WO2021117741A1 - ヒドロキサム酸によって結合された金属有機構造体を含有するガス貯蔵材料 - Google Patents

ヒドロキサム酸によって結合された金属有機構造体を含有するガス貯蔵材料 Download PDF

Info

Publication number
WO2021117741A1
WO2021117741A1 PCT/JP2020/045734 JP2020045734W WO2021117741A1 WO 2021117741 A1 WO2021117741 A1 WO 2021117741A1 JP 2020045734 W JP2020045734 W JP 2020045734W WO 2021117741 A1 WO2021117741 A1 WO 2021117741A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
groups
nitrogen
gas
integer
Prior art date
Application number
PCT/JP2020/045734
Other languages
English (en)
French (fr)
Inventor
真生 箕浦
功 菅又
照幸 飯濱
Original Assignee
学校法人立教学院
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立教学院, 日本曹達株式会社 filed Critical 学校法人立教学院
Priority to KR1020227017586A priority Critical patent/KR20220111259A/ko
Priority to CN202080084983.5A priority patent/CN114828999A/zh
Priority to JP2021563985A priority patent/JPWO2021117741A1/ja
Priority to EP20898053.2A priority patent/EP4074692A4/en
Priority to US17/782,813 priority patent/US20230056785A1/en
Publication of WO2021117741A1 publication Critical patent/WO2021117741A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/04Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
    • C07C259/10Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a novel non-nitrogen gas storage material containing a metal-organic framework bonded by hydroxamic acid, a non-nitrogen gas storage method using such a non-nitrogen gas storage material, and a non-nitrogen gas.
  • a novel non-nitrogen gas storage material containing a metal-organic framework bonded by hydroxamic acid
  • a non-nitrogen gas storage method using such a non-nitrogen gas storage material and a non-nitrogen gas.
  • a non-nitrogen gas Regarding storage tanks.
  • the present application claims priority to Japanese Patent Application No. 2019-223660 filed on December 11, 2019 and Japanese Patent Application No. 2020-030761 filed on February 26, 2020. The content is incorporated here.
  • a metal-organic framework (hereinafter sometimes referred to as "MOF") has a polymer structure having a space (that is, pores) inside by combining a metal ion and a crosslinkable organic ligand that connects them. It is a solid substance and has been of great interest for more than a decade as a porous material with functions such as gas storage and separation.
  • terephthalic acid As the organic ligand are often used terephthalic acid as crosslinkable organic ligands, obtained by solvothermal method using Zn (NO 3) 2 ⁇ 6H 2 O in DMF It is known that the MOF-5 produced can store 7.1% by mass of hydrogen with respect to the MOF-5 under the conditions of a temperature of 77 K and 4 MPa (see Patent Document 1 and Non-Patent Documents 1 to 3).
  • hydroxamic acid (-CONHOH) is strongly coordinated to metals as well as carboxylic acid (-COOH).
  • -CONHOH is strongly coordinated to metals as well as carboxylic acid
  • -COOH carboxylic acid
  • UiO-66 and 1,4-benzene-dicarbohydroxamic acid which are MOFs obtained by the sorbothermal method using zirconium tetrachloride in DMF, are heated in DMF. It has been reported that the terephthalate forming UiO-66 is replaced with 1,4-benzene-dicarbohydroxamic acid to become UiO-66-H2BDHA (Non-Patent Document 4).
  • MUV-11 which is a MOF having a hydroxamic acid moiety
  • solvothermal method in which 1,4-benzene-dicarbohydroxamic acid is heated to 120 ° C. in DMF together with tetraisopropyl orthotitanate and acetic acid.
  • An object of the present invention is to provide a storage material for a gas other than nitrogen containing MOF having a hydroxamic acid group as a binding site.
  • the present inventors can obtain MOF even with a combination of a metal species and a molecule having hydroxamic acid as a binding site other than those in the prior art document, and moreover, a gas other than nitrogen can be obtained. It was found that it has a storage capacity, and the present invention was completed.
  • the present invention is as follows specified by the following matters.
  • [1] Storage of a gas other than nitrogen containing a metal-organic framework in which a polyvalent metal ion is bonded to a molecule having a moiety capable of binding to an unsubstituted or substituted hydroxamic acid group and one or more polyvalent metal ions. material.
  • the molecule having an unsubstituted or substituted hydroxamic acid group and a site capable of binding to one or more polyvalent metal ions is at least one selected from the compound group represented by the following formulas (I) to (III).
  • R 1 , R 2 , R 4 , R 6 and R 7 independently represent a hydrogen atom, a C1 to 6 alkyl group, a C6 to 10 aryl group, a C1 to 6 alkylcarbonyl group or a C6 to 10 arylcarbonyl group, respectively.
  • R 3 , R 5 , R 8 and R 9 independently have C1 to 6 alkyl groups, C3 to 8 cycloalkyl groups, C6 to 10 aryl groups, 3 to 6-membered heterocyclyl groups, C1 to 6 alkoxy groups, and C6.
  • R 11 and R 12 each independently represent a hydrogen atom, a C1 to 6 alkyl group, a C6 to 10 aryl group, a C1 to 6 alkylcarbonyl group, or a C6 to 10 arylcarbonyl group).
  • R 2 are different even if they are the same.
  • R 6 to each other may be the same, or different
  • n represents the number of R 3 and represents an integer of 0 or 1 to 4, and when n is 2 or more, R 3 may be the same or different from each other.
  • p represents the number of R 5, and in the case of A is 5-membered ring represents an integer of 0 or 1 to 3, in the case of A is 6-membered ring, the 0 or 1 to 4 It represents an integer, when p is 2 or more, R 5 to each other are identical or different phases, r represents the number of R 8 and represents an integer of 0 or 1 to 4, and when r is 2 or more, R 8 may be the same or different.
  • s represents the number of R 9 and represents an integer of 0 or 1 to 4, and when s is 2 or more, R 9 may be the same or different.
  • A represents a 5- or 6-membered aromatic heterocycle containing an integer number of nitrogen atoms 1 to 4 as ring-constituting atoms.
  • the polyvalent metal ion is any one of [1] to [3], which is an ion of at least one metal selected from the group consisting of the metals of Group 2 to Group 13 of the periodic table of elements. Storage materials for gases other than nitrogen as described in.
  • the polyvalent metal ion is an ion of at least one metal selected from Zn, Fe, Co, Ni, Cu, Al, Zr and Mg.
  • Storage material for gases other than nitrogen [6] A gas other than nitrogen is brought into contact with the storage material for the gas other than nitrogen according to any one of [1] to [5], and the gas is adsorbed or stored inside the storage material for the gas other than nitrogen. A method of storing a gas other than nitrogen, which comprises a step of causing the gas. [7] A non-nitrogen gas storage tank filled with the non-nitrogen gas storage material according to any one of [1] to [5].
  • a metal organic structure (however, Ti 4+ or Zr 4+) formed by bonding a polyvalent metal ion with a molecule having a moiety capable of binding to an unsubstituted or substituted hydroxamic acid group and one or more polyvalent metal ions.
  • Benz-1,4-dicarbohydroxamic acid is bonded to metal organic structures.
  • the molecule having an unsubstituted or substituted hydroxamic acid group and a site capable of binding to one or more polyvalent metal ions is at least one selected from the compound group represented by the following formulas (I) to (III).
  • the metal-organic framework according to [8].
  • R 1 , R 2 , R 4 , R 6 and R 7 independently represent a hydrogen atom, a C1 to 6 alkyl group, a C6 to 10 aryl group, a C1 to 6 alkylcarbonyl group or a C6 to 10 arylcarbonyl group, respectively.
  • R 3 , R 5 , R 8 and R 9 independently have C1 to 6 alkyl groups, C3 to 8 cycloalkyl groups, C6 to 10 aryl groups, 3 to 6-membered heterocyclyl groups, C1 to 6 alkoxy groups, and C6.
  • R 11 and R 12 each independently represent a hydrogen atom, a C1 to 6 alkyl group, a C6 to 10 aryl group, a C1 to 6 alkylcarbonyl group, or a C6 to 10 arylcarbonyl group).
  • R 2 are different even if they are the same.
  • R 6 to each other may be the same, or different
  • n represents the number of R 3 and represents an integer of 0 or 1 to 4, and when n is 2 or more, R 3 may be the same or different from each other.
  • p represents the number of R 5, and in the case of A is 5-membered ring represents an integer of 0 or 1 to 3, in the case of A is 6-membered ring, the 0 or 1 to 4 It represents an integer, when p is 2 or more, R 5 to each other are identical or different phases, r represents the number of R 8 and represents an integer of 0 or 1 to 4, and when r is 2 or more, R 8 may be the same or different.
  • s represents the number of R 9 and represents an integer of 0 or 1 to 4, and when s is 2 or more, R 9 may be the same or different.
  • A represents a 5- or 6-membered aromatic heterocycle containing an integer number of nitrogen atoms 1 to 4 as ring-constituting atoms.
  • A represents a 5- or 6-membered aromatic heterocycle containing an integer number of nitrogen atoms 1 to 4 as ring-constituting atoms.
  • the storage material for gases other than nitrogen of the present invention is novel, and by using this material, gases such as hydrogen, carbon dioxide, methane, and acetylene (however, nitrogen is excluded) can be stored.
  • the storage material for a gas other than nitrogen of the present invention is a molecule having a site capable of binding to a polyvalent metal ion, an unsubstituted or substituted hydroxamic acid group, and one or more polyvalent metal ions (hereinafter, “hydroxamic acid group-containing molecule”). ”) Is bonded to each other.
  • the polyvalent metal ion used in the present invention is not particularly limited as long as it is a divalent or higher valent metal ion, but at least one selected from the group consisting of groups 2 to 13 metals in the periodic table of elements. It is preferably a metal ion, more preferably an ion of at least one metal selected from Zn, Fe, Co, Ni, Cu, Al, Zr and Mg, and further preferably Co, Ni, Cu and Zn. It is preferable that it is an ion of at least one metal selected from the above, and these can be used alone or in admixture of two or more.
  • polyvalent metal ions are supplied in the form of various salts, but in consideration of the purity of the salt, the ease of binding between the metal ion and the hydroxamic acid group-containing molecule, etc., nitrate is preferable, and specifically. is, Zn (NO 3) 2 ⁇ 6H 2 O, Zn (NO 3) 2 ⁇ 4H 2 O, Ni (NO 3) 2 ⁇ 6H 2 O, Mg (NO 3) 2 ⁇ 6H 2 O, Cu (NO 3 ) 2 ⁇ xH 2 O, Cu (NO 3) 2 ⁇ 2.5H 2 O, Co (NO 3) 2 ⁇ 6H 2 O, can be exemplified Al (NO 3) 3 ⁇ 6H 2 O and the like.
  • the hydroxamic acid group-containing molecule used in the present invention has at least one unsubstituted or substituted hydroxamic acid group in the molecule, and further has one or more sites capable of binding to a polyvalent metal ion in the molecule.
  • the molecule is not particularly limited as long as it is a molecule capable of forming an MOF by binding to a valent metal ion.
  • the "unsubstituted or substituted hydroxamic acid groups” is represented by the following formula (IV-1), and the "substituted hydroxamic acid group” is represented by the following formulas (IV-2) to (IV-). Represents any group represented by 4).
  • Ra and Rb each independently represent a functional group other than a hydrogen atom, and specifically, a C1 to 6 alkyl group, a C6 to 10 aryl group, a C1 to 6 alkylcarbonyl group, and a C6 to 10 arylcarbonyl group.
  • Etc., and Ra may be bonded to the adjacent carbon of the carbon to which the carbonyl group is bonded to form a ring.
  • C1 to 6 of the C1 to 6 alkylcarbonyl group represent the carbon number of the alkyl of the alkylcarbonyl group
  • C6 to 10 of the C6 to 10 arylcarbonyl group represent the carbon number of the aryl, and all of them represent the carbon of the carbonyl group. Is not included. The same applies hereinafter.
  • the C1 to 6 alkyl groups may be linear or branched, and specifically, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n. -Ixyl group, i-propyl group, i-butyl group, s-butyl group, t-butyl group, i-pentyl group, neopentyl group, 2-methyl-n-butyl group, i-hexyl group and the like shall be exemplified. Can be done.
  • the C6 to 10 aryl group may be either monocyclic or polycyclic, and the polycyclic aryl group has a saturated alicyclic, an unsaturated alicyclic or an unsaturated alicyclic if at least one ring is an aromatic ring. It may be any of the aromatic rings. Specific examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an azulenyl group, an indenyl group, an indanyl group, a tetralinyl group and the like.
  • Examples of the C1 to 6 alkylcarbonyl group include an acetyl group, an n-propionyl group, an isopropionyl group, an n-butyryl group, an isobutyryl group, a pivaloyl group, an n-pentanoyl group and the like.
  • Examples of the C6 to 10 arylcarbonyl group include a benzoyl group, a 1-naphthylcarbonyl group, a 2-naphthylcarbonyl group and the like.
  • Ra may be bonded to the adjacent carbon of the carbon to which the carbonyl group is bonded to form a ring
  • the following structure can be mentioned.
  • the bond at the "site capable of binding to a polyvalent metal ion” means a chemical bond such as an ionic bond or a coordination bond between the metal ion and the molecule.
  • Specific examples of the site capable of binding to the polyvalent metal ion preferably include a nitrogen atom in an unsubstituted or substituted hydroxamic acid group or a nitrogen-containing heterocyclic group. Examples of the unsubstituted or substituted hydroxamic acid group include those similar to the above-mentioned hydroxamic acid group.
  • nitrogen-containing heterocyclic group in the “nitrogen-containing heterocyclic group” include 3-pyrrolyl group, 2-imidazolyl group, 3-pyrazolyl group, 2-oxazolyl group, and 2-thiazolyl group.
  • the hydroxamic acid group-containing molecule used in the present invention is preferably at least one selected from the compound group represented by the formulas (I) to (III).
  • the hydroxamic acid group-containing molecule can be used alone or in combination of two or more.
  • R 3 , R 5 , R 8 and R 9 independently have C1 to 6 alkyl groups, C3 to 8 cycloalkyl groups, C6 to 10 aryl groups, 3 to 6-membered heterocyclyl groups, C1 to 6 alkoxy groups, and C6.
  • R 11 and R 12 each independently represent a hydrogen atom, a C1 to 6 alkyl group, a C6 to 10 aryl group, a C1 to 6 alkylcarbonyl group, or a C6 to 10 arylcarbonyl group). Represents.
  • the C1 to 6 alkyl groups may be linear or branched, and may be a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, or an i-propyl group. , I-butyl group, s-butyl group, t-butyl group, i-pentyl group, neopentyl group, 2-methyl-n-butyl group, i-hexyl group and the like.
  • Examples of the C3-8 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cubicyl group and the like.
  • the C6 to 10 aryl group may be either monocyclic or polycyclic, and the polycyclic aryl group has a saturated alicyclic, an unsaturated alicyclic or an unsaturated alicyclic if at least one ring is an aromatic ring. It may be any of the aromatic rings. Specific examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an azulenyl group, an indenyl group, an indanyl group, a tetralinyl group and the like.
  • the 3- to 6-membered heterocyclyl group contains 1 to 4 heteroatoms selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms as ring constituent atoms.
  • the heterocyclyl group may be monocyclic or polycyclic.
  • the polycyclic heterocyclyl group may be any of a saturated alicyclic ring, an unsaturated alicyclic ring, or an aromatic hydrocarbon ring, as long as at least one ring is a heterocyclic ring.
  • Examples of the 3- to 6-membered heterocyclyl group include a 3- to 6-membered saturated heterocyclyl group, a 5- to 6-membered heteroaryl group, and a 5- to 6-membered partially unsaturated heterocyclyl group.
  • Examples of the 3- to 6-membered saturated heterocyclyl group include an aziridinyl group, an epoxy group, a pyrrolidinyl group, a tetrahydrofuryl group, a thiazolidinyl group, a piperidyl group, a piperazinyl group, a morpholinyl group, a dioxolanyl group and a dioxanyl group.
  • the 5-membered heteroaryl group includes pyrrolyl group, furyl group, thienyl group, imidazolyl group, pyrazolyl group, oxazolyl group, isooxazolyl group, thiazolyl group, isothiazolyl group, triazolyl group, oxadiazolyl group, thiadiazolyl group, tetrazolyl group and indenyl group. Examples thereof include an isoindolinyl group, an indridinyl group, a benzimidazolyl group, a carbazolyl group and the like.
  • a pyridyl group, a pyrazil group, a pyrimidyl group, a pyridadyl group, a triazil group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a synolinyl group, a quinazolyl group, a phthalazinyl group, an acridinyl group, a naphthadynyl group, a phenazinyl group and the like are used. Can be mentioned.
  • Examples of the C1 to 6 alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an s-butoxy group, an i-butoxy group, a t-butoxy group and the like.
  • Examples of the C6 to 10 aryloxy group include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, an azulenyloxy group, an indenyloxy group, an indanyloxy group, a tetralinyloxy group and the like.
  • heteroaryloxy group examples include a frilloxy group, a thiazolyloxy group, a pyridyloxy group and the like.
  • halogeno group examples include a fluoro group, a chloro group, a bromo group, an iod group and the like.
