base material or an inorganic base material even if the base material is an organic base material or an inorganic base material laminated with each other. May be laminated.
  • FIG. 1 illustrates a base material 10 composed of a core layer 11, an outermost layer 12 forming the first surface 10a, and an outermost layer 13 forming the second surface 10b.
  • the base material 10 include a single-layer film having a core layer 11, a laminated film having a core layer 11 and an outermost layer 12, a laminated film having a core layer 11 and an outermost layer 13, and an outermost layer 12 and an outermost layer 13.
  • Examples thereof include a laminated film having a core layer 11, an outermost layer 12, and an outermost layer 13.
  • another layer is provided between the core layer 11 and the outermost layer 12, between the core layer 11 and the outermost layer 13, or between the outermost layer 12 and the outermost layer 13. May be good.
  • the surface of the core layer 11 constitutes the first surface 10a, and in the laminated film having the core layer 11 and the outermost layer 13, the core layer is formed.
  • the surface of 11 constitutes the second surface 10b.
  • the material constituting the core layer 11 is not particularly limited, but a material that contributes to the improvement of the mechanical strength of the base material is preferable.
  • the material of such a core layer 11 is not particularly limited, but for example, a transparent inorganic base material such as glass; acrylic acid ester, methacrylic acid ester, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate, and the like.
  • a transparent inorganic base material such as glass
  • transparent organic substrates such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, nylon, aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, and polyetherimide.
  • polyethylene terephthalate the productivity (cost reduction effect) for producing a conductive film is more excellent.
  • polyimide the heat resistance of the conductive film is more excellent
  • the core layer 11 may be made of one kind of material or may be one in which two or more kinds of materials are laminated. Further, when the core layer 11 is a laminated body in which two or more kinds of materials are laminated, the base material is an organic base material or an inorganic base material even if the inorganic base materials are laminated with each other. The materials may be laminated.
  • the thickness of the core layer 11 is preferably 5 ⁇ m or more and 500 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the outermost layer 12 is a layer constituting the first surface 10a.
  • the material forming the outermost layer 12 on the first surface side is not particularly limited, but a material that contributes to improving the adhesion between the core layer 11 and the conductive portion 20 is preferable.
  • the outermost layer 12 contributes to the improvement of the adhesion between the outermost layer 13 and the conductive portion 20. Is preferable.
  • the surface free energy SFE 1 becomes the surface free energy of the outermost layer 12.
  • the component contained in such an outermost layer 12 is not particularly limited, but is, for example, a silicon compound (for example, (poly) silanes, (poly) silazanes, (poly) siltians, (poly) siloxanes, silicon. , Silicon Carbide, Silicon Oxide, Silicon Nitride, Silicon Chloride, Siliconate, Zeolite, Siloxane, etc.), Aluminum Compounds (For example, Aluminum Oxide, etc.), Magnesium Compounds (For example, Magnesium Fluoride) and the like.
  • silicon compounds are preferable, and siloxanes are more preferable.
  • the surface free energy of the first surface 10a is improved, the adhesion is improved, and the transparency and durability of the conductive film tend to be further improved.
  • the silicon compound is not particularly limited, and examples thereof include a condensate of polyfunctional organosilane, a polycondensate obtained by hydrolyzing polyfunctional organosilane or an oligomer thereof and polyvinyl acetate, and the like. ..
  • the polyfunctional organosilane is not particularly limited, and is, for example, a bifunctional organosilane such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane; methyl.
  • a bifunctional organosilane such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane; methyl.
  • examples thereof include trifunctional organosilanes such as trimethoxysilane, methyltriethoxysilane and phenyltrimethoxysilane; and tetrafunctional organosilanes such as tetramethoxysilane and te
  • the outermost layer 12 can be formed into a film by a method in which a composition containing the components contained in the outermost layer 12 is applied to the core layer 11 and dried. Further, the outermost layer 12 may be formed by a vapor deposition method such as PVD or CVD. The composition for forming the outermost layer 12 may contain a dispersant, a surfactant, a binder and the like, if necessary.
  • the thickness of the outermost layer 12 is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, more preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and further preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the outermost layer 12 is within the above range, the adhesion is further improved, and the transparency and durability of the conductive film tend to be further improved.
  • the conductive portion 20 is formed by sintering the metal component in the ink by a firing means such as plasma, the conductive portion 20 is covered with the conductive portion 20 by plasma or the like. It is possible to prevent etching of the core layer 11 at a portion that is not provided.
  • the outermost layer 12 has an antistatic function in order to prevent disconnection of the metal fine wire pattern (conductive portion 20) due to static electricity. Since the outermost layer 12 has an antistatic function, it is preferable that the outermost layer 12 contains at least one of a conductive inorganic oxide and a conductive organic compound.
  • Examples of the conductive organic compound include a conductive organic silane compound, an aliphatic conjugated polyacetylene, an aromatic conjugated poly (paraphenylene), and a heterocyclic conjugated polypyrrole. Among these, a conductive organic silane compound is preferable.
  • the volume resistivity of the outermost layer 12 is preferably 100 ⁇ cm or more and 100,000 ⁇ cm or less, more preferably 1000 ⁇ cm or more and 10000 ⁇ cm or less, and even more preferably 2000 ⁇ cm or more and 8000 ⁇ cm or less.
  • the volume resistivity of the outermost layer 12 is 100,000 ⁇ cm or less, the antistatic function can be exhibited.
  • the volume resistivity of the outermost layer 12 is 100 ⁇ cm or more, it can be suitably used for applications such as a touch panel in which electrical conduction between metal fine wire patterns is not preferable.
  • the volume resistivity can be adjusted by the content of components such as conductive inorganic oxides and conductive organic compounds in the outermost layer that exert an antistatic function.
  • volume resistivity 10 14 ⁇ ⁇ cm or more when silicon oxide having high plasma resistance (volume resistivity 10 14 ⁇ ⁇ cm or more) and an organic silane compound which is a conductive organic compound are contained in the outermost layer 12, the content of the conductive organic silane compound can be increased. Volume resistivity can be reduced. On the other hand, by increasing the content of silicon oxide, the volume resistivity increases, but since it has high plasma resistance, it can be made into a thin film, and the optical characteristics are not impaired.
  • the outermost layer 12 can be formed by a vapor deposition method such as PVD or CVD, or by applying and drying an outermost layer forming composition in which the components contained in the outermost layer 12 are dispersed in a dispersion medium. it can.
  • the outermost layer forming composition may contain a dispersant, a surfactant, a binder and the like, if necessary.
  • the outermost layer 13 is a layer constituting the second surface 10b.
  • the material forming the outermost layer 13 on the second surface side is not particularly limited, but a material that contributes to a decrease in adhesion to the conductive portion 20 is preferable.
  • the surface free energy SFE 2 becomes the surface free energy of the outermost layer 13.
  • the component contained in such an outermost layer 13 is not particularly limited, and examples thereof include melamine compounds, alkyd compounds, fluorine compounds, silicone compounds, polyethylene waxes, fatty acids, and fatty acid esters. Among these, at least one selected from the group consisting of melamine-based compounds, alkyd-based compounds, fluorine-based compounds, and silicone-based compounds is preferable, and melamine-based compounds and alkyd-based compounds are more preferable.
  • the surface free energy of the second surface 10b is reduced, the releasability to the conductive portion is improved, and the transparency and durability of the conductive film tend to be further improved.
  • the melamine-based compound is not particularly limited, and for example, melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, a compound obtained by reacting a methylolated melamine derivative with a lower alcohol to partially or completely etherify the compound, and the like. Can be mentioned.
  • the methylolated melamine derivative is not particularly limited, and examples thereof include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine, and hexamethoxymethylol melamine.
  • the lower alcohol constituting the melamine-based compound is not particularly limited, and examples thereof include methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, and isobutanol.
  • alkyd compounds include ester polymers of polybasic acids, fatty acids, and polyhydric alcohols.
  • the polybasic acid constituting the alkyd compound is not particularly limited, and examples thereof include phthalic anhydride, isophthalic acid, terephthalic acid, benzoic acid, rosin, tetrahydrophthalic anhydride, maleic anhydride, adipic acid, and succinic acid. Can be mentioned.
  • the fatty acid constituting the alkyd compound is not particularly limited, and for example, caproic acid, capric acid, undesic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, behenic acid, lignoseric acid, cellotic acid, etc.
  • Saturated fatty acids such as montanic acid and melicic acid, or unsaturated fatty acids such as oleic acid, elaidic acid, linoleic acid, linolenic acid, arachidonic acid, prazinic acid, erucic acid, ricinolic acid; Can be mentioned.
  • the polyhydric alcohol constituting the alkyd compound is not particularly limited, and examples thereof include glycerin, pentaerythritol, ethylene glycol, propylene glycol, neopentyl glycol, and trimethylolpropane.
  • the fluorine-based compound is not particularly limited, and examples thereof include compounds containing a polyfluoroalkyl group or a polyfluoroalkyl ether group having 3 to 40 carbon atoms, particularly 5 to 20 carbon atoms.
  • the silicone-based compound is not particularly limited, and is, for example, a silicone oil composed of polydimethylsiloxane, a phenyl-modified silicone oil in which a part of the methyl group of polydimethylsiloxane is replaced with a phenyl group, or one of the methyl groups of polydimethylsiloxane.
  • Alkyl-modified silicone oil in which a part is substituted with hydrogen or an alkyl group having 2 or more carbon atoms halogen-modified silicone oil in which a part of the methyl group of polydimethylsiloxane is substituted with a halogenated phenyl group, methyl group of polydimethylsiloxane Fluoro-modified silicone oil partially substituted with fluoroester groups, epoxy-modified silicone oil such as polydimethylsiloxane having an epoxy group, amino-modified silicone oil such as polydimethylsiloxane having an amino group, dimethylsiloxane and phenylmethyl Examples thereof include alkyl aralkyl silicone oils such as siloxane, and polyether-modified silicone oils such as polydimethylsiloxane having a structure in which a part of the methyl group of the dimethylsiloxane unit is replaced with polyether.
  • fatty acids include saturated or unsaturated fatty acids having 12 or more carbon atoms.
  • fatty acids include lauric acid, tridecylic acid, myristic acid, pentadecic acid, palmitic acid, heptadecic acid, stearic acid, nonadecanic acid, bechenic acid, lignoseric acid, cellotic acid, heptacosanoic acid, montanic acid, melisic acid, laxeric acid.
  • Oleic acid ellaic acid, linoleic acid, linolenic acid, arachidonic acid, setreic acid, erucic acid and the like.
  • the fatty acid is preferably a saturated fatty acid having 12 to 22 carbon atoms.
  • the fatty acid ester is not particularly limited, and examples thereof include a fatty acid ester of the above fatty acid and an alcohol having 2 to 30 carbon atoms.
  • the alcohol constituting the fatty acid ester is not particularly limited, and for example, monohydric alcohols such as propyl alcohol, isopropyl alcohol, butyl alcohol, octyl alcohol, capryl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, and behenyl alcohol, ethylene glycol, Examples thereof include polyhydric alcohols such as propylene glycol, butanediol, glycerin, pentaerythritol and sorbitan.
  • the polyethylene wax is not particularly limited, and examples thereof include low molecular weight polyethylene, low molecular weight polyethylene copolymer, and modified polyethylene wax in which a polar group is introduced by oxidative modification or acid modification of these.
  • the thickness of the outermost layer 13 is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, more preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and further preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the outermost layer 13 is within the above range, the releasability to the conductive portion 20 is improved, and the transparency and durability of the conductive film 100 tend to be further improved.
  • the other layers arranged between the core layer 11 and the outermost layer 12, between the core layer 11 and the outermost layer 13, or between the outermost layer 12 and the outermost layer 13 are not particularly limited, but are, for example, easily adhered. Layers are mentioned.
  • the easy-adhesion layer is used for the purpose of improving the adhesiveness between the core layer 11 and the outermost layer 12, the core layer 11 and the outermost layer 13, or the outermost layer 12 and the outermost layer 13. Further, the easy-adhesion layer used between the core layer 11 and the outermost layer 13 may be used to improve the surface roughness of the outermost layer 13. That is, the surface roughness of the outermost layer 13 may be improved by increasing the surface roughness of the easy-adhesion layer as a base. As a result, the releasability with respect to the conductive portion 20 tends to be further improved.
  • the conductive portion 20 is arranged on the first surface 10a of the base material 10.
  • the conductive portion 20 is shown as a metal fine wire pattern composed of fine metal wires, but the conductive portion 20 is not limited to this, and may include at least a fine wire pattern and a part thereof may be a solid metal pattern. .. Further, the thin metal line pattern may be a regular pattern or an irregular pattern.
  • the conductive portion 20 contains a conductive component.
  • the conductive component is not particularly limited, and examples thereof include a conductive metal and a conductive polymer. Further, the conductive portion 20 may contain a non-conductive component.
  • the conductive metal is not particularly limited, and examples thereof include gold, silver, copper, and aluminum. Of these, silver or copper is preferable, and copper, which is relatively inexpensive, is more preferable. By using such a conductive metal, the conductivity of the conductive film tends to be further improved.
