WO2021114698A1 - 控制方法、控制系统及电动阀 - Google Patents

控制方法、控制系统及电动阀 Download PDF

Info

Publication number
WO2021114698A1
WO2021114698A1 PCT/CN2020/108087 CN2020108087W WO2021114698A1 WO 2021114698 A1 WO2021114698 A1 WO 2021114698A1 CN 2020108087 W CN2020108087 W CN 2020108087W WO 2021114698 A1 WO2021114698 A1 WO 2021114698A1
Authority
WO
WIPO (PCT)
Prior art keywords
setting parameter
curve
electric valve
demand
coordinate point
Prior art date
Application number
PCT/CN2020/108087
Other languages
English (en)
French (fr)
Inventor
刘阳
吴小燕
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Priority to EP20855848.6A priority Critical patent/EP3862646A4/en
Priority to KR1020217008159A priority patent/KR102502623B1/ko
Priority to JP2021512806A priority patent/JP7185022B2/ja
Priority to US17/278,990 priority patent/US11709508B2/en
Publication of WO2021114698A1 publication Critical patent/WO2021114698A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/046Actuating devices; Operating means; Releasing devices electric; magnetic using a motor with electric means, e.g. electric switches, to control the motor or to control a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/43Programme-control systems fluidic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33326Analyzer, diagnostic for servovalve
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45006Valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the embodiments of the present application relate to the field of control, such as a control method, control system, and electric valve.
  • An electric valve usually includes a controller, a stepping motor and a spool.
  • the controller sends a drive signal to the stepping motor to control the rotation of the stepping motor.
  • the stepping motor drives the spool of the electric valve to move relative to the valve port, so that the valve port reaches the corresponding opening.
  • the electric valve may be an electronic expansion valve, and the flow of the working medium can be adjusted by adjusting the position of the valve core in the electronic expansion valve.
  • the embodiments of the present application provide a control method, a control system, and an electric valve, which avoids the situation where the control accuracy deviation of the set parameters is large, and improves the accuracy of the control process of the electric valve.
  • an embodiment of the present application provides a control method for controlling an electric valve, and the control method includes:
  • the position mapping curve represents the actual position of the electric valve and the demand of the electric valve
  • the difference between the setting parameter corresponding to the abscissa of each coordinate point on the position mapping curve and the setting parameter corresponding to the ordinate is smaller than the setting difference
  • the electric valve is controlled to run to the set actual position of the electric valve.
  • an embodiment of the present application also provides a control method for controlling an electric valve, and the control method includes:
  • the position mapping curve is pre-stored in the control system that controls the operation of the electric valve, and the position mapping curve changes with the actually measured setting parameter curve and the demand setting parameter curve.
  • Both the measured setting parameter curve and the required setting parameter curve include the corresponding relationship between the position of the electric valve and the setting parameter;
  • the position mapping curve is obtained by fitting the actually measured setting parameter curve and the required setting parameter curve, and the setting parameter and the vertical axis corresponding to the abscissa of the point on the position mapping curve The difference of the setting parameters corresponding to the coordinates is smaller than the setting difference.
  • an embodiment of the present application also provides a control system capable of controlling an electric valve, the control system including:
  • the actual curve acquisition module is set to acquire the actually measured setting parameter curve
  • the demand curve acquisition module is configured to acquire a demand setting parameter curve; wherein, the actually measured setting parameter curve and the demand setting parameter curve both include the corresponding relationship between the position of the electric valve and the setting parameter ;
  • the fitting module is configured to fit the actually measured setting parameter curve and the required setting parameter curve to obtain a position mapping curve; wherein, the position mapping curve represents the actual position of the electric valve and The corresponding relationship of the required position of the electric valve, the difference between the setting parameter corresponding to the abscissa of each coordinate point on the position mapping curve and the setting parameter corresponding to the ordinate is smaller than the setting difference;
  • An actual position obtaining module configured to obtain a set demand position according to the set parameters of the demand and the set parameter curve of the demand, and obtain the set actual position according to the set demand position and the position mapping curve;
  • the electric valve control module is configured to control the electric valve to run to the set actual position of the electric valve.
  • an embodiment of the present application also provides a control system for controlling an electric valve, and the control system includes:
  • the actual position acquisition module is configured to obtain the set demand position according to the demand setting parameters and the demand setting parameter curve, and acquire the set actual position according to the set demand position and the position mapping curve;
  • An electric valve control module configured to control the electric valve to run to the set actual position of the electric valve
  • the storage module is configured to store the position mapping curve, the position mapping curve changes with the actually measured setting parameter curve and the change of the demand setting parameter curve, the actually measured setting parameter curve and the required setting parameter curve
  • the setting parameter curves of the demand all include the corresponding relationship between the position of the electric valve and the setting parameter; wherein, the position mapping curve passes through the setting parameter curve of the actual measurement and the setting parameter curve of the demand It is obtained by fitting, and the difference between the setting parameter corresponding to the abscissa of the point on the position mapping curve and the setting parameter corresponding to the ordinate is smaller than the setting difference.
  • an embodiment of the present application also provides an electric valve, including a stator assembly, a rotor assembly, a valve core, and a circuit board assembly.
  • the stator assembly includes a coil
  • the rotor assembly includes a permanent magnet
  • the coil is connected to a circuit board assembly.
  • the circuit board assembly is electrically connected, the coil generates an excitation magnetic field after being energized, the rotor assembly rotates in the excitation magnetic field, the position of the valve core is the position of the electric valve, and the circuit board assembly integrates a first The control system of the third aspect or the fourth aspect.
  • FIG. 1 is a schematic flowchart of a first control method provided by an embodiment of this application
  • FIG. 2 is a schematic diagram of a set parameter curve of actual measurement provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a demand setting parameter curve provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of the relationship curve between the demand position of the electric valve and the actual position obtained according to the principle of the same total stroke of the electric valve in the related art
  • Figure 5 is a schematic diagram of the relationship curve between the demand position of the electric valve and the setting parameters, and the actual position of the electric valve and the setting parameters obtained according to the principle that the total stroke of the electric valve is consistent in the related art;
  • FIG. 6 is a schematic diagram of a location mapping curve provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a second control method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another position mapping curve provided by an embodiment of this application.
  • FIG. 9 is a schematic block diagram of a control system provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of an electric valve provided by an embodiment of the application.
  • Figure 1 is a schematic flow chart of the first control method provided by an embodiment of the application.
  • the control method can be applied to scenarios where the electric valve needs to be controlled, and it can be executed by the control system of the electric valve.
  • the control system can use software and / Or the way of hardware implementation.
  • the control method includes step S101 to step S105.
  • step S101 the actually measured setting parameter curve is obtained; wherein the actually measured setting parameter curve includes the corresponding relationship between the position of the electric valve and the setting parameter.
  • the electric valve may include an electronic expansion valve
  • the electronic expansion valve may include a spool
  • the setting parameter may include a flow rate
  • the actually measured setting parameter curve includes the corresponding relationship between the position of the spool and the flow rate.
  • the electronic expansion valve may also include a motor, such as a stepper motor.
  • the electronic expansion valve also includes a controller.
  • the controller sends a drive signal to the stepper motor to control the rotation of the stepper motor.
  • the stepper motor drives the spool of the electric valve. Move relative to the valve port to make the valve port reach the corresponding opening.
  • the position of the electric valve can be understood as the position of the spool of the electric valve, and the position of the spool of the electric valve, the opening area of the electric valve and the stepper motor
  • the number of micro-steps ie micro-step value
  • the actually measured setting parameter curve can also include the motor's
  • the corresponding relationship between the micro-step value and the flow rate can be adjusted to make the electronic expansion valve run toward the set actual position by adjusting the micro-step value of the motor.
  • Fig. 2 is a schematic diagram of a set parameter curve for actual measurement provided by an embodiment of the application.
  • the abscissa represents the actual number of microsteps Xb of the stepping motor
  • the ordinate represents the setting parameter Yb.
  • the setting parameters are for example It can be the flow rate.
  • the number of microsteps of the stepping motor can characterize the position of the electric valve. Therefore, the curve shown in Figure 2 can characterize the actually measured setting parameter curve, including the corresponding relationship between the position of the electric valve and the setting parameters. From Figure 2, the following Table 1 can be obtained.
  • step S102 a required setting parameter curve is obtained; wherein the required setting parameter curve represents the corresponding relationship between the position of the electric valve and the setting parameter.
  • the set parameter curve of the demand also represents the corresponding relationship between the position of the electric valve and the set parameter.
  • the electric valve may include an electronic expansion valve
  • the electronic expansion valve may include a spool
  • the setting parameter may include a flow rate
  • the required setting parameter curve indicates the corresponding relationship between the position of the spool and the flow rate.
  • the required setting parameter curve may also indicate the corresponding relationship between the micro-step value of the motor and the flow rate, and the electronic expansion valve can be operated toward the set actual position by adjusting the micro-step value of the motor.