  • C1 to 6 haloalkyl groups include fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2, 2,3,3,3-pentafluoropropyl group, perfluoropropyl group, 2,2,2-trifluoro-1-trifluoromethylethyl group, perfluoroisopropyl group, 4-fluorobutyl group, 2,2 3,3,4,5,4-Heptafluorobutyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, chloromethyl group, bromomethyl group, dichloromethyl group, dibromomethyl group, trichloromethyl group, tri Examples thereof include a bromomethyl group, a 1-chloroethyl group, a 2,2,2-trichloroethyl group,
  • Examples of the C6-10 haloaryl group include a 4-chlorophenyl group, a 3,5-dichlorophenyl group, a 2,4,6-trichlorophenyl group and a 2,3,4,5,6-pentafluorophenyl group.
  • Examples of the C1 to 6 haloalkoxy groups include a trifluoromethoxy group, a 2,2,2-trifluoroethoxy group, a pentafluoroethoxy group, a 3,3,3-trifluoropropoxy group, and 2,2,3,3,3.
  • -Pentafluoropropoxy group perfluoropropoxy group, 2,2,2-trifluoro-1-trifluoromethylethoxy group, perfluoroisopropoxy group, 4-fluorobutoxy group, 2,2,3,3,4 4,4-Heptafluorobutoxy group, perfluorobutoxy group, perfluoropentoxy group, perfluorohexyloxy group, 2,2,2-trichloroethoxy group, 4-chlorobutoxy group, perchlorohexyloxy group, 2, Examples thereof include a 4,6-trichlorohexyloxy group.
  • Examples of the C1 to 6 alkylsulfanyl group include methylsulfanyl group, ethylsulfanyl group, n-propylsulfanyl group, i-propylsulfanyl group, n-butylsulfanyl group, i-butylsulfanyl group, s-butylsulfanyl group and t-butyl. Sulfanyl group and the like can be mentioned.
  • Examples of the C6 to 10 arylsulfanil group include a phenylsulfanil group, a 1-naphthylsulfanil group, a 2-naphthylsulfanyl group, an azulenylsulfanyl group, an indenylsulfanyl group, an indanylsulfanyl group, a tetralinylsulfanyl group and the like.
  • Examples of the heteroarylsulfanil group include a furylsulfanil group, a thiazolylsulfanil group, and a pyridylsulfanil group.
  • Examples of the C1 to 6 alkylsulfinyl group include a methylsulfinyl group, an ethylsulfinyl group, a t-butylsulfinyl group and the like.
  • Examples of the C6 to 10 arylsulfinyl group include a phenylsulfinyl group, a 1-naphthylsulfinyl group, a 2-naphthylsulfinyl group, an azurenylsulfinyl group, an indenylsulfinyl group, an indanylsulfinyl group, a tetralinylsulfinyl group and the like.
  • Examples of the heteroarylsulfinyl group include a frillsulfinyl group, a thiazolylsulfinyl group, a pyridylsulfinyl group and the
  • Examples of the C1 to 6 alkylsulfonyl group include a methylsulfonyl group, an ethylsulfonyl group, a t-butylsulfonyl group and the like.
  • Examples of the C6 to 10 arylsulfonyl group include a phenylsulfonyl group, a 1-naphthylsulfonyl group, a 2-naphthylsulfonyl group, an azulenylsulfonyl group, an indenylsulfonyl group, an indanylsulfonyl group, a tetralinylsulfonyl group and the like.
  • Examples of the heteroarylsulfonyl group include a frillsulfonyl group, a thiazolylsulfonyl group, a pyridylsulfonyl group and
  • R 11 and R 12 are independently hydrogen atoms, C1 to 6 alkyl groups, C6 to 10 aryl groups, C1 to 6 alkylcarbonyl groups or C6 to 10 arylcarbonyl groups, respectively.
  • Examples of the C1 to 6 alkyl group and the C6 to 10 aryl group include the same groups as those exemplified in the above R 3 , R 5 , R 8 and R 9.
  • Examples of the C1 to 6 alkylcarbonyl group and the C6 to 10 arylcarbonyl group include those similar to those exemplified in Ra above.
  • Examples of the group represented by NR 11 R 12 include an amino group, a methylamino group, a dimethylamino group, an ethyl-i-propylamino group, an anirino group, a diphenylamino group, an acetylamino group, a benzoylamino group and the like.
  • A represents a 5- or 6-membered aromatic heterocycle containing an integer number of nitrogen atoms 1 to 4 as a ring-constituting atom, and may be either monocyclic or polycyclic. Good. However, in the case of a polycycle, at least one ring is a heterocycle, and the remaining ring is either a saturated alicyclic, an unsaturated alicyclic, or an aromatic hydrocarbon ring.
  • aromatic heterocycles include pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, isooxazolyl group, thiazolyl group, isothiazolyl group, triazolyl group, oxadiazolyl group, thiadiazolyl group, tetrazolyl group, pyridyl group, pyrazil group, pyrimidyl Group, pyridadyl group, triazil group, indenyl group, isoindolinyl group, indridinyl group, benzimidazolyl group, carbazolyl group, quinolinyl group, isoquinolinyl group, quinoxalinyl group, sinolinyl group, quinazolyl group, phthalazinyl group, acridinyl group, naphthadynyl group, phenadynyl group. And so on.
  • C1-6 such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc.
  • Alkyl group Vinyl group, 1-propenyl group, 2-propenyl group (allyl group), propen-2-yl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-methyl-2-propenyl group, 2- C2-6 alkenyl groups such as methyl-2-propenyl groups; C2-6 alkynyl groups such as ethynyl group, 1-propynyl group, 2-propynyl group (propargyl group), 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-methyl-2-propynyl group;
  • C3-8 cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cubicyl group; C6-10 aryl groups such as phenyl group and naphthyl group; C6 to 10 aryl C1 to 6 alkyl groups such as benzyl group and phenethyl group; 3-6 member heterocyclyl group; 3 to 6 member heterocyclyl C1 to 6 alkyl groups;
  • Holmil group C1-6 alkylcarbonyl groups such as acetyl and propionyl groups; Formyloxy group; C1-6 alkylcarbonyloxy groups such as acetyloxy group, propionyloxy group; C6-10 arylcarbonyl groups such as benzoyl groups; C1-6 alkoxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, i-propoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group; C1-6 alkoxycarbonyloxy groups such as methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, i-propoxycarbonyloxy group, n-butoxycarbonyloxy group, t-butoxycarbonyloxy group; Carboxylic acid group;
  • Halogeno groups such as fluoro group, chloro group, bromo group, iod group; Fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-3 Pentafluoropropyl group, perfluoropropyl group, 2,2,2-trifluoro-1-trifluoromethylethyl group, perfluoroisopropyl group, 4-fluorobutyl group, 2,2,3,3,4,4 4-Heptafluorobutyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, chloromethyl group, bromomethyl group, dichloromethyl group, dibromomethyl group, trichloromethyl group, tribromomethyl group, 1-chloroethyl group , 2,2,2-Trichloroethy
  • Amino group C1-6 alkyl-substituted amino groups such as methylamino group, dimethylamino group, diethylamino group; C6-10 arylamino groups such as anilino group and naphthylamino group; C6-10aryl C1-6 alkylamino groups such as benzylamino group, phenethylamino group; Formylamino group; C1-6 alkylcarbonylamino groups such as acetylamino group, propanoylamino group, butyrylamino group, i-propylcarbonylamino group; C1-6 alkoxycarbonylamino groups such as methoxycarbonylamino groups, ethoxycarbonylamino groups, n-propoxycarbonylamino groups, i-propoxycarbonylamino groups; C1-6 alkyl sulfoxide imino groups such as S, S-dimethyl sulfoxide imino groups; Aminocarbon
  • Thioxo group Sulfanil group; C1-6 alkylsulfanyls such as methylsulfanyl group, ethylsulfanyl group, n-propylsulfanyl group, i-propylsulfanyl group, n-butylsulfanyl group, i-butylsulfanyl group, s-butylsulfanyl group, t-butylsulfanyl group.
  • C1-6 alkylsulfanyls such as methylsulfanyl group, ethylsulfanyl group, n-propylsulfanyl group, i-propylsulfanyl group, n-butylsulfanyl group, i-butylsulfanyl group, s-butylsulfanyl group, t-butylsulfanyl group.
  • C1-6 haloalkylsulfanil groups such as trifluoromethylsulfanil groups, 2,2,2-trifluoroethylsulfanil groups; C6-10 arylsulfanil groups such as phenylsulfanil groups and naphthylsulfanil groups; 5- to 6-membered heteroarylsulfanil groups such as thiazolylsulfanil groups and pyridylsulfanil groups;
  • C1-6 alkylsulfinyl groups such as methylsulfinyl group, ethylsulfinyl group, t-butylsulfinyl group; C1-6 haloalkylsulfinyl groups such as trifluoromethylsulfinyl groups, 2,2,2-trifluoroethylsulfinyl groups; C6-10 arylsulfinyl groups such as phenylsulfinyl groups; 5- to 6-membered heteroarylsulfinyl groups such as thiazolylsulfinyl groups, pyridylsulfinyl groups;
  • C1-6 alkylsulfonyl groups such as methylsulfonyl groups, ethylsulfonyl groups, t-butylsulfonyl groups; C1-6 haloalkylsulfonyl groups such as trifluoromethylsulfonyl groups, 2,2,2-trifluoroethylsulfonyl groups; C6-10 arylsulfonyl groups such as phenylsulfonyl groups; 5- to 6-membered heteroarylsulfonyl groups such as thiazolylsulfonyl groups and pyridylsulfonyl groups; Sulfone group; C1-6 alkylsulfonyloxy groups such as methylsulfonyloxy groups, ethylsulfonyloxy groups, t-butylsulfonyloxy groups; C1-6 haloalkylsulfonyloxy groups such as trifluor
  • Tri-C1-6 alkyl-substituted silyl groups such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group; Tri-C6-10 aryl substituted silyl groups such as triphenylsilyl groups; C2-C6 alkenyl C1-C6 dialkyl-substituted silyl groups such as allyldimethylsilyl group and vinyldimethylsilyl group; C1-C6 alkyl di-C6-C10 aryl-substituted silyl groups such as t-butyldiphenylsilyl group, diphenylmethylsilyl group; Di-C1-C6 alkyl C6-C10 aryl substituted silyl groups such as dimethylphenylsilyl groups; (C6-C10 phenyl C1-C6 alkyl) di-C1-C6 alkylsilyl groups such as benzyld
  • the above-mentioned "3- to 6-membered heterocyclyl group” includes 1 to 4 heteroatoms selected from the group consisting of nitrogen atoms, oxygen atoms and sulfur atoms as ring constituent atoms.
  • the heterocyclyl group may be monocyclic or polycyclic.
  • the polycyclic heterocyclyl group may be any of a saturated alicyclic ring, an unsaturated alicyclic ring, or an aromatic hydrocarbon ring, as long as at least one ring is a heterocyclic ring.
  • Examples of the "3- to 6-membered heterocyclyl group” include a 3- to 6-membered saturated heterocyclyl group, a 5- to 6-membered heteroaryl group, and a 5- to 6-membered partially unsaturated heterocyclyl group.
  • Examples of the 3- to 6-membered saturated heterocyclyl group include an aziridinyl group, an epoxy group, a pyrrolidinyl group, a tetrahydrofuryl group, a thiazolidinyl group, a piperidyl group, a piperazinyl group, a morpholinyl group, a dioxolanyl group and a dioxanyl group.
  • the 5-membered heteroaryl group includes pyrrolyl group, furyl group, thienyl group, imidazolyl group, pyrazolyl group, oxazolyl group, isooxazolyl group, thiazolyl group, isothiazolyl group, triazolyl group, oxadiazolyl group, thiadiazolyl group, tetrazolyl group and indenyl group. Examples thereof include an isoindolinyl group, an indridinyl group, a benzimidazolyl group, a carbazolyl group and the like.
  • 6-membered heteroaryl group examples include a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a pyridadinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a synolinyl group, a quinazolyl group, a phthalazinyl group, an acridinyl group, a naphthaldinyl group and a phenadynyl group. Can be mentioned.
  • Examples of the 5- to 6-membered partially unsaturated heterocyclyl group include an isooxazolinyl group and a pyrazolinyl group.
  • Examples of the 3- to 6-membered heterocyclyl 1 to 6 alkyl groups include a glycidyl group, a 2-tetrahydrofurylmethyl group, and a 2-pyrrolylmethyl group. Examples thereof include 2-imidazolyl methyl group, 3-isooxazolyl methyl group, 5-isooxazolyl methyl group, 2-pyridyl methyl group, 4-pyridyl methyl group, 3-isooxazolinyl methyl group and the like. ..
  • the gas storage material other than nitrogen of the present invention contains a metal-organic framework in which polyvalent metal ions and hydroxamic acid group-containing molecules are bonded.
  • the bonds in the "metal organic structure in which a polyvalent metal ion and a hydroxamic acid group-containing molecule are bonded" are an ionic bond and a coordination bond between the polyvalent metal ion and the hydroxamic acid group-containing molecule. It means a chemical bond such as.
  • a molecule containing a nitrogen atom (excluding a hydroxamic acid group-containing molecule) (hereinafter referred to as a nitrogen atom-containing molecule) in addition to the hydroxamic acid group-containing molecule. .)
  • Such molecules include isonicotinic acid, benzimidazole, imidazole, 1,4-diazabicyclo [2.2.2] octane (DABCO), pyrazine, 4,4'-dipyridyl, 1,2-di (4-di (4-). Pyrazine) ethylene, 2,7-diazapylene, 4,4'-azobispyridine, bis (3- (4-pyridyl) -2,4-pentandionato) copper and the like can be mentioned.
  • the mixed molar ratio when a hydroxamic acid group-containing molecule and a nitrogen atom-containing molecule are used is not particularly limited, but for example, a nitrogen atom-containing molecule is used as a pillar molecule and cross-linked by the pillar molecule to form a pillar layer type.
  • a nitrogen atom-containing molecule is used as a pillar molecule and cross-linked by the pillar molecule to form a pillar layer type.
  • the method for producing a metal organic structure used as a storage material for a gas other than nitrogen of the present invention is not particularly limited, and a solution method such as a solvent diffusion method, a solvent stirring method, a hydrothermal method, or a reaction solution is irradiated with microwaves.
  • a solution method such as a solvent diffusion method, a solvent stirring method, a hydrothermal method, or a reaction solution is irradiated with microwaves.
  • An ultrasonic method that serves as a reaction field for each formation of crystals, and a metal ion generation source without using a solvent.
  • Any method such as a solid-phase synthesis method in which a solvent is mixed with an organic ligand and a LAG (liquid assisted grinding) method in which a metal ion source and a hydroxamic acid group-containing molecule are mixed by adding water equivalent to crystalline water should be used. Can be done.
  • a first solution containing a metal compound that is a source of metal ions and a solvent a second solution containing a hydroxamic acid group-containing molecule and a solvent, and, if necessary, other polydentate ligands.
  • a third solution containing the compound and the solvent By preparing a third solution containing the compound and the solvent, and mixing the first solution with the second solution and the third solution to prepare a reaction solution, the reaction solution is heated. It comprises a step of obtaining a metal organic structure.
  • the first to third solutions do not need to be prepared separately.
  • the above metal compound, hydroxamic acid group-containing molecule, other compound serving as a polydentate ligand, and a solvent are mixed at once to prepare one solution. May be prepared.
  • the mixed molar ratio of the metal compound and the hydroxamic acid group-containing molecule can be arbitrarily selected according to the pore size and surface characteristics of the obtained metal organic structure, and 1 mol of the hydroxamic acid group-containing molecule. It is preferable to use 1 mol or more of the metal compound, and more preferably 1.1 mol or more, further 1.2 mol or more, further 1.5 mol or more, further 2 mol or more, and further 3 mol or more.
  • the concentration of the metal ions in the reaction solution is preferably in the range of 25 to 200 mol / L.
  • the concentration of the hydroxamic acid group-containing molecule in the reaction solution is preferably in the range of 10 to 100 mol / L.
  • the concentration of the organic ligand other than the hydroxamic acid group-containing molecule in the reaction solution is preferably 25 to 100 mol / L.
  • N, N-dimethylformamide hereinafter sometimes referred to as "DMF"
  • N, N-diethylformamide hereinafter sometimes referred to as "DEF”
  • N, N- One or more selected from the group consisting of dimethylacetamide hereinafter sometimes referred to as "DMA”
  • water can be used.
  • N, N-dimethylformamide, N, N-diethylformamide or N, N-dimethylacetamide is used alone, or N, N-dimethylformamide / water mixed solvent, N, N-diethyl. It is preferable to use a formamide / water mixed solvent or an N, N-dimethylacetamide / water mixed solvent.
  • the heating temperature of the reaction solution is not particularly limited, but is preferably in the range of room temperature to 140 ° C.
  • the gas stored in the gas storage material other than nitrogen of the present invention is not particularly limited as long as it can be stored in the material, and specific examples thereof include hydrogen, carbon dioxide, methane, and acetylene. Of these, hydrogen and carbon dioxide are preferable. However, nitrogen is excluded.
  • the term "gas” shall mean a gas other than nitrogen.
  • the method of storing gas using the gas storage material of the present invention is not particularly limited, but the method of contacting the gas storage material of the present invention with gas is preferable, and the method of contacting the gas storage material of the present invention is not particularly limited.
  • a method of filling a tank with the gas storage material of the present invention to form a gas storage tank and allowing gas to flow into the tank or a method of supporting the gas storage material of the present invention on a surface constituting the inner wall of the tank to support gas.
  • Examples thereof include a method of forming a storage tank and inflowing gas into the tank, a method of molding the tank with a material containing the gas storage material of the present invention to form a gas storage tank, and a method of inflowing gas into the tank.
  • the gas storage tank of the present invention is made of a material that can withstand normal pressure or high pressure, and is hermetically molded so as to have a space for storing gas inside.
