WO2021112473A1 - 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품 - Google Patents

폴리카보네이트 조성물 및 이로부터 형성된 광학 제품 Download PDF

Info

Publication number
WO2021112473A1
WO2021112473A1 PCT/KR2020/016759 KR2020016759W WO2021112473A1 WO 2021112473 A1 WO2021112473 A1 WO 2021112473A1 KR 2020016759 W KR2020016759 W KR 2020016759W WO 2021112473 A1 WO2021112473 A1 WO 2021112473A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate composition
polycarbonate
group
astm
composition according
Prior art date
Application number
PCT/KR2020/016759
Other languages
English (en)
French (fr)
Inventor
양영인
전병규
홍무호
조성미
이호용
정지혜
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200159263A external-priority patent/KR102493341B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/432,196 priority Critical patent/US11773259B2/en
Priority to EP20896773.7A priority patent/EP3910015A4/en
Priority to CN202080014803.6A priority patent/CN113474416B/zh
Priority to JP2021547258A priority patent/JP7271690B2/ja
Publication of WO2021112473A1 publication Critical patent/WO2021112473A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/108Colouring materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to polycarbonate compositions and optical articles formed therefrom.
  • Polycarbonate is prepared by polycondensation of an aromatic diol compound such as bisphenol A and a carbonate precursor such as phosgene.
  • the polycarbonate prepared in this way has excellent impact strength, dimensional stability, heat resistance and transparency, and is applied to a wide range of fields such as exterior materials for electrical and electronic products, automobile parts, building materials, optical parts, and clothing materials.
  • the range of use of polycarbonate in the field of optical components is continuously expanding.
  • glasses are required to control light transmittance in various wavelength ranges.
  • blue light is known to be harmful to eyes, it is required to exhibit sufficiently low light transmittance in the 380 to 500 nm range.
  • the light blocking agent added to block blue light is a yellowish (yellowish) transparent optical component manufactured from polycarbonate, and research is urgently needed to provide an optical component capable of effectively blocking blue light.
  • the present invention provides a polycarbonate composition.
  • the present invention also provides an optical article formed from the polycarbonate composition.
  • a polycarbonate composition comprising a polycarbonate and a light blocking agent, wherein 5YT420 calculated by the following formula 1 is 2.5 to 71 is provided.
  • Equation 1 Y is a yellow index measured according to ASTM D1925 for a specimen having a thickness of 3 mm formed from the polycarbonate composition
  • T420 is the transmittance in the 420 nm region measured according to ASTM D1003.
  • an optical product formed from the polycarbonate composition is provided.
  • the polycarbonate composition according to an embodiment of the present invention can block blue light without harmful problems while maintaining excellent properties such as inherent transparency and impact resistance.
  • the polycarbonate composition exhibits a low yellow index unlike the existing yellowish blue light blocking products and can implement various colors, so it is possible to provide optical products of various colors, and among them, it blocks blue light that is harmful to the eyes It is very suitable for glasses that require high transparency.
  • a polycarbonate composition comprising a polycarbonate and a light blocking agent, wherein 5YT420 calculated by the following formula 1 is 2.5 to 71 is provided.
  • Equation 1 Y is a yellow index measured according to ASTM D1925 for a specimen having a thickness of 3 mm formed from the polycarbonate composition
  • T420 is the transmittance in the 420 nm region measured according to ASTM D1003.
  • the present inventors developed a polycarbonate composition capable of providing an optical product having a low yellow index and low transmittance in a blue light region, and completed the present invention.
  • the polycarbonate composition has a sharply lowered blue light transmittance compared to an increase in the yellow index, so that 5YT420 calculated by Equation 1, which is an index capable of confirming the balance between the yellow index and the blue light transmittance, may be 2.5 to 71.
  • the 5YT420 is a value obtained by adding a transmittance in the 420 nm region to a value 5 times the yellow index, and even if it shows the same level of blue light transmittance, it appears as a large value when the yellow index sharply increases compared to the degree of lower blue light transmittance, and blue light
  • the yellow index relative to the degree of decrease in transmittance appears as a small value when it does not significantly increase. Therefore, it can be understood that the lower the value of 5YT420, the better both the yellow index and the blue light transmittance.