  • Fig. 3 is a schematic diagram of a required setting parameter curve provided by an embodiment of the application.
  • the abscissa represents the required number of microsteps Xa of the stepping motor
  • the ordinate represents the setting parameter Ya.
  • the setting parameters can be, for example, For flow, the number of microsteps of the stepping motor can characterize the position of the electric valve. Therefore, the curve shown in Figure 3 can characterize the required setting parameter curve, indicating the corresponding relationship between the position of the electric valve and the setting parameters. 3
  • the following table 2 can be obtained.
  • the demand position of the electric valve is the target position that the user wants the electric valve to rotate, and the set parameter corresponding to the user's demand, such as flow.
  • step S103 the actually measured setting parameter curve and the required setting parameter curve are fitted to obtain a position mapping curve; where the position mapping curve represents the corresponding relationship between the actual position of the electric valve and the demand position of the electric valve, The difference between the setting parameter corresponding to the abscissa of each coordinate point on the position mapping curve and the setting parameter corresponding to the ordinate is smaller than the setting difference.
  • the user's demand position of the electric valve and the actual position of the electric valve can be one-to-one correspondence.
  • the user's demand position Xa of the electric valve is 0 to 1000 steps.
  • Position Xb is from 0 to 1152 steps, then Xb satisfies:
  • the second column of data represents the flow rate Ya corresponding to the position Xa of the electric valve required by the user
  • the fourth column of data represents the flow rate Yb corresponding to the actual position Xb of the electric valve.
  • the curve in Figure 5 can be obtained.
  • the abscissa represents the spool position X
  • the unit is step
  • the ordinate represents the flow Y
  • the unit is kg/h
  • the curve a represents the corresponding relationship between the user's demand position of the electric valve Xa and the flow Ya
  • the curve b represents the actual position of the electric valve Correspondence between Xb and flow rate Yb.
  • the position mapping curve represents the corresponding relationship between the actual position of the electric valve and the demand position of the electric valve, and the actually measured setting parameter curve and the demand setting parameter curve are fitted to obtain the position map
  • the setting parameter may be flow, for example,
  • the coordinate point setting parameter is, for example, 0, and the abscissa of the point with the ordinate of 0 on the actually measured setting parameter curve shown in Figure 2 is obtained as 95, that is, the actual value corresponding to 95 steps of the stepping motor in the electric valve.
  • the flow is 0, and 95 is determined as the actual position of the coordinate point of the electric valve.
  • the required setting parameter curve is obtained corresponding to the coordinate point setting parameter of the electric valve.
  • the setting parameter can be flow rate, for example, the coordinate point setting parameter is It can be 0, and the abscissa of the point where the vertical coordinate is 0 on the demand setting parameter curve shown in Figure 3 is obtained as 82, that is, the setting parameter required by the customer.
  • the flow rate is 0, the theoretical value in the electric valve
  • the stepper motor needs to rotate 82 steps to determine that 82 is the coordinate point demand position of the electric valve.
  • FIG. 6 is a schematic diagram of a location mapping curve provided by an embodiment of the application.
  • the flow rate is gradually increased by variable 1.
  • the actual position of the electric valve corresponding to each coordinate point setting parameter is determined as the actual coordinate point.
  • Position, and the demand position of the corresponding electric valve as the coordinate point demand position that is, find the setting parameters corresponding to the same coordinate point, that is, the actual position Xb of the electric valve and the demand position Xa of the electric valve corresponding to the same flow rate, so as to realize the actual measurement setting
  • the fitting of the parameter curve and the parameter curve of the demand forms the fitting curve shown in Fig. 6, that is, the position mapping curve.
  • the abscissa and ordinate corresponding to the setting parameters of each coordinate point on the position mapping curve are the same, that is, the abscissa and ordinate of the coordinate point on the position mapping curve, that is, the demand position of the electric valve and the electric valve
  • the actual position corresponds to the same flow rate, that is, the difference between the setting parameter corresponding to the abscissa of each coordinate point on the aforementioned position mapping curve and the setting parameter corresponding to the ordinate is less than the setting difference in the setting difference, which is equal to 0 .
  • step S104 the set demand position is obtained according to the demand setting parameter and the demand setting parameter curve, and the set actual position is obtained according to the set demand position and the position mapping curve.
  • the set parameter of the user demand that is, the flow rate of the user demand is Ya'
  • Ya is obtained from the set parameter curve of the demand shown in Figure 3.
  • the abscissa Xa of the corresponding coordinate point', Xa' is the set demand position, that is, in an ideal state, the user wants to obtain the flow of Ya', that is, the number of steps to control the stepping motor to rotate Xa'.
  • Xb' is the set actual position.
  • step S105 the electric valve is controlled to move to the set actual position of the electric valve.
  • step S104 the actual position is set to Xb', that is, the actual rotation of the stepping motor is controlled by the number of steps Xb'
  • the flow rate corresponding to the number of steps of the stepping motor rotating Xa' is Ya'
  • the electric valve is controlled to run to the set actual position, so that the flow of the electric valve can reach the flow rate Ya' required by the user, eliminating the actuality of the electric valve
  • the difference between the flow rate corresponding to the position and the flow rate corresponding to the demand position of the electric valve as long as the electric valve is controlled to run to the set actual position, the flow rate required by the customer can be accurately obtained, which greatly improves the accuracy of the flow control of the electric valve.
  • FIG. 7 is a schematic flowchart of a second control method provided by an embodiment of this application.
  • the difference from the control method shown in Figure 1 is that it fits the actually measured setting parameter curve and the required setting parameter curve, and obtaining the position mapping curve includes: the actually measured setting parameter curve and the required setting parameter
  • the curve is fitted to obtain the intermediate position mapping curve; among them, the intermediate position mapping curve represents the corresponding relationship between the actual position of the electric valve and the required position of the electric valve, and the abscissa and ordinate of each coordinate point on the intermediate position mapping curve correspond to
  • the setting parameters are the same; multiple polyline points are obtained according to the second derivative of adjacent coordinate points on the intermediate position mapping curve, and the adjacent polyline points are linearly connected to form a position mapping curve.
  • the control method includes step S201 to step S206.
  • step S201 the actually measured setting parameter curve is obtained; wherein the actually measured setting parameter curve includes the corresponding relationship between the position of the electric valve and the setting parameter.
  • step S202 a required setting parameter curve is obtained; wherein the required setting parameter curve includes the corresponding relationship between the position of the electric valve and the setting parameter.
  • step S203 the actual measured setting parameter curve and the required setting parameter curve are fitted to obtain an intermediate position mapping curve; wherein the intermediate position mapping curve represents the correspondence between the actual position of the electric valve and the demand position of the electric valve Relationship, the setting parameter corresponding to the abscissa of each coordinate point on the intermediate position mapping curve is the same as the setting parameter corresponding to the ordinate.
  • the intermediate position mapping curve represents the corresponding relationship between the actual position of the electric valve and the demand position of the electric valve.
  • the actual measured setting parameter curve and the required setting parameter curve are fitted to obtain the intermediate position mapping curve and the intermediate position mapping curve.
  • the acquisition process of is similar to the acquisition process of the position mapping curve described in step S103, and will not be repeated here. That is, the curve shown in FIG. 6 is now equivalent to the intermediate position mapping curve used to obtain the position mapping curve, rather than the final position
  • the mapping curve as can be seen from Table 4 and Figure 6, the abscissa and ordinate corresponding to the setting parameters of each coordinate point on the intermediate position mapping curve are the same.
  • step S204 a plurality of broken line points are obtained according to the second derivative of adjacent coordinate points on the intermediate position mapping curve, and the adjacent broken line points are linearly connected to form a position mapping curve.
  • the coordinates of two adjacent coordinate points on the intermediate position mapping curve shown in FIG. 6 can be set as (X a1 , X b1 ) and (X a2 , X b2 ), and the latter can be obtained according to the following formula
  • the point where the absolute value of the second derivative is greater than the set value is selected as the broken line point.
  • the set value here can be set manually, for example, the set value can be set to 0.2, that is, the foregoing second derivative is filtered out to be greater than 0.2 coordinate point (X a2, X b2) as a polyline points, and screening the second derivative is less than -0.2 coordinate point (X a2, X b2) as a polyline point.
  • the value is 0.2, which is not a limitation of the set value. Taking the set value of 0.2 as an example, Table 5 shows the demand position Xat of the electric valve and the actual position Xbt of the electric valve corresponding to the selected broken line points.
  • FIG. 8 is a schematic diagram of another position mapping curve provided by an embodiment of this application.
  • FIG. 8 shows the aforementioned broken line point A1, which linearly connects adjacent broken line points.
  • A1 can form a position mapping curve, that is, every two adjacent broken line points A1 are linearly connected, that is, a desired position mapping curve can be formed.
  • the step of linearly connecting polyline points to form a position mapping curve can be executed by software.
  • SlopeA2B in Table 5 represents the ratio of the ordinate difference between two adjacent polyline points A1 and the abscissa difference.
  • SlopeB2A represents the ratio of the abscissa difference and the ordinate difference between two adjacent polyline points A1.
  • SlopeA2B and SlopeB2A are mutually exclusive. It is the reciprocal, both of which can characterize the inclination of the linear connection between two adjacent broken line points A1. It can be seen from Table 5 that SlopeA2B and SlopeB2A used to characterize the slope between adjacent broken line points A1 are basically decimals.