  • a material containing the gas storage material of the present invention can be hermetically molded into a shape having a space through which gas can flow.
  • the material containing the gas storage material of the present invention refers to the gas storage material of the present invention itself, or a material obtained by combining the gas storage material of the present invention with another moldable material. These aspects may constitute the gas storage tank of the present invention alone or together.
  • Example 1-1 10 mL of DMF was added to the compound of Compound No. 1 (0.5 mmol) and zinc nitrate hexahydrate (1.0 mmol), and the mixture was heated in an oven (reaction conditions: 120 ° C., 24 hours). After returning to room temperature and centrifuging, the supernatant was removed. After washing with 10 ml of DMF, the solvent was removed and the solvent was replaced with chloroform. 10 ml of chloroform was added and the mixture was immersed overnight. After removing chloroform, vacuum drying was performed at 150 ° C. for 5 hours to obtain a metal-organic framework 1 as a light brown solid.
  • Example 1-2 to [Example 1-31] The same operation as in Example 1-1 was carried out except that the reaction was carried out under the reaction conditions (temperature and heating time) shown in Table 2 using the organic ligands and solvents shown in Table 2 below, and the metal-organic framework 1 was carried out. -2 to 1-31 were obtained. The results are shown in Table 2.
  • Example 2-1 40 mL of DMF was added to the compound of Compound No. 1 (1.2 mmol) and zinc nitrate hexahydrate (1.6 mmol). Triethylamine (14.4 mmol) was added dropwise thereto, and the mixture was stirred at room temperature for 30 minutes. The precipitate was filtered and washed with 10 mL of DMF three times to wash the precipitate. Then, 10 mL of chloroform was used to wash the precipitate, which was a filter, three times. The solid was immersed in 10 mL of chloroform overnight, filtered, and vacuum dried at 150 ° C. for 5 hours to obtain a metal-organic framework 2-1 as a white solid.
  • Example 2-2 to [Example 2-6] Using the compounds and solvents shown in Table 3 below, the same operations as in Example 2-1 were carried out except for the reaction times shown in Table 3, to obtain metal-organic frameworks 2-2 to 2-6. The results are shown in Table 3.
  • Example 3-1 Add 3 mL of DMF and 1 mL of water to the compound of Compound No. 1 (0.5 mmol), zinc nitrate hexahydrate (0.5 mmol), and isonicotinic acid (0.5 mmol), and add an oven (reaction conditions: 120 ° C., 12 hours). Heated in. The temperature was returned to room temperature, the solid was washed with 10 mL of DMF, and then immersed in 10 mL of DMF overnight. The solid, which was a filter, was washed 3 times with 10 mL of chloroform. The solid was immersed in 10 mL of chloroform overnight, filtered, and vacuum dried at 150 ° C. for 5 hours to obtain a metal-organic framework 3-1 as a white solid.
  • Example 3-2 to [Example 3-8] Using the compounds, metal salts and solvents shown in Table 4 below, the same operation as in Example 3-1 was carried out except that the reaction was carried out under the reaction conditions (temperature and heating time) shown in Table 4, and the metal-organic framework 3 was carried out. -2-3-8 was obtained. The results are shown in Table 4.
  • Example 3-9 Example 3-3, except that the solid content concentration in the solution (representing the concentration (g / v) of each of the compound, metal salt, and isonicotinic acid of the compound numbers shown in Table 4 in the solution) is halved. In the same manner as above, the metal organic structure 3-9 was obtained as red crystals.
  • Example 3-10 Example 3-4 except that the solid content concentration in the solution (representing the concentration (g / v) of each of the compound, metal salt, and isonicotinic acid of the compound numbers shown in Table 4 in the solution) is halved. The same procedure as above was carried out to obtain a metal organic structure 3-10 as a mixture of black, peach and brown.
  • Example 4-1 Compound No. 1 compound (0.25 mmol), zinc nitrate hexahydrate (0.25 mmol), 1,4-diazabicyclo [2.2.2] octane (DABCO) (0.25 mmol) as co-ligand 3.3 mL of DMF and 6.6 mL of DEF were added as solvents, and the mixture was heated in an oven (reaction conditions: 90 ° C., 24 hours). After returning to room temperature, the solid was washed 3 times with 10 mL of DMF, and then the solid as a filter was washed 3 times with 10 mL of chloroform. The solid was immersed in 10 mL of chloroform overnight, filtered, and vacuum dried at 150 ° C. for 5 hours to obtain a metal-organic framework 4-1 as a white solid.
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • Example 4-2 to [Example 4-5]
  • the metal-organic framework was subjected to the same operation as in Example 4-1 except that the reaction was carried out under the reaction conditions (temperature and time) shown in Table 5 using the compounds, auxiliary ligands and solvents shown in Table 5 below. 4-2 to 4-5 were obtained. The results are shown in Table 5.
  • Example 5-1 Compound No. 1 (0.5 mmol) was dissolved in 7 mL of DMF. A solution of zinc acetate dihydrate (1.27 mmol) in 8 mL of DMF was added dropwise thereto. The mixture was stirred at room temperature for 2.5 hours and allowed to stand. The supernatant was removed and the solid was immersed in 20 mL of DMF overnight. The supernatant was then removed and replaced with chloroform. The solid was immersed in 20 mL of chloroform overnight, the solid was separated again and the washing operation was repeated 3 times. Then, the separated solid was vacuum dried at 150 ° C. for 5 hours to obtain a metal-organic framework 5-1 as a white solid.
  • Example 5-2 to [Example 5-4] The same operations as in Example 5-1 were carried out except that the compounds and solvents shown in Table 6 below were used to obtain metal-organic frameworks 5-2 to 5-4. The results are shown in Table 6.
  • Example 5-5 Compound No. 1 (1 mmol) was dissolved in 13 mL of DMF and triethylamine (0.28 ml) was added. A 17 mL solution of zinc acetate dihydrate (2.54 mmol) was added dropwise thereto. The mixture was stirred at room temperature for 2.5 hours and allowed to stand. The supernatant was removed and the solid was immersed in 20 mL of DMF overnight. The supernatant was then removed and replaced with chloroform. The solid was immersed in 20 mL of chloroform overnight, the solid was separated again and the washing operation was repeated 3 times. Then, the separated solid was vacuum dried at 150 ° C. for 5 hours to obtain a metal-organic framework 5-5 as a white solid.
  • Example 5-6 to [Example 5-8] Using the compounds and solvents shown in Table 7 below, the same operations as in Example 5-5 were carried out except that the temperatures and reaction times shown in Table 7 were used to obtain metal-organic frameworks 5-6 to 5-8. .. The results are shown in Table 7.
  • Example 6-1 Compound No. 1 compound (0.3 mmol), cobalt nitrate hexahydrate (0.3 mmol), DMF 5.6 mL, and ethanol 1.4 mL were placed in an autoclave and sealed. The mixture was heated at 100 ° C. for 21 hours and returned to room temperature. The obtained solid was separated by centrifugation. The supernatant was removed and replaced with chloroform. The centrifugation solid was immersed in 20 mL of chloroform overnight, and the washing operation of centrifuging again was repeated 3 times. Then, the centrifuged solid was vacuum dried at 150 ° C. for 5 hours to obtain a metal-organic framework 6-1 as a gray solid.
  • Example 6-2 The same operation as in Example 6-1 was carried out except that the compound of Compound No. 6 was used instead of the compound of Compound No. 1, and the metal-organic framework 6-2 was obtained as a light red solid.
  • Example 7-1 Compound No. 3 (0.4 mmol), nickel nitrate hexahydrate (0.8 mmol), DMF (9 mL), and water (1 mL) were heated at 100 ° C. for 16 hours and returned to room temperature. The obtained solid was filtered, and the solid as a filter was washed with DMF. Immerse in 20 mL of DMF overnight, wash the filtered solid with chloroform, soak in 20 mL of chloroform overnight, and vacuum dry the filtered solid again at 150 ° C. for 5 hours to obtain a metal-organic framework 7- as a brown solid. I got 1.
  • Example 7-2 The same operation as in Example 7-1 was carried out except that cobalt nitrate hexahydrate was used instead of nickel nitrate hexahydrate, to obtain a metal-organic framework 7-2 as a brown solid.
  • Example 7-3 The same operation as in Example 7-1 was carried out except that the compound of Compound No. 4 and THF / water (18 ml / 2 ml) were used as a solvent, the reaction time was 48 hours, and solid-liquid separation was performed by centrifugation. Structure 7-3 was obtained as a pale green solid.
  • Example 8-1 Compound No. 3 (0.5 mmol), magnesium nitrate hexahydrate (1.0 mmol), THF 7 mL, water 3 mL, and 1N NaOH aqueous solution 2 mL were heated at 100 ° C. for 24 hours and returned to room temperature. The obtained solid was filtered, and the solid as a filter was washed with DMF. Immerse in 20 mL of DMF overnight, wash the filtered solid with chloroform, soak in 20 mL of chloroform overnight, and vacuum dry the filtered solid again at 150 ° C. for 5 hours to obtain a metal-organic framework 8- I got 1.
  • Example 9-1 Compound No. 5 (0.84 mmol), copper nitrate hemipentahydrate (1.5 mmol), ethanol 5 mL, and water 5 mL were stirred at room temperature for 5 minutes. The mixture was heated at 140 ° C. for 24 hours and returned to room temperature. The reaction was centrifuged and the resulting solid was washed with DMF. The centrifuged solid was washed with chloroform, immersed in 20 mL of chloroform overnight, and the centrifuged solid was vacuum dried at 150 ° C. for 5 hours to obtain a metal-organic framework 9-1 as a blue powder.
  • Example 10-1 Compound No. 1 (118.3 mg, 0.60 mmol), zirconium tetrachloride (140.1 mg, 0.60 mmol), N, N-dimethylformamide (DMF) (8 mL), water (130 mg, 12 eq.), Acetic acid. (1.803 g, 30 eq.) was placed in a screw cap vial and subjected to ultrasonic treatment. Then, it was sealed and heated at 120 ° C. for 24 hours. It was cooled to room temperature, centrifuged and decanted to give a solid. The operation of adding DMF to the solid, centrifuging and decanting was repeated 3 times.
  • the solvent was changed to acetone, the same operation was repeated 3 times, the solid was washed, and then immersed in acetone for 24 hours. After centrifugation and decantation, the solid was vacuum dried at 150 ° C. for about 6 hours to obtain a metal-organic framework 10-1 (159.1 mg) as an off-white powder.
  • Example 10-2 to 10-5 Using the compounds shown in Table 8 below, the same operations as in Example 10-1 were carried out except that the reaction was carried out under the reaction conditions shown in Table 8, to obtain metal-organic frameworks 10-2 to 10-5. The results are shown in Table 8.
  • Example 10-6 Compound No. 6 (112.4 mg, 0.50 mmol), cobalt nitrate hexahydrate (145.8 mg, 0.50 mmol), isonicotinic acid (62.1 mg, 0.5 mmol) in N, N- It was dissolved in 5 mL of dimethylformamide (DMF), placed in a screw cap vial, and sonicated. Then, it was sealed and heated at 120 ° C. for 26 hours. It was cooled to room temperature, centrifuged and decanted to give a solid. The operation of adding DMF to the solid, centrifuging and decanting was repeated 3 times.
  • DMF dimethylformamide
  • the solvent was changed to chloroform, the same operation was repeated 3 times, the solid was washed, and then immersed in chloroform for 24 hours. After centrifugation and decantation, the solid was vacuum dried at 150 ° C. for about 6 hours to obtain a metal-organic framework 10-6 (123.5 mg) as a purple powder.
  • Example 10-7 The same procedure as in Example 10-6 was carried out except that the reaction temperature was 90 ° C., and the metal-organic framework 10-7 was obtained as a purple powder.
  • Example 10-8 Compound No. 1 (78.8 mg, 0.40 mmol) and copper nitrate trihydrate (96.7 mg, 0.40 mmol) were dissolved in 8 mL of N, N-dimethylformamide (DMF) and placed in a screw cap vial. , Sonication was performed. Then, it was sealed and heated at 120 ° C. for 24 hours. It was cooled to room temperature, centrifuged and decanted to give a solid. The operation of adding DMF to the solid, centrifuging and decanting was repeated 3 times. The solvent was changed to chloroform, the same operation was repeated 3 times, the solid was washed, and then immersed in chloroform for 24 hours. After centrifugation and decantation, the solid was vacuum dried at 150 ° C. for about 6 hours to obtain a metal-organic framework 10-8 (23.4 mg) as a dark green powder.
  • DMF N, N-dimethylformamide
  • Example 10-9 to 10-10 Using the compounds shown in Table 9 below, the same operations as in Example 10-8 were carried out except that the reaction was carried out under the reaction conditions shown in Table 9, to obtain metal-organic frameworks 10-9 to 10-10. The results are shown in Table 9.
  • Example 10-11 Compound No. 1 (78.8 mg, 0.40 mmol) and nickel nitrate hexahydrate (233.2 mg, 0.80 mmol) were dissolved in 9 mL of THF and 1 mL of water, placed in an autoclave, and placed at 100 ° C. for 48 hours. Heated. It was cooled to room temperature, centrifuged and decanted to give a solid. The operation of adding DMF to the solid, centrifuging and decanting was repeated 3 times. The solvent was changed to chloroform, the same operation was repeated 3 times, the solid was washed, and then immersed in chloroform for 24 hours. After centrifugation and decantation, the solid was vacuum dried at 150 ° C. for about 6 hours to obtain a metal-organic framework 10-11 (47.9 mg) as a yellow-green powder.
  • Example 10-12 The same operation as in Example 10-11 was carried out except that the compound of Compound No. 6 was used instead of the compound of Compound No. 1, and the metal-organic framework 10-12 was obtained as a light green powder.
  • Example 11 BET specific surface area measurement and hydrogen storage measurement
  • the BET specific surface area and the hydrogen storage amount at a temperature of 77 K-atmospheric pressure were measured.
  • the BET specific surface area and the hydrogen storage amount at a temperature of 77 K-atmospheric pressure were measured using a gas adsorption amount measuring device Tristar-II (manufactured by Micromerics).
  • the BET specific surface area was calculated by the following method. About 50 mg of the metal-organic framework was placed inside the glass cell. The inside of the glass cell was depressurized to vacuum at a temperature of 135 ° C. and dried for 6 hours.
  • the glass cell was attached to a gas adsorption amount measuring device and immersed in a constant temperature bath containing liquid nitrogen.
  • the pressure of nitrogen contained in the glass cell was gradually increased.
  • the pressure of nitrogen introduced into the interior of the glass cell was measured until the 1.0 ⁇ 10 5 Pa.
  • the amount of hydrogen stored at a temperature of 77 K at normal pressure was calculated by the following method. After the measurement of nitrogen, the gas type was changed to hydrogen and the measurement was performed.
  • the pressure of hydrogen contained in the glass cell was gradually increased.
  • the pressure of hydrogen was introduced into the glass cell was measured until the 1.0 ⁇ 10 5 Pa.
  • Table 11 shows the amount of hydrogen stored at the measured temperature of 77 K-atmospheric pressure.
  • Carbon dioxide adsorption heat The heat of carbon dioxide adsorption of the organic metal-organic framework 3-3 was calculated from the carbon dioxide adsorption experiments at different temperatures. When the calculation was performed using the software attached to Tristar-II, it was 31 KJ ⁇ mol -1.
  • Example 1-24 The metal-organic framework 1-24 obtained in Example 1-24 was subjected to X-ray structural analysis under the measurement conditions shown below.
  • [Measurement condition] A single colorless and transparent crystal of 0.01 ⁇ 0.01 ⁇ 0.01 mm of the metal-organic framework 1-24 obtained in Example 1-24 was placed on a micromount, and a single crystal X-ray analyzer (D8 VENTURE) was placed. , Manufactured by Bruker) was used for diffraction experiments. Diffraction data obtained by irradiating a single crystal with X-rays having a wavelength of 0.78192 ⁇ was analyzed to determine the structure. The results are shown in Table 13.
  • Example 3-1 The metal-organic framework 3-1 obtained in Example 3-1 was subjected to X-ray structural analysis under the same conditions as the measurement shown above. The results are shown in Table 14.
  • Example 3-4 The metal-organic framework 3-4 obtained in Example 3-4 was subjected to X-ray structural analysis under the same conditions as the measurement shown above. The results are shown in Table 15.
  • the gas storage material of the present invention can store gases such as hydrogen, carbon dioxide, methane, and acetylene at a practical level.
  • gases such as hydrogen, carbon dioxide, methane, and acetylene
  • the use of hydrogen becomes easier toward the arrival of a hydrogen-based society, and carbon dioxide, which is a greenhouse gas, can be efficiently immobilized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本発明は、ヒドロキサム酸基を結合部位とする金属有機構造体を含有する水素、二酸化炭素、メタン、アセチレン等のガス(ただし、窒素ガスを除く)貯蔵材料を提供することを目的とする。 多価金属イオンと、無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が結合してなる金属有機構造体を含有させる。前記分子としては、下記式(I)~(III)に表される化合物からなる群から選ばれる少なくとも1つであるのが好ましい。

