TW202126580A - 純化氰化氫之製造方法 - Google Patents

純化氰化氫之製造方法 Download PDF

Info

Publication number
TW202126580A
TW202126580A TW109141523A TW109141523A TW202126580A TW 202126580 A TW202126580 A TW 202126580A TW 109141523 A TW109141523 A TW 109141523A TW 109141523 A TW109141523 A TW 109141523A TW 202126580 A TW202126580 A TW 202126580A
Authority
TW
Taiwan
Prior art keywords
hydrogen cyanide
crude
gas
acrylonitrile
producing purified
Prior art date
Application number
TW109141523A
Other languages
English (en)
Inventor
齋藤信
渋谷一能
中村圭一
Original Assignee
日商昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭和電工股份有限公司 filed Critical 日商昭和電工股份有限公司
Publication of TW202126580A publication Critical patent/TW202126580A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明為提供一種在氰化氫之純化設備或構件,減少耐腐蝕性高之材質的使用成為必要的點,而且可安全且安定地純化氰化氫之純化氰化氫之製造方法。本發明之純化氰化氫之製造方法係包含:將粗製氰化氫氣體(1)與藉由氨氧化所得之粗製丙烯腈氣體(2)進行混合,而成為粗製混合氣體(3)之步驟(A)、與混合粗製混合氣體(3)與硫酸水溶液(4),中和去除粗製混合氣體(3)所包含之未反應氨,而得到脫氨處理氣體(5)之步驟(B)、與使脫氨處理氣體(5)被水(6)吸收,而得到粗製混合液(7)之步驟(C)、與從粗製混合液(7)分離水層(8),而得到包含氰化氫及丙烯腈之有機層(9)之步驟(D)、與蒸餾有機層(9),而得到純化氰化氫(11)之步驟(E)。