  • the obtained slopes SlopeA2B and SlopeB2A can be multiplied by the set multiple
  • the embodiment of the present application has no limitation on the size of the set multiple. It is sufficient to ensure that the product of SlopeA2B and SlopeB2A and the set multiple is an integer.
  • the set multiple is set to 128 as an example, and the result in Table 5 Corresponding to the integer multiples of SlopeA2B SlopeMagA2B, and corresponding to the integer multiples of SlopeB2A SlopeMagB2A, and the horizontal and vertical coordinates Xat and Xbt of the broken line points shown in Table 5 and the integer multiples SlopeMagA2B and SlopeMagB2A are stored in the software program, and the software program is burned to Electric valve.
  • the area between the adjacent polyline points can be linearly interpolated according to the integer slope.
  • the coordinates of the adjacent polyline points are (0, 0) and (120, 121), respectively.
  • the integer slope between the two broken line points linearly interpolates the area between the two broken line points to obtain the value of the actual position Xbt of the electric valve corresponding to the demand position Xat of the electric valve at each step between steps 0 and 120 .
  • the linear interpolation method is used to obtain the position mapping curve as shown in Figure 8.
  • the software program only needs to process the broken line points and the linear calculation between the broken line points, and there is no need to calculate the Xat of each step on the position mapping curve and the Xbt corresponding to each step of Xat.
  • the coordinate points are processed in a large amount, which greatly reduces the amount of software program processing, greatly reduces the working time of the software program, and reduces the probability of errors in the processing of the software program.
  • the position mapping curve shown in FIG. 8 is only a curve obtained by performing second-order derivative processing on the curve shown in FIG. 6 and linearly connecting them, so that the position mapping curve shown in FIG. 8 is close to the curve shown in FIG.
  • step S205 the set demand position is obtained according to the demand setting parameter and the demand setting parameter curve, and the set actual position is obtained according to the set demand position and the position mapping curve.
  • step S206 the electric valve is controlled to move to the set actual position of the electric valve.
  • FIG. 9 is a schematic block diagram of a control system provided by an embodiment of the application.
  • the control system includes an actual curve acquisition module 301, a demand curve acquisition module 302, a fitting module 303, an actual position acquisition module 304, and The electric valve control module 305, the actual curve acquisition module 301 is set to acquire the actually measured setting parameter curve, and the demand curve acquisition module 302 is set to acquire the demand setting parameter curve; wherein the actually measured setting parameter curve and the demand setting
  • the fixed parameter curve includes the corresponding relationship between the position of the electric valve and the set parameter.
  • the fitting module 303 is configured to fit the actually measured setting parameter curve and the required setting parameter curve to obtain a position mapping curve; where the position mapping curve represents the corresponding relationship between the actual position of the electric valve and the demand position of the electric valve , The difference between the setting parameter corresponding to the abscissa of each coordinate point on the position mapping curve and the setting parameter corresponding to the ordinate is smaller than the setting difference.
  • the actual position obtaining module 304 is configured to obtain the set demand position according to the required setting parameters and the required setting parameter curve, and obtain the set actual position according to the set demand position and the position mapping curve.
  • the electric valve control module 305 is configured to control the electric valve to run to the set actual position of the electric valve.
  • the control system provided by the embodiment of the present application also avoids the situation of large deviations in the control accuracy of the set parameters, and improves the accuracy of the control process of the electric valve.
  • the control system provided by the embodiment of the present application can execute the control method provided by the foregoing embodiment.
  • the third implementation of the control method the control method is used to control the electric valve, the control method includes obtaining the set demand position according to the demand setting parameters and the demand setting parameter curve, and obtaining the set demand position according to the set demand position and the position mapping curve Set the actual position; control the electric valve to run to the set actual position of the electric valve; among them, the position mapping curve is pre-stored in the control system that controls the operation of the electric valve, and the position mapping curve follows the actual measured setting parameter curve and the demand setting
  • the required setting parameter curve is obtained by fitting, and the difference between the setting parameter corresponding to the abscissa of the point on the position mapping curve and the setting parameter corresponding to the ordinate is smaller than the setting difference.
  • the main difference of the implementation of the third control method is that the position mapping curve is pre-stored in the control system that controls the operation of the electric valve, and the position mapping curve follows the actual measurement.
  • the setting parameter curve and the demand setting parameter curve change.
  • the first and second control methods are not required
  • the acquisition process of the position mapping curve in the embodiment is beneficial to mass production. In this way, the control method is simpler, and the space required for the control system is smaller.
  • the position mapping curve can be changed online or offline, and the online correction
  • the method is the same as the first and second implementations of the control method, and the offline correction method is the same as the third implementation, where online refers to the production line, and offline refers to after the production is completed.
  • the embodiment of the present application also provides a second control system for controlling the electric valve.
  • the control system includes an actual position acquisition module, an electric valve control module, and a storage module.
  • the actual position acquisition module is set to set parameters and demand settings according to requirements.
  • the set parameter curve obtains the set demand position, and the set actual position is obtained according to the set demand position and the position mapping curve;
  • the electric valve control module is set to control the operation of the electric valve to the set actual position of the electric valve;
  • the storage module is set to the storage position Mapping curve, position mapping curve changes with the actually measured setting parameter curve and the required setting parameter curve.
  • the actually measured setting parameter curve and the required setting parameter curve both include the position and setting parameters of the electric valve.
  • the corresponding relationship between the position mapping curve is obtained by fitting the actually measured setting parameter curve and the required setting parameter curve, and the setting parameter corresponding to the abscissa of the point on the position mapping curve and the setting corresponding to the ordinate are The difference of the set parameter is less than the set difference.
  • the main difference of the implementation of the second control system is that under the condition that the actually measured setting parameter curve and the required setting parameter curve remain unchanged, there is no need to change
  • the location mapping curve acquisition process in the implementation of the first and second control methods needs to be performed, that is, the actual curve acquisition module, the demand curve acquisition module, and the fitting module are not required, and a storage module for storing the location mapping curve is required. It is used to store the position mapping curve. Under the condition that the actually measured setting parameter curve and the required setting parameter curve remain unchanged, there is no need to obtain the position mapping curve in the implementation of the first and second control methods
  • the process is conducive to mass production.
  • the position mapping curve can be changed online or offline.
  • the online correction method is the same as that of the first control system.
  • the correction method is the same as that of the second control system.
  • FIG. 10 is a schematic structural diagram of an electric valve provided by an embodiment of the application.
  • the electric valve 100 includes a housing 60, a stator assembly 601, a rotor assembly 602, a valve core 603, and a circuit board assembly 90.
  • the circuit board assembly 90 is arranged in an inner cavity formed by the housing 60, and the stator assembly 601 is arranged On the outer circumference of the rotor assembly 602, the rotor assembly 602 and the stator assembly 601 constitute the stepping motor in the electric valve 100.
  • the stator assembly 601 includes a coil, and the rotor assembly 602 includes a permanent magnet. The coil is electrically connected to the circuit board assembly 90.
  • the rotor assembly 602 runs in the excitation magnetic field, and the stepper motor drives the spool 603 of the electric valve to move relative to the valve port 604, so that the valve port 604 reaches the corresponding opening.
  • the position of the spool 603 is the position of the electric valve.
  • the board assembly 90 integrates the control system of the above embodiment (not shown in FIG. 10).
  • the embodiments of the present application provide a control method, a control system, and an electric valve.
  • the control method includes obtaining the actually measured setting parameter curve and the required setting parameter curve. Both curves include the position of the electric valve and the setting parameter curve.
  • fitting the actually measured setting parameter curve and the demand setting parameter curve to obtain the position mapping curve containing the corresponding relationship between the actual position of the electric valve and the demand position of the electric valve, and each position mapping curve The difference between the setting parameter corresponding to the abscissa of each coordinate point and the setting parameter corresponding to the ordinate is less than the setting difference, and the setting difference can be set to zero or a value that tends to zero, so that the final position mapping obtained
  • the horizontal and vertical coordinates of the coordinate points on the curve, that is, the required position of the electric valve and the actual position of the electric valve are the same or close to the set parameters.
  • the set demand position query the set actual position corresponding to the set demand position on the position mapping curve. , And then control the electric valve to run to the actual setting position of the electric valve, so that the actual setting parameters of the electric valve reach the customer's demand setting parameters or very close to the customer's demand setting parameters, avoiding the large deviation of the control accuracy of the set parameters Circumstances improve the accuracy of the control process of the electric valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuzzy Systems (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种控制方法、控制系统及电动阀(100),控制方法包括获取实际测量的设定参数曲线;获取需求的设定参数曲线;实际测量的设定参数曲线和需求的设定参数曲线均包括电动阀(100)的位置与设定参数的对应关系;对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,获取位置映射曲线;位置映射曲线表示电动阀(100)的实际位置与电动阀(100)的需求位置的对应关系,位置映射曲线上每个坐标点的横坐标对应的设定参数与纵坐标对应的设定参数的差值小于设定差值;根据需求的设定参数以及需求的设定参数曲线获得设定需求位置,并根据设定需求位置以及位置映射曲线获取设定实际位置;控制电动阀(100)向电动阀(100)的设定实际位置运行。