Description

ヒドロキサム酸によって結合された金属有機構造体を含有するガス貯蔵材料
 本発明は、ヒドロキサム酸によって結合された金属有機構造体を含有する新規な窒素以外のガスの貯蔵材料、かかる窒素以外のガスの貯蔵材料を用いた窒素以外のガスの貯蔵方法及び窒素以外のガスの貯蔵タンクに関する。本願は、2019年12月11日に出願された日本国特許出願第2019-223660号及び2020年2月26日に出願された日本国特許出願2020-030761号に対し優先権を主張し、その内容をここに援用する。
 金属有機構造体(以下「MOF」ということがある。)は、金属イオンとそれらを連結する架橋性の有機配位子を組み合わせることで内部に空間(つまり細孔)を持つ高分子構造を有する固体状の物質であり、ガスの貯蔵や分離などの機能をもつ多孔性材料として、この十数年高い興味が持たれてきた。テレフタル酸を有機配位子として用いる研究が多くされており、テレフタル酸を架橋性の有機配位子として用い、DMF中でZn(NO・6HOを用いたソルボサーマル法で得られるMOF-5が、温度77K、4MPaの条件で、MOF-5に対して7.1質量%の水素を貯蔵できることが知られている(特許文献1及び非特許文献1~3参照)。
 一方で、カルボン酸(-COOH)と同様にヒドロキサム酸(-CONHOH)は金属に強く配位することが知られている。しかしながらテレフタル酸のカルボン酸部位をヒドロキサム酸に置き換えた1,4-ベンゼン-ジカルボヒドロキサム酸を配位子として用いた金属有機構造体はこれまでに2例が報告されているのみである。
 テレフタル酸を有機配位子として用い、DMF中で四塩化ジルコニウムを用いたソルボサーマル法で得られるMOFであるUiO-66と1,4-ベンゼン-ジカルボヒドロキサム酸(H2BDHA)をDMF中で加熱することで、UiO-66を形成しているテレフタレートと1,4-ベンゼン-ジカルボヒドロキサム酸が置き換わり、UiO-66-H2BDHAとなることが報告されている(非特許文献4)。
 1,4-ベンゼン-ジカルボヒドロキサム酸をDMF中、オルトチタン酸テトライソプロピル、酢酸と共に120℃に加熱するソルボサーマル法で、ヒドロキサム酸部位を有するMOFであるMUV-11が得られることが報告されている(非特許文献5)。
米国特許出願公開2010-75123号公報
H. Li, M. Eddaudi, M. O'Keefe, O. M. Yaghi, Nature, 402, 276(1999) M. Eddaudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keefe, O. M. Yaghi, Science 2002, 295(5554), 469. S. Kaye, A. Daily, O. M. Yaghi, J. Long, J. Am. Chem. Soc. 2007, 129(46), 14176. C. Pereira, A. Howarth, N. Vermeulen, F. Almeida Paz, J. Tome, J. Hupp, O. Farha, Mater. Chem. Front. 2017, 1, 1194. N. Padial, J. Castells-Gil, N. Almora-Barrios, M. Romero-Angel, I. Silva, M. Barawi, A. Garcia-Sanchez, V. O’Shea, C. Marti-Gastaldo, J. Am. Chem. Soc. 2019, 141, 13124.
 MOFは、用いる金属種、配位子、反応条件により大きく構造が変化することが知られている。ヒドロキサム酸を結合部位とするMOFに関しては、報告例も少なく、その窒素以外のガスの貯蔵能力も知られていない。
 本発明は、ヒドロキサム酸基を結合部位とするMOFを含有する窒素以外のガスの貯蔵材料を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、先行技術文献以外の、金属種とヒドロキサム酸を結合部位として有する分子の組合せでもMOFが得られ、しかも窒素以外のガスの貯蔵能力があることを見いだし、本発明を完成するに至った。
 すなわち、本発明は、以下に示す事項で特定される次のとおりのものである。
[1]多価金属イオンと、無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が結合してなる金属有機構造体を含有する窒素以外のガスの貯蔵材料。
[2]多価金属イオンと結合可能な部位が、無置換又は置換ヒドロキサム酸基又は含窒素ヘテロ環基中の窒素原子である[1]に記載の窒素以外のガスの貯蔵材料。
[3]無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が、下記式(I)~(III)で表される化合物群から選ばれる少なくとも1種である[1]又は[2]に記載の窒素以外のガスの貯蔵材料。
Figure JPOXMLDOC01-appb-C000003
 (式(I)~(III)中、
 R、R、R、R及びRは、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表し、C(=O)N(R)OH(u=1、2、4、6又は7を表す。)が結合する環の炭素に隣接する炭素と一緒になって環を形成してもよく、
 R、R、R及びRは、それぞれ独立に、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、C1~6アルコキシ基、C6~10アリールオキシ基、ヘテロアリールオキシ基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロアリールスルホニル基、シアノ基、ニトロ基又はNR1112で表される基(式中、R11及びR12は、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表す。)を表し、
 mは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、mが2のとき、R同士は、同一であっても、相異なっていてもよく、
 qは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、qが2のとき、R同士は、同一であっても、相異なっていてもよく、
 tは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、tが2のとき、R同士は、同一であっても、相異なっていてもよく、
 nは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、nが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
 pは、Rの数を表し、かつAが5員環の場合には、0又は1~3のいずれかの整数を表し、Aが6員環の場合には、0又は1~4のいずれかの整数を表し、pが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
 rは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、rが2以上のとき、Rは、同一であっても、相異なっていてもよく、
 sは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、sが2以上のとき、Rは、同一であっても、相異なっていてもよく、
 ただし、n+m≦5、r+q≦5及びs+t≦5であり、
 式(II)中、Aは、窒素原子を1~4のいずれかの整数個を環構成原子として含む5又は6員の芳香族ヘテロ環を表す。)
[4]多価金属イオンが、元素の周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属のイオンである[1]~[3]のいずれか1つに記載の窒素以外のガスの貯蔵材料。
[5]多価金属イオンが、Zn、Fe、Co、Ni、Cu、Al、Zr及びMgから選ばれる少なくとも1種の金属のイオンである[1]~[4]のいずれか1つに記載の窒素以外のガスの貯蔵材料。
[6]窒素以外のガスを[1]~[5]のいずれか1つに記載の窒素以外のガスの貯蔵材料に接触させ、ガスを前記窒素以外のガスの貯蔵材料の内部に吸着又は吸蔵させる工程を有する窒素以外のガスの貯蔵方法。
[7][1]~[5]のいずれか1つに記載の窒素以外のガスの貯蔵材料が充填されている窒素以外のガスの貯蔵タンク。
[8]多価金属イオンと、無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が結合してなる金属有機構造体(ただし、Ti4+又はZr4+と、ベンゼン-1,4-ジカルボヒドロキサム酸が結合してなる金属有機構造体を除く。)。
[9]無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が、下記式(I)~(III)で表される化合物群から選ばれる少なくとも1種である[8]に記載の金属有機構造体。
Figure JPOXMLDOC01-appb-C000004
 (式(I)~(III)中、
 R、R、R、R及びRは、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表し、C(=O)N(Ru)OH(u=1、2、4、6又は7を表す。)が結合する環の炭素に隣接する炭素と一緒になって環を形成してもよく、
 R、R、R及びRは、それぞれ独立に、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、C1~6アルコキシ基、C6~10アリールオキシ基、ヘテロアリールオキシ基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロアリールスルホニル基、シアノ基、ニトロ基又はNR1112で表される基(式中、R11及びR12は、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表す。)を表し、
 mは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、mが2のとき、R同士は、同一であっても、相異なっていてもよく、
 qは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、qが2のとき、R同士は、同一であっても、相異なっていてもよく、
 tは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、tが2のとき、R同士は、同一であっても、相異なっていてもよく、
 nは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、nが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
 pは、Rの数を表し、かつAが5員環の場合には、0又は1~3のいずれかの整数を表し、Aが6員環の場合には、0又は1~4のいずれかの整数を表し、pが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
 rは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、rが2以上のとき、Rは、同一であっても、相異なっていてもよく、
 sは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、sが2以上のとき、Rは、同一であっても、相異なっていてもよく、
 ただし、n+m≦5、r+q≦5及びs+t≦5であり、
 式(II)中、Aは、窒素原子を1~4のいずれかの整数個を環構成原子として含む5又は6員の芳香族ヘテロ環を表す。)
[10]多価金属イオンが、元素の周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属のイオンである[8]又は[9]に記載の金属有機構造体。
[11]多価金属イオンが、Zn、Fe、Co、Ni、Cu、Al、Zr及びMgから選ばれる少なくとも1種の金属のイオンである[8]~[10]のいずれか1つに記載の金属有機構造体。
 本発明の窒素以外のガスの貯蔵材料は、新規であり、この材料を用いることで、水素、二酸化炭素、メタン、アセチレン等のガス(ただし、窒素は除く)を貯蔵することができる。
 本発明の窒素以外のガスの貯蔵材料は、多価金属イオンと、無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子(以下、「ヒドロキサム酸基含有分子」という。)が結合してなる金属有機構造体を含有する。
 本発明に用いられる多価金属イオンは、2価以上の金属のイオンであれば、特に制限されないが、元素周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属のイオンであるのが好ましく、さらに、Zn、Fe、Co、Ni、Cu、Al、Zr及びMgから選ばれる少なくとも1種の金属のイオンであるのが好ましく、さらにCo、Ni、Cu及びZnから選ばれる少なくとも1種の金属のイオンであるのが好ましく、これらは1種単独で、又は2種以上を混合して用いることができる。
 これらの多価金属イオンは、種々の塩の形で供給されるが、塩の純度、金属イオンとヒドロキサム酸基含有分子との結合のしやすさ等を考慮すると、硝酸塩が好ましく、具体的には、Zn(NO・6HO、Zn(NO・4HO、Ni(NO・6HO、Mg(NO・6HO、Cu(NO・xHO、Cu(NO・2.5HO、Co(NO・6HO、Al(NO・6HO等を例示することができる。
 本発明に用いられるヒドロキサム酸基含有分子としては、無置換又は置換ヒドロキサム酸基を分子内に少なくとも1つ以上有し、さらに多価金属イオンと結合可能な部位を分子内1以上有し、多価金属イオンと結合してMOFを構築できる分子であれば、特に制限されない。
 「無置換又は置換ヒドロキサム酸基」中、「無置換ヒドロキサム酸基」は、下記式(IV-1)で表され、「置換ヒドロキサム酸基」は、下記式(IV-2)~(IV-4)で表されるいずれかの基を表す。
Figure JPOXMLDOC01-appb-C000005
 式中、Ra及びRbは、それぞれ独立に水素原子以外の官能基を表し、具体的には、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基、C6~10アリールカルボニル基等が挙げられ、さらにRaは、カルボニル基が結合する炭素の隣接炭素と結合して環を形成してもよい。なお、C1~6アルキルカルボニル基のC1~6は、アルキルカルボニル基のアルキルの炭素数を表し、C6~10アリールカルボニル基のC6~10は、アリールの炭素数を表し、いずれもカルボニル基の炭素は含まないものとする。以下同様である。
 C1~6アルキル基は、直鎖であってもよく、分岐鎖であってもよく、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、i-プロピル基、i-ブチル基、s-ブチル基、t-ブチル基、i-ペンチル基、ネオペンチル基、2-メチル-n-ブチル基、i-ヘキシル基等を例示することができる。
 C6~10アリール基は、単環及び多環のいずれであってもよく、多環アリール基は、少なくとも一つの環が芳香環であれば、残りの環が飽和脂環、不飽和脂環又は芳香環のいずれであってもよい。具体的には、フェニル基、1-ナフチル基、2-ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基等が挙げられる。
 C1~6アルキルカルボニル基として、アセチル基、n-プロピオニル基、イソプロピオニル基、n-ブチリル基、イソブチリル基、ピバロイル基、n-ペンタノイル基等が挙げられる。
 C6~10アリールカルボニル基として、ベンゾイル基、1-ナフチルカルボニル基、2-ナフチルカルボニル基等が挙げられる。
 また、「Raは、カルボニル基が結合する炭素の隣接炭素と結合して環を形成してもよい。」という場合の構造として、例えば以下のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 「多価金属イオンと結合可能な部位」における結合とは、金属イオンと前記分子との間におけるイオン結合、配位結合等の化学結合を意味する。
