WO2021117434A1 - 精製シアン化水素の製造方法 - Google Patents

精製シアン化水素の製造方法 Download PDF

Info

Publication number
WO2021117434A1
WO2021117434A1 PCT/JP2020/042947 JP2020042947W WO2021117434A1 WO 2021117434 A1 WO2021117434 A1 WO 2021117434A1 JP 2020042947 W JP2020042947 W JP 2020042947W WO 2021117434 A1 WO2021117434 A1 WO 2021117434A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen cyanide
crude
gas
acrylonitrile
purified hydrogen
Prior art date
Application number
PCT/JP2020/042947
Other languages
English (en)
French (fr)
Inventor
齋藤 信
一能 渋谷
圭一 中村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2021563816A priority Critical patent/JPWO2021117434A1/ja
Publication of WO2021117434A1 publication Critical patent/WO2021117434A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide

Definitions

  • the present invention relates to a method for producing purified hydrogen cyanide, which purifies crude hydrogen cyanide containing impurities such as unreacted residual components of synthetic raw materials to obtain purified hydrogen cyanide.
  • Hydrogen cyanide is widely used as a raw material for various compounds and as an insecticide.
  • an industrial method for producing hydrogen cyanide for example, an ammoxidation method in which a mixture of methane, ammonia and air is reacted, the so-called Andrussow method, is known.
  • a method of obtaining hydrogen cyanide by-product in the production of acrylonitrile by ammoxidation using propylene or propane as a raw material the so-called Sohio method, is also used.
  • Hydrogen cyanide synthesized by ammoxidation of methane as described above is crude hydrogen cyanide that can contain impurities such as unreacted residual components such as methane, ammonia, and oxygen, which are synthetic raw materials, in order to obtain high-purity hydrogen cyanide.
  • the crude hydrogen cyanide is purified.
  • Hydrogen cyanide is easy to polymerize in the presence of alkali, and the polymerization is further accelerated by heat generation, and there is a risk of causing line blockage in the purification process, as well as fire and explosion due to the runaway reaction. Therefore, crude hydrogen cyanide is purified in a state where the risk of polymerization is reduced by adjusting the pH or the like.
  • Patent Document 1 as a method for simultaneously producing acrylonitrile and hydrogen cyanide, the acrylonitrile production process and the hydrogen cyanide production process are operated in parallel, and the product flows from both processes are combined for recovery and purification. , It is described that the polymerization of relatively high concentration hydrogen cyanide can be substantially prevented.
  • FIG. 2 shows an outline flow of the method described in Patent Document 1.
  • the acrylonitrile product 22 from the acrylonitrile synthesis reactor is neutralized in the quench column 100 by spraying the sulfuric acid aqueous solution 23, and then the unreacted ammonia is neutralized.
  • the hydrogen cyanide product 21 and water 25 from the hydrogen cyanide synthesis reactor are mixed, and the pH is adjusted by adding the acid 26 to obtain a mixed product.
  • the pH of the mixed product is adjusted by adding acid 26 to the recovered column 300 after the non-absorbing compound is separated and removed as the off-gas 24 in the absorption column 200.
  • the mixed product transferred to the decanter 400 is pH-adjusted with acid 26, and then the aqueous layer is separated and refluxed to the recovery column 300.
  • the organic layer is supplied to the head column 500, pH-adjusted with acid 26, and then separated to obtain separated crude hydrogen cyanide 31 and separated crude acrylonitrile 32.
  • the separated crude hydrogen cyanide 31 is further distilled to obtain purified hydrogen cyanide.
  • the present invention has been made to solve the above problems, and reduces the number of places where a material having high corrosion resistance is required to be used in hydrogen cyanide refining equipment and members, and is safe and stable. It is an object of the present invention to provide a method for producing purified hydrogen cyanide capable of purifying hydrogen cyanide.
  • the material of the purification equipment and its members is not ordinary carbon steel but has high corrosion resistance. It is based on the finding that the number of places where the material must be used can be reduced.
  • the present invention provides the following [1] to [8].
  • [1] The step (A) of mixing crude hydrogen cyanide gas with crude acrylonitrile gas obtained by ammoxidation to obtain a crude mixed gas, and mixing the crude mixed gas with a sulfuric acid aqueous solution to obtain the crude mixed gas.
  • a method for producing purified hydrogen cyanide which comprises a step (D) of separating an aqueous layer from hydrogen cyanide to obtain an organic layer containing hydrogen cyanide and acrylonitrile, and a step (E) of distilling the organic layer to obtain purified hydrogen cyanide.
  • step (B) the crude mixed gas and the sulfuric acid aqueous solution are mixed by flowing the crude mixed gas into the sulfuric acid aqueous solution.
  • the method for producing purified hydrogen cyanide according to item 1. [5] The method for producing purified hydrogen cyanide according to any one of [1] to [4] above, wherein the step (C) is performed in a carbon steel facility.
  • step (D) The method for producing purified hydrogen cyanide according to any one of [1] to [5] above, wherein the step (D) is performed in a carbon steel facility.
  • the method for producing purified hydrogen cyanide of the present invention it is possible to reduce the equipment cost by reducing the number of places where the use of a material having high corrosion resistance is required in the purification equipment and members of hydrogen cyanide, and it is safe and stable. Therefore, hydrogen cyanide can be purified, and thus the production efficiency of purified hydrogen cyanide can be improved.
  • FIG. 1 shows an outline flow of the method for producing purified hydrogen cyanide of the present invention.
  • the method for producing purified hydrogen cyanide of the present invention includes a step (A) of mixing crude hydrogen cyanide gas 1 with crude acrylonitrile gas 2 obtained by ammoxidation to obtain crude mixed gas 3, a crude mixed gas 3 and a sulfuric acid aqueous solution. (B) in which unreacted ammonia contained in the crude mixed gas 3 is neutralized and removed to obtain the deammoxidation-treated gas 5 by mixing with 4 and the deammoxidation-treated gas 5 is absorbed in water 6 for crude mixing.
  • the method for producing purified hydrogen cyanide of the present invention includes steps (A) to (E) in order.
  • the step (A) is a mixing step of mixing the crude hydrogen cyanide gas 1 with the crude acrylonitrile gas 2 obtained by ammoxidation to obtain the crude mixed gas 3.
  • hydrogen cyanide has a risk of polymerization in the presence of alkali, so it is necessary to keep it neutral to acidic with an acid such as sulfuric acid, but high concentrations of hydrogen cyanide and acids such as sulfuric acid In a mixed state with, carbon steel is easily corroded.