  • the conductive polymer known ones can be used, and examples thereof include polyacetylene and polythiophene.
  • the non-conductive component is not particularly limited, and examples thereof include metal oxides, metal compounds, and organic compounds. More specifically, these non-conductive components are components derived from the components contained in the ink, which will be described later, and among the components contained in the ink, metal oxides remaining on the metal fine wire after firing. Examples include metal compounds and organic compounds.
  • the content ratio of the conductive component in the conductive portion 20 is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more.
  • the upper limit of the content ratio of the conductive component is not particularly limited, but is 100% by mass.
  • the content of the non-conductive component is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the lower limit of the content ratio of the non-conductive component is not particularly limited, but is 0% by mass.
  • the thin metal wire pattern of the conductive portion 20 can be designed according to the intended use of the electronic device, and is not particularly limited.
  • a mesh pattern formed by intersecting a plurality of fine metal wires in a mesh pattern (FIG. Examples thereof include 3 (a) and (b)) and a line pattern (FIGS. 3 (c) and (d)) in which a plurality of substantially parallel thin metal lines are formed.
  • the thin metal line pattern may be a combination of a mesh pattern and a line pattern.
  • the mesh of the mesh pattern may be a square or a rectangle as shown in FIG. 3A, or a polygon such as a rhombus as shown in FIG. 3B.
  • the thin metal line constituting the line pattern may be a straight line as shown in FIG. 3C or a curved line as shown in FIG. 3D.
  • the thin metal wire constituting the mesh pattern can also be a curved line.
  • the line width W of the thin metal wire 21 means the line width W 0 of the thin metal wire 21 when the thin metal wire 21 is projected onto the surface of the base material 10 from the surface side on which the conductive portion 20 of the base material 10 is arranged. ..
  • FIG. 4 shows a partial cross-sectional view of I-I'of the conductive film of FIG. Taking FIG. 4 as an example, in the thin metal wire 21 having a trapezoidal cross section, the width of the surface of the thin metal wire 21 in contact with the base material 10 is the line width W 0 .
  • the line width W 0 of the thin metal wire 21 is preferably 0.1 to 30.0 ⁇ m, more preferably 0.2 to 20.0 ⁇ m, still more preferably 0.3 to 10.0 ⁇ m, and particularly preferably 1.0. It is ⁇ 5.0 ⁇ m.
  • the conductivity of the conductive portion 20 tends to be further improved. Further, it is possible to sufficiently suppress a decrease in conductivity due to oxidation or corrosion of the surface of the thin metal wire 21. Further, assuming that the aperture ratio is the same, the narrower the line width of the thin metal wire 21, the more the number of the thin metal wire 21 can be increased.
  • the electric field distribution of the conductive film 100 becomes more uniform, and it becomes possible to manufacture an electronic device having a higher resolution. Further, even if a disconnection occurs in some of the thin metal wires 21, the influence of the disconnection can be compensated for by the other thin metal wires 21. On the other hand, when the line width W 0 of the thin metal wire 21 is 30.0 ⁇ m or less, the visibility of the thin metal wire 21 tends to be further lowered, and the transparency of the conductive film 100 tends to be further improved.
  • the thickness T of the thin metal wire 21 is preferably 10 to 1000 nm, more preferably 50 to 700 nm, and even more preferably 75 to 500 nm.
  • the conductivity tends to be further improved. Further, there is a tendency that the decrease in conductivity due to oxidation or corrosion of the surface of the thin metal wire 21 can be sufficiently suppressed.
  • the thickness T of the thin metal wire 21 is 1000 nm or less, high transparency tends to be exhibited in a wide viewing angle.
  • the cross-sectional shape of the thin metal wire 21 can be defined by the line width W and the thickness T of the thin metal wire. Based on the thickness T of the thin metal wire 21, the heights from the interface between the base material 10 and the thin metal wire 21 are defined as 0.50T and 0.90T. Further, the width of the thin metal wire 21 at a height of 0.50 T is W 0.50, and the width of the thin metal wire 21 at a height of 0.90 T is W 0.90. At this time, W 0.50 / W 0 is preferably 0.70 to 0.99, more preferably 0.75 to 0.99 or less, and further preferably 0.80 to 0.95. Also.
  • W 0.90 / W 0.50 is preferably 0.50 to 0.95, more preferably 0.55 to 0.90, and even more preferably 0.60 to 0.85.
  • W 0.50 / W 0 is larger than W 0.90 / W 0.50. That is, it is preferable that the width of the thin metal wire 21 gradually decreases from the height position at a thickness of 0.50 T to the height position at a thickness of 0.90 T from the interface of the thin metal wire 21 on the base material 10 side.
  • the conductive film of the present embodiment can be formed by a printing method using ink, and the thin metal wire 21 formed by the method has a characteristic shape as described above.
  • a method using a nanoimprint method or a lithography method, a method using other nanowires, etc. can be considered, but the metal fine wire produced by these methods and the metal fine wire formed by the printing method are different. , The above shapes are different.
  • the aspect ratio represented by the thickness T of the thin metal wire 21 with respect to the line width W 0 of the thin metal wire 21 is preferably 0.05 or more and 1.00 or less.
  • the lower limit of the aspect ratio is more preferably 0.08 or more, still more preferably 0.10 or more.
  • the pitch P of the fine metal wire pattern is preferably 0.2 to 1000 ⁇ m, more preferably 10 to 750 ⁇ m, and even more preferably 50 to 500 ⁇ m.
  • the pitch P of the fine metal wire pattern is 0.2 ⁇ m or more, good transmittance can be obtained.
  • the pitch P of the metal fine wire pattern is 1000 ⁇ m or less, the conductivity tends to be further improved.
  • the shape of the fine metal wire pattern is a mesh pattern, the aperture ratio can be 99% by setting the pitch of the fine metal wire pattern having a line width of 1 ⁇ m to 200 ⁇ m.
  • the pitch P is the sum of the line width W 0 and the distance between the thin metal wires.
  • the line width, aspect ratio, and pitch of the thin metal wire pattern can be confirmed by observing the cross section of the conductive film with an electron microscope or the like.
  • the line width and pitch of the fine metal wire pattern can also be observed with a laser microscope or an optical microscope. Further, since the pitch and the aperture ratio have a relational expression described later, if one is known, the other can be calculated.
  • a method of adjusting the line width, aspect ratio, and pitch of the fine metal line pattern within a desired range a method of adjusting the groove of the plate used in the method of manufacturing a conductive film described later, and an average of metal particles in ink. Examples thereof include a method of adjusting the particle size.
  • the aperture ratio of the metal fine wire pattern is preferably 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 90% or more. By setting the aperture ratio of the metal fine wire pattern to the above-mentioned specific value or more, the transmittance of the conductive film tends to be further improved.
  • the aperture ratio of the fine metal wire pattern is preferably less than 100%, more preferably 95% or less, still more preferably 90% or less, still more preferably 80% or less, and even more preferably. It is 70% or less, and particularly preferably 60% or less. By setting the aperture ratio of the metal fine wire pattern to the above-mentioned specific value or less, the conductivity of the conductive film tends to be further improved.
  • the appropriate value of the aperture ratio of the metal fine wire pattern differs depending on the shape of the metal fine wire pattern. Further, the aperture ratio of the fine metal wire pattern can be appropriately combined with the above upper limit value and the lower limit value according to the required performance (transmittance and sheet resistance) of the target electronic device.
  • the "aperture ratio of the fine metal wire pattern” can be calculated by the following formula for the region where the fine metal wire pattern is formed on the transparent base material.
  • the region on the transparent substrate on which the fine metal line pattern is formed is the range shown by S in FIG. 3, and the edge portion or the like on which the fine metal line pattern is not formed is excluded.
  • Aperture ratio of fine metal wire pattern (1-Area occupied by fine metal wire pattern / Area of transparent base material) x 100
  • FIG. 5A shows a schematic diagram of a mesh pattern (grid pattern) having a pattern unit 23.
  • the aperture ratio and the pitch have the following relational expressions.
  • FIG. 5B shows a schematic diagram of the line pattern.
  • the aperture ratio and the pitch have the following relational expressions.
  • Aperture ratio ⁇ (pitch P-line width W) / pitch P ⁇ x 100
  • the sheet resistance of the conductive film 100 is preferably 0.1 ⁇ / sq or more and 1,000 ⁇ / sq or less, more preferably 0.1 ⁇ / sq or more and 500 ⁇ / sq or less, and further preferably 0.1 ⁇ / sq. It is 100 ⁇ / sq or less, more preferably 0.1 ⁇ / sq or more and 20 ⁇ / sq or less, and even more preferably 0.1 ⁇ / sq or more and 10 ⁇ / sq or less.
  • the sheet resistance of the conductive film can be measured by the following method.
  • a portion of the conductive film in which the fine metal wire pattern is arranged on the entire surface is cut out in a rectangular shape to obtain a measurement sample.
  • a current collector for sheet resistance measurement which is electrically connected to a thin metal wire pattern, is formed at both ends of the obtained measurement sample, and the electrical resistance R ( ⁇ ) between the current collectors provided at both ends is measured.
  • the sheet resistance is calculated by the following equation.
  • R s ( ⁇ / sq) can be calculated.
  • R s R / L ⁇ D
  • the sheet resistance of the conductive film 100 tends to decrease by improving the aspect ratio (height) of the thin metal wire. It can also be adjusted by selecting the metal material type that constitutes the fine metal wire.
  • the visible light transmittance of the conductive film 100 is preferably 80% or more and 100% or less, and more preferably 90% or more and 100% or less.
  • the visible light transmittance can be measured by calculating the transmittance in the range of visible light (360 to 830 nm) in accordance with the total light transmittance of JIS K 7361-1: 1997.
  • the visible light transmittance of the conductive film 100 tends to be improved by reducing the line width of the metal fine line pattern or improving the aperture ratio.
  • the haze of the conductive film 100 is preferably 0.01% or more and 5.00% or less.
  • the upper limit of haze is more preferably 3.00% or less, still more preferably 1.00% or less.
  • the haze in this specification can be measured according to the haze of JIS K 7136: 2000.
  • the winding body 200 of the present embodiment is a winding body of the conductive film 100, and is wound so that the conductive portion 20 and the second surface 10b are in contact with each other.
  • FIG. 2 shows one aspect of the wound body 200 of the present embodiment.
  • the conductive film 100 constituting the winding body 200 is preferably a long film having a short side and a long side. In this case, the width of the wound body 200 coincides with the short side of the conductive film 100.
  • the wound body 200 of such a long conductive film 100 has a large area in which the conductive portion 20 and the second surface 10b are in contact with each other, and the conductive portion 20 is due to the tension at the time of winding and the weight of the conductive film 100. And the second surface 10b are easily pressed, so that set-off tends to occur. Therefore, the present invention is particularly useful.
  • the size of the conductive film 100 can be appropriately adjusted according to various uses.
  • the short side of the conductive film 100 constituting the wound body 200 is preferably 10 mm or more and 2000 mm or less, more preferably 50 mm or more and 1500 mm or less, and further preferably 100 mm or more and 1000 mm or less.
  • the long side of the conductive film 100 constituting the wound body 200 is preferably 1.0 m or more and 2000 m or less, more preferably 5.0 m or more and 1500 m or less, and further preferably 10 m or more and 1000 m or less. ..
  • the surface free energy SFE 1 of the first surface 10a of the base material 10 is obtained from the surface free energy SFE 2 of the second surface 10b of the base material 10 on the side opposite to the first surface 10a.
  • a base material manufacturing step of producing a large base material 10 a pattern forming step of forming a pattern on the first surface 10a of the base material 10 using an ink containing a metal component, and a pattern forming step of firing the ink to form a conductive portion 20.
  • FIG. 6 shows an example of the method for producing the conductive film of the present embodiment.
  • base materials 10 having different surface free energies are produced on the front surface (first surface 10a) and the back surface (second surface 10b). More specifically, a method of providing the outermost layer 12 and / or the outermost layer 13 on one surface or both surfaces of the core layer 11 (FIG. 6A), and the surface roughness on the front and back surfaces of the base material 10 There is a method to make the difference.
  • the method for forming the outermost layer 12 is not particularly limited, but for example, a component constituting the outermost layer 12 is formed on the first surface 10a side of the core layer 11 by using a vapor phase deposition method such as PVD or CVD. There is a way to do it. Further, as another method, there is a method of forming the outermost layer 12 by applying a composition containing a component forming the outermost layer 12 to the surface of the core layer 11 on the first surface 10a side and drying the composition.
  • the method for forming the outermost layer 13 is not particularly limited.
  • the outermost layer is formed by applying a composition containing the components constituting the outermost layer 13 to the surface of the core layer 11 on the second surface 10b side and drying the outermost layer 13.
  • a method of forming 13 can be mentioned.
  • the outermost layer 12 and / or the outermost layer 13 may be formed after the other layer is formed. Good.