Description

控制方法、控制系统及电动阀
本申请要求在2019年12月11日提交中国专利局、申请号为201911264982.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及控制领域,例如一种控制方法、控制系统及电动阀。
背景技术
电动阀通常包括控制器、步进电机和阀芯,控制器发送驱动信号至步进电机控制步进电机转动,步进电机带动电动阀的阀芯相对阀口运行,使阀口达到相应的开度,电动阀例如可以是电子膨胀阀,通过调节电子膨胀阀中阀芯的位置可以实现对工作介质流量的调节。
在控制电动阀运行的过程中,会存在用户对电动阀的需求位置与流量的对应关系,和电动阀的实际位置与流量的对应关系不一致的情况,目前可以根据电动阀总行程一致的原则,将用户对电动阀的需求位置与电动阀的实际位置一一对应,但是采用该方法得到的电动阀的需求位置与流量的关系曲线,和电动阀的实际位置与流量的关系曲线的差异较大,根据用户对电动阀的需求位置控制电动阀运行到相应的实际位置时,电动阀对应的流量并无法满足用户对电动阀流量的要求,流量控制的精度上存在很大的偏差,即无法精确控制电动阀的流量。
发明内容
本申请实施例提供了一种控制方法、控制系统及电动阀,避免了设定参数控制精度偏差大的情况,提高了电动阀控制过程的精度。
第一方面,本申请实施例提供了一种控制方法,用于控制电动阀,所述控制方法包括:
获取实际测量的设定参数曲线;
获取需求的设定参数曲线;其中,所述实际测量的设定参数曲线和所述需求的设定参数曲线均包括所述电动阀的位置与设定参数的对应关系;
对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取位置映射曲线;其中,所述位置映射曲线表示所述电动阀的实际位置与所述电动阀的需求位置的对应关系,所述位置映射曲线上每个坐标点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值;
根据需求的设定参数以及所述需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及所述位置映射曲线获取设定实际位置;
控制所述电动阀向所述电动阀的所述设定实际位置运行。
第二方面,本申请实施例还提供了一种控制方法,用于控制电动阀,控制方法包括:
根据需求设定参数以及需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及位置映射曲线获取设定实际位置;
控制所述电动阀向所述电动阀的所述设定实际位置运行;
其中,所述位置映射曲线预存于控制所述电动阀运行的控制系统中,所述位置映射曲线随实际测量的设定参数曲线以及所述需求的设定参数曲线的变化而变化,所述实际测量的设定参数曲线和所述需求的设定参数曲线均包括所述电动阀的位置与设定参数的对应关系;
所述位置映射曲线通过对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合得到,且所述位置映射曲线上点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值。
第三方面,本申请实施例还提供了一种控制系统,能够控制电动阀,控制系统包括:
实际曲线获取模块,设置为获取实际测量的设定参数曲线;
需求曲线获取模块,设置为获取需求的设定参数曲线;其中,所述实际测 量的设定参数曲线和所述需求的设定参数曲线均包括所述电动阀的位置与设定参数的对应关系;
拟合模块,设置为对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取位置映射曲线;其中,所述位置映射曲线表示所述电动阀的实际位置与所述电动阀的需求位置的对应关系,所述位置映射曲线上每个坐标点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值;
实际位置获取模块,设置为根据需求的设定参数以及所述需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及所述位置映射曲线获取设定实际位置;
电动阀控制模块,设置为控制所述电动阀向所述电动阀的所述设定实际位置运行。
第四方面,本申请实施例还提供了一种控制系统,用于控制电动阀,控制系统包括:
实际位置获取模块,设置为根据需求设定参数以及需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及位置映射曲线获取设定实际位置;
电动阀控制模块,设置为控制所述电动阀向所述电动阀的所述设定实际位置运行;
存储模块,设置为存储所述位置映射曲线,所述位置映射曲线随实际测量的设定参数曲线以及所述需求的设定参数曲线的变化而变化,所述实际测量的设定参数曲线和所述需求的设定参数曲线均包括所述电动阀的位置与设定参数的对应关系;其中,所述位置映射曲线通过对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合得到,且所述位置映射曲线上点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值。
第五方面,本申请实施例还提供了一种电动阀,包括定子组件、转子组件、 阀芯以及线路板组件,所述定子组件包括线圈,所述转子组件包括永磁体,所述线圈与所述线路板组件电连接,所述线圈通电后产生激励磁场,所述转子组件在所述激励磁场中转动,所述阀芯的位置为所述电动阀的位置,所述线路板组件集成有第三方面或者第四方面的控制系统。
附图说明
图1为本申请一实施例提供的第一种控制方法的流程示意图;
图2为本申请一实施例提供的一种实际测量的设定参数曲线示意图;
图3为本申请一实施例提供的一种需求的设定参数曲线示意图;
图4为相关技术中根据电动阀总行程一致的原则,得到的电动阀的需求位置与实际位置的关系曲线示意图;
图5为相关技术中根据电动阀总行程一致的原则,得到的电动阀需求位置与设定参数以及电动阀实际位置与设定参数的关系曲线示意图;
图6为本申请一实施例提供的一种位置映射曲线的示意图;
图7为本申请一实施例提供的第二种控制方法的流程示意图;
图8为本申请一实施例提供的另一种位置映射曲线示意图;
图9为本申请一实施例提供的一种控制系统的示意框图;
图10为本申请一实施例提供的一种电动阀的结构示意图。
具体实施方式
图1为本申请一实施例提供的第一种控制方法的流程示意图,该控制方法可以应用在需要对电动阀进行控制的场景,可以由电动阀的控制系统执行,该控制系统可以采用软件和/或硬件的方式来执行。如图1所示,该控制方法包括步骤S101至步骤S105。
在步骤S101中,获取实际测量的设定参数曲线;其中,实际测量的设定参数曲线包括电动阀的位置与设定参数的对应关系。
获取实际测量的设定参数曲线,实际测量的设定参数曲线包括电动阀的位置与设定参数的对应关系。示例性地,电动阀可以包括电子膨胀阀,电子膨胀阀包括阀芯,设定参数可以包括流量,实际测量的设定参数曲线则包括阀芯的位置与流量的对应关系。
示例性地,电子膨胀阀还可以包括电机,例如步进电机,电子膨胀阀还包括控制器,控制器发送驱动信号至步进电机以控制步进电机转动,步进电机带动电动阀的阀芯相对阀口移动,使阀口达到相应的开度,电动阀的位置可以理解为电动阀的阀芯所在位置,而电动阀的阀芯所在位置、电动阀的阀口开度面积以及步进电机的微步步数(即微步值)均成线性关系,因此可以用电动阀中步进电机的微步步数表征电动阀的位置,因此,实际测量的设定参数曲线还可以包括电机的微步值与流量的对应关系,可以通过调整电机的微步值使电子膨胀阀朝设定实际位置运行。
图2为本申请一实施例提供的一种实际测量的设定参数曲线示意图,图2中横坐标表示步进电机的实际微步步数Xb,纵坐标表示设定参数Yb,设定参数例如可以为流量,步进电机的微步步数可以表征电动阀的位置,因此图2所示的曲线可以表征实际测量的设定参数曲线,包含了电动阀的位置与设定参数的对应关系,由图2可以得到下述表1。
表1电动阀的实际位置与设定参数的对应关系
Figure PCTCN2020108087-appb-000001
Figure PCTCN2020108087-appb-000002
在步骤S102中,获取需求的设定参数曲线;其中,需求的设定参数曲线表示电动阀的位置与设定参数的对应关系。
获取需求的设定参数曲线,需求的设定参数曲线同样表示电动阀的位置与设定参数的对应关系。示例性地,电动阀可以包括电子膨胀阀,电子膨胀阀包括阀芯,设定参数可以包括流量,需求的设定参数曲线则表示阀芯的位置与流量的对应关系。示例性地,参照步骤S101的描述,需求的设定参数曲线还可以表示电机的微步值与流量的对应关系,可以通过调整电机的微步值使电子膨胀 阀朝设定实际位置运行。
图3为本申请一实施例提供的一种需求的设定参数曲线示意图,图3中横坐标表示步进电机的需求微步步数Xa,纵坐标表示设定参数Ya,设定参数例如可以为流量,步进电机的微步步数可以表征电动阀的位置,因此图3所示的曲线可以表征需求的设定参数曲线,表示了电动阀的位置与设定参数的对应关系,由图3可以得到下述表2,电动阀的需求位置即用户希望电动阀转动的目标位置,对应用户需求的设定参数,例如流量。
表2电动阀的需求位置与设定参数的对应关系
Figure PCTCN2020108087-appb-000003
Figure PCTCN2020108087-appb-000004
在步骤S103中,对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,获取位置映射曲线;其中,位置映射曲线表示电动阀的实际位置与电动阀的需求位置的对应关系,位置映射曲线上每个坐标点的横坐标对应的设定参数与纵坐标对应的设定参数的差值小于设定差值。