  • the crude hydrogen cyanide gas 1 and the crude acrylonitrile gas 2 are mixed to obtain the crude mixed gas 3 before mixing with the sulfuric acid aqueous solution for suppressing the polymerization of hydrogen cyanide.
  • the source of the crude hydrogen cyanide gas 1 is not particularly limited, and may be a product gas containing hydrogen cyanide produced by a known method for synthesizing hydrogen cyanide.
  • a so-called BMA method also called a Degussa method
  • methane as a raw material
  • methanol ammoxidation a method using methanol ammoxidation
  • the Andrussow method is a method in which a mixture of methane, ammonia and air (oxygen) is usually reacted in the presence of a catalyst such as a rhodium-platinum catalyst at a high temperature of about 800 to 1000 ° C.
  • This reaction is ammoxidation of methane and proceeds as shown in the following reaction formula (1).
  • the BMA method is a method of reacting in the absence of air (oxygen) at a high temperature of about 1300 ° C. in a bundled alumina tube whose inner surface is coated with a platinum catalyst. Proceed as in (2). CH 4 + NH 3 ⁇ HCN + 3H 2 (2)
  • reaction formula (3) a mixture of methanol, ammonia and air (oxygen) is heated at a lower temperature than the above reaction formulas (1) and (2) in the presence of a catalyst such as a composite oxide catalyst of molybdenum, bismuth or other metal 300.
  • a catalyst such as a composite oxide catalyst of molybdenum, bismuth or other metal 300.
  • the reaction can be carried out at about 600 ° C. CH 3 OH + NH 3 + O 2 ⁇ HCN + 3H 2 O (3)
  • the crude hydrogen cyanide gas 1 is preferably obtained by ammoxidation of a synthetic raw material containing methanol.
  • the pressure during the reaction is preferably normal pressure to 1 MPaG, more preferably normal pressure to 0.5 MPaG, and further preferably normal pressure to 0.2 MPa.
  • the residence time of the product in the synthetic reactor is preferably 0.1 to 60 seconds, more preferably 0.1 to 50 seconds, and even more preferably 0.1 to 30 seconds.
  • the crude hydrogen cyanide gas 1 is a gas containing impurities such as unreacted residual components of synthetic raw materials, mixed components during production, and by-products in addition to hydrogen cyanide.
  • the crude hydrogen cyanide gas 1 may directly supply the product gas discharged from the hydrogen cyanide synthesis reactor.
  • the temperature of the produced gas is high, it is preferable that the produced gas is cooled to a temperature at which the mixing operation with the crude acrylonitrile gas 2 can be safely performed and then subjected to the mixing step.
  • the temperature is preferably 250 ° C. or lower, more preferably 100 to 230 ° C., still more preferably 150 to 200 ° C. from the viewpoint of safety, energy efficiency and the like.
  • the crude acrylonitrile gas 2 is obtained by ammoxidation.
  • a method for producing acrylonitrile by ammoxidation a known method can be applied. Of these methods, the Sohio method described above is common. Usually, a mixture of propylene, ammonia and air is reacted at a temperature of about 350 to 500 ° C. in the presence of a catalyst such as a composite oxide catalyst of molybdenum, bismuth or other metal.
  • a method for producing acrylonitrile a method for producing propylene by ammoxidation is preferable from the viewpoint of production efficiency and the like. Therefore, the crude acrylonitrile gas 2 is preferably obtained by ammoxidation of a synthetic raw material containing propylene.
  • the synthetic raw material containing propylene in the production of acrylonitrile may contain methanol.
  • the crude acrylonitrile gas 2 is a gas containing, in addition to acrylonitrile, unreacted residual components of synthetic raw materials, mixed components during production, and impurities such as by-products such as acetonitrile and hydrogen cyanide.
  • the crude acrylonitrile gas 2 may directly supply the product gas discharged from the acrylonitrile synthesis reactor.
  • the temperature of the produced gas is high, it is preferable to cool the produced gas to a temperature at which the mixing operation with the crude hydrogen cyanide gas 1 can be safely performed and then perform the mixing step.
  • the temperature is preferably 250 ° C. or lower, more preferably 100 to 240 ° C., still more preferably 150 to 230 ° C. from the viewpoint of safety, energy efficiency and the like.
  • the crude acrylonitrile gas 2 may contain tar and heavy components caused by modified products and polymers of acrylonitrile as impurities, it is washed with water to separate and remove these tar and heavy components. It is preferable to keep it.
  • the cleaning can be performed, for example, in an absorption tower into which water is flowing.
  • the crude acrylonitrile gas 2 washed with water is preferably cooled to 100 ° C. or lower, more preferably 95 ° C. or lower, still more preferably 85 ° C. or lower.
  • the crude hydrogen cyanide gas 1 and the crude acrylonitrile gas 2 are mixed after being cooled to a temperature lower than the temperature of the produced gas in the synthetic reactor from the viewpoint of safety of the mixing operation and the like. Then, it is preferable to obtain the crude mixed gas 3.
  • the crude mixed gas 3 preferably contains 2.5 to 9.0 mol of acrylonitrile with respect to 1 mol of hydrogen cyanide, more preferably 2.6 to 6.0 mol, and further preferably 2.8 to 5 mol. It is 0.0 mol. If acrylonitrile is 2.5 mol or more with respect to 1 mol of hydrogen cyanide, hydrogen cyanide is in a state of being sufficiently diluted with acrylonitrile, and carbon steel is corroded even when sulfuric acid is mixed to suppress the polymerization of hydrogen cyanide. Is more likely to be suppressed. From the viewpoint of production efficiency of purified hydrogen cyanide, the upper limit of the amount of acrylonitrile per 1 mol of hydrogen cyanide is preferably 9.0 mol or less.
  • the molar amount of acrylonitrile to 1 mol of hydrogen cyanide in the crude mixed gas 3 in the present invention that is, the molar ratio of acrylonitrile and hydrogen cyanide is difficult to obtain by actual analytical measurement in the crude mixed gas 3, and therefore acrylonitrile. It is a calculated value based on the amount of synthetic raw material charged and the estimated yield in each production of hydrogen cyanide.
  • Step (B) In the step (B), the crude mixed gas 3 obtained in the step (A) and the sulfuric acid aqueous solution 4 are mixed, and unreacted ammonia contained in the crude mixed gas 3 is neutralized and removed to obtain a deammonia-treated gas 5. This is a deammonia treatment step.
  • a deammonia treatment step By treating the crude mixed gas 3 with the sulfuric acid aqueous solution 4 in this way, it is not necessary to perform the deammonia treatment for removing the unreacted ammonia of the synthetic raw material of hydrogen cyanide in a later step.
  • the mixing of the crude mixed gas 3 and the sulfuric acid aqueous solution 4 is preferably performed by inflowing the crude mixed gas 3 into the sulfuric acid aqueous solution 4.
  • it can be carried out by introducing a crude mixed gas 3 into a sulfuric acid tank filled with a sulfuric acid aqueous solution 4 and mixing it with the sulfuric acid aqueous solution 4.