  • the method for increasing the surface roughness of the base material 10 which is generally smooth is not particularly limited, but for example, an easily adhesive layer having a large surface roughness is provided between the core layer 11 and the outermost layer 13.
  • a method of forming the outermost layer 13 on the adhesive layer can be mentioned.
  • the outermost layer 13 reflects the surface roughness of the easy-adhesion layer.
  • the pattern forming step is a step of forming a pattern using ink containing a metal component.
  • the pattern forming step is not particularly limited as long as it is a plate printing method using a plate having a groove of a desired fine metal line pattern, and for example, a step of coating the surface of the transfer medium with ink and a step of coating the surface of the transfer medium coated with ink.
  • the ink used in the pattern forming step contains a conductive component and a solvent, and may contain a surfactant, a dispersant, a reducing agent, and the like, if necessary.
  • the conductive component is a metal component
  • the metal component may be contained in the ink as metal particles or may be contained in the ink as a metal complex.
  • the average primary particle size of the metal particles is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less.
  • the lower limit of the average primary particle size of the metal particles is not particularly limited, but may be 1 nm or more.
  • the average primary particle size of the metal particles is 100 nm or less, the line width W of the obtained fine metal wire can be made thinner.
  • the "average primary particle size” refers to the particle size of each metal particle (so-called primary particle), and is the particle size of an agglomerate (so-called secondary particle) formed by aggregating a plurality of metal particles. Distinguished from some average secondary particle size.
  • the metal particles are not particularly limited, and examples thereof include metal oxides and metal compounds such as copper oxide, and core / shell particles in which the core portion is copper and the shell portion is copper oxide.
  • the mode of the metal particles can be appropriately determined from the viewpoint of dispersibility and sinterability.
  • the surfactant is not particularly limited, and examples thereof include a fluorine-based surfactant.
  • a fluorine-based surfactant By using such a surfactant, the coating property of the ink on the transfer medium (blanket) and the smoothness of the coated ink are improved, and a more uniform coating film tends to be obtained. It is preferable that the surfactant is configured so that the metal component can be dispersed and does not easily remain during firing.
  • the dispersant is not particularly limited, and examples thereof include a dispersant that does not covalently bond or interacts with the surface of the metal component, and a dispersant that covalently bonds to the surface of the metal component.
  • Dispersants having a phosphoric acid group can be mentioned as functional groups that do not covalently bond or interact with each other. By using such a dispersant, the dispersibility of the metal component tends to be further improved.
  • examples of the solvent include alcohol solvents such as monoalcohols and polyhydric alcohols; alkyl ether solvents; hydrocarbon solvents; ketone solvents; ester solvents and the like. These may be used alone or in combination of one or more. For example, a combination of a monoalcohol having 10 or less carbon atoms and a multihydric alcohol having 10 or less carbon atoms can be mentioned.
  • the solvent is preferably configured so that the metal component can be dispersed and does not easily remain during firing.
  • the metal component in the ink 24 transferred to the first surface 10a of the base material 10 is sintered to form the conductive portion 20 (FIG. 6D).
  • the firing is not particularly limited as long as it is a method in which the metal components can be fused to form a metal component sintered film.
  • the firing may be performed in a firing furnace, for example, or may be performed using plasma, a heating catalyst, ultraviolet rays, vacuum ultraviolet rays, an electron beam, infrared lamp annealing, flash lamp annealing, a laser, or the like.
  • the obtained sintered film is easily oxidized, it is preferable to fire it in a non-oxidizing atmosphere.
  • the metal oxide or the like is difficult to be reduced only by the reducing agent that can be contained in the ink, it is preferable to bake in a reducing atmosphere.
  • the non-oxidizing atmosphere is an atmosphere that does not contain an oxidizing gas such as oxygen, and has an inert atmosphere and a reducing atmosphere.
  • the inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon or nitrogen.
  • the reducing atmosphere refers to an atmosphere in which a reducing gas such as hydrogen or carbon monoxide is present.
  • the dispersion coating film When the dispersion coating film is fired in a non-oxidizing atmosphere, it is preferable to temporarily evacuate the firing furnace to remove oxygen in the firing furnace and replace it with a non-oxidizing gas. Further, the firing may be performed in a pressurized atmosphere or a reduced pressure atmosphere.
  • the firing temperature is not particularly limited, but is preferably 20 ° C. or higher and 400 ° C. or lower, more preferably 50 ° C. or higher and 300 ° C. or lower, and further preferably 80 ° C. or higher and 200 ° C. or lower.
  • a substrate having low heat resistance can be used, which is preferable.
  • the firing temperature is 20 ° C. or higher, the formation of the sintered film proceeds sufficiently and the conductivity tends to be good, which is preferable.
  • the obtained sintered film contains a conductive component derived from a metal component, and may also contain a non-conductive component depending on the component used for the ink and the firing temperature.
  • a conductive film, a conductive film roll, an electronic paper, a touch panel and a flat panel display which are excellent in both conductivity and flexibility while sufficiently maintaining transparency. Can be done.
  • Example 1 A polyethylene terephthalate (PET) film (manufactured by Toyo Boseki Co., Ltd., product name Cosmoshine A4100, film thickness 50 ⁇ m) having an easy-adhesion layer formed on one side is used as a core layer, and a surface on which an easy-adhesion layer is not formed (first surface).
  • PET polyethylene terephthalate
  • a silicon oxide-containing film having a thickness of 50 nm and a volume resistance of 5000 ⁇ cm containing silicon oxide was formed to form the outermost layer 12. Further, a composition containing an alkyd compound (manufactured by Arakawa Chemical Co., Ltd., product name RL453) is applied to the surface (second surface 10b) of the core layer on which the easy-adhesion layer is formed, dried, and has a thickness of 50 nm. The outermost layer 13 was formed to obtain a base material A.
  • cuprous oxide nanoparticles having a particle diameter of 21 nm 20 parts by mass of cuprous oxide nanoparticles having a particle diameter of 21 nm, 4 parts by mass of a dispersant (manufactured by Big Chemie, product name: Disperbyk-145), and a surfactant (manufactured by Seimi Chemical Co., Ltd., product name: S-). 611) 1 part by mass and 75 parts by mass of ethanol were mixed and dispersed to prepare an ink having a content ratio of cuprous oxide nanoparticles of 20% by mass.
  • a dispersant manufactured by Big Chemie, product name: Disperbyk-145
  • a surfactant manufactured by Seimi Chemical Co., Ltd., product name: S-
  • ink is applied to the surface of the transfer medium, and the surface of the transfer medium to which the ink is applied and the plate having the groove of the metal fine line pattern are opposed to each other, pressed and contacted, and the convex surface of the plate is on the surface of the transfer medium.
  • Some ink was transferred.
  • the surface of the transfer medium coated with the remaining ink and the base material A were pressed and brought into contact with each other to transfer the ink A1 having a desired fine metal line pattern onto the base material A.
  • a metal fine wire pattern ink (dispersion coating film) was fired by flash lamp annealing in a room temperature environment using a Pulseforge 1300 manufactured by NovaCentrick, and a conductive film containing a mesh pattern metal fine wire having a line width of 3 ⁇ m and a thickness of 500 nm was fired. I got a film.
  • W 0.50 / W 0 was larger than W 0.90 / W 0.50.
  • Example 2 Conductive as in Example 1 except that a urethane compound (manufactured by Nakai Techno Co., Ltd., product name P05) was used instead of the alkyd compound (manufactured by Arakawa Chemical Co., Ltd., product name RL453) as the outermost layer 13. A sex film was obtained.
  • a urethane compound manufactured by Nakai Techno Co., Ltd., product name P05
  • the alkyd compound manufactured by Arakawa Chemical Co., Ltd., product name RL453
  • Example 3 The same as in Example 1 except that a silicone compound (manufactured by Shinetsu Silicone Co., Ltd., product name KS-847) was used instead of the alkyd compound (manufactured by Arakawa Chemical Co., Ltd., product name RL453) as the outermost layer 13. To obtain a conductive film.
  • a silicone compound manufactured by Shinetsu Silicone Co., Ltd., product name KS-847
  • alkyd compound manufactured by Arakawa Chemical Co., Ltd., product name RL453
  • Example 4 As the outermost layer 13, the same as in Example 1 except that a fluorine-based compound (manufactured by Harves, product name DH-120TH) was used instead of the alkyd compound (manufactured by Arakawa Chemical Co., Ltd., product name RL453). , A conductive film was obtained.
  • a fluorine-based compound manufactured by Harves, product name DH-120TH
  • the alkyd compound manufactured by Arakawa Chemical Co., Ltd., product name RL453
  • Example 5 A conductive film was obtained in the same manner as in Example 2 except that the line width of the mesh pattern was 1 ⁇ m and the thickness was 150 nm.
  • Example 6 Silicon oxide nanoparticles similar to those in Example 1 so as to form the first surface on the opposite surface (second surface) of the release layer surface (second surface) of the release PET film (manufactured by Higashiyama Film, product name HY-NS70).
  • a composition containing a conductive organic silane compound was applied and dried to form a silicon oxide-containing film having a thickness of 50 nm and a volume resistivity of 5000 ⁇ cm containing silicon oxide.
  • a film having the following composition was obtained.
  • Outermost layer 12 Silicon oxide-containing membrane Core layer 11: Polyethylene terephthalate (PET)
  • Outermost layer 13 Release layer
  • Example 2 a thin metal wire having a mesh pattern having a line width of 3 ⁇ m and a thickness of 500 nm was formed on the outermost layer 12 (first surface 10a) to obtain a conductive film containing the mesh pattern.
  • Example 7 A conductive film was obtained in the same manner as in Example 6 except that a release PET film (manufactured by Higashiyama Film Co., Ltd., product name HY-NS80) was used as the release PET film.
  • a release PET film manufactured by Higashiyama Film Co., Ltd., product name HY-NS80
  • Example 8 A conductive film was obtained in the same manner as in Example 6 except that a release PET film (manufactured by Higashiyama Film Co., Ltd., product name HY-NS85) was used as the release PET film.
  • a release PET film manufactured by Higashiyama Film Co., Ltd., product name HY-NS85
  • Example 1 A conductive film was obtained in the same manner as in Example 1 except that the outermost layer 13 was not formed.
  • ⁇ Measurement of surface roughness (arithmetic mean roughness Ra)> A method for measuring the surface roughness of each base material will be described. The arithmetic mean roughness was measured using the first surface and the second surface of the base materials prepared in Examples and Comparative Examples as measurement samples, respectively. A surface roughness meter "Alpha Step IQ" manufactured by KLA Tencor Co., Ltd. was used for the measurement. The measurement conditions were as follows. step length: 500 ⁇ m style Force: 10.6mg
  • the visible light transmittance of the conductive film was measured by calculating the transmittance of visible light having a wavelength of 360 to 830 nm based on the total light transmittance of JIS K 7361-1: 1997.
  • the first and second surfaces of the base materials prepared in Examples and Comparative Examples were used as measurement samples, respectively.
  • 2 ⁇ L of pure and diiodomethane were added dropwise onto the measurement sample as two solvents having known surface tension ⁇ L, surface tension dispersion term ⁇ LD, and surface tension polar term ⁇ LP.
  • the second surface of each sample was confirmed with an optical microscope in a field of view of 9 points, and the area of the conductive portion set off on the second surface was calculated for each field of view to obtain the average value Ave.
  • the area of the conductive portion formed on the first surface in the same visual field area (0.5 mm ⁇ 0.5 mm) is set to 100%, and the ratio of the average value Ave to the area is calculated and used as the set-off rate. ..
  • the wound body before firing by flash lamp annealing was rewound, and in the same manner as described above, 1 m from a position 1 m from the end of the short side was impregnated with ethanol. It was wiped off with -3II (manufactured by Asahi Kasei Corporation), and it was visually confirmed whether the ink adhered to the Bencot, and the ink adhesion before firing was determined.
  • the judgment indicators are as follows. ⁇ No ink adheres ⁇ Ink adhesion can be confirmed slightly ⁇ Ink adhesion is observed
  • FIGS. 7 and 8 The photographs of the samples cut out in the set-off evaluation are shown in FIGS. 7 and 8.
  • FIG. 7 is a photograph showing the first surface and the second surface of the first embodiment
  • FIG. 8 is a photograph showing the first surface and the second surface of the comparative example 1.
  • the conductive film of the present invention can be suitably used for transparent electrodes such as electronic paper, touch panels, and flat panel displays, as well as thin heaters, and has industrial applicability.