相关技术中可以根据电动阀总行程一致的原则,将用户对电动阀的需求位置与电动阀的实际位置一一对应,例如用户对电动阀的需求位置Xa为0~1000步,电动阀的实际位置Xb为0~1152步,则Xb满足:
Figure PCTCN2020108087-appb-000005
即Xa和Xb满足图4所示的曲线,图4中横坐标表示Xa,纵坐标表示Xb,进而实现将客户的需求位置与电动阀的实际位置一一对应设置,且可以得到下述表3。
表3根据电动阀总行程一致原则得到的位置与流量数据
Xa(步) Ya(kg/h) Xb(步) Yb(kg/h)
0 0 0 0.00
82 0 94 0.00
88 5 101 5.00
95 12.6 109 11.76
100 14.2 115 15.60
120 18 138 20.26
160 36 184 26.21
190 58 218 30.38
240 72 276 37.03
300 87 345 44.77
370 98 426 53.85
560 113 645 77.02
580 115 668 79.96
620 126 714 88.85
650 149 748 104.23
660 162 760 114.18
725 230 835 157.99
800 260 921 219.27
976 294 1124 294.00
1000 300 1152 300.00
表3中第二列数据用户对电动阀的需求位置Xa对应的流量Ya,第四列数据表示电动阀的实际位置Xb对应的流量Yb,由表3可得到图5中的曲线,图5中横坐标表示阀芯位置X,单位为步,纵坐标表示流量Y,单位为kg/h,曲线a表示用户对电动阀的需求位置Xa与流量Ya的对应关系,曲线b表示电动阀的实际位置Xb与流量Yb的对应关系。由图5可以看出,根据总行程一致的原则控制电动阀,采用用户对电动阀的需求位置与电动阀的实际位置一一对应的 方法,得到的a和b两条曲线除去全开和全闭位置之外,流量的差异很大,即根据用户对电动阀的需求位置控制电动阀运行到相应的实际位置时,电动阀对应的流量并无法满足用户对电动阀流量的要求,流量控制的精度上存在很大的偏差,即无法精确控制电动阀的流量。
而在本申请实施例中,位置映射曲线表示电动阀的实际位置与电动阀的需求位置的对应关系,对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,以获取位置映射曲线,可以先根据实际测量的设定参数曲线以及坐标点设定参数获取实际测量的设定参数曲线上对应坐标点设定参数的电动阀的坐标点实际位置,设定参数例如可以为流量,坐标点设定参数例如为0,获取到图2所示的实际测量的设定参数曲线上纵坐标为0的点的横坐标为95,即电动阀中的步进电机转动95步对应的实际流量为0,确定95为电动阀的坐标点实际位置。
然后根据需求的设定参数以及坐标点设定参数获取需求的设定参数曲线上对应坐标点设定参数的电动阀的坐标点需求位置,设定参数例如可以为流量,坐标点设定参数例如可以为0,获取到图3所示的需求的设定参数曲线上纵坐标为0的点的横坐标为82,即客户需求的设定参数,例如流量为0时,理论上电动阀中的步进电机需要转动82步,确定82为电动阀的坐标点需求位置。
以对应同一坐标点设定参数的坐标点实际位置为纵坐标,对应同一坐标点设定参数的坐标点需求位置为横坐标,形成坐标点,将不同的坐标点设定参数对应的坐标点平滑连接形成位置映射曲线,表4体现了前述不同坐标点的形成过程,图6为本申请一实施例提供的一种位置映射曲线的示意图。
表4位置映射曲线上不同坐标点的形成过程
Figure PCTCN2020108087-appb-000006
Figure PCTCN2020108087-appb-000007
Figure PCTCN2020108087-appb-000008
参照表4,可以设置坐标点设定参数,例如流量以变量1逐渐增加,根据图2和图3所示的曲线分别确定每个坐标点设定参数对应的电动阀的实际位置作为坐标点实际位置,以及对应的电动阀的需求位置作为坐标点需求位置,即找到对应相同坐标点设定参数,即对应相同流量的电动阀的实际位置Xb和电动阀的需求位置Xa,实现实际测量的设定参数曲线与需求的设定参数曲线的拟合,形成图6所示的拟合曲线,即位置映射曲线。
由表4和图6可知,位置映射曲线上每个坐标点的横坐标和纵坐标对应的设定参数相同,即位置映射曲线上坐标点的横纵坐标,即电动阀的需求位置和电动阀的实际位置对应的流量相同,即前述位置映射曲线上每个坐标点的横坐标对应的设定参数与纵坐标对应的设定参数的差值小于设定差值中的设定差值等于0。
在步骤S104中,根据需求的设定参数以及需求的设定参数曲线获得设定需求位置,并根据设定需求位置以及位置映射曲线获取设定实际位置。
根据需求的设定参数以及需求的设定参数曲线获得设定需求位置,例如用户需求的设定参数,即用户需求的流量为Ya’,通过图3所示的需求的设定参数曲线获取Ya’对应坐标点的横坐标Xa’,Xa’即为设定需求位置,即理想状态下,用户想要获取Ya’的流量,即需要控制步进电机转动Xa’步数。
根据设定需求位置以及位置映射曲线获取设定实际位置,设定需求位置为Xa’,通过图6所示的位置映射曲线获取Xa’对应坐标点的纵坐标Xb,Xb’即为设定实际位置。
在步骤S105中,控制电动阀向电动阀的设定实际位置运行。
控制电动阀向获取的设定实际位置运行,由于位置映射曲线上每个坐标点的横坐标与纵坐标对应的设定参数相同,即图6所示的位置映射曲线上坐标点的横纵坐标,即电动阀的需求位置和电动阀的实际位置对应的流量相同,用户 需求的流量为Ya’,经过步骤S104获得设定实际位置为Xb’,即控制步进电机实际转动Xb’步数与理想状态下步进电机转动Xa’步数对应的流量均为Ya’,控制电动阀向设定实际位置运行,即可使电动阀的流量达到用户需求的流量Ya’,消除了电动阀的实际位置对应的流量与电动阀的需求位置对应的流量之间的差异,只要控制电动阀向设定实际位置运行,即可精确地获取客户需求的流量,大大提高了对电动阀流量控制的精度。
图7为本申请一实施例提供的第二种控制方法的流程示意图。与图1所示控制方法不同的是,对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,获取位置映射曲线包括:对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,获取中间位置映射曲线;其中,中间位置映射曲线表示电动阀的实际位置与电动阀的需求位置的对应关系,中间位置映射曲线上每个坐标点的横坐标与纵坐标对应的设定参数相同;根据中间位置映射曲线上相邻坐标点的二阶导数获取多个折线点,线性连接相邻折线点形成位置映射曲线。如图7所示,该控制方法包括步骤S201至步骤S206。
在步骤S201中,获取实际测量的设定参数曲线;其中,实际测量的设定参数曲线包括电动阀的位置与设定参数的对应关系。
在步骤S202中,获取需求的设定参数曲线;其中,需求的设定参数曲线包括电动阀的位置与设定参数的对应关系。
在步骤S203中,对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,获取中间位置映射曲线;其中,中间位置映射曲线表示电动阀的实际位置与电动阀的需求位置的对应关系,中间位置映射曲线上每个坐标点的横坐标对应的设定参数与纵坐标对应的设定参数相同。
中间位置映射曲线表示电动阀的实际位置与电动阀的需求位置的对应关系,对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,以获取中间位置映射曲线,中间位置映射曲线的获取过程与上述步骤S103描述的位置映射曲 线的获取过程类似,这里不再赘述,即图6所示的曲线此时相当于用于获取位置映射曲线的中间位置映射曲线,而非最终的位置映射曲线,由表4和图6可知,中间位置映射曲线上每个坐标点的横坐标与纵坐标对应的设定参数相同。
在步骤S204中,根据中间位置映射曲线上相邻坐标点的二阶导数获取多个折线点,线性连接相邻折线点形成位置映射曲线。
计算图6所示的中间位置映射曲线上相邻两个坐标点中后一坐标点的二阶导数,并筛选出二阶导数的绝对值大于设定值的坐标点作为折线点,示例性的,根据表4或者图6获取中间位置映射曲线上各个坐标点的坐标,先计算出相邻两个坐标点中后一坐标点的一阶导数,然后根据一阶导数计算获取该后一坐标点的二阶导数,二阶导数能够判断曲线的凹凸性,因此可以根据前述二阶导数确定中间位置映射曲线上的折线点。
示例性地,可以设置图6所示的中间位置映射曲线上前后相邻的两个坐标点的坐标为(X a1,X b1)和(X a2,X b2),根据以下公式可得到后一坐标点(X a2,X b2)的一阶导数Dxa 2’:
Figure PCTCN2020108087-appb-000009
由此可得到图6所示的中间位置映射曲线上每个坐标点的一阶导数,再根据(X a1,Dxa 1’)和(X a2,Dxa 2’)求出后一坐标点(X a2,X b2)的二阶导数Dxa 2”:
Figure PCTCN2020108087-appb-000010
根据Dxa 2”筛选出二阶导数的绝对值大于设定值的点作为折线点,这里的设定值可以人为设定,例如可以设置设定值为0.2,即筛选出前述二阶导数大于0.2的坐标点(X a2,X b2)作为折线点,以及筛选出二阶导数小于-0.2的坐标点(X a2,X b2)作为折线点。需要说明的是,这里仅示例性地设置设定值为0.2,并非对设定值的限定。以设定值为0.2为例,表5即为筛选出来的折线点对应的电动阀的需求位置Xat和电动阀的实际位置Xbt的情况。