  • the unreacted ammonia of the synthetic raw material contained in the crude mixed gas 3 is neutralized with sulfuric acid, and the produced ammonium sulfate is an aqueous solution. Is removed as.
  • the concentration of sulfuric acid in the sulfuric acid aqueous solution 4 depends on the amount of unreacted ammonia contained in the crude mixed gas 3, but is preferably 0.1 to 20.0 from the viewpoint of efficient removal of ammonia and safety of operation. It is by mass, more preferably 1.0 to 10.0% by mass, and even more preferably 2.0 to 7.0% by mass.
  • the temperature of the sulfuric acid tank is preferably 30 to 100 ° C., more preferably 50 to 95 ° C., still more preferably 70 to 90 ° C. from the viewpoint of efficiently performing the deammonia treatment of the crude mixed gas 3.
  • Step (C) is an absorption step of absorbing the deammonia-treated gas 5 obtained in the step (B) into water 6 to obtain a crude mixture 7.
  • the deammonia-treated gas 5 from which ammonia has been sufficiently removed is absorbed by water 6, and the gas not absorbed by water is separated and removed as off-gas.
  • the concentration of hydrogen cyanide in the crude mixture 7 is preferably 0.1 to 20.0% by mass, more preferably from the viewpoint of efficient production of purified hydrogen cyanide and operational safety by sufficiently suppressing the polymerization of hydrogen cyanide. Is 0.3 to 10.0% by mass, more preferably 0.5 to 5.0% by mass.
  • the crude mixture 7 is preferably cooled to 50 ° C. or lower, more preferably 1 to 35. ° C., more preferably 5-25 ° C.
  • step (C) it is not necessary to use equipment made of stainless steel such as SUS304 or SUS316, which is a material having high corrosion resistance but is expensive, and can be carried out by using equipment made of carbon steel.
  • the method of the present invention has an advantage that the equipment cost can be suppressed in this respect.
  • the crude mixture 7 obtained by absorbing the deammonia-treated gas 5 in water 6 contains acetonitrile, which is a by-product in the production of acrylonitrile, in addition to hydrogen cyanide and acrylonitrile. It is also preferable to undergo a stripping treatment in order to separate and remove acetonitrile.
  • the recovered liquid containing hydrogen cyanide and acrylonitrile after separating and removing acetonitrile is returned, and this is also combined to prepare a crude mixture 7 and used in the next step (D).
  • the step (D) is a liquid-liquid separation step of separating the aqueous layer 8 from the crude mixed solution 7 obtained in the step (C) to obtain an organic layer 9 containing hydrogen cyanide and acrylonitrile.
  • the organic layer 9 in the step (D) is in a state where hydrogen cyanide is diluted with acrylonitrile, and the pH is maintained at 7.00 or less, and it is not necessary to add an acid or the like to suppress the polymerization of hydrogen cyanide.
  • the pH of the organic layer 9 is preferably 4.00 to 6.50, more preferably 5.00 to 6.00.
  • step (D) as in step (C), hydrogen cyanide is diluted in a state of being mixed with acrylonitrile, and carbon steel does not easily corrode. Therefore, it is not possible to use equipment made of a material having high corrosion resistance. It is not necessary and can be carried out using carbon steel equipment.
  • the method of the present invention has an advantage that the equipment cost can be suppressed in this respect.
  • a small amount of acrylonitrile, hydrogen cyanide, acetonitrile, etc. are dissolved in the separated aqueous layer 8.
  • the separated aqueous layer 8 is recovered in order to improve the yield of purified hydrogen cyanide, and can also be circulated so as to be mixed with the crude mixture 7.
  • Step (E) is a distillation step of distilling the organic layer 9 obtained in the step (D) to obtain purified hydrogen cyanide 11.
  • the organic layer 9 is distilled to separate hydrogen cyanide contained in the organic layer 9 from acrylonitrile to obtain purified hydrogen cyanide 11.
  • step (E) since the distillation equipment for purifying hydrogen cyanide comes into contact with high-concentration hydrogen cyanide, corrosion resistance of stainless steel or the like is obtained in order to suppress corrosion of the equipment and obtain high-purity purified hydrogen cyanide. Is preferably made of a high material. Further, in order to suppress and stabilize the polymerization of hydrogen cyanide in the distillation step, it is preferable to add an acid or the like to the organic layer 9 at the time of distillation.
  • the additive for stabilizing hydrogen cyanide include glycolic acid, acetic acid, sulfurous acid gas, phosphoric acid and the like.
  • the pH of the organic layer 9 after the addition is preferably 3.50 to 6.00, more preferably 4.00 to 5.50.
  • the fraction containing hydrogen cyanide recovered by separating and removing acrylonitrile can be further rectified to produce purified hydrogen cyanide 11 having high purity.
  • the de-hydrogen cyanide treatment liquid 12 containing acrylonitrile can be obtained as a highly pure purified acrylonitrile by, for example, performing a liquid-liquid separation treatment again, drying the obtained organic layer, and further rectifying the liquid.
  • Example 1 Purified hydrogen cyanide was produced according to the flow shown in FIG.
  • the crude acrylonitrile gas 2 at 230 ° C. obtained by ammoxidation of propylene was washed with water, cooled to 85 ° C., and then mixed with the crude hydrogen cyanide gas 1 at 200 ° C. obtained by ammoxidation of methanol and mixed crudely.
  • Gas 3 was obtained (step (A)).
  • the ratio of acrylonitrile to hydrogen cyanide contained in the crude mixed gas 3 was adjusted to be 2.83 mol of acrylonitrile with respect to 1 mol of hydrogen cyanide.
  • the crude mixed gas 3 was mixed with a sulfuric acid aqueous solution 4 having a sulfuric acid concentration of 5.0% by mass in a sulfuric acid tank (85 ° C.) to obtain a deammonia-treated gas 5 at 85 ° C. (step (B)).
  • the deammonia-treated gas 5 was absorbed by water to obtain a crude mixture 7 at about 20 ° C. (step (C)).
  • Acetonitrile was separated and removed from the crude mixture 7 by stripping treatment, and the recovered solution containing hydrogen cyanide and acrylonitrile was returned, which was also combined.
  • the pH of the crude mixture 7 was 5.95.
  • the pH was an arithmetic mean value measured three times with a desktop pH meter (“F-71S”, HORIBA, Ltd., temperature correction (20 ° C.)) (hereinafter, the same applies).
  • the crude mixture 7 was liquid-liquid separated into the organic layer 9 and the aqueous layer 8 (step (D)).
  • the aqueous layer 8 was recovered and returned, and this was also adjusted to the crude mixed solution 7.
  • the concentration of hydrogen cyanide contained in the crude mixture 7 was about 1.8% by mass.
  • the pH of the organic layer 9 was 5.63.
  • acetic acid and sulfur dioxide gas to the organic layer 9 (pH 4.32)
  • the concentration of hydrogen cyanide contained in the organic layer 9 was about 8.3% by mass.
  • the equipment for performing steps (C) and (D) was made of carbon steel, and the equipment and members that came into contact with hydrogen cyanide in the other steps were made of stainless steel (SUS304).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