  • 10 Base material, 10a ... 1st surface, 10b ... 2nd surface, 11 ... Core layer, 12 ... Outer layer, 13 ... Outer layer, 20 ... Conductive part, 21 ... Metal wire, 22 ... Opening, 23 ... Pattern Unit, 24 ... Ink, 100 ... Conductive film, 200 ... Winder,

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

基材と、前記基材の第1面に形成された、少なくとも細線パターンを含む導電部と、を有する導電性フィルムであって、前記第1面の表面自由エネルギーSFE1が、前記第1面とは反対側の前記基材の第2面の表面自由エネルギーSFE2よりも大きい、導電性フィルム。

Description

導電性フィルム及びその巻回体
 本発明は、導電性フィルム及びその巻回体に関する。
 従来、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の電子デバイスには、酸化インジウムスズ(以下、「ITO」ともいう。)を用いた透明な導電性フィルムが用いられている。今後、更なる電子デバイスの高付加価値化にむけて、大面積化や応答性向上、フレキシブル化が重要である。そのため、これに用いられる導電性フィルムには、高い透過率を維持しながら導電性と可撓性を向上させることが求められる。
 ITOは材料固有の導電率が低いため、高い導電性を発現するためには厚膜化が必要でありそれに伴い透過率が低下する。また厚膜化により曲げや撓み、屈曲等の変形によりクラックが発生しやすくなるため、ITOを用いた導電性フィルムでは高い透過率、導電性、可撓性を同時に発現することは困難である。
 そこで、ITOに代わる導電性フィルムの研究開発が精力的に行われており、透明基材上にパターニングした金属細線を有する導電性フィルムが注目されており、種々の研究がなされている。
 例えば、特許文献1には、金属微粒子焼結膜と基材との密着性と導電性の向上を目的として、金属微粒子焼結膜のX線回折により測定した結晶子径と、金属微粒子焼結膜の断面の空隙率を規定することが開示されている。
 また、特許文献2には、重ねたときに機能性パターンに圧力が集中することを抑制することを目的として、支持体上の機能性パターンが形成されていない部分に厚み調整用パターンを設ける方法が開示されている。さらに、特許文献3には、電子材料を対象とした反転オフセット印刷装置が開示されている。
 また、特許文献4には、導電層とハードコート層の密着性に優れ、導電性にも優れた導電性フィルムが開示されており、フィルムの巻き取りの際のブロッキング防止を目的として、導電層とハードコート層の密着不良を改善するために、導電層を形成するハードコート層の表面自由エネルギーを規定している。
特開2010-192841号公報 特開2016-51194号公報 特表2015-523244号公報 特開2017-019273号公報
 ところで、上記のようにして得られる導電性フィルムは、製造後に巻回体に巻き取られ、保管や流通する。また、巻回体から巻き戻された後も、複数枚重ねられて保管されるなど様々な取り扱いが考えられる。しかしながら、巻回体のように、導電性フィルムの表面に形成された金属細線などの導電部が、他の部材、例えば、導電性フィルムの裏面と接触した場合には、表面に形成された導電部の一部が裏面に移り、剥がれなどが生じるという問題があることが分かってきた。
 特に、特許文献2のように、連続プロセスによって導電性フィルムを製造する場合には、このような問題が顕著となり、導電性フィルムの巻回体において、導電性パターンと接触するフィルムの裏面に導電性パターンが移ってしまう裏移り現象が生じやすい。
 また、特許文献4においては、フィルムの巻き取りの際のブロッキング防止を目的として、導電層とハードコート層の密着不良を改善しているが、特許文献4における導電層とは、ハードコート層上に形成される導電材を含む層であり、樹脂バインダーを含む透明導電層であり、均一な層である。そのため、細線パターンにより構成された導電層へは適用できず、表面に形成された細線パターンの一部が裏面に移る問題があった。
 本発明は上記課題を鑑みてなされたものであり、裏移りを抑制することのできる、細線パターンを含む導電性フィルム及び該導電性フィルムの巻回体を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討した。その結果、基材の両面の表面自由エネルギーを調整することにより、上記課題を解決しうることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 基材と、前記基材の第1面に形成された、少なくとも細線パターンを含む導電部と、を有する導電性フィルムであって、
 前記第1面の表面自由エネルギーSFE1が、前記第1面とは反対側の前記基材の第2面の表面自由エネルギーSFE2よりも大きい、
 導電性フィルム。
〔2〕
 前記表面自由エネルギーSFE1と前記表面自由エネルギーSFE2の差(SFE1-SFE2)が、1mJ/m2以上である、
 〔1〕に記載の導電性フィルム。
〔3〕
 前記表面自由エネルギーSFE1が、40~50mJ/m2である、
 〔1〕又は〔2〕に記載の導電性フィルム。
〔4〕
 前記基材が、前記第1面側の最外層として、ケイ素化合物を含む層を有する、
 〔1〕~〔3〕のいずれか一項に記載の導電性フィルム。
〔5〕
 前記表面自由エネルギーSFE2が、11~42mJ/m2である、
 〔1〕~〔4〕のいずれか一項に記載の導電性フィルム。
〔6〕
 前記基材が、前記第2面側の最外層として、メラミン系化合物、アルキド系化合物、フッ素系化合物、及びシリコーン系化合物からなる群より選ばれる少なくとも一種を含む層を有する、
 〔1〕~〔5〕のいずれか一項に記載の導電性フィルム。
〔7〕
 〔1〕~〔6〕のいずれか一項に記載の導電性フィルムの巻回体であって、
 前記導電部と前記第2面とが接するように巻回されたものである、
 巻回体。
〔8〕
 前記導電性フィルムが、10mm以上2000mm以下の短辺と、1.0m以上2000m以下の長辺と、を有する長尺フィルムであり、
 前記導電性フィルムが長尺方向に巻回されたものである、
 〔7〕に記載の巻回体。
 本発明によれば、裏移りを抑制することのできる、細線パターンを含む導電性フィルム及び該導電性フィルムの巻回体を提供することができる。
本実施形態の導電性フィルムの一態様を表す概略断面図である。 本実施形態の導電性フィルムの巻回体の一態様を表す概略斜視図である。 本実施形態の導電性フィルムの一態様を表す上面図である。 図3の導電性フィルムのI-I’の部分断面図である。 導電性フィルムの開口率とピッチとの関係を表す部分上面図である。 本実施形態の導電性フィルムの製造方法を表す概略図である。 実施例の導電性フィルムの裏移り結果を示す写真である。 比較例の導電性フィルムの裏移り結果を示す写真である。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔導電性フィルム〕
 本実施形態の導電性フィルムは、基材と、基材の第1面に形成された、少なくとも細線パターンを含む導電部と、を有し、第1面の表面自由エネルギーSFE1が、第1面とは反対側の基材の第2面の表面自由エネルギーSFE2よりも大きい。
 図1に、本実施形態の導電性フィルムの一態様を示す概略断面図を示す。本実施形態の導電性フィルム100は、基材10と導電部20とを有する。基材10は、単層フィルムであっても積層フィルムであってもよい。図1には、基材10が積層フィルムである場合の例を示す。図1に示す基材10は、コア層11と、第1面10a側の最外層12と、第2面10b側の最外層13を備える。
 導電部20は第1面10aに形成される。図1に示すように、導電部20は、少なくとも細線から構成されるパターンを含み、部分的に均一な金属層を含んでもよい。
 裏移りについて説明するために、図2に、導電性フィルム100の巻回体200を示す。なお、図2においては、説明の都合上、裏移りをした模式図を示すが、実際には本実施形態の巻回体200は図2に示したような裏移りが抑制されたものである。
 図2では、第1面10aが内側に向き、第2面10bが外側に向くように導電性フィルム100を巻回した巻回体200を示す。このような巻回体200は、必要に応じて、2000mもの長さの導電性フィルム100を巻きとったものとなることがある。そのため、巻回体200の導電性フィルム間には相応の荷重がかかっており、導電部20が第2面10bに密着する。このような導電部20と第2面10bの密着により、導電部20が部分的に第2面10bに付着することを裏移りという。このような裏移りが生じると、導電部の断線や、不要な面(第2面10b)への導電性物質の付着による不良品の発生などが生じる。
 これに対して、本実施形態の導電性フィルム100は、基材の表面(第1面10a)で表面自由エネルギーSFE1を裏面(第2面10b)の表面自由エネルギーSFE2よりも大きくすることにより、第1面10aに対する導電部の密着性を確保しつつ、第2面10bに対する導電部の離型性を確保する。これにより、例えば、導電性フィルム100の保管や流通過程、あるいは使用過程において、導電性フィルム100同士が重ねられて導電部と第2面10bとが接するような場合においても、第2面10bに導電部が付着すること(裏移り)を抑制することができる。
 特に、本実施形態の導電性フィルム100における導電部20には、細線パターンを含んでいる。細線パターンは、均一な膜の導電層と比較し、導電性フィルム100同士が重ねられて導電部20と第2面10bとが接する場合に、裏移りしやすい傾向がある。なぜならば、裏移りは、導電部20の層が、第2面10bへの付着により破壊される現象であり、抑制のためには、第1面10aとの密着力に加え、導電部層自体の強度が必要とされる。そのため、導電層が均一なべた膜である場合は、膜全体の強度により、裏移りが抑制される。一方で、図1に示す金属細線パターンの場合には、導電部20は、その細線の細さにより、上記した膜強度による裏移り抑制機構が働かない。
 上記理由により、細線パターンを含む導電性フィルムの裏移り防止には、導電部20と第1面10aとの密着力だけでなく、導電部20と第2面10bとの密着力を制御し、離型性を確保する必要がある。
 上記のような観点から、表面自由エネルギーSFE2の差(SFE1-SFE2)は、好ましくは1mJ/m2以上であり、より好ましくは5mJ/m2以上であり、さらに好ましくは10mJ/m2以上であり、特に好ましくは16mJ/m2以上であり、最も好ましくは20mJ/m2以上である。差(SFE1-SFE2)が1mJ/m2以上であることにより、裏移りがより抑制され、導電性フィルムの歩留まりがより向上する傾向にある。また、表面自由エネルギーSFE2の差(SFE1-SFE2)の上限は、特に制限されないが、好ましくは100mJ/m2以下であり、より好ましくは40mJ/m2以下である。このようにすることで、第1面10aの接着性が向上しすぎ、かえって埃などがコンタミすることを抑制することができる。
 また、同様の観点から、表面自由エネルギーSFE1は、好ましくは20~100mJ/m2であり、より好ましくは20~75mJ/m2であり、さらに好ましくは20~50mJ/m2である。表面自由エネルギーSFE1が40mJ/m2以上であることにより、第1面10aに対する導電部20の密着性がより向上する傾向にある。また、表面自由エネルギーSFE1が100mJ/m2以下であることにより、埃などのコンタミがより抑制される傾向にある。表面自由エネルギーSFE1は、基材10が最外層12を有する場合にはその材質、基材10が最外層12を有しない場合にはコア層11の材質により、調整することができる。また、第1面10aの表面粗さによっても調整することができる。
 第1面10aの表面粗さ(算術平均粗さRa1)は、0.1nm以上20nm以下であると、上記した表面自由エネルギーSFE1の範囲を保持でき好ましく、0.2nm以上10nm以下であると、第1面10a上に形成する細線パターンの欠損を抑制でき好ましく、0.3nm以上5nm以下であると、さらに好ましい。
 さらに、同様の観点から、表面自由エネルギーSFE2は、好ましくは5~42mJ/m2であり、より好ましくは11~42mJ/m2であり、さらに好ましくは11~30mJ/m2であり、特に好ましくは11~25mJ/m2である。表面自由エネルギーSFE2が5mJ/m2以上であることにより、第2面10bに対してさらに他の層をコーティングしたり、第2面10bと他の部材の表面とを貼り合わせたりするなど、追加の処理を行う際の加工容易性が向上する傾向にある。さらに、表面自由エネルギーSFE2が低い場合には第2面10bの摩擦係数も低くなる傾向にある。これに対して、表面自由エネルギーSFE2が5mJ/m2以上であることにより、製造時に導電性フィルム100あるいは基材10をローラーなどの搬送手段で搬送する際において、搬送手段と第2面10bとの間で滑りが生じることを抑制でき、さらには、搬送手段によって導電性フィルム100あるいは基材10の張力制御も容易になる傾向にある。このような張力制御は、特に、基材10を搬送しながらその表面上にインクを用いて金属細線21を形成する印刷法において、求められる。また、表面自由エネルギーSFE2が42mJ/m2以下であることにより、裏移りがより抑制され、導電性フィルムの歩留まりがより向上する傾向にある。表面自由エネルギーSFE2は、基材10が最外層13を有する場合にはその材質、基材10が最外層13を有しない場合にはコア層11の材質により、調整することができる。また、第2面10bの表面粗さによっても調整することができる。
 第2面10bの表面粗さ(算術平均粗さRa2)は、0.1nm以上20nm以下であると、上記した表面自由エネルギーSFE2の範囲を保持でき好ましく、0.2nm以上10nm以下であると、導電性フィルム100を巻回するときに、第1面10a上に形成された細線パターンと第2面10bとが、重ね合わせられる際の欠損を抑制でき好ましく、0.3nm以上5nm以下であると、さらに好ましい。
 前記第1面10aと前記第2面10bの表面粗さにおいて、各々の算術平均粗さRa1とRa2とは、下記式(5)を満たすことが好ましい。式(5)を満たすと、導電性フィルム100を巻回するときに、第1面10a上に形成された細線パターンと第2面10bとが、重ね合わせられる際の欠損を抑制でき好ましい。