表5筛选出来的折线点对应的Xat和Xbt的情况
Figure PCTCN2020108087-appb-000011
Figure PCTCN2020108087-appb-000012
这样,获取到上述表5示出的多个折线点,图8为本申请一实施例提供的另一种位置映射曲线示意图,图8中示出了前述折线点A1,线性连接相邻折线点A1即可形成位置映射曲线,即将每两个相邻折线点A1线性连接,即可以形成所需的位置映射曲线。
线性连接折线点形成位置映射曲线的步骤可以软件执行,为实现折线点的线性连接,先获取相邻折线点之间的斜率,由于软件程序处理小数需要进行浮点运算,会使得软件处理的程序复杂化,占用软件程序资源,而相邻折线点之间的斜率难以避免地会出现小数,如上述表5所示。
表5中的SlopeA2B表示相邻两个折线点A1纵坐标差值与横坐标差值的比值,SlopeB2A表示相邻两个折线点A1横坐标差值与纵坐标差值的比值,SlopeA2B和SlopeB2A互为倒数,二者均可以表征相邻两个折线点A1之间线性连线的倾斜情况。由表5可以看出,用于表征相邻折线点A1之间斜率的SlopeA2B和SlopeB2A基本均为小数,为使软件程序避免浮点运算,可以将获取的斜率SlopeA2B和SlopeB2A均乘以设定倍数以获取整数斜率,本申请实施例对设定倍数的大小无限定,确保SlopeA2B和SlopeB2A与设定倍数的乘积为整数即可,例如这里示例性地设置设定倍数为128,则得到表5中对应SlopeA2B的整数倍数SlopeMagA2B,以及对应SlopeB2A的整数倍数SlopeMagB2A,并将表5所示的折线点的横纵坐标Xat和Xbt以及整数倍数SlopeMagA2B和SlopeMagB2A均存入软件程序,并将软件程序烧录到电动阀中。
获取到整数斜率后,可以根据整数斜率对相邻的折线点之间的区域进行线 性插值,例如相邻的折线点的坐标分别为(0,0)和(120,121),在可以根据这两个折线点之间的整数斜率对这两个折线点之间的区域进行线性插值,以得到0步至120步之间对应每一步电动阀的需求位置Xat的电动阀的实际位置Xbt的值,将0步至120步之间每一步Xat以及对应每一步Xat的Xbt分别作为横纵坐标,即可形成相邻两折线点之间的多个插值点,折线点与插值点形成多个线性坐标点,且相邻的线性坐标点对应的电动阀的需求位置的差值为1步,即线性插值后,即可得到图8所示曲线上对应每一步Xat的Xbt的值,线性连接所有线性坐标点即可形成位置映射曲线。
这样,利用线性插值法得到如图8所示的位置映射曲线,软件程序仅需处理折线点以及折线点之间的线性计算,无需对位置映射曲线上每一步Xat以及对应每一步Xat的Xbt的坐标点进行海量的处理,大大减少了软件的程序处理量,极大程度上减少了软件程序的工作时间,降低了软件程序处理过程中发生错误的概率。另外,图8所示的位置映射曲线仅为对图6所示的曲线进行二阶导数处理并线性连接得到的曲线,使得图8所示的位置映射曲线与图6所示的曲线接近,因此根据图8所示的位置映射曲线获取对应于用户需求位置的设定实际位置,并控制电动阀向设定实际位置运行,在大大减少了软件的程序处理量,极大程度上减少了软件程序的工作时间,降低了软件程序处理过程中发生错误的概率的同时,相对于根据电动阀总行程一致原则对电动阀进行控制的过程,同样能够减小电动阀的实际位置对应的流量与电动阀的需求位置对应的流量之间的差异,提高对电动阀流量控制的精度。
在步骤S205中,根据需求的设定参数以及需求的设定参数曲线获得设定需求位置,并根据设定需求位置以及位置映射曲线获取设定实际位置。
在步骤S206中,控制电动阀向电动阀的设定实际位置运行。
本申请实施例还提供了一种控制系统,用于控制电动阀。图9为本申请一实施例提供的一种控制系统的示意框图,如图9所示,控制系统包括实际曲线 获取模块301、需求曲线获取模块302、拟合模块303、实际位置获取模块304和电动阀控制模块305,实际曲线获取模块301设置为获取实际测量的设定参数曲线,需求曲线获取模块302设置为获取需求的设定参数曲线;其中,实际测量的设定参数曲线和需求的设定参数曲线均包括电动阀的位置与设定参数的对应关系。拟合模块303设置为对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合,获取位置映射曲线;其中,位置映射曲线表示电动阀的实际位置与电动阀的需求位置的对应关系,位置映射曲线上每个坐标点的横坐标对应的设定参数与纵坐标对应的设定参数的差值小于设定差值。实际位置获取模块304设置为根据需求的设定参数以及需求的设定参数曲线获得设定需求位置,并根据设定需求位置以及位置映射曲线获取设定实际位置。电动阀控制模块305设置为控制电动阀向电动阀的设定实际位置运行。
本申请实施例提供的控制系统同样避免了设定参数控制精度偏差大的情况,提高了电动阀控制过程的精度,本申请实施例提供的控制系统可执行上述实施例所提供的控制方法。
控制方法的第三种实施方式,该控制方法用于控制电动阀,控制方法包括根据需求设定参数以及需求的设定参数曲线获得设定需求位置,并根据设定需求位置以及位置映射曲线获取设定实际位置;控制电动阀向电动阀的设定实际位置运行;其中,位置映射曲线预存于控制电动阀运行的控制系统中,位置映射曲线随实际测量的设定参数曲线以及需求的设定参数曲线的变化而变化,实际测量的设定参数曲线和需求的设定参数曲线均包括电动阀的位置与设定参数的对应关系;其中,位置映射曲线通过对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合得到,且位置映射曲线上点的横坐标对应的设定参数与纵坐标对应的设定参数的差值小于设定差值。
与第一种和第二种控制方法的实施方式相比,第三种控制方法的实施方式的主要区别点在于:位置映射曲线预存于控制电动阀运行的控制系统中,位置映射曲线随实际测量的设定参数曲线以及需求的设定参数曲线的变化而变化, 在实际测量的设定参数曲线和需求的设定参数曲线不变的情况下,不需要进行第一种和第二种控制方法的实施方式中的位置映射曲线的获取过程,有利于批量化生产。这样控制方法更加简单,控制系统需要的空间更小,在实际测量的设定参数曲线和需求的设定参数曲线变化的情况下,可以线上或线下改变位置映射曲线,其中线上的修正方式同控制方法的第一种以及第二种实施方式,线下的修正方式同第三种实施方式,其中,线上指生产线上,线下指生产完成后。
本申请实施例还提供了第二种控制系统,用于控制电动阀,控制系统包括实际位置获取模块、电动阀控制模块和存储模块,实际位置获取模块设置为根据需求设定参数以及需求的设定参数曲线获得设定需求位置,并根据设定需求位置以及位置映射曲线获取设定实际位置;电动阀控制模块设置为控制电动阀向电动阀的设定实际位置运行;存储模块设置为存储位置映射曲线,位置映射曲线随实际测量的设定参数曲线以及需求的设定参数曲线的变化而变化,实际测量的设定参数曲线和需求的设定参数曲线均包括电动阀的位置与设定参数的对应关系;其中,位置映射曲线通过对实际测量的设定参数曲线以及需求的设定参数曲线进行拟合得到,且位置映射曲线上点的横坐标对应的设定参数与纵坐标对应的设定参数的差值小于设定差值。
与第一种控制系统的实施方式相比较,第二种控制系统的实施方式的主要区别点在于:在实际测量的设定参数曲线和需求的设定参数曲线不变的情况下,不需要不需要进行第一种和第二种控制方法的实施方式中的位置映射曲线的获取过程,即不需要实际曲线获取模块、需求曲线获取模块和拟合模块实际,需要存储位置映射曲线的存储模块,用来存储位置映射曲线,在实际测量的设定参数曲线和需求的设定参数曲线不变的情况下,不需要进行第一种和第二种控制方法的实施方式中的位置映射曲线的获取过程,有利于批量化生产。在实际测量的设定参数曲线和需求的设定参数曲线变化的情况下,可以线上或线下改变位置映射曲线,其中线上的修正方式同第一种控制系统的实施方式,线下的修正方式同第二种控制系统的实施方式。
本申请实施例还提供了一种电动阀,图10为本申请一实施例提供的一种电动阀的结构示意图。如图10所示,电动阀100包括壳体60、定子组件601、转子组件602、阀芯603以及线路板组件90,线路板组件90设置于壳体60形成的内腔中,定子组件601设置于转子组件602的外周,转子组件602和定子组件601构成电动阀100中的步进电机,定子组件601包括线圈,转子组件602包括永磁体,线圈与线路板组件90电连接,线圈通电后产生激励磁场,转子组件602在激励磁场中运行,步进电机带动电动阀的阀芯603相对阀口604移动,使阀口604达到相应的开度,阀芯603的位置为电动阀的位置,线路板组件90集成有上述实施例的控制系统(图10中未示出)。
本申请实施例提供了一种控制方法、控制系统及电动阀,控制方法包括获取实际测量的设定参数曲线和需求的设定参数曲线,两条曲线均包括电动阀的位置与设定参数的对应关系,对实际测量的设定参数曲线和需求的设定参数曲线进行拟合,以获取包含有电动阀的实际位置与电动阀的需求位置对应关系的位置映射曲线,且位置映射曲线上每个坐标点的横坐标对应的设定参数与纵坐标对应的设定参数的差值小于设定差值,可以设置设定差值为零或者为趋于零的值,使得最终获得的位置映射曲线上坐标点的横纵坐标,即电动阀的需求位置与电动阀的实际位置对应的设定参数相同或接近,根据设定需求位置查询位置映射曲线上对应设定需求位置的设定实际位置,再控制电动阀向电动阀的设定实际位置运行,使得电动阀的实际设定参数达到客户的需求设定参数或者与客户的需求设定参数非常接近,避免了设定参数控制精度偏差大的情况,提高了电动阀控制过程的精度。