シアン化水素の精製設備や部材において、耐食性が高い材質の使用が必要となる箇所を少なくし、しかも、安全かつ安定的にシアン化水素を精製することができる精製シアン化水素の製造方法を提供する。本発明の精製シアン化水素の製造方法は、粗製シアン化水素ガス1を、アンモ酸化により得られた粗製アクリロニトリルガス2と混合して、粗製混合ガス3とする工程(A)と、粗製混合ガス3と硫酸水溶液4とを混合し、粗製混合ガス3に含まれる未反応アンモニアを中和除去し、脱アンモニア処理ガス5を得る工程(B)と、脱アンモニア処理ガス5を水6に吸収させて、粗製混合液7を得る工程(C)と、粗製混合液7から水層8を分離し、シアン化水素及びアクリロニトリルを含む有機層9を得る工程(D)と、有機層9を蒸留して、精製シアン化水素11を得る工程(E)とを含む。

Description

精製シアン化水素の製造方法
 本発明は、合成原料の未反応残留成分等の不純物を含む粗製シアン化水素を精製して精製シアン化水素を得る、精製シアン化水素の製造方法に関する。
 シアン化水素は、各種化合物の原料や殺虫剤等に広く利用されている。
 シアン化水素の工業的製法としては、例えば、メタン、アンモニア及び空気の混合物を反応させるアンモ酸化、いわゆるアンドリュッソー(Andrussow)法が知られている。また、プロピレンやプロパンを原料とするアンモ酸化、いわゆるソハイオ(Sohio)法により、アクリロニトリルを製造する際の副生シアン化水素を得る方法も用いられている。
 上記のようなメタンのアンモ酸化によって合成されたシアン化水素は、合成原料であるメタンやアンモニア、酸素等の未反応残留成分等の不純物が含まれ得る粗製シアン化水素であり、高純度のシアン化水素を得るためには、粗製シアン化水素は精製される。
 シアン化水素は、アルカリ存在下で重合しやすく、発熱によりさらに重合が加速され、反応の暴走により、精製プロセスにおけるラインの閉塞、さらには火災や爆発を引き起こす危険性がある。このため、粗製シアン化水素は、pH調整等により、重合の危険性を低減させた状態で精製される。
 例えば、特許文献1には、アクリロニトリル及びシアン化水素を同時製造する方法として、アクリロニトリル製造プロセス及びシアン化水素製造プロセスを並行して操業し、両プロセスからの生成物フローを結合させて、回収及び精製することにより、比較的高濃度のシアン化水素の重合を実質的に防止できることが記載されている。
 上記特許文献1に記載の方法の概要フローを図2に示す。図2に示すように、上記特許文献1に記載の方法では、アクリロニトリル合成反応器からのアクリロニトリル生成物22は、クエンチカラム100において、硫酸水溶液23のスプレーにより未反応アンモニアが中和された後、吸収カラム200において、シアン化水素合成反応器からのシアン化水素生成物21及び水25と混合されるとともに、酸26の添加によりpH調整され、混合生成物とされる。前記混合生成物は、吸収カラム200で非吸収化合物がオフガス24として分離除去された後、移された回収カラム300においても、酸26が添加されてpH調整される。そして、デカンター400に移された前記混合生成物は、酸26によりpH調整された後、水層が分離され、回収カラム300に還流される。有機層は、ヘッドカラム500に供給され、酸26によりpH調整された後、分離され、分離粗製シアン化水素31と分離粗製アクリロニトリル32とが得られる。分離粗製シアン化水素31は、さらに蒸留されて、精製シアン化水素が得られる。
特表2011-513425号公報
 ところで、シアン化水素と硫酸等との混合によりpH調整された混合物は、プラント配管や容器等に一般的に用いられる材質である炭素鋼を腐食させやすい。このため、精製プロセスの安全な操業の観点から、前記混合物と接触する工程における設備や部材は、交換を頻繁に行うか、あるいはまた、ステンレス鋼等の耐食性が高い材質を使用する必要があった。
 上記特許文献1にも、当該文献記載の方法によってシアン化水素の回収及び精製を行う場合、通常のソハイオ法でのアクリロニトリルの製造よりも高濃度のシアン化水素と接触する装置の保護のため、回収及び精製装置は、プラント配管や容器等に一般的に用いられる材質である炭素鋼よりも耐食性が高いステンレス鋼等の構成材料が使用されるべきである旨記載されている。
 しかしながら、プラントの設備や部材の頻繁な交換は、設備コストの増大及び交換作業の負担の増大、さらには、精製シアン化水素の製造効率の低下も招くこととなるため好ましくない。
 一方、ステンレス鋼等の耐食性が高い材質は、価格が高いため、前記回収及び精製装置の多くの箇所の構成材料として使用する場合や、シアン化水素単独での精製装置等では、精製シアン化水素を得るための設備コストが大きくなる。
 したがって、低コストで安全かつ安定的に高品質の精製シアン化水素を得ることができる方法が求められている。
 本発明は、上記のような課題を解決するためになされたものであり、シアン化水素の精製設備や部材において、耐食性が高い材質の使用が必要となる箇所を少なくし、しかも、安全かつ安定的にシアン化水素を精製することができる精製シアン化水素の製造方法を提供することを目的とする。
 本発明は、精製シアン化水素の製造において、アクリロニトリルの精製プロセス中の所定の工程に、粗製シアン化水素の精製プロセスを組み込むことにより、精製設備やその部材の材質として、通常の炭素鋼ではなく、耐食性が高い材質を使用しなければならない箇所を少なくすることができることを見出したことに基づくものである。
 すなわち、本発明は、以下の[1]~[8]を提供するものである。
 [1]粗製シアン化水素ガスを、アンモ酸化により得られた粗製アクリロニトリルガスと混合して、粗製混合ガスとする工程(A)と、前記粗製混合ガスと硫酸水溶液とを混合し、前記粗製混合ガスに含まれる未反応アンモニアを中和除去し、脱アンモニア処理ガスを得る工程(B)と、前記脱アンモニア処理ガスを水に吸収させて、粗製混合液を得る工程(C)と、前記粗製混合液から水層を分離し、シアン化水素及びアクリロニトリルを含む有機層を得る工程(D)と、前記有機層を蒸留して、精製シアン化水素を得る工程(E)とを含む、精製シアン化水素の製造方法。
 [2]前記粗製混合ガスは、シアン化水素1モルに対してアクリロニトリルを2.5~9.0モル含む、上記[1]に記載の精製シアン化水素の製造方法。
 [3]前記粗製混合液中のシアン化水素の濃度が、0.1~20.0質量%である、上記[1]又は[2]に記載の精製シアン化水素の製造方法。