 多価金属イオンと結合可能な部位として、具体的には、無置換又は置換ヒドロキサム酸基又は含窒素ヘテロ環基中の窒素原子が、好ましく挙げられる。
 無置換又は置換ヒドロキサム酸基として、上記ヒドロキサム酸基と同様のものが挙げられる。
 「含窒素ヘテロ環基中の窒素原子」中の「含窒素ヘテロ環基」として、具体的には、3-ピロリル基、2-イミダゾリル基、3-ピラゾリル基、2-オキサゾリル基、2-チアゾリル基、3-イソオキサゾリル基、3-イソチアゾリル基、1,2,3-トリアゾロ-4-イル基、1,2,4-トリアゾロ-3-イル基、1,2、3-オキサジアゾリル-4-イル基、1,2,4-チアジアゾリル-4-イル基、1,2,4-オキサジアゾリル-3-イル基、1,2,4-チアジアゾリル-3-イル基、1,3,4-オキサジアゾリル-2-イル基、1,3,4-チアジアゾリル-2-イル基、4-ピリジル基、3-ピリジル基、2-ピリジル基、4-ピリミジル基、3-ピリダジル基、2-ピラジル基、1,3,5-トリアジル-2-イル基、3-ピロリジル基、4-ピペリジル基等が挙げられる。
 本発明に用いられるヒドロキサム酸基含有分子として、より具体的には、式(I)~(III)で表される化合物群から選ばれる少なくとも1種であるのが好ましい。なお、ヒドロキサム酸基含有分子は、1種単独で、又は2種以上を混合して用いることができる。
 式(I)~(III)中、R、R、R、R及びRは、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表し、C(=O)N(R)OH(u=1、2、4、6又は7を表す。)が結合する環の炭素に隣接する炭素と一緒になって環を形成してもよい。
 C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基及びC6~10アリールカルボニル基として、具体的には、上記Raの具体例として例示され具体例と同様のものを例示することができる。
 また、「C(=O)N(R)OH(u=1、2、4、6又は7を表す。)が結合する環の炭素に隣接する炭素と一緒になって環を形成してもよい。」についても、上記Raで例示されたものと同様のものを例示することができる。
 R、R、R及びRは、それぞれ独立に、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、C1~6アルコキシ基、C6~10アリールオキシ基、ヘテロアリールオキシ基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロアリールスルホニル基、シアノ基、ニトロ基又はNR1112で表される基(式中、R11及びR12は、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表す。)を表す。
 C1~6アルキル基としては、直鎖でも、分岐鎖であってもよく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、i-プロピル基、i-ブチル基、s-ブチル基、t-ブチル基、i-ペンチル基、ネオペンチル基、2-メチル-n-ブチル基、i-ヘキシル基等が挙げられる。
 C3~8シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、キュバニル基等が挙げられる。
 C6~10アリール基は、単環及び多環のいずれであってもよく、多環アリール基は、少なくとも一つの環が芳香環であれば、残りの環が飽和脂環、不飽和脂環又は芳香環のいずれであってもよい。具体的には、フェニル基、1-ナフチル基、2-ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基等が挙げられる。
 3~6員ヘテロシクリル基としては、窒素原子、酸素原子及び硫黄原子からなる群から選ばれる1~4個のヘテロ原子を環の構成原子として含むものである。ヘテロシクリル基は、単環及び多環のいずれであってもよい。多環ヘテロシクリル基は、少なくとも一つの環がヘテロ環であれば、残りの環が飽和脂環、不飽和脂環又は芳香環の炭化水素環のいずれであってもよい。3~6員ヘテロシクリル基としては、3~6員飽和ヘテロシクリル基、5~6員ヘテロアリール基、5~6員部分不飽和ヘテロシクリル基等が挙げられる。
 3~6員飽和ヘテロシクリル基としては、アジリジニル基、エポキシ基、ピロリジニル基、テトラヒドロフリル基、チアゾリジニル基、ピペリジル基、ピペラジニル基、モルホリニル基、ジオキソラニル基、ジオキサニル基等が挙げられる。
 5員ヘテロアリール基としては、ピロリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、テトラゾリル基、インドニル基、イソインドリニル基、インドリジニル基、ベンツイミダゾリル基、カルバゾリル基等が挙げられる。
 6員ヘテロアリール基として、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、キノリニル基、イソキノリニル基、キノキサリニル基、シノリニル基、キナゾリル基、フタラジニル基、アクリジニル基、ナフタジニル基、フェナジニル基などを挙げることができる。
 C1~6アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基等が挙げられる。
 C6~10アリールオキシ基としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、アズレニルオキシ基、インデニルオキシ基、インダニルオキシ基、テトラリニルオキシ基等が挙げられる。
 ヘテロアリールオキシ基としては、フリルオキシ基、チアゾリルオキシ基、ピリジルオキシ基等が挙げられる。
 ハロゲノ基としては、フルオロ基、クロロ基、ブロモ基、イオド基等が挙げられる。
 C1~6ハロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、パーフルオロプロピル基、2,2,2-トリフルオロ-1-トリフルオロメチルエチル基、パーフルオロイソプロピル基、4-フルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、クロロメチル基、ブロモメチル基、ジクロロメチル基、ジブロモメチル基、トリクロロメチル基、トリブロモメチル基、1-クロロエチル基、2,2,2-トリクロロエチル基、4-クロロブチル基、パークロロヘキシル基、2,4,6-トリクロロヘキシル基等が挙げられる。
 C6~10ハロアリール基としては、4-クロロフェニル基、3,5-ジクロロフェニル基、2,4,6-トリクロロフェニル基、2,3,4,5,6-ペンタフルオロフェニル基が挙げられる。
 C1~6ハロアルコキシ基としては、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基、ペンタフルオロエトキシ基、3,3,3-トリフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、パーフルオロプロポキシ基、2,2,2-トリフルオロ-1-トリフルオロメチルエトキシ基、パーフルオロイソプロポキシ基、4-フルオロブトキシ基、2,2,3,3,4,4,4-ヘプタフルオロブトキシ基、パーフルオロブトキシ基、パーフルオロペントキシ基、パーフルオロヘキシルオキシ基、2,2,2-トリクロロエトキシ基、4-クロロブトキシ基、パークロロヘキシルオキシ基、2,4,6-トリクロロヘキシルオキシ基等が挙げられる。
 C1~6アルキルスルファニル基としては、メチルスルファニル基、エチルスルファニル基、n-プロピルスルファニル基、i-プロピルスルファニル基、n-ブチルスルファニル基、i-ブチルスルファニル基、s-ブチルスルファニル基、t-ブチルスルファニル基等が挙げられる。
 C6~10アリールスルファニル基としては、フェニルスルファニル基、1-ナフチルスルファニル基、2-ナフチルスルファニル基、アズレニルスルファニル基、インデニルスルファニル基、インダニルスルファニル基、テトラリニルスルファニル基等が挙げられる。
 ヘテロアリールスルファニル基としては、フリルスルファニル基、チアゾリルスルファニル基、ピリジルスルファニル基等が挙げられる。
 C1~6アルキルスルフィニル基としては、メチルスルフィニル基、エチルスルフィニル基、t-ブチルスルフィニル基等が挙げられる。
 C6~10アリールスルフィニル基としては、フェニルスルフィニル基、1-ナフチルスルフィニル基、2-ナフチルスルフィニル基、アズレニルスルフィニル基、インデニルスルフィニル基、インダニルスルフィニル基、テトラリニルスルフィニル基等が挙げられる。
 ヘテロアリールスルフィニル基としては、フリルスルフィニル基、チアゾリルスルフィニル基、ピリジルスルフィニル基等が挙げられる。
 C1~6アルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基等が挙げられる。
 C6~10アリールスルホニル基としては、フェニルスルホニル基、1-ナフチルスルホニル基、2-ナフチルスルホニル基、アズレニルスルホニル基、インデニルスルホニル基、インダニルスルホニル基、テトラリニルスルホニル基等が挙げられる。
 ヘテロアリールスルホニル基としては、フリルスルホニル基、チアゾリルスルホニル基、ピリジルスルホニル基等が挙げられる。
 NR1112で表される基中、R11及びR12は、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表す。
 C1~6アルキル基及びC6~10アリール基としては、上記R、R、R及びRにおいて例示したものと同様のものが挙げられる。
 C1~6アルキルカルボニル基及びC6~10アリールカルボニル基としては、上記Raで例示したものと同様のものが挙げられる。
 NR1112で表される基としては、アミノ基、メチルアミノ基、ジメチルアミノ基、エチル-i-プロピルアミノ基、アニリノ基、ジフェニルアミノ基、アセチルアミノ基、ベンゾイルアミノ基等が挙げられる。
 式(II)中、Aは、窒素原子を1~4のいずれかの整数個を環構成原子として含む5又は6員の芳香族ヘテロ環を表し、単環及び多環のいずれであってもよい。ただし、多環の場合は、少なくとも一つの環がヘテロ環であって、残りの環が飽和脂環、不飽和脂環又は芳香環の炭化水素環のいずれかである。そのような芳香族ヘテロ環としては、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、テトラゾリル基、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、インドニル基、イソインドリニル基、インドリジニル基、ベンツイミダゾリル基、カルバゾリル基、キノリニル基、イソキノリニル基、キノキサリニル基、シノリニル基、キナゾリル基、フタラジニル基、アクリジニル基、ナフタジニル基、フェナジニル基等が挙げられる。
 R、R、R、R及びRにおけるC1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基;R、R、R及びRにおけるC1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、C1~6アルコキシ基、C6~10アリールオキシ基、ヘテロアリールオキシ基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロアリールスルホニル基又はNR1112で表される基(式中、R11及びR12は、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表す。)は、必要に応じて化学的に許容される範囲でさらに置換基を有することができる。
 そのような置換基として、以下に示す基を例示することができる。
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などのC1~6アルキル基;
 ビニル基、1-プロペニル基、2-プロペニル基(アリル基)、プロペン-2-イル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基などのC2~6アルケニル基;
 エチニル基、1-プロピニル基、2-プロピニル基(プロパルギル基)、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-メチル-2-プロピニル基などのC2~6アルキニル基;
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、キュバニル基などのC3~8シクロアルキル基;
 フェニル基、ナフチル基などのC6~10アリール基;
 ベンジル基、フェネチル基などのC6~10アリールC1~6アルキル基;
 3~6員ヘテロシクリル基;
 3~6員へテロシクリルC1~6アルキル基;
 オキソ基;
 水酸基;
 メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基などのC1~6アルコキシ基;
 ビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、プロペン-2-イルオキシ基、3-ブテニルオキシ基、2-ブテニルオキシ基などのC2~6アルケニルオキシ基;
 エチニルオキシ基、プロパルギルオキシ基などのC2~6アルキニルオキシ基;
 フェノキシ基、ナフトキシ基などのC6~10アリールオキシ基;
 ベンジルオキシ基、フェネチルオキシ基などのC6~10アリールC1~6アルコキシ基;
 チアゾリルオキシ基、ピリジルオキシ基などの5~6員ヘテロアリールオキシ基;
 チアゾリルメチルオキシ基、ピリジルメチルオキシ基などの5~6員ヘテロアリールC1~6アルキルオキシ基;
 ホルミル基;
 アセチル基、プロピオニル基などのC1~6アルキルカルボニル基;
 ホルミルオキシ基;
 アセチルオキシ基、プロピオニルオキシ基などのC1~6アルキルカルボニルオキシ基;
 ベンゾイル基などのC6~10アリールカルボニル基;
 メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、i-プロポキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基などのC1~6アルコキシカルボニル基;
 メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n-プロポキシカルボニルオキシ基、i-プロポキシカルボニルオキシ基、n-ブトキシカルボニルオキシ基、t-ブトキシカルボニルオキシ基などのC1~6アルコキシカルボニルオキシ基;
 カルボキシ基;
 フルオロ基、クロロ基、ブロモ基、イオド基などのハロゲノ基;
 フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、パーフルオロプロピル基、2,2,2-トリフルオロ-1-トリフルオロメチルエチル基、パーフルオロイソプロピル基、4-フルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、クロロメチル基、ブロモメチル基、ジクロロメチル基、ジブロモメチル基、トリクロロメチル基、トリブロモメチル基、1-クロロエチル基、2,2,2-トリクロロエチル基、4-クロロブチル基、パークロロヘキシル基、2,4,6-トリクロロヘキシル基などのC1~6ハロアルキル基;
 2-クロロ-1-プロペニル基、2-フルオロ-1-ブテニル基などのC2~6ハロアルケニル基;
 4,4-ジクロロ-1-ブチニル基、4-フルオロ-1-ペンチニル基、5-ブロモ-2-ペンチニル基などのC2~6ハロアルキニル基;
 トリフルオロメトキシ基、2-クロロ-n-プロポキシ基、2,3-ジクロロブトキシ基などのC1~6ハロアルコキシ基;
 2-クロロプロペニルオキシ基、3-ブロモブテニルオキシ基などのC2~6ハロアルケニルオキシ基;
 クロロアセチル基、トリフルオロアセチル基、トリクロロアセチル基などのC1~6ハロアルキルカルボニル基;
 アミノ基;
 メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基などのC1~6アルキル置換アミノ基;
 アニリノ基、ナフチルアミノ基などのC6~10アリールアミノ基;
 ベンジルアミノ基、フェネチルアミノ基などのC6~10アリールC1~6アルキルアミノ基;
 ホルミルアミノ基;
 アセチルアミノ基、プロパノイルアミノ基、ブチリルアミノ基、i-プロピルカルボニルアミノ基などのC1~6アルキルカルボニルアミノ基;
 メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、n-プロポキシカルボニルアミノ基、i-プロポキシカルボニルアミノ基などのC1~6アルコキシカルボニルアミノ基;
S,S-ジメチルスルホキシイミノ基などのC1~6アルキルスルホキシイミノ基;
 アミノカルボニル基、ジメチルアミノカルボニル基、フェニルアミノカルボニル基、N-フェニル-N-メチルアミノカルボニル基などの無置換若しくは置換基を有するアミノカルボニル基;
 イミノメチル基、1-イミノエチル基、1-イミノ-n-プロピル基などのイミノC1~6アルキル基;
 N-ヒドロキシ-イミノメチル基、1-(N-ヒドロキシイミノ)エチル基、1-(N-ヒドロキシイミノ)プロピル基、N-メトキシイミノメチル基、1-(N-メトキシイミノ)エチル基などの置換若しくは無置換のN-ヒドロキシイミノC1~6アルキル基;
 ヒドロキシイミノ基;
 メトキシイミノ基、エトキシイミノ基、n-プロポキシイミノ基、i-プロポキシイミノ基、n-ブトキシイミノ基などのC1~6アルコキシイミノ基;
 アミノカルボニルオキシ基;
 エチルアミノカルボニルオキシ基、ジメチルアミノカルボニルオキシ基などのC1~6アルキル置換アミノカルボニルオキシ基;
 チオキソ基;
 スルファニル基;
 メチルスルファニル基、エチルスルファニル基、n-プロピルスルファニル基、i-プロピルスルファニル基、n-ブチルスルファニル基、i-ブチルスルファニル基、s-ブチルスルファニル基、t-ブチルスルファニル基などのC1~6アルキルスルファニル基;
 トリフルオロメチルスルファニル基、2,2,2-トリフルオロエチルスルファニル基などのC1~6ハロアルキルスルファニル基;
 フェニルスルファニル基、ナフチルスルファニル基などのC6~10アリールスルファニル基;
 チアゾリルスルファニル基、ピリジルスルファニル基などの5~6員ヘテロアリールスルファニル基;
 メチルスルフィニル基、エチルスルフィニル基、t-ブチルスルフィニル基などのC1~6アルキルスルフィニル基;
 トリフルオロメチルスルフィニル基、2,2,2-トリフルオロエチルスルフィニル基などのC1~6ハロアルキルスルフィニル基;
 フェニルスルフィニル基などのC6~10アリールスルフィニル基;
 チアゾリルスルフィニル基、ピリジルスルフィニル基などの5~6員ヘテロアリールスルフィニル基;
 メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基などのC1~6アルキルスルホニル基;
 トリフルオロメチルスルホニル基、2,2,2-トリフルオロエチルスルホニル基などのC1~6ハロアルキルスルホニル基;
 フェニルスルホニル基などのC6~10アリールスルホニル基;
 チアゾリルスルホニル基、ピリジルスルホニル基などの5~6員ヘテロアリールスルホニル基;
 スルホ基;
 メチルスルホニルオキシ基、エチルスルホニルオキシ基、t-ブチルスルホニルオキシ基などのC1~6アルキルスルホニルオキシ基;
 トリフルオロメチルスルホニルオキシ基、2,2,2-トリフルオロエチルスルホニルオキシ基などのC1~6ハロアルキルスルホニルオキシ基;
 トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリC1~6アルキル置換シリル基;
 トリフェニルシリル基などのトリC6~10アリール置換シリル基;
 アリルジメチルシリル基、ビニルジメチルシリル基などのC2~C6アルケニルC1~C6ジアルキル置換シリル基;
 t-ブチルジフェニルシリル基、ジフェニルメチルシリル基などのC1~C6アルキルジC6~C10アリール置換シリル基;
 ジメチルフェニルシリル基などのジC1~C6アルキルC6~C10アリール置換シリル基;
 ベンジルジメチルシリル基、3-フェニルプロピルジメチルシリル基などの(C6~C10フェニルC1~C6アルキル)ジC1~C6アルキルシリル基;
 メチルフェニルビニルシリル基などのC1~C6アルキルC6~C10フェニルC2~C6アルケニルシリル基;
 トリメトキシシリル基、トリエトキシシリル基などのトリC1~C6アルコキシ置換シリル基;
 ジメチルシリル基、ジエチルシリル基などのジC1~C6アルキル置換シリル基;
 ジメトキシシリル基、ジエトキシシリル基などのジC1~C6アルコキシ置換シリル基;
 メトキシジメチルシリル基などのC1~C6アルコキシC1~C6アルキル置換シリル基;
 t-ブトキシジフェニルシリル基などのC1~C6アルコキシC6~C10アリール置換シリル基;
 メチルジメトキシシリル基などのC1~C6アルキルジC1~C6アルコキシ置換シリル基;
 シアノ基;
 ニトロ基。
 また、上記の「3~6員ヘテロシクリル基」とは、窒素原子、酸素原子及び硫黄原子からなる群から選ばれる1~4個のヘテロ原子を環の構成原子として含むものである。ヘテロシクリル基は、単環及び多環のいずれであってもよい。多環ヘテロシクリル基は、少なくとも一つの環がヘテロ環であれば、残りの環が飽和脂環、不飽和脂環又は芳香環の炭化水素環のいずれであってもよい。「3~6員ヘテロシクリル基」としては、3~6員飽和ヘテロシクリル基、5~6員ヘテロアリール基、5~6員部分不飽和ヘテロシクリル基などを挙げることができる。
 3~6員飽和ヘテロシクリル基としては、アジリジニル基、エポキシ基、ピロリジニル基、テトラヒドロフリル基、チアゾリジニル基、ピペリジル基、ピペラジニル基、モルホリニル基、ジオキソラニル基、ジオキサニル基などを挙げることができる。
 5員ヘテロアリール基としては、ピロリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、テトラゾリル基、インドニル基、イソインドリニル基、インドリジニル基、ベンツイミダゾリル基、カルバゾリル基などを挙げることができる。
 6員ヘテロアリール基としては、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キノキサリニル基、シノリニル基、キナゾリル基、フタラジニル基、アクリジニル基、ナフタジニル基、フェナジニル基などを挙げることができる。
 5~6員部分不飽和ヘテロシクリル基としては、イソオキサゾリニル基、ピラゾリニル基などを挙げることができる。
 3~6員ヘテロシクリル1~6アルキル基としては、グリシジル基、2-テトラヒドロフリルメチル基、2-ピロリルメチル基。2-イミダゾリルメチル基、3-イソオキサゾリルメチル基、5-イソオキサゾリルメチル基、2-ピリジルメチル基、4-ピリジルメチル基、3-イソオキサゾリニルメチル基などを挙げることができる。
 式(I)で表される化合物として具体的には、以下の式に表す化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 式(II)で表される化合物として具体的には、以下の式に表す化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(III)で表される化合物として具体的には、以下の式に表す化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 本発明の窒素以外のガスの貯蔵材料は、多価金属イオンと、ヒドロキサム酸基含有分子が結合してなる金属有機構造体を含有する。なお、「多価金属イオンと、ヒドロキサム酸基含有分子が結合してなる金属有機構造体」中の結合とは、多価金属イオンとヒドロキサム酸基含有分子との間におけるイオン結合、配位結合等の化学結合を意味する。
 本発明の窒素以外のガスの貯蔵材料に使用される金属有機構造体において、ヒドロキサム酸基含有分子以外に、窒素原子を含む分子(ヒドロキサム酸基含有分子を除く)(以下、窒素原子含有分子という。)を構成単位として含ませることができる。そのような分子としては、イソニコチン酸、ベンツイミダゾール、イミダゾール、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、ピラジン、4,4’-ジピリジル、1,2-ジ(4-ピリジル)エチレン、2,7-ジアザピレン、4,4’-アゾビスピリジン、ビス(3-(4-ピリジル)-2、4-ペンタンジオナト)銅等を挙げることができる。
 ヒドロキサム酸基含有分子と窒素原子含有分子を用いる場合の混合モル比は特に制限されないが、例えば、窒素原子含有分子をピラー分子として用い、該ピラー分子によって架橋して、ピラードレイヤー型のような3次元構造を構築する場合であれば、ヒドロキサム酸基含有分子に対して、窒素原子含有分子を過剰に用いるのが好ましい。
 本発明の窒素以外のガスの貯蔵材料に用いられる金属有機構造体の製造方法として、特に制限されず、溶媒拡散法、溶媒撹拌法、水熱法等の溶液法、反応溶液にマイクロ波を照射して系全体を短時間に均一に加熱するマイクロ波法、反応容器に超音波を照射することにより、反応容器中で圧力の変化が繰り返し起こり、この圧力の変化により、溶媒が気泡を形成し崩壊するキャビテーションと呼ばれる現象がおき、その際に約5000K、10000barもの高エネルギー場が局所的に形成される結晶の各生成の反応場となる超音波法、溶媒を用いずに、金属イオン発生源と有機配位子を混合する固相合成法、結晶水程度の水を添加して金属イオン発生源とヒドロキサム酸基含有分子を混合するLAG(liquid assisted grinding)法等のいずれの方法も用いることができる。
 例えば、金属イオンの発生源となる金属化合物と溶媒とを含有する第一溶液、ヒドロキサム酸基含有分子と溶媒とを含有する第二溶液、及び、必要に応じて、他の多座配位子となる化合物と溶媒とを含有する第三溶液をそれぞれ調製する工程と、第一溶液と、第二溶液及び第三溶液を混合して反応液を調製し、この反応液を加熱することで、金属有機構造体を得る工程と、を備える。第一~第三溶液は別々に調製する必要はなく、例えば、上記金属化合物、ヒドロキサム酸基含有分子、他の多座配位子となる化合物、溶媒とを一度に混合して1つの溶液を調製してもよい。
 上記金属化合物とヒドロキサム酸基含有分子との混合モル比は、得られてくる金属有機構造体の細孔サイズ、表面特性に応じて任意に選択することができるが、ヒドロキサム酸基含有分子1モルに対して金属化合物を1モル以上用いるのが好ましく、さらに1.1モル以上、さらに1.2モル以上、さらに1.5モル以上、さらに2モル以上、さらに3モル以上用いるのが好ましい。
 反応液中の上記金属イオンの濃度は、25~200モル/Lの範囲が好ましい。
 ヒドロキサム酸基含有分子の反応液中の濃度は、10~100モル/Lの範囲が好ましい。
 ヒドロキサム酸基含有分子以外の有機配位子の反応液中の濃度は、25~100モル/Lであるのが好ましい。
 用いられる溶媒としては、N,N-ジメチルホルムアミド(以下「DMF」と記載することがある。)、N,N-ジエチルホルムアミド(以下「DEF」と記載することがある。)、N,N-ジメチルアセトアミド(以下「DMA」と記載することがある。)及び水からなる群より選ばれる1種又は2種以上を用いることができる。これらの中でも、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド又はN,N-ジメチルアセトアミドのいずれかを単独で用いるか、あるいはN,N-ジメチルホルムアミド/水混合溶媒、N,N-ジエチルホルムアミド/水混合溶媒又はN,N-ジメチルアセトアミド/水混合溶媒を用いることが好ましい。
 反応液の加熱温度は、特に制限されないが、室温~140℃の範囲が好ましい。
 本発明の窒素以外のガスの貯蔵材料に貯蔵されるガスとしては、当該材料に貯蔵され得るガスであれば特に制限されないが、具体的には、水素、二酸化炭素、メタン、アセチレン等が挙げられ、中でも、水素、二酸化炭素が好ましい。ただし、窒素は除く。以下、「ガス」とは、窒素以外のガスを言うものとする。
 本発明のガス貯蔵材料を用いたガスの貯蔵方法は、特に制限されないが、本発明のガス貯蔵材料とガスを接触させる方法が好ましく、接触させる方法は、特に制限されない。例えば、タンク中に、本発明のガス貯蔵材料を充填してガス貯蔵タンクとし、該タンク内にガスを流入する方法、タンクの内壁を構成する表面に本発明のガス貯蔵材料を担持させてガス貯蔵タンクとし、該タンク内にガスを流入する方法、タンクを本発明のガス貯蔵材料を含む材料で成形してガス貯蔵タンクとし、該タンク内にガスを流入する方法などが挙げられる。
 本発明のガス貯蔵タンクは、常圧又は高圧に耐えうる素材で内部にガスを貯蔵できる空間を有するように密封成形され、成形されたタンク内に、本発明のガス貯蔵材料を充填することにより構成することができる。
 また、本発明のガス貯蔵タンクの別の態様として、本発明のガス貯蔵材料を含む材料を内部にガスを流入できる空間を有する形に密封成形して構成することができる。本発明のガス貯蔵材料を含む材料とは、本発明のガス貯蔵材料そのもの、又は本発明のガス貯蔵材料と他の成形可能材料を組み合わせた材料を示す。これらの態様は、単独で又は一緒になって、本発明のガス貯蔵タンクを構成してもよい。
 以下、実施例を用いて本発明を詳細に説明するが、本発明は、実施例の範囲に限定されない。
 本発明のガス貯蔵材料に用いられる金属有機構造体を構成するヒドロキサム酸基含有分子として、以下の表1に示す化合物を用いた。
Figure JPOXMLDOC01-appb-T000013
 (参考例1)化合物番号9の化合物の合成
 2,5-ジヒドロキシテレフタル酸ジエチル(6.5mmol)、臭化イソプロピル(25.8mmol)、炭酸カリウム(138mmol)、DMF20mLを窒素下、60℃で24時間加熱した。室温に戻し、水を加え分液し、クロロホルムで抽出した有機層を硫酸マグネシウムで乾燥させ、ろ過した。ろ液を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(クロロホルム)を用い精製した。無色の固体として1.6g(4.7mmol)の2,5-ジイソプロポキシテレフタル酸ジエチルを得た。ヒドロキシルアミン塩酸塩(80mmol)のメタノール10mL溶液に、水酸化カリウム(80mmol)メタノール溶液15mLを0℃で加え、5分間攪拌した。そのろ液を2,5-ジイソプロポキシテレフタル酸ジエチルに加え室温で5時間攪拌した。1Nの塩酸を沈殿物が出るまで加え、析出した固体をろ過した。酢酸エチル、水で良く洗い、真空乾燥を行うことにより2,5-ジイソプロポキシ-1,4-ベンゼン-ジカルボヒドロキサム酸(化合物No9)を1.4g(4.0mmol)得た。
 (参考例2)化合物番号10の化合物の合成
 2,5-ジメチルテレフタル酸(4.0mmol)、塩化オキサリル(10mmol)、THF10mLを窒素下、室温で終夜攪拌した。揮発性の物質を減圧下で留去し、残渣にアセトニトリルを加え、酸クロリド溶液を調整した。N-メチルヒドロキシルアミン塩酸塩(8.8mmol)、イミダゾール(16mmol)にアセトニトリル20mLを加え10分間攪拌した溶液に、前述した酸クロリド溶液を加え、室温で15時間攪拌した。析出した固体をろ過し水で良く洗い、真空乾燥を行うことにより2,5-ジメチル-1,4-ベンゼン-ジ(N-メチルカルボヒドロキサム酸)(化合物No10)を0.6g(2.4mmol)得た。
 [実施例1-1]
 化合物番号1の化合物(0.5mmol)、硝酸亜鉛六水和物(1.0mmol)にDMF10mLを加え、オーブン(反応条件:120℃、24時間)にて加熱した。室温に戻し、遠心分離した後に上澄みを除去した。DMF10mlを用い洗浄後、溶媒を除去し、クロロホルムへと溶媒を交換した。クロロホルムを10ml加え、終夜浸漬させた。クロロホルムを除去後、150℃で真空乾燥を5時間行い、淡褐色固体として金属有機構造体1を得た。
 [実施例1-2]~[実施例1-31]