Claims (12)

  1. 一种控制方法,用于控制电动阀,所述控制方法包括:
    获取实际测量的设定参数曲线;
    获取需求的设定参数曲线;其中,所述实际测量的设定参数曲线和所述需求的设定参数曲线均表示所述电动阀的位置与设定参数的对应关系;
    对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取位置映射曲线;其中,所述位置映射曲线表示所述电动阀的实际位置与所述电动阀的需求位置的对应关系,所述位置映射曲线上每个坐标点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值;
    根据需求的设定参数以及所述需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及所述位置映射曲线获取设定实际位置;
    控制所述电动阀向所述电动阀的所述设定实际位置运行。
  2. 根据权利要求1所述的控制方法,其中,所述对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取位置映射曲线,包括:
    根据所述实际测量的设定参数曲线以及坐标点设定参数获取所述实际测量的设定参数曲线上对应所述坐标点设定参数的所述电动阀的坐标点实际位置;
    根据所述需求的设定参数曲线以及所述坐标点设定参数获取所述需求的设定参数曲线上对应所述坐标点设定参数的所述电动阀的坐标点需求位置;
    以对应同一所述坐标点设定参数的所述坐标点实际位置为纵坐标,对应同一所述坐标点设定参数的所述坐标点需求位置为横坐标,形成坐标点,将不同所述坐标点设定参数对应的所述坐标点平滑连接形成所述位置映射曲线;其中,所述位置映射曲线上每个所述坐标点的横坐标与纵坐标对应的所述设定参数相同。
  3. 根据权利要求1所述的控制方法,其中,所述对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取位置映射曲线,包括:
    对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取中间位置映射曲线;其中,所述中间位置映射曲线表示所述电动阀的实际 位置与所述电动阀的需求位置的对应关系,所述中间位置映射曲线上每个所述坐标点的横坐标与纵坐标对应的所述设定参数相同;
    根据所述中间位置映射曲线上相邻坐标点的二阶导数获取多个折线点,线性连接相邻所述折线点形成所述位置映射曲线。
  4. 根据权利要求3所述的控制方法,其中,所述对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取中间位置映射曲线,包括:
    根据所述实际测量的设定参数曲线以及坐标点设定参数获取所述实际测量的设定参数曲线上对应所述坐标点设定参数的所述电动阀的坐标点实际位置;
    根据所述需求的设定参数曲线以及所述坐标点设定参数获取所述需求的设定参数曲线上对应所述坐标点设定参数的所述电动阀的坐标点需求位置;
    以对应同一所述坐标点设定参数的所述坐标点实际位置为纵坐标,对应同一所述坐标点设定参数的所述坐标点需求位置为横坐标,形成坐标点,将不同所述坐标点设定参数对应的所述坐标点平滑连接形成所述中间位置映射曲线。
  5. 根据权利要求3所述的控制方法,其中,所述根据所述中间位置映射曲线上相邻坐标点的二阶导数获取多个折线点,包括:
    计算所述中间位置映射曲线上相邻两个坐标点中后一坐标点的二阶导数,并筛选出所述二阶导数的绝对值大于设定值的坐标点作为所述折线点。
  6. 根据权利要求3所述的控制方法,其中,所述线性连接相邻所述折线点形成所述位置映射曲线,包括:
    获取相邻的所述折线点之间的斜率,并将获取的所述斜率乘以设定倍数以获取整数斜率;
    根据所述整数斜率对相邻的所述折线点之间的区域进行线性插值,所述折线点与插值点形成多个线性坐标点;
    线性连接所有所述线性坐标点形成所述位置映射曲线。
  7. 根据权利要求1所述的控制方法,其中,所述电动阀包括电子膨胀阀,所述电子膨胀阀包括阀芯,所述设定参数包括流量,所述实际测量的设定参数 曲线和所述需求的设定参数曲线均表示所述阀芯的位置与流量的对应关系。
  8. 根据权利要求7所述的控制方法,其中,所述电子膨胀阀还包括电机,所述阀芯的位置通过所述电机的微步值确定,所述实际测量的设定参数曲线和所述需求的设定参数曲线还表示所述电机的微步值与流量的对应关系,通过调整所述电机的微步值使所述电子膨胀阀朝所述设定实际位置运行。
  9. 一种控制方法,用于控制电动阀,所述控制方法包括:
    根据需求设定参数以及需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及位置映射曲线获取设定实际位置;
    控制所述电动阀向所述电动阀的所述设定实际位置运行;
    其中,所述位置映射曲线预存于控制所述电动阀运行的控制系统中,所述位置映射曲线随实际测量的设定参数曲线以及所述需求的设定参数曲线的变化而变化,所述实际测量的设定参数曲线和所述需求的设定参数曲线均表示所述电动阀的位置与设定参数的对应关系;
    所述位置映射曲线通过对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合得到,且所述位置映射曲线上点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值。
  10. 一种控制系统,用于控制电动阀,所述控制系统包括:
    实际曲线获取模块,设置为获取实际测量的设定参数曲线;
    需求曲线获取模块,设置为获取需求的设定参数曲线;其中,所述实际测量的设定参数曲线和所述需求的设定参数曲线均表示所述电动阀的位置与设定参数的对应关系;
    拟合模块,设置为对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合,获取位置映射曲线;其中,所述位置映射曲线表示所述电动阀的实际位置与所述电动阀的需求位置的对应关系,所述位置映射曲线上每个坐标点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值;
    实际位置获取模块,设置为根据需求的设定参数以及所述需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及所述位置映射曲线获取设定实际位置;
    电动阀控制模块,设置为控制所述电动阀向所述电动阀的所述设定实际位置运行。
  11. 一种控制系统,用于控制电动阀,所述控制系统包括:
    实际位置获取模块,设置为根据需求设定参数以及需求的设定参数曲线获得设定需求位置,并根据所述设定需求位置以及位置映射曲线获取设定实际位置;
    电动阀控制模块,设置为控制所述电动阀向所述电动阀的所述设定实际位置运行;
    存储模块,设置为存储所述位置映射曲线,所述位置映射曲线随实际测量的设定参数曲线以及所述需求的设定参数曲线的变化而变化,所述实际测量的设定参数曲线和所述需求的设定参数曲线均表示所述电动阀的位置与设定参数的对应关系;其中,所述位置映射曲线通过对所述实际测量的设定参数曲线以及所述需求的设定参数曲线进行拟合得到,且所述位置映射曲线上点的横坐标对应的所述设定参数与纵坐标对应的所述设定参数的差值小于设定差值。
  12. 一种电动阀,包括定子组件、转子组件、阀芯以及线路板组件,所述定子组件包括线圈,所述转子组件包括永磁体,所述线圈与所述线路板组件电连接,所述线圈通电后产生激励磁场,所述转子组件在所述激励磁场中转动,所述阀芯的位置为所述电动阀的位置,所述线路板组件集成有如权利要求10或11所述的控制系统。
PCT/CN2020/108087 2019-12-11 2020-08-10 控制方法、控制系统及电动阀 WO2021114698A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20855848.6A EP3862646A4 (en) 2019-12-11 2020-08-10 CONTROL METHOD, CONTROL SYSTEM AND ELECTRIC VALVE
KR1020217008159A KR102502623B1 (ko) 2019-12-11 2020-08-10 제어 방법, 제어 시스템 및 전동밸브
JP2021512806A JP7185022B2 (ja) 2019-12-11 2020-08-10 制御方法、制御システムおよび電動弁
US17/278,990 US11709508B2 (en) 2019-12-11 2020-08-10 Control method, control system and electric valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911264982.4A CN112944007B (zh) 2019-12-11 2019-12-11 控制方法、控制系统及电动阀
CN201911264982.4 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021114698A1 true WO2021114698A1 (zh) 2021-06-17