 [4]前記工程(B)において、前記硫酸水溶液中に、前記粗製混合ガスを流入させることにより、前記粗製混合ガスと前記硫酸水溶液とを混合する、上記[1]~[3]のいずれか1項に記載の精製シアン化水素の製造方法。
 [5]前記工程(C)が、炭素鋼製設備で行われる、上記[1]~[4]のいずれか1項に記載の精製シアン化水素の製造方法。
 [6]前記工程(D)が、炭素鋼製設備で行われる、上記[1]~[5]のいずれか1項に記載の精製シアン化水素の製造方法。
 [7]前記粗製シアン化水素ガスは、メタノールを含む合成原料のアンモ酸化により得られたものである、上記[1]~[6]のいずれか1項に記載の精製シアン化水素の製造方法。
 [8]前記粗製アクリロニトリルガスは、プロピレンを含む合成原料のアンモ酸化により得られたものである、上記[1]~[7]のいずれか1項に記載の精製シアン化水素の製造方法。
 本発明の精製シアン化水素の製造方法によれば、シアン化水素の精製設備や部材において、耐食性が高い材質の使用が必要となる箇所を少なくすることにより設備コストを抑制することができ、しかも、安全かつ安定的にシアン化水素を精製することができ、ひいては、精製シアン化水素の製造効率を向上させることが可能となる。
本発明の精製シアン化水素の製造方法の概要フロー図である。 特許文献1に記載のアクリロニトリル及びシアン化水素を同時製造する方法の概要フロー図である。
 以下、本発明の精製シアン化水素の製造方法について、図面を参照して説明する。
 図1に、本発明の精製シアン化水素の製造方法の概要フローを示す。本発明の精製シアン化水素の製造方法は、粗製シアン化水素ガス1を、アンモ酸化により得られた粗製アクリロニトリルガス2と混合して、粗製混合ガス3とする工程(A)と、粗製混合ガス3と硫酸水溶液4とを混合し、粗製混合ガス3に含まれる未反応アンモニアを中和除去し、脱アンモニア処理ガス5を得る工程(B)と、脱アンモニア処理ガス5を水6に吸収させて、粗製混合液7を得る工程(C)と、粗製混合液7から水層8を分離し、シアン化水素及びアクリロニトリルを含む有機層9を得る工程(D)と、有機層9を蒸留して、精製シアン化水素11を得る工程(E)とを含むことを特徴とする。
 すなわち、本発明の精製シアン化水素の製造方法は、図1に示すように、工程(A)~(E)を順に含むものである。
 このような工程を経て、粗製シアン化水素の精製を行うことにより、シアン化水素の精製設備や部材において、耐食性が高い材質の使用が必要となる箇所を少なくすることができるため、設備コストを抑制することができる。また、安全かつ安定的にシアン化水素を精製することができる。
 以下、工程(A)~(E)を順に説明する。
[工程(A)]
 工程(A)は、粗製シアン化水素ガス1を、アンモ酸化により得られた粗製アクリロニトリルガス2と混合して、粗製混合ガス3とする混合工程である。
 上述したように、シアン化水素は、アルカリ存在下では、重合の危険性を有しているため、硫酸等の酸で中性~酸性に保持する必要があるが、高濃度のシアン化水素と硫酸等の酸との混在状態は、炭素鋼を腐食させやすい。
 このような観点から、本発明においては、シアン化水素の重合抑制のための硫酸水溶液との混合前に、粗製シアン化水素ガス1と粗製アクリロニトリルガス2とを混合して粗製混合ガス3としておく。
<粗製シアン化水素ガス>
 粗製シアン化水素ガス1の供給源は、特に限定されるものではなく、公知のシアン化水素の合成方法で製造されたシアン化水素を含む生成ガスでよい。
 シアン化水素の工業的な製造方法としては、上述したAndrussow法の他にも、メタンを原料として用いる、いわゆるBMA法(デグサ(Degussa)法とも言う。)や、メタノールのアンモ酸化による方法等が知られている。
 Andrussow法は、メタン、アンモニア及び空気(酸素)の混合物を、通常、ロジウム-白金触媒等の触媒存在下、800~1000℃程度の高温下で反応させる方法である。この反応は、メタンのアンモ酸化であり、下記反応式(1)のように進行する。
  CH4+NH3+3/2O2 → HCN+3H2O   (1)
 BMA法は、空気(酸素)の非存在下で、約1300℃の高温下で、白金触媒で内面を被覆された束状のアルミナ管内等で反応させる方法であり、この反応は、下記反応式(2)のように進行する。
  CH4+NH3 → HCN+3H2   (2)
 また、メタノールのアンモ酸化による方法では、下記反応式(3)のように反応が進行する。この方法では、メタノール、アンモニア及び空気(酸素)の混合物を、モリブテンやビスマス、その他の金属の複合酸化物触媒等の触媒存在下、上記反応式(1)及び(2)よりも低温である300~600℃程度で反応させることができる。
  CH3OH+NH+O2 → HCN+3H2O   (3)
 これらのシアン化水素の製造方法のうち、エネルギー効率等の観点からは、反応温度が比較的低い、メタノールのアンモ酸化による製造方法が好ましい。したがって、粗製シアン化水素ガス1は、メタノールを含む合成原料のアンモ酸化により得られたものであることが好ましい。
 なお、反応時の圧力は、好ましくは常圧~1MPaG、より好ましくは常圧~0.5MPaG、さらに好ましくは常圧~0.2MPaである。また、合成反応器内での生成物の滞留時間は、好ましくは0.1~60秒、より好ましくは0.1~50秒、さらに好ましくは0.1~30秒である。
 粗製シアン化水素ガス1は、シアン化水素以外に、合成原料の未反応残留成分、製造時の混入成分及び副生成物等の不純物を含むガスである。
 粗製シアン化水素ガス1は、シアン化水素の合成反応器から排出される生成ガスを直接供給するものであってよい。前記生成ガスの温度が高い場合には、粗製アクリロニトリルガス2との混合操作を安全に行うことができる程度の温度にまで冷却した後、混合工程に供することが好ましい。前記温度は、250℃以下とすることが好ましく、安全性及びエネルギー効率等の観点から、より好ましくは100~230℃、さらに好ましくは150~200℃である。
<粗製アクリロニトリルガス>