  • 5YT420 calculated by Formula 1 is 10 to 71, 30 to 71, 50 to 71, 60 to 71, 60 to 70, 60 to 68, 60 to 66, 60 to 65 or 61 to 64.
  • YT410 calculated by Equation 2 below may be 2 to 13.
  • Equation 2 Y is a yellow index measured according to ASTM D1925 for a specimen having a thickness of 3 mm formed from the polycarbonate composition
  • T410 is the transmittance in the 410 nm region measured according to ASTM D1003.
  • YT410 calculated by Equation 2 is a value obtained by adding the transmittance in the 410 nm region to the yellow index value, and it can be understood that the lower the value, like 5YT420, the better both the yellow index and the blue light transmittance.
  • YT410 calculated by Formula 2 may be 5 to 13, 7 to 13, 9 to 13, 5 to 12.5, 7 to 12, 9 to 11, or 9 to 10.
  • the polycarbonate composition according to the exemplary embodiment has a small value of 5YT420, which is an index for confirming the balance between the yellow index and the blue light transmittance, to indicate low blue light transmittance.
  • the polycarbonate composition has a transmittance of 0.1 to 47%, 0.1 to 40%, 0.1 to 35%, 0.1 to At 30%, 0.1 to 25%, 0.1 to 20%, 15 to 30%, or 20 to 27%, a very good blue light blocking effect may be exhibited.
  • the polycarbonate composition has a transmittance of 0.01 to 6.0%, 0.01 to 5.0%, 0.01 to 3.0%, 0.01 to 2.7 in the 410 nm region measured according to ASTM D1003 for a specimen having a thickness of 3 mm formed therefrom. %, 1.0 to 5.0%, 2.0 to 3.0%, or 2.0 to 2.7%, it is possible to exhibit a very good blue light blocking effect.
  • the polycarbonate composition according to the embodiment has a low value of 5YT420, which is an index for confirming the balance between the yellow index and the blue light transmittance, to indicate a low yellow index.
  • the polycarbonate composition has a yellow index of 0.1 to 11.5, 0.1 to 10.0, 0.1 to 9.0, 1.0 to 10.0, 3.0 to 9.0 or 5.0 measured according to ASTM D1925 for a specimen having a thickness of 3 mm formed therefrom. to 9.0, which is very low, and may exhibit transparent properties.
  • the polycarbonate composition according to the embodiment can implement a blue light blocking effect while maintaining excellent intrinsic properties of the polycarbonate, thereby exhibiting excellent impact resistance.
  • the polycarbonate composition has an impact strength of 680 to 800 J/m, 690 to 800 J/m, 700 to 800 J/m, measured according to ASTM D256 for a specimen having a thickness of 6.35 mm formed therefrom. 710 to 800 J/m, 715 to 800 J/m, 680 to 750 J/m, 690 to 730 J/m, or 700 to 730 J/m may exhibit very high impact resistance. Accordingly, it is expected that the polycarbonate composition according to the exemplary embodiment can overcome the application limitations of conventional blue light blocking products by exhibiting a blue light blocking effect while maintaining the inherent transparency and impact resistance of polycarbonate at an excellent level.
  • the polycarbonate composition according to the exemplary embodiment may implement a blue light blocking effect without harmful problems. Accordingly, the content of total volatile organic compounds (TVOC) released from the polycarbonate composition having a thickness of 3 mm at 280° C. for 15 minutes is 0 to 210 ppm, 0 to 200 ppm, 0 to 150 ppm, 0 to 120 ppm, 0 to 100 ppm, 0 to 70 ppm, 50 to 150 ppm, or 60 to 120 ppm may contain very little harmful substances.
  • TVOC total volatile organic compounds
  • the polycarbonate composition according to the exemplary embodiment includes polycarbonate and a light blocking agent, and the light blocking agent includes a compound represented by the following Chemical Formula 1 to provide an optical product capable of effectively blocking blue light while being transparent.