Family

ID=76226480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108087 WO2021114698A1 (zh) 2019-12-11 2020-08-10 控制方法、控制系统及电动阀

Country Status (6)

Country Link
US (1) US11709508B2 (zh)
EP (1) EP3862646A4 (zh)
JP (1) JP7185022B2 (zh)
KR (1) KR102502623B1 (zh)
CN (1) CN112944007B (zh)
WO (1) WO2021114698A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023012951A (ja) * 2021-07-14 2023-01-26 株式会社不二工機 電動弁
CN115950120A (zh) * 2022-12-07 2023-04-11 珠海格力电器股份有限公司 基于电子膨胀阀的流量曲线修正方法、装置及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035704A (zh) * 1988-02-05 1989-09-20 西屋电气公司 汽轮机阀门控制系统
JP2008202911A (ja) * 2007-02-22 2008-09-04 Mitsubishi Heavy Ind Ltd 冷凍装置
CN107284193A (zh) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 空调系统、该空调系统的控制系统及控制方法
CN108195447A (zh) * 2018-02-13 2018-06-22 无锡慧联流体技术有限公司 流量计校准系统和校准方法
CN109918729A (zh) * 2019-01-31 2019-06-21 国网江西省电力有限公司电力科学研究院 一种汽轮机组混合式配汽函数综合整定方法
CN110277939A (zh) * 2018-03-15 2019-09-24 杭州三花研究院有限公司 控制系统及控制方法、带有步进电机的冷媒阀

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277832A (en) * 1979-10-01 1981-07-07 General Electric Company Fluid flow control system
US5295429A (en) * 1991-02-06 1994-03-22 Joe Harris Monk Pressurized fluid directional flow control valve assembly
US6272401B1 (en) * 1997-07-23 2001-08-07 Dresser Industries, Inc. Valve positioner system
US6466893B1 (en) * 1997-09-29 2002-10-15 Fisher Controls International, Inc. Statistical determination of estimates of process control loop parameters
US6701726B1 (en) * 2002-10-29 2004-03-09 Carrier Corporation Method and apparatus for capacity valve calibration for snapp absorption chiller
US7066189B2 (en) * 2002-12-20 2006-06-27 Control Components, Inc. Predictive maintenance and initialization system for a digital servovalve
US7089086B2 (en) * 2003-02-14 2006-08-08 Dresser, Inc. Method, system and storage medium for performing online valve diagnostics
JP2004263725A (ja) * 2003-02-14 2004-09-24 Saginomiya Seisakusho Inc 電動式コントロールバルブ
US6973375B2 (en) * 2004-02-12 2005-12-06 Mykrolis Corporation System and method for flow monitoring and control
US7882852B2 (en) * 2004-05-04 2011-02-08 Woodward Hrt, Inc. Direct drive servovalve device with redundant position sensing and methods for making the same
EP2392894A3 (en) * 2009-01-23 2012-10-24 Acro Associates Fluid control platform, fluid control systems, intelligent fluid control components and optical aperture sensors
JP5601217B2 (ja) * 2011-01-24 2014-10-08 株式会社デンソー 膨張弁装置
JP5963149B2 (ja) * 2011-03-24 2016-08-03 パナソニックIpマネジメント株式会社 ニードル弁制御システムおよび燃料電池システム
CN102645065B (zh) * 2012-05-17 2014-02-26 青岛海信日立空调系统有限公司 电子膨胀阀的驱动控制装置及方法
US9261300B2 (en) * 2012-11-12 2016-02-16 Trane International Inc. Expansion valve control system and method for air conditioning apparatus
DK3039500T3 (da) * 2013-08-26 2019-09-23 Spraying Systems Co Strømningsreguleringsventilsystem og -fremgangsmåde
US10337647B2 (en) * 2014-12-15 2019-07-02 General Electric Company Obstruction detection for a control valve
JP6539479B2 (ja) * 2015-04-09 2019-07-03 株式会社不二工機 電動弁及びそれを用いた熱交換器
JP2016205484A (ja) * 2015-04-20 2016-12-08 株式会社テージーケー 電動弁および電動弁制御装置
JP6512078B2 (ja) * 2015-11-19 2019-05-15 株式会社デンソー 噴射制御装置および噴射制御システム
US10859420B2 (en) * 2017-02-01 2020-12-08 National Coupling Company Autonomous chemical injection system for oil and gas wells
EP3428767B1 (en) * 2017-07-11 2019-12-11 Siemens Schweiz AG Control gain automation
JP6920923B2 (ja) * 2017-08-25 2021-08-18 株式会社Screenホールディングス ポンプ装置および基板処理装置
US11385616B2 (en) * 2018-09-07 2022-07-12 Emerson Process Management Valve Automation, Inc. Maximum force logging and operational performance prognostics for process control devices
US11686496B2 (en) * 2020-03-31 2023-06-27 Honeywell International Inc. Systems and methods for characterizing variable-air-volume (VAV) valves for use in HVAC systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035704A (zh) * 1988-02-05 1989-09-20 西屋电气公司 汽轮机阀门控制系统
JP2008202911A (ja) * 2007-02-22 2008-09-04 Mitsubishi Heavy Ind Ltd 冷凍装置
CN107284193A (zh) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 空调系统、该空调系统的控制系统及控制方法
CN108195447A (zh) * 2018-02-13 2018-06-22 无锡慧联流体技术有限公司 流量计校准系统和校准方法
CN110277939A (zh) * 2018-03-15 2019-09-24 杭州三花研究院有限公司 控制系统及控制方法、带有步进电机的冷媒阀
CN109918729A (zh) * 2019-01-31 2019-06-21 国网江西省电力有限公司电力科学研究院 一种汽轮机组混合式配汽函数综合整定方法

Also Published As

Publication number Publication date
JP7185022B2 (ja) 2022-12-06
EP3862646A4 (en) 2022-09-21
KR20210076902A (ko) 2021-06-24
US20220113747A1 (en) 2022-04-14
CN112944007A (zh) 2021-06-11
EP3862646A1 (en) 2021-08-11
JP2022516592A (ja) 2022-03-01
US11709508B2 (en) 2023-07-25
CN112944007B (zh) 2023-09-01
KR102502623B1 (ko) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2021114698A1 (zh) 控制方法、控制系统及电动阀
CN109630446B (zh) 气体推断装置及真空排气装置
US9903380B2 (en) Fan
CA2950794C (en) Method for controlling constant air volume of electrical device with air exhaust or air supply function
US20140139638A1 (en) Electronic device and method for calibrating spectral confocal sensors
CN102064388B (zh) 控制电调天线下倾角的非线性算法
CN107797488B (zh) 一种位移控制系统及其控制方法、移动终端
JP2019530030A (ja) 運動制御デバイス及び運動制御方法
CN110968118B (zh) 一种六自由度调整转台的控制方法
CN110529970B (zh) 一种静压调节的方法和交流变频风管机
CN111156893B (zh) 一种电机运行角度测量方法和系统、关节角度测量系统
CN102664576B (zh) 一种微步控制方法、装置及步进电机控制器
CN109992852A (zh) 室内装饰面对象建模方法及系统
CN111550592B (zh) 一种控制方法、控制系统及电动阀
CN115051618A (zh) 一种电机旋变误差补偿方法、装置、设备及介质
CN111550591B (zh) 一种控制方法、控制系统及电动阀
JP5606989B2 (ja) 可変速駆動装置および給水装置
CN113445573A (zh) 水泵参数自学习方法、系统、设备及计算机可读存储介质
KR20140084436A (ko) 건설장비의 파워 쉬프트 제어 방법 및 장치
CN110611471B (zh) 三相异步电机输出转矩控制方法及控制装置
CN108988727B (zh) 一种用于dtc预测控制的磁链计算简化方法
CN110945423A (zh) 光圈控制方法、装置、光圈设备和拍摄设备
JP7418118B2 (ja) モータ制御装置、撮像装置、プログラム、記憶媒体及びモータ制御方法
US20220166358A1 (en) Method for the noise-reduced operation of a switched reluctance motor
CN114006558B (zh) 仅知单参数的电机参数在线辨识方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512806

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020855848

Country of ref document: EP

Effective date: 20210304

NENP Non-entry into the national phase

Ref country code: DE