    Ra1≧Ra2      (5)
 式(5)を満たすことで、巻回時の欠損を抑制できる詳細なメカニズムは不明だが、次のように推定される。つまり、導電性フィルム100を巻回するときに、巻回張力による巻き締まりが起き、重ね合わせられたフィルムの第1面10aと第2面10bは、わずかにズレ、擦れることになる。この時に、第2面10bの凹凸により、第1面10a上に形成された細線パターンに欠損が起きる。
 また、前記第1面10aの表面粗さと第2面10bの表面粗さの差は、少ないことが好ましく、各々の算術平均粗さRaの差の絶対値|Ra1-Ra2|は、3nm以下が好ましく、2nm以下であると、欠損抑制効果が顕著になり好ましく、1nm以下であると、さらに好ましい。
 次いで、本実施形態で定義する表面自由エネルギーについて説明する。一般に、樹脂内部に存在する分子は周囲の分子との相互作用によって安定化された状態で存在しているが、樹脂表面に存在する分子は表面を形成している分、周囲の分子による安定化作用が少ない。このため、表面に存在する分子は、内部に存在する分子よりも大きな自由エネルギーを持つことになる。このエネルギーを表面自由エネルギーという。
 Kaelbel and Uyの理論式に従うと、物質表面が持つ表面自由エネルギーγは、分散成分(γd)と極性成分(γp)に基づいて、下記式(1)で表すことができる。また、固体の表面自由エネルギーγSVと液体の表面自由エネルギーγLVは、下記式(2)及び(3)で表すことができる。ここで、固体である基材の表面上に、ある溶媒を滴下して得られる接触角をθとすると、次の式(4)の関係が成立することが知られている。
 γ = γd +γp   (1)
 γSV = γSV d +γSV p   (2)
 γLV = γLV d +γLV p   (3)
 γL(1+cosθ)/2=(γSV d×γLV d0.5+(γSV p×γLV p0.5   (4)
 固体の表面自由エネルギーにおける未知の2成分を求めるため、表面自由エネルギーが既知の2種類の液体を用い、溶媒と第1面10a又は第2面10bとの接触角θを測定する。そして、それらを上記式(4)に代入して連立方程式を解くことにより、第1面10a又は第2面10bの表面自由エネルギーの分散成分(γSV d)と極性成分(γSV p)を求めることができ、式(2)により固体の表面自由エネルギーγSVを求めることができる。
〔基材〕
 本実施形態で用いる基材としては、特に制限されず、例えば、透明基材や不透明基材を用いることができる。ここで、「透明」とは、可視光透過率が、好ましくは80%以上であることをいい、より好ましくは90%以上であることをいい、さらに好ましくは95%以上であることをいう。ここで、可視光透過率は、JIS K 7361-1:1997に準拠して測定することができる。また、不透明基材とは、可視光透過率が80%未満であるものをいい、不透明基材には、完全に可視光が透過しないものから、可視光が一部透過する半透明基材も含まれる。なお、このなかでも、基材としては透明基材が好ましい。
 基材は、1種の材料からなるものであっても、2種以上の材料が積層されたものであってもよい。また、基材が、2種以上の材料が積層された積層体である場合、基材は、有機基材又は無機基材同士が積層されたものであっても、有機基材及び無機基材が積層されたものであってもよい。
 図1には、コア層11と、第1面10aを構成する最外層12と、第2面10bを構成する最外層13とからなる基材10を例示するが、基材10の構成はこれに制限されない。基材10の態様としては、コア層11の単層フィルム、コア層11と最外層12とを有する積層フィルム、コア層11と最外層13とを有する積層フィルム、最外層12と最外層13とを有する積層フィルム、コア層11と最外層12と最外層13とを有する積層フィルムが挙げられる。また、上記積層フィルムにおいて、コア層11と最外層12の間、コア層11と最外層13の間、または、最外層12と最外層13の間には、さらに他の層を有していてもよい。なお、コア層11と最外層12とを有する積層フィルムにおいては、コア層11の表面が第1面10aを構成するものとなり、コア層11と最外層13とを有する積層フィルムにおいては、コア層11の表面が第2面10bを構成するものとなる。以下、各層の構成について詳説する。
(コア層11)
 コア層11を構成する材料は、特に制限されないが、基材の機械的強度の向上に寄与するものが好ましい。
 そのようなコア層11の材料としては、特に限定されないが、例えば、ガラス等の透明無機基材;アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の透明有機基材が挙げられる。このなかでも、ポリエチレンテレフタレートを用いることにより、導電性フィルムを製造するための生産性(コスト削減効果)がより優れる。また、ポリイミドを用いることにより、導電性フィルムの耐熱性がより優れる。さらに、ポリエチレンテレフタレート及び/又はポリエチレンナフタレートを用いることにより、透明基材と金属細線との密着性がより優れる。
 コア層11は、1種の材料からなるものであっても、2種以上の材料が積層されたものであってもよい。また、コア層11が、2種以上の材料が積層された積層体である場合、基材は、有機基材又は無機基材同士が積層されたものであっても、有機基材及び無機基材が積層されたものであってもよい。
 コア層11の厚さは、好ましくは5μm以上500μm以下であり、より好ましくは10μm以上100μm以下である。
(最外層12)
 基材10が積層体である場合、最外層12は、第1面10aを構成する層となる。第1面側の最外層12を構成する材料は、特に制限されないが、コア層11と導電部20の密着性向上に寄与するものが好ましい。また、基材10が、最外層12と最外層13とを有し、コア層11を有しない態様の場合には、最外層12は最外層13と導電部20の密着性向上に寄与するものが好ましい。なお、基材10が最外層12を有する場合、表面自由エネルギーSFE1は最外層12の表面自由エネルギーとなる。
 このような最外層12に含まれる成分としては、特に限定されないが、例えば、ケイ素化合物(例えば、(ポリ)シラン類、(ポリ)シラザン類、(ポリ)シルチアン類、(ポリ)シロキサン類、ケイ素、炭化ケイ素、酸化ケイ素、窒化ケイ素、塩化ケイ素、ケイ素酸塩、ゼオライト、シリサイド等)、アルミニウム化合物(例えば、酸化アルミニウム等)、マグネシウム化合物(例えばフッ化マグネシウム)等が挙げられる。
 この中でも、ケイ素化合物が好ましく、シロキサン類がより好ましい。このような成分を用いることにより、第1面10aの表面自由エネルギーが向上して、上記密着性が向上するほか、導電性フィルムの透明性及び耐久性がより向上する傾向にある。
 ケイ素化合物としては、特に制限されないが、例えば、多官能性オルガノシランの縮合物、多官能性オルガノシラン又はそのオリゴマーとポリ酢酸ビニルとを加水分解反応させて得られた重縮合物などが挙げられる。
 多官能性オルガノシランとしては、特に制限されないが、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどの2官能性オルガノシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシランなどの3官能性オルガノシラン;テトラメトキシシラン、テトラエトキシシランなどの4官能性オルガノシランなどが挙げられる。
 最外層12は、上記最外層12に含まれる成分を含む組成物をコア層11に塗布、乾燥する方法により成膜することができる。また、最外層12は、PVD、CVDなどの気相成膜法によって製膜してもよい。最外層12を形成するための組成物は、必要に応じて、分散剤、界面活性剤、結着剤等を含有してもよい。
 最外層12の厚さは、好ましくは0.01μm以上100μm以下であり、より好ましくは0.01μm以上10μm以下であり、さらに好ましくは0.01μm以上1μm以下である。最外層12の厚さが上記範囲内であることにより、上記密着性がより向上するほか、導電性フィルムの透明性及び耐久性がより向上する傾向にある。
 最外層12をコア層11上に積層することで、例えば、導電部20をプラズマ等の焼成手段でインク中の金属成分を焼結させて形成する際に、プラズマ等によって導電部20で被覆されていない箇所のコア層11のエッチングを防ぐことができる。
 さらにこの最外層12は静電気による金属細線パターン(導電部20)の断線を防ぐために、帯電防止機能を持っていることが好ましい。最外層12が帯電防止機能を有するために、最外層12は導電性無機酸化物及び導電性有機化合物の少なくともいずれかを含むことが好ましい。
 導電性有機化合物としては、例えば、導電性の有機シラン化合物、脂肪族共役系のポリアセチレン、芳香族共役系のポリ(パラフェニレン)、複素環式共役系のポリピロール等が挙げられる。これらの中でも、導電性の有機シラン化合物が好ましい。
 さらに、帯電防止機能のために、最外層12の体積抵抗率は100Ωcm以上100000Ωcm以下であることが好ましく、1000Ωcm以上10000Ωcm以下であることがより好ましく、2000Ωcm以上8000Ωcm以下であることがさらにより好ましい。最外層12の体積抵抗率が100000Ωcm以下であることで、帯電防止機能を発現することができる。また最外層12の体積抵抗率が100Ωcm以上であることで金属細線パターン間の電気伝導が好ましくないタッチパネル等の用途に好適に用いることができる。体積抵抗率は、最外層内の導電性無機酸化物や導電性有機化合物等の帯電防止機能を発揮する成分の含有量により調整することができる。例えば、プラズマ耐性の高い酸化ケイ素(体積比抵抗1014Ω・cm以上)と導電性有機化合物である有機シラン化合物を最外層12に含む場合、導電性の有機シラン化合物の含有量を増やすことで体積抵抗率を低下することができる。一方で、酸化ケイ素の含有量を増やすことで体積抵抗率は増加するが高いプラズマ耐性を有するため薄膜にすることができ、光学的特性を損なうことがない。
 上記した最外層12は、PVD、CVDなどの気相成膜法や、上記最外層12に含まれる成分が分散媒に分散した最外層形成組成物を塗布、乾燥する方法により成膜することができる。最外層形成組成物は、必要に応じて、分散剤、界面活性剤、結着剤等を含有してもよい。
(最外層13)
 基材10が積層体である場合、最外層13は、第2面10bを構成する層となる。第2面側の最外層13を構成する材料は、特に制限されないが、導電部20に対する密着性低下に寄与するものが好ましい。なお、基材10が最外層13を有する場合、表面自由エネルギーSFE2は最外層13の表面自由エネルギーとなる。
 このような最外層13に含まれる成分としては、特に限定されないが、例えば、メラミン系化合物、アルキド系化合物、フッ素系化合物、シリコーン系化合物、ポリエチレンワックス、脂肪酸、脂肪酸エステルが挙げられる。このなかでも、メラミン系化合物、アルキド系化合物、フッ素系化合物、シリコーン系化合物からなる群より選ばれる少なくとも一種が好ましく、メラミン系化合物、アルキド系化合物がより好ましい。このような成分を用いることにより、第2面10bの表面自由エネルギーが低下して、導電部に対する離型性が向上するほか、導電性フィルムの透明性及び耐久性がより向上する傾向にある。
 メラミン系化合物としては、特に制限されないが、例えば、メラミン、メラミンとホルムアルデヒドを縮合して得られるメチロール化メラミン誘導体、メチロール化メラミン誘導体に低級アルコールを反応させて部分的あるいは完全にエーテル化した化合物などが挙げられる。
 メチロール化メラミン誘導体としては、特に制限されないが、例えば、モノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン、ヘキサメトキシメチロールメラミンなどが挙げられる。
 メラミン系化合物を構成する低級アルコールとしては、特に制限されないが、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノールなどが挙げられる。
 アルキド系化合物としては、多塩基酸と、脂肪酸と、多価アルコールとのエステル重合体が挙げられる。
 アルキド系化合物を構成する多塩基酸としては、特に制限されないが、例えば、無水フタル酸、イソフタル酸、テレフタル酸、安息香酸、ロジン、テトラヒド無水フタル酸、無水マレイン酸、アジピン酸、コハク酸などが挙げられる。
 アルキド系化合物を構成する脂肪酸としては、特に制限されないが、例えば、カプロン酸、カプリル酸、ウンデシル酸、ラウリル酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等の飽和脂肪酸、あるいはオレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸、プラジシン酸、エルカ酸、リシノール酸等の不飽和脂肪酸;あまに油,大豆油,ひまし油などが挙げられる。
 アルキド系化合物を構成する多価アルコールとしては、特に制限されないが、例えば、グリセリン,ペンタエリスリトール,エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパンなどが挙げられる。
 フッ素系化合物としては、特に制限されないが、例えば、炭素数3~40、特に5~20のポリフルオロアルキル基やポリフルオロアルキルエーテル基を含む化合物が挙げられる。
 シリコーン系化合物としては、特に制限されないが、例えば、ポリジメチルシロキサンからなるシリコーンオイル、ポリジメチルシロキサンのメチル基の一部がフェニル基に置換されたフェニル変性シリコーンオイル、ポリジメチルシロキサンのメチル基の一部が水素や炭素数2以上のアルキル基に置換されたアルキル変性シリコーンオイル、ポリジメチルシロキサンのメチル基の一部がハロゲン化フェニル基に置換されたハロゲン変性シリコーンオイル、ポリジメチルシロキサンのメチル基の一部がフルオロエステル基に置換されたフッ素変性シリコーンオイル、エポキシ基を有するポリジメチルシロキサンのようなエポキシ変性シリコーンオイル、アミノ基を有するポリジメチルシロキサンのようなアミノ変性シリコーンオイル、ジメチルシロキサンとフェニルメチルシロキサンのようなアルキルアラルキルシリコーンオイル、ジメチルシロキサン単位のメチル基の一部がポリエーテルに置換された構造を有するポリジメチルシロキサンのようなポリエーテル変性シリコーンオイルなどが挙げられる。