  • R 1 is hydrogen, halogen, a hydroxy group or a cyano group
  • R 2 to R 6 are each independently hydrogen, halogen, a hydroxyl group, a cyano group, or an alkoxy group having 1 to 5 carbon atoms , and at least one of R 2 to R 6 is halogen, a hydroxyl group, a cyano group, or an alkoxy group having 1 to 5 carbon atoms. it's gi
  • R 1 when R 1 is halogen, it may be F, Cl, Br, or I. Specifically, in Formula 1, R 1 may be hydrogen.
  • R 2 to R 6 when at least one of R 2 to R 6 is halogen, it may be F, Cl, Br or I, and when at least one of R 2 to R 6 is an alkoxy group having 1 to 5 carbon atoms, a methoxy group; It may be an ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentoxy group, isopentoxy group or neopentoxy group.
  • R 2 to R 6 may be an alkoxy group having 1 to 5 carbon atoms, and the rest may be hydrogen, halogen, a hydroxyl group, a cyano group, or an alkoxy group having 1 to 5 carbon atoms. More specifically, in Formula 1, 2 to 4 of R 2 to R 6 may be an alkoxy group having 1 to 5 carbon atoms, and the remainder may be hydrogen. In this case, the alkoxy group having 1 to 5 carbon atoms may be a methoxy group or an ethoxy group, preferably a methoxy group.
  • the compound represented by Formula 1 can effectively block blue light even when a small amount is used compared to the conventional light blocking agent.
  • the light blocking agent is 0.001 to 0.500 weight%, 0.005 to 0.400 weight%, 0.010 to 0.300 weight%, 0.015 to 0.400 weight%, 0.020 to 0.300 weight%, 0.040 to 0.250 based on the total weight of the polycarbonate and the light blocking agent. It may be included in wt%, 0.050 to 0.250 wt% or 0.050 to 0.150 wt%.
  • the compound represented by Formula 1 may be used alone.
  • the present invention is not limited thereto, and various light blocking agents (light absorbers) known in the art to which the present invention pertains may be additionally included, if necessary.
  • the polycarbonate may include a repeating unit represented by Formula 2 below.
  • R 7 to R 10 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or halogen;
  • Z is an unsubstituted or substituted C1 to C10 alkylene group, an unsubstituted or substituted C1 to C10 alkyl group, a C3 to C15C cycloalkylene group, O, S, SO, SO 2 , or is CO.
  • R 7 to R 10 may each independently represent hydrogen, a methyl group, a methoxy group, Cl, or Br.
  • Z may be an unsubstituted or phenyl-substituted linear or branched alkylene group having 1 to 10 carbon atoms.
  • Z is a methylene group, ethane-1,1-diyl group, propane-2,2-diyl group, butane-2,2-diyl group, 1-phenylethane-1,1-diyl group, or diphenyl It may be a methylene group.
  • Z may be a cyclohexane-1,1-diyl group, O, S, SO, SO 2 , or CO.
  • the repeating unit represented by Formula 2 may be formed by reacting an aromatic diol compound with a carbonate precursor.
  • the aromatic diol compound may include bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)sulfone, and bis(4-hydroxyphenyl)sulfoxide.
  • carbonate precursor dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, di-m- cresyl carbonate, dinaphthyl carbonate , bis(diphenyl) carbonate, phosgene, triphosgene, diphosgene, bromophosgene, and at least one selected from the group consisting of bishaloformate may be exemplified.
  • the aromatic diol compound and the carbonate precursor may be polymerized by, for example, interfacial polymerization to provide polycarbonate.
  • Interfacial polymerization refers to mixing an organic solvent containing a carbonate precursor and an aqueous solution containing an aromatic diol compound together, and polymerization occurs at the phase interface thereof.
  • the interfacial polymerization may be performed in the presence of an acid binder and an organic solvent.
  • the interfacial polymerization may include, for example, a step of adding a coupling agent after pre-polymerization and then polymerization again, in this case, polycarbonate having a high molecular weight can be obtained.
  • the polymerization temperature is preferably 0°C to 40°C, and the reaction time is preferably 10 minutes to 5 hours.
  • the pH during the reaction is preferably maintained at 9 or more or 11 or more.
  • the solvent that can be used for the polymerization is not particularly limited as long as it is a solvent used for polymerization of polycarbonate in the art, and for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene may be used.
  • the polymerization is preferably performed in the presence of an acid binder, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine may be used as the acid binder.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine may be used as the acid binder.