 粗製アクリロニトリルガス2は、アンモ酸化により得られたものである。アンモ酸化によるアクリロニトリルの製造方法としては、公知の方法を適用することができる。これらの方法のうち、上述したSohio法が一般的である。通常、プロピレン、アンモニア及び空気の混合物を、モリブテンやビスマス、その他の金属の複合酸化物触媒等の触媒存在下、350~500℃程度の温度で反応させる。アクリロニトリルの製造方法としては、製造効率等の観点から、プロピレンのアンモ酸化による製造方法が好ましい。したがって、粗製アクリロニトリルガス2は、プロピレンを含む合成原料のアンモ酸化により得られたものであることが好ましい。
 なお、アクリロニトリルの製造におけるプロピレンを含む合成原料には、メタノールを含んでいてもよい。これにより、粗製アクリロニトリルガス2中のシアン化水素の含有量を増加させることが可能であるが、プロピレンとともにメタノールを含む合成原料のアンモ酸化は、アクリロニトリルの合成反応器に及ぼす負荷やエネルギーコストが大きく、また、触媒が失活しやすくなることもある。したがって、粗製混合ガス3中のシアン化水素を増量させる場合は、アクリロニトリルの合成反応器に、合成原料としてプロピレンとともに供給するメタノールを増量するよりも、上述したように、別途、シアン化水素の合成反応器から排出される生成ガスの供給量の調整によって増量させることが好ましい。
 粗製アクリロニトリルガス2は、アクリロニトリル以外に、合成原料の未反応残留成分や製造時の混入成分、また、アセトニトリルやシアン化水素等の副生成物等の不純物を含むガスである。
 粗製アクリロニトリルガス2は、アクリロニトリルの合成反応器から排出される生成ガスを直接供給するものであってもよい。前記生成ガスの温度が高い場合には、粗製シアン化水素ガス1との混合操作を安全に行うことができる程度の温度にまで冷却した後、混合工程に供することが好ましい。前記温度は、250℃以下とすることが好ましく、安全性及びエネルギー効率等の観点から、より好ましくは100~240℃、さらに好ましくは150~230℃である。
 粗製アクリロニトリルガス2は、アクリロニトリルの変性物や重合物等に起因するタール分や重質分も不純物として含み得ることから、水で洗浄し、これらのタール分や重質分等を分離除去しておくことが好ましい。前記洗浄は、例えば、水を流入させている吸収塔で行うことができる。水で洗浄された粗製アクリロニトリルガス2は、好ましくは100℃以下、より好ましくは95℃以下、さらに好ましくは85℃以下に冷却される。
 上記のように、粗製シアン化水素ガス1と粗製アクリロニトリルガス2とは、混合操作の安全性等の観点から、いずれも、合成反応器内の生成ガスの温度よりも低い温度にまで冷却された後に混合して、粗製混合ガス3を得ることが好ましい。
<粗製混合ガス>
 粗製混合ガス3は、シアン化水素1モルに対してアクリロニトリルが2.5~9.0モル含まれていることが好ましく、より好ましくは2.6~6.0モル、さらに好ましくは2.8~5.0モルである。
 シアン化水素1モルに対してアクリロニトリルが2.5モル以上であれば、シアン化水素がアクリロニトリルによって十分に希釈された状態であり、シアン化水素の重合抑制のために硫酸を混在させた場合においても、炭素鋼の腐食が抑制されやすくなる。
 また、精製シアン化水素の製造効率の観点から、シアン化水素1モルに対するアクリロニトリルの量の上限は、9.0モル以下であることが好ましい。
 なお、本発明における粗製混合ガス3中のシアン化水素1モルに対するアクリロニトリルのモル量、すなわち、アクリロニトリルとシアン化水素とのモル比は、粗製混合ガス3において実際の分析測定により求めることは困難であるため、アクリロニトリル及びシアン化水素の各製造における合成原料の仕込み量及び想定収率に基づく計算値である。
[工程(B)]
 工程(B)は、工程(A)で得られた粗製混合ガス3と硫酸水溶液4とを混合し、粗製混合ガス3に含まれる未反応アンモニアを中和除去し、脱アンモニア処理ガス5を得る脱アンモニア処理工程である。
 このように、粗製混合ガス3を硫酸水溶液4によって脱アンモニア処理することにより、後の工程において、シアン化水素の合成原料の未反応アンモニアを除去するための脱アンモニア処理を行うことは要しない。
 粗製混合ガス3と硫酸水溶液4との混合は、硫酸水溶液4中に、粗製混合ガス3を流入させることにより行うことが好ましい。例えば、硫酸水溶液4が充填されている硫酸槽に、粗製混合ガス3を導入して、硫酸水溶液4と混合することにより行うことができる。このような方法で、粗製混合ガス3を十分な量の硫酸水溶液4と接触させることにより、粗製混合ガス3に含まれる合成原料の未反応アンモニアが硫酸で中和され、生成した硫酸アンモニウムは、水溶液として除去される。
 硫酸水溶液4の硫酸の濃度は、粗製混合ガス3に含まれる未反応アンモニアの量にもよるが、アンモニアの効率的な除去及び操作の安全性の観点から、好ましくは0.1~20.0質量%、より好ましくは1.0~10.0質量%、さらに好ましくは2.0~7.0質量%である。
 前記硫酸槽の温度は、粗製混合ガス3の脱アンモニア処理を効率的に行う観点から、好ましくは30~100℃、より好ましくは50~95℃、さらに好ましくは70~90℃である。
[工程(C)]
 工程(C)は、工程(B)で得られた脱アンモニア処理ガス5を水6に吸収させて、粗製混合液7を得る吸収工程である。
 工程(C)では、十分にアンモニアが除去された脱アンモニア処理ガス5を水6に吸収させるとともに、水に吸収されないガスは、オフガスとして分離除去される。
 粗製混合液7は、十分にアンモニアが除去され、pHが7.00以下、好ましくは4.00~6.50、より好ましくは5.00~6.00であり、シアン化水素は重合が抑制された安定な状態にある。このため、工程(C)において、硫酸等の酸性液を再度添加してpH調整を行うことは要しない。
 粗製混合液7中のシアン化水素の濃度は、精製シアン化水素の効率的な製造及びシアン化水素の重合の十分な抑制による操作の安全性等の観点から、好ましくは0.1~20.0質量%、より好ましくは0.3~10.0質量%、さらに好ましくは0.5~5.0質量%である。
 また、粗製混合液7中にシアン化水素を十分に溶存させ、また、精製シアン化水素を効率的に製造する観点から、粗製混合液7は、50℃以下に冷却することが好ましく、より好ましくは1~35℃、さらに好ましくは5~25℃である。
 上記のように、粗製混合液7は、硫酸水溶液で中性~酸性に調整されているが、シアン化水素はアクリロニトリルと混在した状態で希釈されており、炭素鋼が容易に腐食することはない。したがって、工程(C)では、耐食性が高いが、高価である材質、例えば、SUS304やSUS316等のステンレス鋼製の設備を用いることは要さず、炭素鋼製設備を用いて行うことができる。