 脂肪酸としては、炭素数12以上の飽和又は不飽和脂肪酸が挙げられる。脂肪酸の例としては、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸、セトレイン酸、エルカ酸等が挙げられる。脂肪酸として好ましくは、炭素数12~22の飽和脂肪酸である。
 脂肪酸エステルとしては、特に制限されないが、例えば、上記脂肪酸と炭素数2~30のアルコールとの脂肪酸エステルが挙げられる。脂肪酸エステルを構成するアルコールとしては、特に制限されないが、例えば、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、オクチルアルコール、カプリルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、ベヘニルアルコール等の1価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン、ペンタエリスリトール、ソルビタン等の多価アルコールが挙げられる。
 ポリエチレンワックスとしては、特に制限されないが、例えば、低分子量ポリエチレン、低分子量ポリエチレン共重合体、これらを酸化変性又は酸変性することによって極性基を導入した変性ポリエチレンワックス等が挙げられる。
 最外層13の厚さは、好ましくは0.01μm以上100μm以下であり、より好ましくは0.01μm以上10μm以下であり、さらに好ましくは0.01μm以上1μm以下である。最外層13の厚さが上記範囲内であることにより、導電部20に対する離型性が向上するほか、導電性フィルム100の透明性及び耐久性がより向上する傾向にある。
(その他の層)
 コア層11と最外層12の間、コア層11と最外層13の間、または、最外層12と最外層13の間に配される他の層としては、特に制限されないが、例えば、易接着層が挙げられる。
 易接着層は、コア層11と最外層12、コア層11と最外層13、または、最外層12と最外層13の接着性を向上する目的で用いられる。また、コア層11と最外層13の間に用いられる易接着層は、最外層13の表面粗さを向上するために用いてもよい。すなわち、下地となる易接着層の表面粗さを高くすることで、最外層13の表面粗さを向上させてもよい。これにより、導電部20に対する離型性がより向上する傾向にある。
〔導電部20〕
 導電部20は、基材10の第1面10a上に配される。図1において、導電部20は、金属細線から構成される金属細線パターンとして示すが、導電部20はこれに限定されず、少なくとも細線パターンを含み、一部がベタの金属パターンであってもよい。また、金属細線パターンは規則的なパターンであっても不規則なパターンであってもよい。
 導電部20は、導電性成分を含む。導電性成分としては、特に制限されないが、例えば、導電性金属、導電性高分子などが挙げられる。また、導電部20は、非導電性成分を含んでもよい。導電性金属としては、特に制限されないが、例えば、金、銀、銅、及びアルミニウムが挙げられる。このなかでも、銀又は銅が好ましく、比較的安価な銅であることがより好ましい。このような導電性金属を用いることにより、導電性フィルムの導電性が一層優れる傾向にある。また、導電性高分子としては、公知のものを用いることができ、ポリアセチレンやポリチオフェンなどが挙げられる。
 また、非導電性成分としては、特に制限されないが、例えば、金属酸化物や金属化合物、及び有機化合物が挙げられる。より具体的には、これら非導電性成分としては、後述するインクに含まれる成分に由来する成分であって、インクに含まれる成分のうち焼成を経た後の金属細線に残留する金属酸化物、金属化合物、及び有機化合物が挙げられる。
 導電部20における導電性成分の含有割合は、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。導電性成分の含有割合の上限は、特に制限されないが、100質量%である。また、非導電性成分の含有割合は、好ましくは50質量%以下であり、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。非導電性成分の含有割合の下限は、特に制限されないが、0質量%である。
 導電部20の金属細線パターンは、目的とする電子デバイスの用途に応じて設計することができ、特に限定されないが、例えば、複数の金属細線が網目状に交差して形成されるメッシュパターン(図3(a)及び(b))や、複数の略平行な金属細線が形成されたラインパターン(図3(c)及び(d))が挙げられる。また、金属細線パターンは、メッシュパターンとラインパターンとが組み合わされたものであってもよい。メッシュパターンの網目は、図3(a)に示されるような正方形又は長方形であっても、図3(b)に示されるようなひし形等の多角形であってもよい。また、ラインパターンを構成する金属細線は、図3(c)に示されるような直線であっても、図3(d)に示されるような曲線であってもよい。さらに、メッシュパターンを構成する金属細線においても、金属細線を曲線とすることができる。
 金属細線21の線幅Wとは、基材10の導電部20が配された面側から、金属細線21を基材10の表面上に投影したときの金属細線21の線幅W0をいう。図4に、図3の導電性フィルムのI-I’の部分断面図を示す。図4を例にすると、台形の断面を有する金属細線21においては、基材10と接している金属細線21の面の幅が線幅W0となる。
 金属細線21の線幅W0は、好ましくは0.1~30.0μmであり、より好ましくは0.2~20.0μm、さらに好ましくは0.3~10.0μm、特に好ましくは1.0~5.0μmである。金属細線21の線幅W0が0.1μm以上であることにより、導電部20の導電性がより向上する傾向にある。また、金属細線21表面の酸化や腐食等による導電性の低下を十分に抑制できる。さらに開口率を同じとした場合、金属細線21の線幅が細いほど、金属細線21の本数を増やすことが可能となる。これにより、導電性フィルム100の電界分布がより均一となり、より高解像度の電子デバイスを作製することが可能となる。また、一部の金属細線21で断線が生じたとしても、それによる影響を他の金属細線21が補うことができる。他方、金属細線21の線幅W0が30.0μm以下であることにより、金属細線21の視認性がより低下し、導電性フィルム100の透明性がより向上する傾向にある。
 金属細線21の厚さTは、好ましくは10~1000nmであり、より好ましくは50~700nmあり、さらに好ましくは75~500nmである。金属細線21の厚さTが10nm以上であることにより、導電性がより向上する傾向にある。また、金属細線21表面の酸化や腐食等による導電性の低下を十分に抑制できる傾向にある。他方、金属細線21の厚さTが1000nm以下であることにより、広い視野角において高い透明性が発現される傾向にある。
 また、金属細線21の断面形状は、金属細線の線幅W及び厚さTで規定することができる。金属細線21の厚さTを基準に、基材10と金属細線21の界面からの高さを0.50T及び0.90Tと規定する。また、高さ0.50Tにおける金属細線21の幅をW0.50とし、高さ0.90Tにおける金属細線21の幅をW0.90とする。このとき、W0.50/W0は、好ましくは0.70~0.99であり、より好ましくは0.75~0.99以下であり、さらに好ましくは0.80~0.95である。また。W0.90/W0.50は、好ましくは0.50~0.95であり、より好ましくは0.55~0.90であり、さらに好ましくは0.60~0.85である。本実施形態の導電性フィルムにおいて、W0.50/W0がW0.90/W0.50よりも大きいことが好ましい。すなわち基材10側の金属細線21の界面から0.50Tの厚さにおける高さ位置から0.90Tの厚さにおける高さ位置に向かって金属細線21の幅が漸減することが好ましい。
 後述するように本実施形態の導電性フィルムは、インクを用いて印刷法により形成することができ、当該方法により形成された金属細線21は上記のような特徴的な形状を有する。その他の金属細線の形成方法としては、ナノインプリント法やリソグラフィー法を用いる方法、その他ナノワイヤーを用いる方法なども考えられるが、これら方法で作製された金属細線と、印刷法により形成した金属細線とは、上記形状において相違する。
(アスペクト比)
 金属細線21の線幅W0に対する金属細線21の厚さTで表されるアスペクト比は、好ましくは0.05以上1.00以下である。アスペクト比の下限は、より好ましくは0.08以上、さらに好ましく0.10以上である。アスペクト比を高くすることにより、透過率を低下させることなく導電性をより向上できる傾向にある。
(ピッチ)
 金属細線パターンのピッチPは、好ましくは0.2~1000μmであり、より好ましくは10~750μmであり、さらに好ましくは50~500μmである。金属細線パターンのピッチPが0.2μm以上であることで、良好な透過率を得ることができる。金属細線パターンのピッチPが1000μm以下であることにより、導電性をより向上できる傾向にある。なお、金属細線パターンの形状がメッシュパターンである場合には、線幅1μmの金属細線パターンのピッチを200μmとすることにより、開口率99%とすることができる。なお、ピッチPは、線幅W0と金属細線間の距離の和である。
 金属細線パターンの線幅、アスペクト比、及びピッチは、導電性フィルム断面を電子顕微鏡等で見ることにより確認することができる。また、金属細線パターンの線幅とピッチはレーザー顕微鏡や光学顕微鏡でも観察できる。また、ピッチと開口率は後述する関係式を有するため、一方が分かればもう一方を算出することもできる。また、金属細線パターンの線幅、アスペクト比、及びピッチを所望の範囲に調整する方法としては、後述する導電性フィルムの製造方法において用いる版の溝を調整する方法、インク中の金属粒子の平均粒子径を調整する方法等が挙げられる。
(開口率)
 金属細線パターンの開口率は、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上であり、特に好ましくは90%以上である。金属細線パターンの開口率を上述の特定値以上とすることにより、導電性フィルムの透過率がより向上する傾向にある。また、金属細線パターンの開口率は、好ましくは100%未満であり、より好ましくは95%以下であり、さらに好ましくは90%以下であり、よりさらに好ましくは80%以下であり、さらにより好ましくは70%以下であり、特に好ましくは60%以下である。金属細線パターンの開口率を上述の特定値以下とすることにより、導電性フィルムの導電性がより向上する傾向にある。金属細線パターンの開口率は、金属細線パターンの形状によっても適正な値が異なる。また、金属細線パターンの開口率は、目的とする電子デバイスの要求性能(透過率及びシート抵抗)に応じて、上記上限値と下限値を適宜組み合わせることができる。
 なお、「金属細線パターンの開口率」とは、透明基材上の金属細線パターンが形成されている領域について以下の式で算出することができる。透明基材上の金属細線パターンが形成されている領域とは、図3のSで示される範囲であり、金属細線パターンが形成されていない縁部等は除かれる。
  金属細線パターンの開口率
     =(1-金属細線パターンの占める面積/透明基材の面積)×100
 また、開口率とピッチの関係式は、金属細線パターンの形状によって異なるが、以下のように算出することができる。図5(a)に、パターン単位23を有するメッシュパターン(グリッド(格子)パターン)の模式図を示す。このメッシュパターンの場合、開口率とピッチは下記関係式を有する。
開口率={開口部22の面積/パターン単位23の面積}×100
   ={((ピッチP1-線幅W1)×(ピッチP2-線幅W2))/(ピッチP1×ピッチP2)}×100
 また、図5(b)にラインパターンの模式図を示す。このラインパターンの場合は、開口率とピッチは下記関係式を有する。
開口率={(ピッチP-線幅W)/ピッチP}×100
(シート抵抗)
 導電性フィルム100のシート抵抗は、好ましくは0.1Ω/sq以上1,000Ω/sq以下であり、より好ましくは0.1Ω/sq以上500Ω/sq以下であり、さらに好ましくは0.1Ω/sq以上100Ω/sq以下であり、よりさらに好ましくは0.1Ω/sq以上20Ω/sq以下であり、さらにより好ましくは0.1Ω/sq以上10Ω/sq以下である。導電性フィルムのシート抵抗は、以下の方法により測定できる。
 先ず、導電性フィルムから金属細線パターンが全面に配された部分を矩形状に切り出し測定サンプルを得る。得られた測定サンプルの両端部に金属細線パターンと電気的に接続されたシート抵抗測定用の集電部を形成し、両端部に設けられた集電部間の電気抵抗R(Ω)を測定する。上述した電気抵抗R(Ω)、及び測定サンプルの集電部間の距離に相当する幅方向の長さL(mm)、奥行方向の長さD(mm)を用いて、次式によりシート抵抗Rs(Ω/sq)を算出できる。
s=R/L×D
 シート抵抗が低いほど電力損失が抑制される傾向にある。そのため、消費電力の少ない電子ペーパー、タッチパネル、及びフラットパネルディスプレイを得ることが可能となる。
 導電性フィルム100のシート抵抗は、金属細線のアスペクト比(高さ)を向上させることにより、低下する傾向にある。また、金属細線を構成する金属材料種の選択によっても調整することが可能である。
(可視光透過率)
 導電性フィルム100の可視光透過率は、好ましくは80%以上100%以下であり、より好ましくは90%以上100%以下である。ここで、可視光透過率は、JIS K 7361-1:1997の全光線透過率に準拠して、その可視光(360~830nm)の範囲の透過率を算出することで測定することができる。
 導電性フィルム100の可視光透過率は、金属細線パターンの線幅を小さくしたり、開口率を向上させたりすることにより、向上する傾向にある。
(ヘイズ)
 導電性フィルム100のヘイズは、好ましくは0.01%以上5.00%以下である。ヘイズの上限はより好ましくは、3.00%以下、さらに好ましくは1.00%以下である。ヘイズの上限が5.00%以下であれば、可視光に対する導電性フィルムの曇りを十分に低減できる。本明細書におけるヘイズは、JIS K 7136:2000のヘイズに準拠して測定することができる。
〔巻回体〕
 本実施形態の巻回体200は、上記導電性フィルム100の巻回体であって、導電部20と第2面10bとが接するように巻回されたものである。図2に、本実施形態の巻回体200の一態様を示す。