Description

純化氰化氫之製造方法
本發明係關於純化合成原料之未反應殘留成分等之包含雜質的粗製氰化氫,而得到純化氰化氫之純化氰化氫之製造方法。
氰化氫被廣泛利用在各種化合物的原料或殺蟲劑等。 作為氰化氫之工業性製法,已知有例如使甲烷、氨及空氣的混合物反應之氨氧化,即所謂安德魯索(Andrussow)法。又,亦使用藉由將伸丙基或丙烷作為原料之氨氧化,即所謂蘇黑澳(Sohio)法,而得到製造丙烯腈時所副生之氰化氫之方法。
藉由如上述之甲烷的氨氧化合成之氰化氫,係可包含合成原料之甲烷或氨、氧等之未反應殘留成分等之雜質的粗製氰化氫,為了得到高純度之氰化氫,而純化粗製氰化氫。
氰化氫於鹼存在下容易聚合,藉由發熱進一步加速聚合,因反應的失控,有引起在純化製程之線的閉塞、進而有引起火災或爆發的危險性。因此,粗製氰化氫藉由pH調整等,以減低聚合之危險性的狀態純化。
例如,於專利文獻1,記載有作為同時製造丙烯腈及氰化氫之方法,並行運行丙烯腈製造製程及氰化氫製造製程,藉由結合來自兩製程之生成物流程,進行回收及純化,可實質性防止比較高濃度之氰化氫的聚合。
將上述專利文獻1所記載之方法的概要流程示於圖2。如圖2所示,於上述專利文獻1所記載之方法,來自丙烯腈合成反應器之丙烯腈生成物22在驟冷管柱100,藉由硫酸水溶液23之噴霧,中和未反應氨後,在吸收管柱200,混合來自氰化氫合成反應器之氰化氫生成物21及水25,並且藉由酸26之添加調整pH,作為混合生成物。前述混合生成物於吸收管柱200,非吸收化合物作為廢氣24分離去除後,即使在被轉移之回收管柱300,添加酸26來調整pH。而且,轉移至傾析器400之前述混合生成物藉由酸26調整pH後,分離水層,回流至回收管柱300。有機層供給頭管柱500,藉由酸26調整pH後,進行分離,而得到分離粗製氰化氫31與分離粗製丙烯腈32。分離粗製氰化氫31進一步蒸餾而得到純化氰化氫。 先前技術文獻 專利文獻
專利文獻1:日本特表2011-513425號公報
發明欲解決之課題
然而,藉由氰化氫與硫酸等的混合調整pH之混合物,容易使於工廠配管或容器等一般所使用之材質即碳鋼腐蝕。因此,從純化製程之安全運作的觀點來看,有必要在與前述混合物接觸之步驟的設備或構件頻繁進行交換,或是又使用不銹鋼等之耐腐蝕性高的材質。 即使於上述專利文獻1,亦記載有藉由該文獻記載之方法進行氰化氫的回收及純化時,由於較於通常之蘇黑澳法的丙烯腈之製造更高濃度之氰化氫接觸的裝置的保護,故回收及純化裝置應該使用較於工廠配管或容器等一般所使用之材質即碳鋼,耐腐蝕性更高之不銹鋼等之構成材料的旨意。
然而,工廠的設備或構件之頻繁交換,由於設備成本的增大及交換作業之負擔的增大,進而亦變成招至純化氰化氫之製造效率的低下故不佳。 另一方面,不銹鋼等之耐腐蝕性高之材質由於價格高,作為前述回收及純化裝置多之點的構成材料使用時,或於氰化氫單獨之純化裝置等,增大用以得到純化氰化氫之設備成本。 據此,正尋求可得到低成本並且安全且安定地高品質之純化氰化氫之方法。
本發明係為了解決如上述之課題而完成者,以提供一種在氰化氫之純化設備或構件,減少耐腐蝕性高之材質的使用成為必要的點,而且可安全且安定地純化氰化氫之純化氰化氫之製造方法作為目的。 用以解決課題之手段
本發明係根據發現在純化氰化氫之製造,藉由於丙烯腈之純化製程中之指定的步驟,納入粗製氰化氫之純化製程,可減少作為純化設備或其構件的材質,並非通常之碳鋼,而是不得不使用耐腐蝕性高之材質的點而完成者。
亦即,本發明係提供以下之[1]~[8]。 [1]一種純化氰化氫之製造方法,其係包含:將粗製氰化氫氣體與藉由氨氧化所得之粗製丙烯腈氣體進行混合,而成為粗製混合氣體之步驟(A)、與混合前述粗製混合氣體與硫酸水溶液,中和去除前述粗製混合氣體所包含之未反應氨,而得到脫氨處理氣體之步驟(B)、與使前述脫氨處理氣體被水吸收,而得到粗製混合液之步驟(C)、與從前述粗製混合液分離水層,而得到包含氰化氫及丙烯腈之有機層之步驟(D)、與蒸餾前述有機層,而得到純化氰化氫之步驟(E)。 [2]如上述[1]所記載之純化氰化氫之製造方法,其中,前述粗製混合氣體相對於氰化氫1莫耳,包含2.5~9.0莫耳之丙烯腈。 [3]如上述[1]或[2]所記載之純化氰化氫之製造方法,其中,前述粗製混合液中之氰化氫的濃度為0.1~20.0質量%。 [4]如上述[1]~[3]中任一項所記載之純化氰化氫之製造方法,其中,在前述步驟(B),藉由於前述硫酸水溶液中,使前述粗製混合氣體流入,混合前述粗製混合氣體與前述硫酸水溶液。 [5]如上述[1]~[4]中任一項所記載之純化氰化氫之製造方法,其中,前述步驟(C)係於碳鋼製設備進行。 [6]如上述[1]~[5]中任一項所記載之純化氰化氫之製造方法,其中,前述步驟(D)係於碳鋼製設備進行。 [7]如上述[1]~[6]中任一項所記載之純化氰化氫之製造方法,其中,前述粗製氰化氫氣體係藉由包含甲醇之合成原料的氨氧化所得者。 [8]如上述[1]~[7]中任一項所記載之純化氰化氫之製造方法,其中,前述粗製丙烯腈氣體係藉由包含伸丙基之合成原料的氨氧化所得者。 發明效果