 下記表2に示す有機配位子及び溶媒を用い、表2に示す反応条件(温度及び加熱時間)で反応を行う以外は、実施例1-1と同様の操作を行い、金属有機構造体1-2~1-31を得た。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 [実施例2-1]
 化合物番号1の化合物(1.2mmol)、硝酸亜鉛六水和物(1.6mmol)にDMF40mLを加えた。そこへトリエチルアミン(14.4mmol)を滴下し、室温にて30分間撹拌した。沈殿物をろ過し、DMF10mLで3回ろ物である沈殿物を洗浄した。その後、クロロホルム10mLを用い、ろ物である沈殿物を3回洗浄した。クロロホルム10mLに終夜浸漬し、ろ過後に固体を150℃にて5時間真空乾燥することで白色固体として金属有機構造体2-1を得た。
[実施例2-2]~[実施例2-6]
 下記表3に示す化合物及び溶媒を用い、表3に示す反応時間とした以外は、実施例2-1と同様の操作を行い、金属有機構造体2-2~2-6を得た。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000015
 [実施例3-1]
 化合物番号1の化合物(0.5mmol)、硝酸亜鉛六水和物(0.5mmol)、イソニコチン酸(0.5mmol)にDMF3mL、水1mLを加え、オーブン(反応条件:120℃、12時間)にて加熱した。室温にもどし、固体をDMF10mLで洗浄後、DMF10mLに一晩浸漬した。クロロホルム10mLを用い、ろ物である固体を3回洗浄した。クロロホルム10mLに終夜浸漬し、ろ過後に固体を150℃にて5時間真空乾燥することで白色固体として金属有機構造体3-1を得た。
 [実施例3-2]~[実施例3-8]
 下記表4に示す化合物、金属塩及び溶媒を用い、表4に示す反応条件(温度及び加熱時間)で反応を行う以外は、実施例3-1と同様の操作を行い、金属有機構造体3-2~3-8を得た。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000016
[実施例3-9]
 溶液中の固形分濃度(表4に記載の化合物番号の化合物、金属塩、イソニコチン酸各々の溶液中の濃度(g/v)を表す。)を半分にする以外は、実施例3-3と同様に行い、金属有機構造体3-9を赤色結晶として得た。
 [実施例3-10]
 溶液中の固形分濃度(表4に記載の化合物番号の化合物、金属塩、イソニコチン酸各々の溶液中の濃度(g/v)を表す。)を半分にする以外は、実施例3-4と同様に行い、金属有機構造体3-10を黒・桃・褐色の混合物として得た。
 [実施例4-1]
 化合物番号1の化合物(0.25mmol)、硝酸亜鉛六水和物(0.25mmol)、補助配位子として1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(0.25mmol)に溶媒としてDMF3.3mL、DEF6.6mLを加え、オーブン(反応条件:90℃、24時間)にて加熱した。室温にもどし、固体をDMF10mLで3回洗浄後、クロロホルム10mLを用い、ろ物である固体を3回洗浄した。クロロホルム10mLに終夜浸漬し、ろ過後に固体を150℃にて5時間真空乾燥することで白色固体として金属有機構造体4-1を得た。
[実施例4-2]~[実施例4-5]
 下記表5に示す化合物、補助配位子及び溶媒を用い、表5に示す反応条件(温度及び時間)で反応を行う以外は、実施例4-1と同様の操作を行い、金属有機構造体4-2~4-5を得た。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000017
 [実施例5-1]
 化合物番号1の化合物(0.5mmol)をDMF7mLに溶解させた。そこへ、酢酸亜鉛二水和物(1.27mmol)のDMF8mL溶液を滴下した。室温にて2.5時間攪拌し、静置した。上澄みを除去し、固体をDMF20mLに一晩浸漬した。その後上澄みを除去し、クロロホルムを用いて置換した。固体をクロロホルム20mLに一晩浸漬し、再び固体を分離し洗浄操作を3回繰り返した。その後、分離した固体を150℃にて5時間真空乾燥することで白色固体として金属有機構造体5-1を得た。
 [実施例5-2]~[実施例5-4]
 下記表6に示す化合物及び溶媒を用いる以外は、実施例5-1と同様の操作を行い、金属有機構造体5-2~5-4を得た。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000018
 [実施例5-5]
 化合物番号1の化合物(1mmol)をDMF13mLに溶解させ、トリエチルアミン(0.28ml)を添加した。そこへ、酢酸亜鉛二水和物(2.54mmol)のDMF17mL溶液を滴下した。室温にて2.5時間攪拌し、静置した。上澄みを除去し、固体をDMF20mLに一晩浸漬した。その後上澄みを除去し、クロロホルムを用いて置換した。固体をクロロホルム20mLに一晩浸漬し、再び固体を分離し洗浄操作を3回繰り返した。その後、分離した固体を150℃にて5時間真空乾燥することで白色固体として金属有機構造体5-5を得た。
 [実施例5-6]~[実施例5-8]
 下記表7に示す化合物及び溶媒を用い、表7に示す温度及び反応時間とする以外は、実施例5-5と同様の操作を行い、金属有機構造体5-6~5-8を得た。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000019
 [実施例6-1]
 化合物番号1の化合物(0.3mmol)、硝酸コバルト六水和物(0.3mmol)、DMF5.6mL、エタノール1.4mLをオートクレーブに入れ、密封した。100℃にて21時間加熱し、室温に戻した。得られた固体を遠心分離にて分離した。上澄みを除去し、クロロホルムを用いて置換した。遠心分離した固体をクロロホルム20mLに一晩浸漬し、再び遠心分離をする洗浄操作を3回繰り返した。その後、遠心分離した固体を150℃にて5時間真空乾燥することで灰色固体として金属有機構造体6-1を得た。
 [実施例6-2]
 化合物番号1の化合物の代わりに化合物番号6の化合物を用いること以外は、実施例6-1と同様の操作を行い、金属有機構造体6-2を薄赤色固体として得た。
 [実施例7-1]
 化合物番号3の化合物(0.4mmol)、硝酸ニッケル六水和物(0.8mmol)、DMF9mL、水1mLを100℃にて16時間加熱し、室温に戻した。得られた固体をろ過し、ろ物である固体をDMFにて洗浄した。DMF20mLに終夜浸漬し、濾別した固体をクロロホルムで洗浄し、クロロホルム20mLに一晩浸漬し、再び濾別した固体を150℃にて5時間真空乾燥することで褐色固体として金属有機構造体7-1を得た。
 [実施例7-2]
 硝酸ニッケル六水和物の代わりに硝酸コバルト六水和物用いること以外は、実施例7-1と同様の操作を行い、金属有機構造体7-2を褐色固体として得た。
 [実施例7-3]
 化合物番号4の化合物、溶媒としてTHF/水(18ml/2ml)を用い、反応時間を48時間、遠心分離により固液分離すること以外は、実施例7-1と同様の操作を行い、金属有機構造体7-3を淡緑色固体として得た。
 [実施例8-1]
 化合物番号3の化合物(0.5mmol)、硝酸マグネシウム六水和物(1.0mmol)、THF7mL、水3mL、1N NaOH水溶液2mLを100℃にて24時間加熱し、室温に戻した。得られた固体をろ過し、ろ物である固体をDMFにて洗浄した。DMF20mLに終夜浸漬し、濾別した固体をクロロホルムで洗浄し、クロロホルム20mLに一晩浸漬し、再び濾別した固体を150℃にて5時間真空乾燥することで褐色固体として金属有機構造体8-1を得た。
 [実施例9-1]
 化合物番号5の化合物(0.84mmol)、硝酸銅ヘミ五水和物(1.5mmol)、エタノール5mL、水5mLを室温で5分間攪拌させた。その混合物を140℃にて24時間加熱し、室温に戻した。反応物を遠心分離し、得られた固体をDMFにて洗浄した。遠心分離した固体をクロロホルムで洗浄し、クロロホルム20mLに一晩浸漬し、再び遠心分離した固体を150℃にて5時間真空乾燥することで青色粉末として金属有機構造体9-1を得た。
 [実施例10-1]
 化合物番号1の化合物(118.3mg,0.60mmol)、四塩化ジルコニウム(140.1mg,0.60mmol)、N,N-ジメチルホルムアミド(DMF)(8mL)、水(130mg,12eq.)、酢酸(1.803g,30eq.)をスクリューキャップバイアルに入れ、超音波処理を行った。その後、密閉し、120℃にて、24時間加熱した。室温に冷却し、遠心分離し、デカンテーションして固体を得た。その固体にDMFを加え、遠心分離し、デカンテーションする操作を3回繰り返した。アセトンに溶媒を変更し、同様の操作を3回繰り返し、固体を洗浄した後にアセトンに24時間浸漬した。遠心分離、デカンテーション後、固体を150℃にて6時間程度真空乾燥し、金属有機構造体10-1(159.1mg)をオフホワイト粉末として得た。
 [実施例10-2~10-5]
 下記表8に示す化合物を用い、表8に示す反応条件で反応を行った以外は、実施例10-1と同様の操作を行い、金属有機構造体10-2~10-5を得た。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000020
 [実施例10-6]
 化合物番号6の化合物(112.4 mg,0.50mmol)、硝酸コバルト・6水和物(145.8mg,0.50mmol)、イソニコチン酸(62.1mg,0.5mmol)をN,N-ジメチルホルムアミド(DMF)5mLに溶解しスクリューキャップバイアルに入れ、超音波処理を行った。その後、密閉し、120℃にて、26時間加熱した。室温に冷却し、遠心分離し、デカンテーションして固体を得た。その固体にDMFを加え、遠心分離し、デカンテーションする操作を3回繰り返した。クロロホルムに溶媒を変更し、同様の操作を3回繰り返し、固体を洗浄した後にクロロホルムに24時間浸漬した。遠心分離、デカンテーション後、固体を150℃にて6時間程度真空乾燥し、金属有機構造体10-6(123.5mg)を紫色粉末として得た。
 [実施例10-7]
 反応温度を90℃にした以外は実施例10-6と同様に行い、金属有機構造体10-7を紫色粉末として得た。
 [実施例10-8]
 化合物番号1の化合物(78.8mg,0.40mmol)、硝酸銅・3水和物(96.7mg,0.40mmol)をN,N-ジメチルホルムアミド(DMF)8mLに溶解しスクリューキャップバイアルに入れ、超音波処理を行った。その後、密閉し、120℃にて、24時間加熱した。室温に冷却し、遠心分離し、デカンテーションして固体を得た。その固体にDMFを加え、遠心分離し、デカンテーションする操作を3回繰り返した。クロロホルムに溶媒を変更し、同様の操作を3回繰り返し、固体を洗浄した後にクロロホルムに24時間浸漬した。遠心分離、デカンテーション後、固体を150℃にて6時間程度真空乾燥し、金属有機構造体10-8(23.4mg)を暗緑色粉末として得た。
 [実施例10-9~10-10]
 下記表9に示す化合物を用い、表9に示す反応条件で反応を行った以外は、実施例10-8と同様の操作を行い、金属有機構造体10-9~10-10を得た。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000021
 [実施例10-11]
 化合物番号1の化合物(78.8mg,0.40mmol)、硝酸ニッケル・6水和物(233.2mg,0.80mmol)をTHF9mL、水1mLに溶解しオートクレーブに入れ、100℃にて、48時間加熱した。室温に冷却し、遠心分離し、デカンテーションして固体を得た。その固体にDMFを加え、遠心分離し、デカンテーションする操作を3回繰り返した。クロロホルムに溶媒を変更し、同様の操作を3回繰り返し、固体を洗浄した後にクロロホルムに24時間浸漬した。遠心分離、デカンテーション後、固体を150℃にて6時間程度真空乾燥し、金属有機構造体10-11(47.9mg)を黄緑色粉末として得た。
 [実施例10-12]
 化合物番号1の化合物の代わりに化合物番号6の化合物を用いた以外は実施例10-11と同様の操作を行い、金属有機構造体10-12を淡緑色粉末として得た。
[実施例11]
(BET比表面積測定及び水素貯蔵量測定)
 得られた金属有機構造体の一部について、BET比表面積及び温度77K-大気圧における水素貯蔵量を測定した。
 BET比表面積及び温度77K-大気圧における水素貯蔵量の測定は、ガス吸着量測定装置Tristar-II(Micromeritics社製)を用いて行った。
 BET比表面積は次の方法で算出した。金属有機構造体の50mg程度を、ガラスセルの内部に入れた。ガラスセルの内部は135℃の温度で真空まで減圧し、6時間乾燥させた。ガラスセルをガス吸着量測定装置に装着し、液体窒素入りの恒温槽に浸漬した。ガラスセルに含有される窒素の圧力を徐々に増加させた。ガラスセルの内部に導入された窒素の圧力が1.0×10Paとなるまで測定を行った。
 温度77K常圧での水素貯蔵量は次の方法で算出した。窒素の測定後、水素へとガス種を変更し測定を行った。ガラスセルに含有される水素の圧力を徐々に増加させた。ガラスセルの内部に導入された水素の圧力が1.0×10Paとなるまで測定を行った。
 測定したBET比表面積の結果を表10に示した。
 測定した温度77K-大気圧における水素貯蔵量を表11に示した。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-T000024
 (二酸化炭素吸着量測定)
 得られた金属有機構造体の3-3について、温度273K-大気圧及び温度298K―大気圧における二酸化炭素貯蔵量を測定した。
 二酸化炭素貯蔵量の測定は、ガス吸着量測定装置Tristar-II(Micromeritics社製)を用いて行った。
 金属有機構造体3-3の50mg程度を、ガラスセルの内部に入れた。ガラスセルの内部は135℃の温度で真空まで減圧し、6時間乾燥させた。ガラスセルをガス吸着量測定装置に装着し、温度273Kあるいは温度298Kに調整した恒温槽に浸漬した。ガラスセルに含有される二酸化炭素の圧力を徐々に増加させた。ガラスセルの内部に導入された二酸化炭素の圧力が1.0×10Paとなるまで測定を行った。測定した二酸化炭素貯蔵量の結果を表12に示した。
Figure JPOXMLDOC01-appb-T000025
 (二酸化炭素の吸着熱)
 上記異なる温度での二酸化炭素吸着実験より、有機金属構造体3-3の二酸化炭素吸着熱を計算した。Tristar-II付属のソフトウェアを用いて計算を行ったところ31KJ・mol-1であった。
 (二酸化炭素吸着の選択性)
 有機金属構造体3-3を298Kでの二酸化炭素吸着の選択性を理想吸着溶液法(IAST法)を用いて見積もった。3-3の298Kでの二酸化炭素及び窒素吸着等温線をdual-site Langmuir-Freundlich式によりフィッティングし、そこから理想吸着溶液法に基づき選択性を計算した。その結果、有機金属構造体3-3は298Kにおいて窒素の39倍の二酸化炭素を吸着することが示された。
 (X線構造解析)
 実施例1-24で得られた金属有機構造体1-24を以下に示す測定条件でX線構造解析を行った。
 [測定条件]
 実施例1-24で得られた金属有機構造体1-24の0.01×0.01×0.01mmの無色透明の結晶をマイクロマウントに一粒載せ、単結晶X線解析装置(D8 VENTURE、Bruker社製)を用いて回折実験を行った。0.78192Åの波長のX線を単結晶にあてることで得られた回折データを解析し、構造を決定した。その結果を表13に示す。
Figure JPOXMLDOC01-appb-T000026
 実施例3-1で得られた金属有機構造体3-1を上記に示した測定と同様の条件でX線構造解析を行った。その結果を表14に示す。
Figure JPOXMLDOC01-appb-T000027
 実施例3-4で得られた金属有機構造体3-4を上記に示した測定と同様の条件でX線構造解析を行った。その結果を表15に示す。
Figure JPOXMLDOC01-appb-T000028
 本発明のガス貯蔵材料は、水素、二酸化炭素、メタン、アセチレン等のガスを実用的な水準で貯蔵できる。その結果、例えば、水素社会到来に向けて水素の利用がより容易になり、温暖化ガスである二酸化炭素を効率よく固定化できる。