 巻回体200を構成する導電性フィルム100は短辺と長辺を有する長尺フィルムであることが好ましい。この場合、巻回体200の幅は、導電性フィルム100の短辺と一致する。このような長尺の導電性フィルム100の巻回体200は、導電部20と第2面10bとが接する面積が大きく、また、巻回時のテンションや導電性フィルム100の自重により導電部20と第2面10bとが押圧されやすいため、裏移りが生じやすい傾向にある。そのため、本発明が特に有用となる。
 導電性フィルム100のサイズは種々の用途に応じて適宜調整することができる。一例として、巻回体200を構成する導電性フィルム100の短辺は、好ましくは10mm以上2000mm以下であり、より好ましくは50mm以上1500mm以下であり、さらに好ましくは100mm以上1000mm以下である。また、巻回体200を構成する導電性フィルム100の長辺は、好ましくは1.0m以上2000m以下であり、より好ましくは5.0m以上1500m以下であり、さらに好ましくは10m以上1000m以下である。
〔導電性フィルムの製造方法〕
 導電性フィルムの製造方法としては、基材10の有する第1面10aの表面自由エネルギーSFE1が、第1面10aとは反対側の基材10の第2面10bの表面自由エネルギーSFE2よりも大きい基材10を作製する基材作製工程と、基材10の第1面10a上に、金属成分を含むインクを用いてパターンを形成するパターン形成工程と、インクを焼成して導電部20を形成する焼成工程とを有する方法が挙げられる。図6に、本実施形態の導電性フィルムの製造方法の一例を示す。
〔基材作製工程〕
 基材作製工程では、表面(第1面10a)と裏面(第2面10b)で表面自由エネルギーの異なる基材10を作製する。より具体的には、上記コア層11の一方の面又は両方の面に最外層12及び/又は最外層13を設ける方法や(図6(a))、基材10の表裏面における表面粗さを異ならせるような方法が挙げられる。
 最外層12を形成する方法としては、特に制限されないが、例えば、PVD、CVD等の気相成膜法を用いてコア層11の第1面10a側に最外層12を構成する成分を成膜する方法が挙げられる。また、別の方法としては、最外層12を形成する成分を含む組成物をコア層11の第1面10a側の表面に塗布し、乾燥させることにより最外層12を形成する方法が挙げられる。
 最外層13を形成する方法としては、特に制限されないが、例えば、最外層13を構成する成分を含む組成物をコア層11の第2面10b側の表面に塗布し、乾燥させることにより最外層13を形成する方法が挙げられる。
 なお、コア層11と最外層12及び/又は最外層13との間に他の層を設ける場合には、他の層を形成してから、最外層12及び/又は最外層13を形成すればよい。
 一般に平滑である基材10の表面粗さを増加させる方法としては、特に制限されないが、例えば、コア層11と最外層13との間に、表面粗さの大きい易接着層を設け、その易接着層上に最外層13を形成する方法が挙げられる。これにより、最外層13は易接着層の表面粗さが反映されたものとなる。
〔パターン形成工程〕
 パターン形成工程は、金属成分を含むインクを用いてパターンを形成する工程である。パターン形成工程は、所望の金属細線パターンの溝を有する版を用いる有版印刷方法であれば特に限定されないが、例えば、転写媒体表面にインクをコーティングする工程と、インクをコーティングした転写媒体表面と、凸版の凸部表面とを対向させて、押圧、接触して、凸版の凸部表面に転写媒体表面上のインクを転移させる工程と、インク24が残存した転写媒体30表面と基材10の第1面10aとを対向させて、押圧、接触して、転写媒体表面に残ったインク24を基材10の第1面10aに転写する工程とを有する(図6(b)~(c))。なお、基材10に最外層12が形成されている場合には、最外層12表面にインク24が転写される。
(インク)
 上記パターン形成工程に用いられるインクは、導電性成分と溶剤を含み、必要に応じて、界面活性剤、分散剤、還元剤等を含んでもよい。導電性成分が金属成分である場合、金属成分は金属粒子としてインクに含まれていてもよいし、金属錯体としてインクに含まれていてもよい。
 金属粒子の平均一次粒径は、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下である。また、金属粒子の平均一次粒径の下限は特に制限されないが、1nm以上が挙げられる。金属粒子の平均一次粒径が100nm以下であることにより、得られる金属細線の線幅Wをより細くすることができる。なお、「平均一次粒径」とは、金属粒子1つ1つ(所謂一次粒子)の粒径をいい、金属粒子が複数個集まって形成される凝集体(所謂二次粒子)の粒径である平均二次粒径とは区別される。
 金属粒子としては、特に制限されないが、例えば、酸化銅等の金属酸化物や金属化合物、コア部が銅でありシェル部が酸化銅であるようなコア/シェル粒子が挙げられる。金属粒子の態様は、分散性や焼結性の観点から、適宜決めることができる。
 界面活性剤としては、特に制限されないが、例えば、フッ素系界面活性剤などが挙げられる。このような界面活性剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、コーティングされたインクの平滑性が向上し、より均一な塗膜が得られる傾向にある。なお、界面活性剤は、金属成分を分散可能であり、かつ焼成の際に残留しにくいよう構成されていることが好ましい。
 また、分散剤としては、特に制限されないが、例えば、金属成分表面に非共有結合又は相互作用をする分散剤、金属成分表面に共有結合をする分散剤が挙げられる。非共有結合又は相互作用をする官能基としてはリン酸基を有する分散剤が挙げられる。このような分散剤を用いることにより、金属成分の分散性がより向上する傾向にある。
 さらに、溶剤としては、モノアルコール及び多価アルコール等のアルコール系溶剤;アルキルエーテル系溶剤;炭化水素系溶剤;ケトン系溶剤;エステル系溶剤などが挙げられる。これらは単独で使用されてもよく、1種以上で併用されても良い。たとえば、炭素数10以下のモノアルコールと炭素数10以下の多価アルコールとの併用などが挙げられる。このような、溶剤を用いることにより、転写媒体(ブランケット)へのインクのコーティング性、転写媒体から凸版へのインクの転写性、転写媒体から透明基材へのインクの転写性、及び金属成分の分散性がより向上する傾向にある。なお、溶剤は、金属成分を分散可能であり、かつ焼成の際に残留しにくいよう構成されていることが好ましい。
〔焼成工程〕
 焼成工程では、例えば、基材10の第1面10aに転写されたインク24中の金属成分を焼結し、導電部20を形成する(図6(d))。焼成は、金属成分が融着して、金属成分焼結膜を形成することができる方法であれば特に制限されない。焼成は、例えば、焼成炉で行ってもよいし、プラズマ、加熱触媒、紫外線、真空紫外線、電子線、赤外線ランプアニール、フラッシュランプアニール、レーザーなどを用いて行ってもよい。得られる焼結膜が酸化されやすい場合には、非酸化性雰囲気中において焼成することが好ましい。また、インクに含まれ得る還元剤のみで金属酸化物等が還元されにくい場合には、還元性雰囲気で焼成することが好ましい。
 非酸化性雰囲気とは酸素等の酸化性ガスを含まない雰囲気であり、不活性雰囲気と還元性雰囲気がある。不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオンや窒素等の不活性ガスで満たされた雰囲気である。また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。これらのガスを焼成炉中に充填して密閉系としてインクの塗布膜(分散体塗布膜)を焼成してもよい。また、焼成炉を流通系にしてこれらのガスを流しながら分散体塗布膜を焼成してもよい。分散体塗布膜を非酸化性雰囲気で焼成する場合には、焼成炉中を一旦真空に引いて焼成炉中の酸素を除去し、非酸化性ガスで置換することが好ましい。また、焼成は、加圧雰囲気で行なってもよいし、減圧雰囲気で行なってもよい。
 焼成温度は、特に制限はないが、好ましくは20℃以上400℃以下であり、より好ましくは50℃以上300℃以下であり、さらに好ましくは80℃以上200℃以下である。焼成温度が400℃以下であることにより、耐熱性の低い基板を使用することができるので好ましい。また、焼成温度が20℃以上であることにより、焼結膜の形成が十分に進行し、導電性が良好となる傾向にあるため好ましい。なお、得られる焼結膜は、金属成分に由来する導電性成分を含み、そのほか、インクに用いた成分や焼成温度に応じて、非導電性成分を含みうる。
 上記のとおり本発明によれば、透明性を十分に維持しながら、導電性、及び可撓性の両方に優れる導電性フィルム、導電性フィルムロール、電子ペーパー、タッチパネル及びフラットパネルディスプレイを提供することができる。
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
〔実施例1〕
 片面に易接着層が形成されたポリエチレンテレフタレート(PET)フィルム(東洋紡社製、製品名コスモシャインA4100、フィルム厚50μm)をコア層として用いて、易接着層が形成されていない面(第1面10a)上に酸化ケイ素ナノ粒子2質量%、導電性の有機シラン化合物1質量%、2-プロパノール65質量%、1-ブタノール25質量%、水7質量%で構成された組成物を塗布し、乾燥して、酸化ケイ素を含有した厚さ50nm、体積抵抗率5000Ωcmの酸化ケイ素含有膜を形成し、最外層12とした。また、コア層の易接着層が形成された面(第2面10b)に、アルキド系化合物(荒川化学社製、製品名RL453)を含む組成物を塗布し、乾燥して、厚さ50nmの最外層13を形成して、基材Aを得た。
 次いで、粒子径21nmの酸化第一銅ナノ粒子20質量部と、分散剤(ビッグケミー社製、製品名:Disperbyk-145)4質量部と、界面活性剤(セイミケミカル社製、製品名:S-611)1質量部と、エタノール75質量部とを混合・分散し、酸化第一銅ナノ粒子の含有割合が20質量%のインクを調製した。
 そして、転写媒体表面にインクを塗布し、インクが塗布された転写媒体表面と金属細線パターンの溝を有する版を対向させて、押圧、接触して、版の凸部表面に転写媒体表面上の一部のインクを転移させた。その後、残ったインクがコーティングされた転写媒体表面と基材Aとを対向させて、押圧、接触させ、基材Aの上に所望の金属細線パターン状のインクA1を転写させた。次いで、NovaCentrix社製Pulseforge1300を用いて室温環境下で金属細線パターン状のインク(分散体塗布膜)をフラッシュランプアニールにより焼成し、線幅3μm、厚さ500nmのメッシュパターンの金属細線を含む導電性フィルムを得た。なお、金属細線は、W0.50/W0がW0.90/W0.50よりも大きいものであった。
〔実施例2〕
 最外層13として、アルキド系化合物(荒川化学社製、製品名RL453)に代えて、ウレタン系化合物(ナカイテクノ社製、製品名P05)を用いたこと以外は、実施例1と同様にして、導電性フィルムを得た。
〔実施例3〕
 最外層13として、アルキド系化合物(荒川化学社製、製品名RL453)に代えて、シリコーン系化合物(信越シリコーン社製、製品名KS-847)を用いたこと以外は、実施例1と同様にして、導電性フィルムを得た。
〔実施例4〕
 最外層13として、アルキド系化合物(荒川化学社製、製品名RL453)に代えて、フッ素系化合物(Harves社製、製品名DH-120TH)を用いたこと以外は、実施例1と同様にして、導電性フィルムを得た。
〔実施例5〕
 メッシュパターンの線幅を1μmとし、厚さを150nmとしたこと以外は、実施例2と同様にして、導電性フィルムを得た。
〔実施例6〕
 離型PETフィルム(東山フィルム製、製品名HY-NS70)の離型層面(第2面)の反対面に、第1面を形成するように、実施例1と同様の、酸化ケイ素ナノ粒子と導電性の有機シラン化合物を含む組成物を塗布し、乾燥して、酸化ケイ素を含有した厚さ50nm、体積抵抗率5000Ωcmの酸化ケイ素含有膜を形成した。
 上記操作により、以下の構成のフィルムを得た。
 最外層12 :酸化ケイ素含有膜
 コア層11 :ポリエチレンテレフタレート(PET)
 最外層13 :離型層
 つづいて、実施例1と同様に、最外層12上(第1面10a)に、線幅3μm、厚さ500nmのメッシュパターンの金属細線を形成し、メッシュパターンを含む導電性フィルムを得た。
〔実施例7〕
 離型PETフィルムとして、離型PETフィルム(東山フィルム製、製品名HY-NS80)を使用した以外は、実施例6と同様にして、導電性フィルムを得た。
〔実施例8〕
 離型PETフィルムとして、離型PETフィルム(東山フィルム製、製品名HY-NS85)を使用した以外は、実施例6と同様にして、導電性フィルムを得た。
〔比較例1〕
 最外層13を形成しなかったこと以外は、実施例1と同様にして、導電性フィルムを得た。
<表面粗さ(算術平均粗さRa)の測定>
 各基材の表面粗さの測定方法について説明する。実施例及び比較例で作製した基材の第1面及び第2面をそれぞれ測定試料として算術平均粗さを測定した。測定には、ケーエルエー・テンコール社製の表面粗さ計「アルファステップIQ」を用いた。測定条件は以下のとおりとした。
 step length:500μm
 style Force:10.6mg
<透過率の測定>
 JIS K 7361-1:1997の全光線透過率に準拠して、360~830nmの波長を有する可視光の透過率を算出することにより、導電性フィルムの可視光透過率を測定した。
<表面自由エネルギーの分散項γSD、極性項γSPの測定>
 表面自由エネルギーの分散項γSD、γSPの測定方法について説明する。
 実施例及び比較例で作製した基材の第1面及び第2面をそれぞれ測定試料とした。測定試料の上に、表面張力γL、表面張力の分散項γLD、表面張力の極性項γLPが既知である2種の溶媒として、純粋とジヨードメタンをそれぞれ2μL滴下した。
 測定試料上に滴下した2種の溶媒の液滴をデジタルマイクロスコープ(KEYENCE製VHX-100)で真横から観察・撮影し、測定試料と液滴がなす接触角をデジタルマイクロスコープ付属の計測ソフトで直接測定し、2種の溶媒を使用したときのそれぞれの接触角を得た。
 得られた接触角θと、水とジヨードメタンの表面張力γLV、表面張力の分散項γLV d、表面張力の極性項γLV pを下記の式(4)に代入して得られる連立方程式を解き、測定試料の表面自由エネルギーの分散項γSV d、γSV pを求めた。