 本発明の方法は、この点において、設備コストを抑制できるという利点を有している。
 脱アンモニア処理ガス5を水6に吸収させて得られた粗製混合液7は、シアン化水素及びアクリロニトリル以外に、アクリロニトリルの製造における副生成物であるアセトニトリルも含んでいる。アセトニトリルを分離除去するために、ストリッピング処理を経ることも好ましい。アセトニトリルを分離除去した後のシアン化水素及びアクリロニトリルを含む回収液は戻され、これも合わせて粗製混合液7とし、次の工程(D)に供される。
[工程(D)]
 工程(D)は、工程(C)で得られた粗製混合液7から水層8を分離し、シアン化水素及びアクリロニトリルを含む有機層9を得る液液分離工程である。
 工程(D)における有機層9は、シアン化水素がアクリロニトリルで希釈された状態であり、かつ、pHが7.00以下に保持されており、シアン化水素の重合抑制のための酸等の添加は要しない。有機層9のpHは、好ましくは4.00~6.50、より好ましくは5.00~6.00である。
 工程(D)においても、工程(C)と同様に、シアン化水素はアクリロニトリルと混在した状態で希釈されており、炭素鋼が容易に腐食することはないため、耐食性が高い材質の設備を用いることは要さず、炭素鋼製設備を用いて行うことができる。
 本発明の方法は、この点において、設備コストを抑制できるという利点を有している。
 分離された水層8には、微量のアクリロニトリルやシアン化水素、アセトニトリル等が溶解している。分離された水層8は、精製シアン化水素の収率向上のため、回収され、これも合わせて粗製混合液7と混合するように循環させることができる。
[工程(E)]
 工程(E)は、工程(D)で得られた有機層9を蒸留して、精製シアン化水素11を得る蒸留工程である。
 工程(E)では、有機層9を蒸留して、有機層9に含まれるシアン化水素を、アクリロニトリルと分離することにより、精製シアン化水素11を得る。
 なお、工程(E)においては、シアン化水素の精製のための蒸留設備等は、高濃度のシアン化水素と接触することから、設備の腐食抑制及び高純度の精製シアン化水素を得るために、ステンレス鋼等の耐食性が高い材質で構成されていることが好ましい。
 また、有機層9は、蒸留工程でのシアン化水素の重合を抑制して安定化させるために、蒸留を行う際に、酸等を添加するようにすることが好ましい。シアン化水素の安定化のための添加剤としては、例えば、グリコール酸、酢酸、亜硫酸ガス、リン酸等が挙げられる。酸等を添加する場合、添加後の有機層9のpHは、好ましくは3.50~6.00、より好ましくは4.00~5.50である。
 アクリロニトリルを分離除去して回収されたシアン化水素を含む留分は、さらに精留することにより、純度の高い精製シアン化水素11を製造することができる。
 また、アクリロニトリルを含む脱シアン化水素処理液12は、例えば、液液分離処理を再度行い、得られた有機層を乾燥し、さらに精留することにより、純度の高い精製アクリロニトリルとすることができる。
 以下に、本発明の実施例について述べるが、本発明は該実施例に限定されるものではない。
[実施例1]
 図1に示すフローに従って、精製シアン化水素を製造した。
 プロピレンのアンモ酸化により得られた230℃の粗製アクリロニトリルガス2を、水で洗浄し、85℃に冷却した後、メタノールのアンモ酸化により得られた200℃の粗製シアン化水素ガス1と混合し、粗製混合ガス3を得た(工程(A))。粗製混合ガス3に含まれるアクリロニトリルとシアン化水素の比率は、シアン化水素1モルに対してアクリロニトリル2.83モルとなるようにした。
 粗製混合ガス3を硫酸槽(85℃)内の硫酸濃度5.0質量%の硫酸水溶液4と混合し、85℃の脱アンモニア処理ガス5を得た(工程(B))。
 次いで、脱アンモニア処理ガス5を水に吸収させて、約20℃の粗製混合液7を得た(工程(C))。粗製混合液7は、ストリッピング処理によりアセトニトリルを分離除去し、シアン化水素及びアクリロニトリルを含む回収液を戻し、これも合わせたものとした。粗製混合液7のpHは5.95であった。なお、pHは、卓上型pHメータ(「F-71S」、株式会社堀場製作所、温度補正(20℃))にて、3回測定した値の算術平均値とした(以下、同様。)。
 次いで、粗製混合液7を有機層9と水層8とに液液分離した(工程(D))。水層8は、回収して戻し、これも粗製混合液7に合わせた。粗製混合液7に含まれるシアン化水素の濃度は、約1.8質量%であった。有機層9のpHは5.63であった。
 そして、有機層9に酢酸及び亜硫酸ガスを添加した後(pH4.32)、これを蒸留して精製シアン化水素を得た(工程(E))。なお、有機層9に含まれるシアン化水素の濃度は、約8.3質量%であった。
 工程(C)及び工程(D)を行う各設備を炭素鋼製とし、それ以外の工程において、シアン化水素と接触する設備及び部材をステンレス鋼(SUS304)製とした。
 工程(C)を行う炭素鋼製の吸収塔を1年間使用(精製シアン化水素を最大10,000t/年製造)した場合でも、腐食の進行は見られず、また、該吸収塔及びその前後のラインにおいて、シアン化水素の重合等に起因する閉塞等の発生は見られなかった。
 このことから、粗製シアン化水素ガス及び粗製アクリロニトリルガスを混合した後に、脱アンモニア処理を行うことにより、精製シアン化水素の製造設備において、耐食性が高い高価な材質の使用を必要とする箇所を少なくすることができ、しかも、シアン化水素の重合抑制を効率的に行うことができると言える。したがって、本発明の製造方法によれば、粗製シアン化水素を単独で精製する場合に比べて、設備コストの抑制、また、安全かつ安定的に精製シアン化水素を得ることができる。
 1   粗製シアン化水素ガス
 2   粗製アクリロニトリルガス
 3   粗製混合ガス
 4   硫酸水溶液
 5   脱アンモニア処理ガス
 6   水
 7   粗製混合液
 8   水層
 9   有機層
 11  精製シアン化水素
 12  脱シアン化水素処理液
 21  シアン化水素生成物
 22  アクリロニトリル生成物
 23  硫酸水溶液
 24  オフガス
 25  水
 26  酸
 31  分離粗製シアン化水素
 32  分離粗製アクリロニトリル
 100 クエンチカラム
 200 吸収カラム
 300 回収カラム
 400 デカンター
 500 ヘッドカラム