根據本發明之純化氰化氫之製造方法,在氰化氫之純化設備或構件,藉由減少耐腐蝕性高之材質的使用成為必要的點,可抑制設備成本,而且可安全且安定地純化氰化氫,結果是使得提昇純化氰化氫之製造效率變可能。
以下,針對本發明之純化氰化氫之製造方法,參照圖面進行說明。 於圖1表示本發明之純化氰化氫之製造方法的概要流程。本發明之純化氰化氫之製造方法,其特徵為包含:將粗製氰化氫氣體1與藉由氨氧化所得之粗製丙烯腈氣體2進行混合,而成為粗製混合氣體3之步驟(A)、與混合粗製混合氣體3與硫酸水溶液4,中和去除粗製混合氣體3所包含之未反應氨,而得到脫氨處理氣體5之步驟(B)、與使脫氨處理氣體5被水6吸收,而得到粗製混合液7之步驟(C)、與從粗製混合液7分離水層8,而得到包含氰化氫及丙烯腈之有機層9之步驟(D)、與蒸餾有機層9,而得到純化氰化氫11之步驟(E)。 亦即,本發明之純化氰化氫之製造方法係如圖1所示,依步驟(A)~(E)順序包含者。 藉由經由這般的步驟,進行粗製氰化氫之純化,在氰化氫之純化設備或構件,由於可減少耐腐蝕性高之材質的使用成為必要的點,故可抑制設備成本。 又,可安全且安定地純化氰化氫。 以下,依步驟(A)~(E)順序進行說明。
[步驟(A)] 步驟(A)係將粗製氰化氫氣體1與藉由氨氧化所得之粗製丙烯腈氣體2進行混合,而成為粗製混合氣體3之混合步驟。 如上述,由於氰化氫於鹼存在下,具有聚合之危險性,故於硫酸等之酸,雖有必要保持在中性~酸性,但高濃度之氰化氫與硫酸等之酸的混在狀態,容易腐蝕碳鋼。 從這般的觀點來看,在本發明,於與用以抑制氰化氫的聚合之硫酸水溶液的混合前,先混合粗製氰化氫氣體1與粗製丙烯腈氣體2,而成為粗製混合氣體3。
<粗製氰化氫氣體> 粗製氰化氫氣體1之供給源並非被特別限定者,可為包含以公知之氰化氫的合成方法製造之氰化氫的生成氣體。 作為氰化氫之工業的製造方法,已知除了上述之Andrussow法之外,亦有將甲烷作為原料使用,即所謂BMA法(亦稱為德固賽(Degussa)法),或藉由甲醇之氨氧化之方法等。
Andrussow法係將甲烷、氨及空氣(氧)之混合物,通常於銠-白金觸媒等之觸媒存在下,於800~1000℃左右的高溫下進行反應之方法。此反應為甲烷之氨氧化,如下述反應式(1)般進行。
Figure 02_image001
BMA法係於空氣(氧)之非存在下,於約1300℃的高溫下,於白金觸媒於被覆內面之束狀的氧化鋁管內等進行反應之方法,此反應係如下述反應式(2)般進行。
Figure 02_image003
又,於藉由甲醇的氨氧化之方法,如下述反應式(3)般進行反應。於此方法,可將甲醇、氨及空氣(氧)的混合物於鉬或鉍、其他金屬之複合氧化物觸媒等之觸媒存在下,以較上述反應式(1)及(2)更低溫的300~600℃左右進行反應。
Figure 02_image005
此等之氰化氫之製造方法當中,從能量效率等之觀點來看,較佳為反應溫度比較低,藉由甲醇的氨氧化之製造方法。據此,粗製氰化氫氣體1較佳為藉由包含甲醇之合成原料的氨氧化所得者。 尚,反應時之壓力較佳為常壓~1MPaG,更佳為常壓~0.5MPaG,再更佳為常壓~0.2MPa。又,於合成反應器內之生成物的滯留時間,較佳為0.1~60秒,更佳為0.1~50秒,再更佳為0.1~30秒。
粗製氰化氫氣體1係於氰化氫以外,包含合成原料之未反應殘留成分、製造時之混入成分及副生成物等之雜質的氣體。 粗製氰化氫氣體1可為直接供給從氰化氫之合成反應器排出之生成氣體者。前述生成氣體的溫度高的情況下,較佳為冷卻至可安全進行與粗製丙烯腈氣體2之混合操作的程度的溫度為止後,供於混合步驟。前述溫度較佳為定為250℃以下,從安全性及能量效率等之觀點來看,更佳為100~230℃,再更佳為150~200℃。
<粗製丙烯腈氣體> 粗製丙烯腈氣體2係藉由氨氧化所得者。作為藉由氨氧化之丙烯腈之製造方法,可適用公知之方法。此等之方法當中,一般為上述之Sohio法。通常係將伸丙基、氨及空氣的混合物於鉬或鉍、其他金屬的複合氧化物觸媒等之觸媒存在下,於350~500℃左右的溫度進行反應。作為丙烯腈之製造方法,從製造效率等之觀點來看,較佳為藉由伸丙基之氨氧化的製造方法。據此,粗製丙烯腈氣體2較佳為藉由包含伸丙基之合成原料的氨氧化所得者。