 γL(1+cosθ)/2=(γSV d×γLV d0.5+(γSV p×γLV p0.5   (4)
〔裏移り評価〕
 上記のようにして得られた導電性フィルム(短辺230mm、長辺150m)を長尺方向に張力10Nをかけた状態で直径φ75mmの軸の周囲に巻回し、長さ150m巻回体を得た。そして、24時間、常温度保管した後、巻回体を巻き戻し、巻回体の中心にあたるフィルム始点短辺の端から1mの位置で、3つのサンプルを切り出した。サンプルは、幅方向で両端の長辺側と中心側の位置から切り出し、一つのサンプルの大きさは10mm×10mmの大きさとした。そして各サンプルの第2面を、光学顕微鏡で9点の視野で確認し、各視野毎に、第2面に裏移りした導電部の面積を算出して平均値Aveを求めた。そして、同一の視野面積(0.5mm×0.5mm)において第1面であれば形成される導電部の面積を100%とし、それに対する平均値Aveの割合を算出し、裏移り率とした。
 また、上記で得られた導電性フィルムにおいて、フラッシュランプアニールによる焼成前の巻回体を巻き戻し、上記同様、短辺の端から1mの位置から1m分を、エタノールを含侵させたベンコットM-3II(旭化成株式会社製)でふき取り、ベンコットにインクが付着するかを目視で確認し、焼成前インク付着性とした。判断指標は以下とした。
 ◎インクが全く付着しない
 〇インクの付着がわずかに確認できる
 ×インクの付着が認められる
Figure JPOXMLDOC01-appb-T000001
 裏移り評価において切り出したサンプルの写真を図7及び8に示す。図7は、実施例1の第1面と第2面を示す写真であり、図8は、比較例1の第1面と第2面を示す写真である。
 表1に示すように、実施例1~7は、第1面の表面自由エネルギーSFE1が、第2面の表面自由エネルギーSFE2よりも大きく、細線パターンの裏移り評価が良好であった。特に、SFE1とSFE2との差が大きい実施例2~7においては、焼成前のインク付着性が良好であった。一方、第1面の表面自由エネルギーSFE1が、第2面の表面自由エネルギーSFE2よりも小さい比較例1は、細線パターンの裏移りを抑制できなかった。
 本発明の導電性フィルムは、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ等の透明電極の他、薄型ヒータなどに好適に利用でき、産業上の利用可能性を有する。
10…基材、10a…第1面、10b…第2面、11…コア層、12…最外層、13…最外層、20…導電部、21…金属細線、22…開口部、23…パターン単位、24…インク、100…導電性フィルム、200…巻回体、

Claims (8)

  1.  基材と、前記基材の第1面に形成された、少なくとも細線パターンを含む導電部と、を有する導電性フィルムであって、
     前記第1面の表面自由エネルギーSFE1が、前記第1面とは反対側の前記基材の第2面の表面自由エネルギーSFE2よりも大きい、
     導電性フィルム。
  2.  前記表面自由エネルギーSFE1と前記表面自由エネルギーSFE2の差(SFE1-SFE2)が、1mJ/m2以上である、
     請求項1に記載の導電性フィルム。
  3.  前記表面自由エネルギーSFE1が、40~50mJ/m2である、
     請求項1又は2に記載の導電性フィルム。
  4.  前記基材が、前記第1面側の最外層として、ケイ素化合物を含む層を有する、
     請求項1~3のいずれか一項に記載の導電性フィルム。
  5.  前記表面自由エネルギーSFE2が、11~42mJ/m2である、
     請求項1~4のいずれか一項に記載の導電性フィルム。
  6.  前記基材が、前記第2面側の最外層として、メラミン系化合物、アルキド系化合物、フッ素系化合物、及びシリコーン系化合物からなる群より選ばれる少なくとも一種を含む層を有する、
     請求項1~5のいずれか一項に記載の導電性フィルム。
  7.  請求項1~6のいずれか一項に記載の導電性フィルムの巻回体であって、
     前記導電部と前記第2面とが接するように巻回されたものである、
     巻回体。
  8.  前記導電性フィルムが、10mm以上2000mm以下の短辺と、1.0m以上2000m以下の長辺と、を有する長尺フィルムであり、
     前記導電性フィルムが長尺方向に巻回されたものである、
     請求項7に記載の巻回体。
PCT/JP2020/045889 2019-12-10 2020-12-09 導電性フィルム及びその巻回体 WO2021117775A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021564005A JP7518094B2 (ja) 2019-12-10 2020-12-09 導電性フィルム及びその巻回体
US17/783,840 US11815957B2 (en) 2019-12-10 2020-12-09 Conductive film and roll thereof
CN202080085135.6A CN114868209A (zh) 2019-12-10 2020-12-09 导电性薄膜及其卷绕体
EP20900273.2A EP4075452A4 (en) 2019-12-10 2020-12-09 CONDUCTIVE FILM AND WRAPPED BODY THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222618 2019-12-10
JP2019-222618 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021117775A1 true WO2021117775A1 (ja) 2021-06-17

Family

ID=76328906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045889 WO2021117775A1 (ja) 2019-12-10 2020-12-09 導電性フィルム及びその巻回体

Country Status (5)

Country Link
US (1) US11815957B2 (ja)
EP (1) EP4075452A4 (ja)
JP (1) JP7518094B2 (ja)
CN (1) CN114868209A (ja)
WO (1) WO2021117775A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192841A (ja) 2009-02-20 2010-09-02 Dainippon Printing Co Ltd 導電性基板
JP2016051194A (ja) 2014-08-28 2016-04-11 富士フイルム株式会社 透明導電膜、透明導電膜の製造方法およびタッチパネル
JP2016108568A (ja) * 2014-12-09 2016-06-20 日本製紙株式会社 ハードコートフィルム
JP2017019273A (ja) 2015-07-07 2017-01-26 日本製紙株式会社 導電フィルム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264239A (ja) 2001-03-09 2002-09-18 Oike Ind Co Ltd 透明導電性積層体
CN1292496C (zh) * 2001-05-23 2006-12-27 造型逻辑有限公司 器件的图案形成
CN101743623A (zh) * 2007-07-18 2010-06-16 株式会社理光 层状结构、电子器件以及显示设备
KR101822350B1 (ko) * 2008-02-28 2018-01-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 터치 스크린 센서
CN102473480B (zh) 2009-07-08 2014-10-08 日东电工株式会社 透明导电性膜、电子设备及触摸面板
KR20130102121A (ko) * 2010-01-28 2013-09-16 후지필름 가부시키가이샤 도전 시트, 도전 시트의 사용 방법 및 터치 패널
JP6218048B2 (ja) 2012-05-31 2017-10-25 エルジー・ケム・リミテッド 反転オフセット印刷装置および方法
JP6322188B2 (ja) * 2013-03-26 2018-05-09 株式会社カネカ 導電性フィルム基板、透明導電性フィルムおよびその製造方法、ならびにタッチパネル
JP6610262B2 (ja) * 2014-01-28 2019-11-27 コニカミノルタ株式会社 導電性パターン、導電性パターン付き基材、導電性パターン付き基材の製造方法、表面に導電性パターンを有する構造体及び該構造体の製造方法
WO2015125855A1 (ja) 2014-02-24 2015-08-27 株式会社弘輝 鉛フリーはんだ合金、はんだ材料及び接合構造体
WO2015163422A1 (ja) 2014-04-25 2015-10-29 コニカミノルタ株式会社 ガスバリアーフィルム及びガスバリアーフィルムの製造方法
US20160122562A1 (en) 2014-10-29 2016-05-05 C3Nano Inc. Stable transparent conductive elements based on sparse metal conductive layers
JP6419610B2 (ja) * 2015-03-12 2018-11-07 リンテック株式会社 透明導電膜積層用フィルム、その製造方法および透明導電性フィルム
KR102529562B1 (ko) * 2015-05-20 2023-05-09 세키스이가가쿠 고교가부시키가이샤 도전성 점착재 및 도전성 기재 부착 도전성 점착재
JP6819102B2 (ja) 2015-07-10 2021-01-27 大日本印刷株式会社 化粧シート、化粧板及び化粧板の製造方法
JP2017146492A (ja) * 2016-02-18 2017-08-24 リンテック株式会社 保護フィルム付き透明導電膜積層用フィルム、および透明導電性フィルムの製造方法
JP6647399B2 (ja) * 2016-07-08 2020-02-14 旭化成株式会社 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
JP6816916B2 (ja) * 2016-11-16 2021-01-20 リンテック株式会社 透明導電積層体の製造方法及び透明導電積層体
WO2018159374A1 (ja) * 2017-03-02 2018-09-07 東洋紡株式会社 導電性ペーストおよびそれを用いた伸縮性配線、伸縮性配線を有する衣服型電子機器
JP2018202798A (ja) 2017-06-08 2018-12-27 藤森工業株式会社 透明導電性フィルム用基材、及びそれを用いた透明導電性フィルム
TWI787537B (zh) 2018-07-30 2022-12-21 日商旭化成股份有限公司 導電性膜、及使用其之導電性膜捲筒、電子紙、觸控面板及平面顯示器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192841A (ja) 2009-02-20 2010-09-02 Dainippon Printing Co Ltd 導電性基板
JP2016051194A (ja) 2014-08-28 2016-04-11 富士フイルム株式会社 透明導電膜、透明導電膜の製造方法およびタッチパネル
JP2016108568A (ja) * 2014-12-09 2016-06-20 日本製紙株式会社 ハードコートフィルム
JP2017019273A (ja) 2015-07-07 2017-01-26 日本製紙株式会社 導電フィルム

Also Published As

Publication number Publication date
US20230028970A1 (en) 2023-01-26
JPWO2021117775A1 (ja) 2021-06-17
EP4075452A1 (en) 2022-10-19
JP7518094B2 (ja) 2024-07-17
CN114868209A (zh) 2022-08-05
US11815957B2 (en) 2023-11-14
EP4075452A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
TW200532237A (en) Plastic substrate having multi-layer structure and method for preparing the same
CN112514004B (zh) 导电性薄膜、以及使用了其的导电性薄膜卷、电子纸
JPWO2005110718A1 (ja) 配向ポリエステルフィルム
US11620028B2 (en) Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
TW201106382A (en) Transparent conductive laminate and transparent touch panel
JP5590922B2 (ja) 透明電極付き基板及びその製造方法
JP2005288851A (ja) 透明ガス遮断性フィルム、並びにそれを用いるディスプレイ基板及びディスプレイ。
WO2021117775A1 (ja) 導電性フィルム及びその巻回体
JP2014208471A (ja) 積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネル
JP5971402B2 (ja) ガスバリア性フィルムのロール体、およびガスバリア性フィルムの製造方法
JP7305805B2 (ja) 透明ヒータ
JP2021123068A (ja) ガスバリアフィルム
JP2008114430A (ja) 転写性反射防止用積層ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020900273

Country of ref document: EP

Effective date: 20220711