Claims (11)

  1.  多価金属イオンと、無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が結合してなる金属有機構造体を含有する窒素以外のガスの貯蔵材料。
  2.  多価金属イオンと結合可能な部位が、無置換又は置換ヒドロキサム酸基又は含窒素ヘテロ環基中の窒素原子である請求項1に記載の窒素以外のガスの貯蔵材料。
  3.  無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が、下記式(I)~(III)で表される化合物群から選ばれる少なくとも1種である請求項1又は2に記載の窒素以外のガスの貯蔵材料。
    Figure JPOXMLDOC01-appb-C000001
     (式(I)~(III)中、
     R、R、R、R及びRは、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表し、C(=O)N(R)OH(u=1、2、4、6又は7を表す。)が結合する環の炭素に隣接する炭素と一緒になって環を形成してもよく、
     R、R、R及びRは、それぞれ独立に、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、C1~6アルコキシ基、C6~10アリールオキシ基、ヘテロアリールオキシ基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロアリールスルホニル基、シアノ基、ニトロ基又はNR1112で表される基(式中、R11及びR12は、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表す。)を表し、
     mは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、mが2のとき、R同士は、同一であっても、相異なっていてもよく、
     qは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、qが2のとき、R同士は、同一であっても、相異なっていてもよく、
     tは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、tが2のとき、R同士は、同一であっても、相異なっていてもよく、
     nは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、nが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
     pは、Rの数を表し、かつAが5員環の場合には、0又は1~3のいずれかの整数を表し、Aが6員環の場合には、0又は1~4のいずれかの整数を表し、pが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
     rは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、rが2以上のとき、Rは、同一であって、も相異なっていてもよく、
     sは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、sが2以上のとき、Rは、同一であっても、相異なっていてもよく、
     ただし、n+m≦5、r+q≦5及びs+t≦5であり、
     式(II)中、Aは、窒素原子を1~4のいずれかの整数個を環構成原子として含む5又は6員の芳香族ヘテロ環を表す。)
  4.  多価金属イオンが、元素の周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属のイオンである請求項1~3のいずれか1項に記載の窒素以外のガスの貯蔵材料。
  5.  多価金属イオンが、Zn、Fe、Co、Ni、Cu、Al、Zr及びMgから選ばれる少なくとも1種の金属のイオンである請求項1~4のいずれか1項に記載の窒素以外のガスの貯蔵材料。
  6.  窒素以外のガスを請求項1~5のいずれか1項に記載の窒素以外のガスの貯蔵材料に接触させ、窒素以外のガスを前記窒素以外のガスの貯蔵材料の内部に吸着又は吸蔵させる工程を有する窒素以外のガス貯蔵方法。
  7.  請求項1~5のいずれか1項に記載の窒素以外のガスの貯蔵材料が充填されている窒素以外のガスの貯蔵タンク。
  8.  多価金属イオンと、無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が結合してなる金属有機構造体(ただし、Ti4+又はZr4+と、ベンゼン-1,4-ジカルボヒドロキサム酸が結合を形成してなる金属有機構造体を除く。)。
  9.  無置換又は置換ヒドロキサム酸基及び1以上の多価金属イオンと結合可能な部位を有する分子が、下記式(I)~(III)で表される化合物群から選ばれる少なくとも1種である請求項8に記載の金属有機構造体。
    Figure JPOXMLDOC01-appb-C000002
     (式(I)~(III)中、
     R、R、R、R及びRは、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表し、C(=O)N(R)OH(u=1、2、4、6又は7を表す。)が結合する環の炭素に隣接する炭素と一緒になって環を形成してもよく、
     R、R、R及びRは、それぞれ独立に、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、C1~6アルコキシ基、C6~10アリールオキシ基、ヘテロアリールオキシ基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロアリールスルホニル基、シアノ基、ニトロ基又はNR1112で表される基(式中、R11及びR12は、それぞれ独立に、水素原子、C1~6アルキル基、C6~10アリール基、C1~6アルキルカルボニル基又はC6~10アリールカルボニル基を表す。)を表し、
     mは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、mが2のとき、R同士は、同一であっても、相異なっていてもよく、
     qは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、qが2のとき、R同士は、同一であっても、相異なっていてもよく、
     tは、C(=O)N(R)OHで表される基の数を表し、かつ1又は2を表し、tが2のとき、R同士は、同一であっても、相異なっていてもよく、
     nは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、nが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
     pは、Rの数を表し、かつAが5員環の場合には、0又は1~3のいずれかの整数を表し、Aが6員環の場合には、0又は1~4のいずれかの整数を表し、pが2以上のとき、R同士は、同一であっても、相異なっていてもよく、
     rは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、rが2以上のとき、Rは、同一であっても、相異なっていてもよく、
     sは、Rの数を表し、かつ0又は1~4のいずれかの整数を表し、sが2以上のとき、Rは、同一であっても、相異なっていてもよく、
     ただし、n+m≦5、r+q≦5及びs+t≦5であり、
     式(II)中、Aは、窒素原子を1~4のいずれかの整数個を環構成原子として含む5又は6員の芳香族ヘテロ環を表す。)
  10.  多価金属イオンが、元素の周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属のイオンである請求項8又は9に記載の金属有機構造体。
  11.  多価金属イオンが、Zn、Fe、Co、Ni、Cu、Al、Zr及びMgから選ばれる少なくとも1種の金属のイオンである請求項8~10のいずれか1項に記載の金属有機構造体。
PCT/JP2020/045734 2019-12-11 2020-12-08 ヒドロキサム酸によって結合された金属有機構造体を含有するガス貯蔵材料 WO2021117741A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227017586A KR20220111259A (ko) 2019-12-11 2020-12-08 하이드록삼산에 의해 결합된 금속 유기 구조체를 함유하는 가스 저장 재료
CN202080084983.5A CN114828999A (zh) 2019-12-11 2020-12-08 含有通过异羟肟酸结合的金属有机结构体的气体储存材料
JP2021563985A JPWO2021117741A1 (ja) 2019-12-11 2020-12-08
EP20898053.2A EP4074692A4 (en) 2019-12-11 2020-12-08 GAS STORAGE MATERIAL COMPRISING AN ORGANOMETALLIC STRUCTURE BONDED BY HYDROXAMIC ACID
US17/782,813 US20230056785A1 (en) 2019-12-11 2020-12-08 Gas-storing material including metal/organic framework bonded by hydroxamic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-223660 2019-12-11
JP2019223660 2019-12-11
JP2020030761 2020-02-26
JP2020-030761 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021117741A1 true WO2021117741A1 (ja) 2021-06-17

Family

ID=76329921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045734 WO2021117741A1 (ja) 2019-12-11 2020-12-08 ヒドロキサム酸によって結合された金属有機構造体を含有するガス貯蔵材料

Country Status (7)

Country Link
US (1) US20230056785A1 (ja)
EP (1) EP4074692A4 (ja)
JP (1) JPWO2021117741A1 (ja)
KR (1) KR20220111259A (ja)
CN (1) CN114828999A (ja)
TW (1) TWI782364B (ja)
WO (1) WO2021117741A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716461B (zh) * 2021-11-30 2023-08-08 闽都创新实验室 一种无机-有机杂化化合物晶体K10Cu9I7L12·xH2O及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512310B2 (en) 2006-07-04 2009-03-31 Samsung Mobile Display Co., Ltd. Backlight unit of a liquid crystal display device
JP2011051919A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 有機電界発光素子
JP2020030761A (ja) 2018-08-24 2020-02-27 エンジェリング研究所合同会社 液晶を含む画像キーボード部の背景の画像や音源を着せ替えるシステム。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600442B1 (ko) 2008-12-24 2016-03-08 삼성디스플레이 주식회사 액정 표시 장치 및 그 구동 방법
CN109734718B (zh) * 2018-11-29 2021-02-26 同济大学 一种基于ndhpi修饰的多羧酸有机配体及合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512310B2 (en) 2006-07-04 2009-03-31 Samsung Mobile Display Co., Ltd. Backlight unit of a liquid crystal display device
JP2011051919A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 有機電界発光素子
JP2020030761A (ja) 2018-08-24 2020-02-27 エンジェリング研究所合同会社 液晶を含む画像キーボード部の背景の画像や音源を着せ替えるシステム。

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
C. PEREIRAA. HOWARTHN. VERMEULENF. ALMEIDA PAZJ. TOMEJ. HUPP0. FARHA, MATER. CHEM. FRONT., vol. 1, 2017, pages 1194
H. LI, M. EDDAUDI, M. O'KEEFE, 0. M. YAGHI, NATURE, vol. 402, 1999, pages 276
M. EDDAUDIJ. KIMN. ROSID. VODAKJ. WACHTERM. O'KEEFE0. M. YAGHI, SCIENCE, vol. 295, no. 5554, 2002, pages 469
N. PADIALJ. CASTELLS-GILN. ALMORA-BARRIOSM. ROMERO-ANGELI. SILVAM. BARAWIGARCIA-SANCHEZV. O'SHEAC. MARTI-GASTALDO, J. AM. CHEM. SOC., vol. 141, 2019, pages 13124
PADIAL, NATALIA M. ET AL.: "Hydroxamate Titanium- Organic Frameworks and the Effect of Siderophore- Type Linkers over Their Photocatalytic Activity", J. AM. CHEM. SOC, vol. 141, 18 July 2019 (2019-07-18), pages 13124 - 13133, XP055835448 *
PEREIRA, CARLA F. ET AL.: "Towards hydroxamic acid linked zirconium metal-organic frameworks", MATER. CHEM. FRONT., vol. 1, 30 January 2017 (2017-01-30), pages 1194 - 1199, XP055835446 *
S. KAYEA. DAILY0. M. YAGHIJ. LONG, J. AM. CHEM. SOC., vol. 129, no. 46, 2007, pages 14176
See also references of EP4074692A4
SONTZ, PAMELA A. ET AL.: "A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals", J. AM. CHEM. SOC., vol. 137, 25 August 2015 (2015-08-25), pages 11598 - 11601, XP055835444 *

Also Published As

Publication number Publication date
US20230056785A1 (en) 2023-02-23
KR20220111259A (ko) 2022-08-09
CN114828999A (zh) 2022-07-29
EP4074692A4 (en) 2023-12-27
EP4074692A1 (en) 2022-10-19
TWI782364B (zh) 2022-11-01
JPWO2021117741A1 (ja) 2021-06-17
TW202128613A (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
US9981243B2 (en) Metal-organic frameworks
US8337591B2 (en) Mesh-adjustable molecular sieve
KR20160134644A (ko) 미세다공성 금속 유기 구조체의 정렬된 초격자로 구성된 메조스코픽 물질
TWI809360B (zh) 以具有聯三苯骨架之羧酸離子作為配位子之金屬有機結構體
Keene et al. Solvent-modified dynamic porosity in chiral 3D kagome frameworks
Jacobsen et al. Systematic investigations of the transition between framework topologies in Ce/Zr-MOFs
Hirai et al. Programmed crystallization via epitaxial growth and ligand replacement towards hybridizing porous coordination polymer crystals
Xie et al. Crystallographic studies into the role of exposed rare earth metal ion for guest sorption
Sha et al. Tuning the adsorption behaviors of water, methanol, and ethanol in a porous material by varying the flexibility of substituted groups
WO2021117741A1 (ja) ヒドロキサム酸によって結合された金属有機構造体を含有するガス貯蔵材料
WO2020230756A1 (ja) 金属有機構造体
TWI758763B (zh) 含有金屬有機結構體之氫儲藏材料
Benecke et al. A flexible and porous ferrocene‐based gallium MOF with MIL‐53 architecture
WO2020262451A1 (ja) テレフタル酸系配位子を有する金属有機構造体
Wen et al. A multifunctional cadmium–organic framework comprising tricarboxytriphenyl amine: selective gas adsorption, liquid-phase separation and luminescence sensing
KR101029326B1 (ko) 큰 다공성의 금속-유기 골격체 및 이를 포함하는 가스 저장체 및 금속-유기 골격체 제조방법
Tay et al. Three-dimensional Cd (II) porphyrin metal–organic frameworks for the colorimetric sensing of Electron donors
JP7572358B2 (ja) 金属有機構造体を含有する水素貯蔵材料
Princík et al. Lanthanide-based F-MOFs: Structure, hydrolytic stability, spectral and magnetic properties
Crowe Design and Synthesis of Dehydrobenzoannulene Based Covalent Organic Frameworks
Hirai Studies on Macroscale Structuralization of Porous Coordination Polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020898053

Country of ref document: EP

Effective date: 20220711