尚,於在丙烯腈之製造的包含伸丙基之合成原料中可包含甲醇。藉此,雖可增加粗製丙烯腈氣體2中之氰化氫的含量,但與伸丙基一起包含甲醇之合成原料的氨氧化,波及丙烯腈之合成反應器的負荷或能量成本增大,又,亦有觸媒失活變容易的情況。據此,使粗製混合氣體3中之氰化氫增量時,於丙烯腈的合成反應器,作為合成原料,相較增量與伸丙基一起供給之甲醇,如上述,較佳為其他方式藉由從氰化氫的合成反應器排出之生成氣體的供給量的調整來增量。
粗製丙烯腈氣體2係於丙烯腈以外,為合成原料之未反應殘留成分或製造時之混入成分,又,為包含乙腈或氰化氫等之副生成物等之雜質之氣體。 粗製丙烯腈氣體2可為直接供給從丙烯腈的合成反應器排出之生成氣體者。前述生成氣體的溫度高的情況下,較佳為冷卻至可安全進行與粗製氰化氫氣體1的混合操作的程度的溫度為止後,供於混合步驟。前述溫度較佳為定為250℃以下,從安全性及能量效率等之觀點來看,更佳為100~240℃,再更佳為150~230℃。 粗製丙烯腈氣體2由於起因於丙烯腈之改性物或聚合物等之焦油分或重餾分(heavy distillate)亦可作為雜質包含,故較佳為以水洗淨,分離去除此等之焦油分或重餾分等。前述洗淨例如可於流入水之吸收塔進行。以水洗淨之粗製丙烯腈氣體2,較佳為冷卻至100℃以下,更佳為冷卻至95℃以下,再更佳為冷卻至85℃以下。
如上述,粗製氰化氫氣體1與粗製丙烯腈氣體2,從混合操作之安全性等的觀點來看,較佳為於皆冷卻至較合成反應器內的生成氣體的溫度更低的溫度後進行混合,而得到粗製混合氣體3。
<粗製混合氣體> 粗製混合氣體3相對於氰化氫1莫耳,較佳為包含丙烯腈2.5~9.0莫耳,更佳為2.6~6.0莫耳,再更佳為2.8~5.0莫耳。 若相對於氰化氫1莫耳,丙烯腈為2.5莫耳以上,氰化氫藉由丙烯腈為充分稀釋的狀態,為了抑制氰化氫的聚合,即使在混在硫酸的情況下,亦變容易抑制碳鋼的腐蝕。 又,從純化氰化氫之製造效率的觀點來看,相對於氰化氫1莫耳之丙烯腈的量的上限較佳為9.0莫耳以下。
尚,相對於在本發明之粗製混合氣體3中之氰化氫1莫耳的丙烯腈的莫耳量,亦即,由於丙烯腈與氰化氫的莫耳比在粗製混合氣體3,藉由實際的分析測定求出有困難,故為根據丙烯腈及氰化氫在各製造之合成原料的置入量及假定收率之計算值。
[步驟(B)] 步驟(B)係混合於步驟(A)所得之粗製混合氣體3與硫酸水溶液4,中和去除粗製混合氣體3所包含之未反應氨,而得到脫氨處理氣體5之脫氨處理步驟。 如此,藉由將粗製混合氣體3藉由硫酸水溶液4進行脫氨處理,在之後的步驟,不需要進行用以去除氰化氫之合成原料的未反應氨的脫氨處理。
粗製混合氣體3與硫酸水溶液4的混合,較佳為藉由於硫酸水溶液4中,流入粗製混合氣體3來進行。例如,可藉由於填充硫酸水溶液4的硫酸槽,導入粗製混合氣體3,並與硫酸水溶液4混合來進行。於這般的方法,藉由將粗製混合氣體3與充分量之硫酸水溶液4接觸,以硫酸中和粗製混合氣體3所包含之合成原料的未反應氨,所生成之硫酸銨作為水溶液去除。 硫酸水溶液4之硫酸的濃度雖因粗製混合氣體3所包含之未反應氨的量而異,但從氨之有效率的去除及操作之安全性的觀點來看,較佳為0.1~20.0質量%,更佳為1.0~10.0質量%,再更佳為2.0~7.0質量%。 前述硫酸槽的溫度,從有效率地進行粗製混合氣體3之脫氨處理的觀點來看,較佳為30~100℃,更佳為50~95℃,再更佳為70~90℃。
[步驟(C)] 步驟(C)係使於步驟(B)所得之脫氨處理氣體5被水6吸收,而得到粗製混合液7之吸收步驟。 於步驟(C),係使充分去除氨之脫氨處理氣體5被水6吸收,並且將未被水吸收之氣體作為廢氣分離去除。
粗製混合液7係充分去除氨,pH為7.00以下,較佳為4.00~6.50,更佳為5.00~6.00,氰化氫有抑制聚合之安定的狀態。因此,在步驟(C),不需要再度添加硫酸等之酸性液,進行pH調整。 粗製混合液7中之氰化氫的濃度,從藉由純化氰化氫有效率地製造及氰化氫之聚合充分抑制之操作的安全性等的觀點來看,較佳為0.1~20.0質量%,更佳為0.3~10.0質量%,再更佳為0.5~5.0質量%。
又,從於粗製混合液7中充分溶存氰化氫,又,有效率地製造純化氰化氫的觀點來看,粗製混合液7較佳為冷卻至50℃以下,更佳為冷卻至1~35℃,再更佳為冷卻至5~25℃。
如上述,粗製混合液7雖於硫酸水溶液,調整至中性~酸性,但氰化氫以與丙烯腈混在的狀態稀釋,碳鋼並不會輕易腐蝕。據此,於步驟(C),耐腐蝕性雖高,但不需要使用高價之材質,例如SUS304或SUS316等之不銹鋼製的設備,可使用碳鋼製設備進行。 本發明之方法在此點,具有可抑制設備成本的優點。
將脫氨處理氣體5被水6吸收所得之粗製混合液7,除了氰化氫及丙烯腈之外,亦包含在丙烯腈的製造之副生成物即乙腈。為了分離去除乙腈,經過剝離處理亦佳。返回包含分離去除乙腈後之氰化氫及丙烯腈的回收液,亦將其合併作為粗製混合液7,供於以下之步驟(D)。