Claims (8)

  1.  粗製シアン化水素ガスを、アンモ酸化により得られた粗製アクリロニトリルガスと混合して、粗製混合ガスとする工程(A)と、
     前記粗製混合ガスと硫酸水溶液とを混合し、前記粗製混合ガスに含まれる未反応アンモニアを中和除去し、脱アンモニア処理ガスを得る工程(B)と、
     前記脱アンモニア処理ガスを水に吸収させて、粗製混合液を得る工程(C)と、
     前記粗製混合液から水層を分離し、シアン化水素及びアクリロニトリルを含む有機層を得る工程(D)と、
     前記有機層を蒸留して、精製シアン化水素を得る工程(E)とを含む、精製シアン化水素の製造方法。
  2.  前記粗製混合ガスは、シアン化水素1モルに対してアクリロニトリルを2.5~9.0モル含む、請求項1に記載の精製シアン化水素の製造方法。
  3.  前記粗製混合液中のシアン化水素の濃度が、0.1~20.0質量%である、請求項1又は2に記載の精製シアン化水素の製造方法。
  4.  前記工程(B)において、前記硫酸水溶液中に、前記粗製混合ガスを流入させることにより、前記粗製混合ガスと前記硫酸水溶液とを混合する、請求項1~3のいずれか1項に記載の精製シアン化水素の製造方法。
  5.  前記工程(C)が、炭素鋼製設備で行われる、請求項1~4のいずれか1項に記載の精製シアン化水素の製造方法。
  6.  前記工程(D)が、炭素鋼製設備で行われる、請求項1~5のいずれか1項に記載の精製シアン化水素の製造方法。
  7.  前記粗製シアン化水素ガスは、メタノールを含む合成原料のアンモ酸化により得られたものである、請求項1~6のいずれか1項に記載の精製シアン化水素の製造方法。
  8.  前記粗製アクリロニトリルガスは、プロピレンを含む合成原料のアンモ酸化により得られたものである、請求項1~7のいずれか1項に記載の精製シアン化水素の製造方法。
PCT/JP2020/042947 2019-12-09 2020-11-18 精製シアン化水素の製造方法 WO2021117434A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021563816A JPWO2021117434A1 (ja) 2019-12-09 2020-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222332 2019-12-09
JP2019-222332 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117434A1 true WO2021117434A1 (ja) 2021-06-17

Family

ID=76329783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042947 WO2021117434A1 (ja) 2019-12-09 2020-11-18 精製シアン化水素の製造方法

Country Status (3)

Country Link
JP (1) JPWO2021117434A1 (ja)
TW (1) TW202126580A (ja)
WO (1) WO2021117434A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097017A (ja) * 2000-09-21 2002-04-02 Mitsubishi Rayon Co Ltd シアン化水素の製造方法
WO2017015521A1 (en) * 2015-07-22 2017-01-26 Invista North America S.A R.L. High purity hcn from acrylonitrile co-production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097017A (ja) * 2000-09-21 2002-04-02 Mitsubishi Rayon Co Ltd シアン化水素の製造方法
WO2017015521A1 (en) * 2015-07-22 2017-01-26 Invista North America S.A R.L. High purity hcn from acrylonitrile co-production

Also Published As

Publication number Publication date
JPWO2021117434A1 (ja) 2021-06-17
TW202126580A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
TWI505992B (zh) 從安德盧梭(andrussow)法中之氨排氣器回收熱之方法
RU2494092C2 (ru) Улучшенный способ совместного получения акрилонитрила и циановодорода
EP0638546B1 (en) A process for reduction of waste material during manufacture of acrylonitrile
JP2013534888A (ja) アンモニウム塩の製造方法
US10647663B2 (en) High purity HCN from acrylonitrile co-production
JPWO2014192823A1 (ja) 尿素合成方法
US9284255B2 (en) Method for producing nitrobenzene by adiabatic nitriding
WO2021117434A1 (ja) 精製シアン化水素の製造方法
JP4418364B2 (ja) ニトリル類の混合物へのカルボン酸のアンモ酸化
US20160167975A1 (en) Hydrogen cyanide manufacturing process with second waste heat boiler
KR102176381B1 (ko) 니트로벤젠 제조로부터의 폐수의 후처리 방법
CN112512973B (zh) 纯化氰化氢的方法
KR20150143768A (ko) 니트로벤젠 제조로부터의 폐수의 후처리 방법
KR20220071200A (ko) 알칸설폰산의 제조 공정
EP3760612A1 (en) Method for purifying nitrile solvent
JPH1025273A (ja) アセトンシアンヒドリンの製造方法
WO2019211904A1 (ja) 酢酸の製造方法
US20080003172A1 (en) Continuous hydrolysis of hexafluoroarsenic acid
WO2018163448A1 (ja) 酢酸の製造方法
TW202335966A (zh) 生產及分離氰化氫之最佳化方法以及將其轉化為甲基丙烯酸(mas)及/或甲基丙烯酸烷酯之方法
JP2007031456A (ja) アセトンシアンヒドリンの製造方法
JP2010037227A (ja) アクリロニトリルの精製方法
TWM499253U (zh) 熱整合裝置
JP2005154328A (ja) 不飽和ニトリル化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021563816

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898403

Country of ref document: EP

Kind code of ref document: A1