[步驟(D)] 步驟(D)係從於步驟(C)所得之粗製混合液7分離水層8,而得到包含氰化氫及丙烯腈之有機層9的液液分離步驟。 在步驟(D)之有機層9係氰化氫以丙烯腈稀釋的狀態,且pH保持在7.00以下,不需要用以抑制氰化氫的聚合之酸等之添加。有機層9之pH較佳為4.00~6.50,更佳為5.00~6.00。
即使在步驟(D),與步驟(C)相同,由於氰化氫以與丙烯腈混在的狀態稀釋,不會輕易腐蝕碳鋼,故不需要使用耐腐蝕性高之材質的設備,可使用碳鋼製設備進行。 本發明之方法在此點,具有可抑制設備成本的優點。
於經分離之水層8溶解有微量之丙烯腈或氰化氫、乙腈等。經分離之水層8為了提昇純化氰化氫的收率,可被回收,亦合併此以與粗製混合液7混合的方式進行循環。
[步驟(E)] 步驟(E)係蒸餾於步驟(D)所得之有機層9,而得到純化氰化氫11之蒸餾步驟。 於步驟(E),藉由蒸餾有機層9,將有機層9所包含之氰化氫與丙烯腈進行分離,而得到純化氰化氫11。
尚,在步驟(E),由於用以氰化氫之純化的蒸餾設備等與高濃度之氰化氫接觸,為了得到設備之腐蝕抑制及高純度的純化氰化氫,較佳為以不銹鋼等之耐腐蝕性高的材質構成。 又,有機層9為了抑制於蒸餾步驟之氰化氫的聚合並使其安定化,進行蒸餾時,較佳為以添加酸等的方式進行。作為用以氰化氫之安定化的添加劑,例如可列舉乙醇酸、乙酸、亞硫酸氣體、磷酸等。添加酸等時,添加後之有機層9之pH較佳為3.50~6.00,更佳為4.00~5.50。
包含分離去除丙烯腈而回收之氰化氫的餾分,藉由進一步進行精餾,可製造純度高之純化氰化氫11。 又,包含丙烯腈之脫氰化氫處理液12,藉由例如再度進行液液分離處理,乾燥所得之有機層,進一步進行精餾,可成為純度高之純化丙烯腈。 實施例
於以下,雖針對本發明之實施例進行描述,但本發明並非被限定於該實施例者。 [實施例1] 依據圖1所示之流程,製造純化氰化氫。 將藉由伸丙基之氨氧化所得之230℃之粗製丙烯腈氣體2以水洗淨,並冷卻至85℃後,與藉由甲醇之氨氧化所得之200℃之粗製氰化氫氣體1進行混合,而得到粗製混合氣體3(步驟(A))。粗製混合氣體3所包含之丙烯腈與氰化氫的比率以相對於氰化氫1莫耳,成為丙烯腈2.83莫耳的方式進行。 將粗製混合氣體3與硫酸槽(85℃)內之硫酸濃度5.0質量%的硫酸水溶液4進行混合,而得到85℃之脫氨處理氣體5(步驟(B))。 接著,將脫氨處理氣體5被水吸收,而得到約20℃之粗製混合液7(步驟(C))。粗製混合液7藉由剝離處理分離去除乙腈,返回包含氰化氫及丙烯腈之回收液,亦將其作為合併者。粗製混合液7之pH為5.95。尚,pH係在桌上型pH計(「F-71S」、堀場製作所股份有限公司、溫度修正(20℃)),作為測定3次之值的算術平均值(以下相同)。 接著,將粗製混合液7液液分離成有機層9與水層8 (步驟(D))。水層8進行回收而返回,亦將其合併在粗製混合液7。粗製混合液7所包含之氰化氫的濃度約為1.8質量%。有機層9之pH為5.63。 而且,於有機層9添加乙酸及亞硫酸氣體後(pH4.32),蒸餾此,而得到純化氰化氫(步驟(E))。尚,有機層9所包含之氰化氫的濃度約為8.3質量%。
將進行步驟(C)及步驟(D)之各設備定為碳鋼製,在其以外之步驟,將與氰化氫接觸之設備及構件定為不銹鋼(SUS304)製。
即使在將進行步驟(C)之碳鋼製的吸收塔作為1年使用(最大10,000t/年製造純化氰化氫)的情況下,亦未觀察到腐蝕的進行,又,在該吸收塔及其前後之線,未觀察到起因於氰化氫的聚合等之閉塞等的發生。 由此可知,藉由於混合粗製氰化氫氣體及粗製丙烯腈氣體後,進行脫氨處理,在純化氰化氫之製造設備,可減少耐腐蝕性高之高價材質的使用成為必要的點,而且,可有效率地進行氰化氫的聚合抑制。據此,根據本發明之製造方法,與單獨純化粗製氰化氫的情況相比較,可抑制設備成本,又,安全且安定地得到純化氰化氫。
1:粗製氰化氫氣體 2:粗製丙烯腈氣體 3:粗製混合氣體 4:硫酸水溶液 5:脫氨處理氣體 6:水 7:粗製混合液 8:水層 9:有機層 11:純化氰化氫 12:脫氰化氫處理液 21:氰化氫生成物 22:丙烯腈生成物 23:硫酸水溶液 24:廢氣 25:水 26:酸 31:分離粗製氰化氫 32:分離粗製丙烯腈 100:驟冷管柱 200:吸收管柱 300:回收管柱 400:傾析器 500:頭管柱
[圖1]係本發明之純化氰化氫之製造方法的概要流程圖。 [圖2]係同時製造專利文獻1所記載之丙烯腈及氰化氫之方法的概要流程圖。
1:粗製氰化氫氣體
2:粗製丙烯腈氣體
3:粗製混合氣體
4:硫酸水溶液
5:脫氨處理氣體
6:水
7:粗製混合液
8:水層
9:有機層
11:純化氰化氫
12:脫氰化氫處理液

Claims (8)

  1. 一種純化氰化氫之製造方法,其係包含:將粗製氰化氫氣體與藉由氨氧化所得之粗製丙烯腈氣體進行混合,而成為粗製混合氣體之步驟(A)、與 混合前述粗製混合氣體與硫酸水溶液,中和去除前述粗製混合氣體所包含之未反應氨,而得到脫氨處理氣體之步驟(B)、與 使前述脫氨處理氣體被水吸收,而得到粗製混合液之步驟(C)、與 從前述粗製混合液分離水層,而得到包含氰化氫及丙烯腈之有機層之步驟(D)、與 蒸餾前述有機層,而得到純化氰化氫之步驟(E)。
  2. 如請求項1之純化氰化氫之製造方法,其中,前述粗製混合氣體相對於氰化氫1莫耳,包含2.5~9.0莫耳之丙烯腈。
  3. 如請求項1或2之純化氰化氫之製造方法,其中,前述粗製混合液中之氰化氫的濃度為0.1~20.0質量%。
  4. 如請求項1之純化氰化氫之製造方法,其中,在前述步驟(B),藉由於前述硫酸水溶液中,使前述粗製混合氣體流入,混合前述粗製混合氣體與前述硫酸水溶液。
  5. 如請求項1之純化氰化氫之製造方法,其中,前述步驟(C)係於碳鋼製設備進行。
  6. 如請求項1之純化氰化氫之製造方法,其中,前述步驟(D)係於碳鋼製設備進行。
  7. 如請求項1或2之純化氰化氫之製造方法,其中,前述粗製氰化氫氣體係藉由包含甲醇之合成原料的氨氧化所得者。
  8. 如請求項1或2之純化氰化氫之製造方法,其中,前述粗製丙烯腈氣體係藉由包含伸丙基之合成原料的氨氧化所得者。
TW109141523A 2019-12-09 2020-11-26 純化氰化氫之製造方法 TW202126580A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222332 2019-12-09
JP2019-222332 2019-12-09

Publications (1)

Publication Number Publication Date
TW202126580A true TW202126580A (zh) 2021-07-16

Family

ID=76329783

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141523A TW202126580A (zh) 2019-12-09 2020-11-26 純化氰化氫之製造方法

Country Status (3)

Country Link
JP (1) JPWO2021117434A1 (zh)
TW (1) TW202126580A (zh)
WO (1) WO2021117434A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872269B2 (ja) * 2000-09-21 2007-01-24 三菱レイヨン株式会社 シアン化水素の製造方法
CN108025922B (zh) * 2015-07-22 2021-06-15 英威达纺织(英国)有限公司 来自丙烯腈共同制备的高纯度hcn

Also Published As

Publication number Publication date
WO2021117434A1 (ja) 2021-06-17
JPWO2021117434A1 (zh) 2021-06-17

Similar Documents

Publication Publication Date Title
US9340486B2 (en) Process for nitroalkane recovery by aqueous phase recycle to nitration reactor
US8877981B2 (en) Integrated process for preparing acrolein and 3-methylmercaptopropionaldehyde
RU2494092C2 (ru) Улучшенный способ совместного получения акрилонитрила и циановодорода
JP2013534888A (ja) アンモニウム塩の製造方法
JP2011518162A (ja) ニトロプロパンの製造プロセス
WO2014192823A1 (ja) 尿素合成方法
KR102067307B1 (ko) 단열 니트로화에 의한 니트로벤젠의 제조방법
JP2017531641A (ja) ジニトロトルエンの連続的製造方法における排出ガス清浄
US9771291B2 (en) Process for working up waste water from nitrobenzene preparation
JP6458006B2 (ja) 断熱ニトロ化によるニトロベンゼン調製のためのプロセス
US20160167975A1 (en) Hydrogen cyanide manufacturing process with second waste heat boiler
JP4418364B2 (ja) ニトリル類の混合物へのカルボン酸のアンモ酸化
TW202126580A (zh) 純化氰化氫之製造方法
KR102176381B1 (ko) 니트로벤젠 제조로부터의 폐수의 후처리 방법
EP2649039B1 (en) Process for using a nitroalkane as an entrainer for azeotropic removal of water from aqueous acid solution
JPH1025273A (ja) アセトンシアンヒドリンの製造方法
KR102676905B1 (ko) 아세트산의 제조 방법
US20080003172A1 (en) Continuous hydrolysis of hexafluoroarsenic acid
JP2007031456A (ja) アセトンシアンヒドリンの製造方法
JPS60193980A (ja) テトラヒドロフランの製法
JP2006298809A (ja) メチルアミン類の製造方法