  • an alkylphenol having 1 to 20 carbon atoms may be used as the molecular weight modifier, and specific examples thereof include p-tert-butylphenol, p-cumylphenol, decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, and eicosylphenol, docosylphenol, or triacontylphenol.
  • the molecular weight modifier may be added before polymerization initiation, during polymerization initiation, or after polymerization initiation.
  • the polycarbonate may have a melt flow rate (MFR, Melt flow rate) of 5 to 50 g/10min according to ASTM D1238.
  • MFR Melt flow rate
  • ASTM D1238 ASTM D1238
  • the melt flow rate may be measured under a load condition of 1.2 kg at 300° C. according to ASTM D1238.
  • melt flow rate is less than 5 g/min, the processability may decrease and a problem of productivity may decrease, and if it exceeds 50 g/min, the resin flow will exceed under the processing conditions, resulting in surface defects in the molded product may occur.
  • the melt flow rate may more suitably satisfy 7 to 45 g/10min, 10 to 40 g/10min, 15 to 40 g/10min, 20 to 40 g/10min, or 25 to 35 g/10min, , in this case, the polycarbonate composition of one embodiment may exhibit better processability and mechanical properties.
  • the polycarbonate may have a weight average molecular weight of 10,000 g/mol to 60,000 g/mol, or 15,000 g/mol to 40,000 g/mol, or 19,000 g/mol to 30,000 g/mol.
  • the weight average molecular weight of the polycarbonate may be measured, for example, according to the method of ASTM D5296, using polystyrene as a standard material. As the polycarbonate satisfies the weight average molecular weight range, the polycarbonate composition of one embodiment and an optical product including the same may exhibit excellent mechanical properties and optical properties.
  • the above-described polycarbonate is the polycarbonate composition of one embodiment as a main component, 80 to 99.999% by weight, 90 to 99.999% by weight, 95 to 99.999% by weight, 99 to 99.999% by weight or 99.5 to 99.999% by weight based on the solid content of the total polycarbonate composition It may be included in an amount of 99.999% by weight. Accordingly, the polycarbonate composition of one embodiment may exhibit heat resistance, impact resistance, mechanical strength, and/or transparency characteristic of polycarbonate.
  • the polycarbonate composition may further include various additives known in the art to which the present invention pertains in addition to the above-described light blocking agent.
  • the polycarbonate composition may be selected from the group consisting of antioxidants, heat stabilizers, light stabilizers, plasticizers, antistatic agents, nucleating agents, flame retardants, lubricants, impact modifiers, optical brighteners, ultraviolet absorbers, pigments and dyes. It may further include one or more.
  • an optical product formed from the polycarbonate composition is provided.
  • the optical product may be applied to various optical parts-related fields such as spectacle lenses, light guide plates, and LED lighting.
  • the optical product is made of the above-described polycarbonate composition, it has a very low yellow index and a transparent property, and has a very low blue light transmittance, thereby exhibiting an excellent blue light blocking effect.
  • the optical product exhibits a very low yellow index and low transmittance in a blue light region, so that it can be applied to a spectacle lens among the above-described application fields to provide glasses in which blue light is blocked while being transparent.
  • a method of providing an optical product from the polycarbonate composition is not particularly limited.
  • the optical product can be provided by injecting with an injection molding machine.
  • melt-kneading method for example, a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw extruder, a cornider, a multi screw extruder, etc. method can be carried out.
  • the temperature of the melt-kneading can be appropriately adjusted as needed.
  • melt-kneaded product or pellets as a raw material, injection molding method, injection compression molding method, extrusion molding method, vacuum molding method, blow molding method, press molding method, air pressure molding method, foam molding method, thermal bending molding method, compression molding method, calender molding method and rotation
  • a molding method such as a molding method can be applied.
  • the injection molding method In the case of using the injection molding method, it is placed under high temperature conditions of 200 to 400 ° C. Since the polycarbonate composition has excellent heat resistance, it is preferable that there is little occurrence of polymer denaturation or yellowing in the melt kneading process or injection process described above.
  • the size, thickness, etc. of the optical product may be appropriately adjusted according to the purpose of use, and the shape thereof may also have the form of a flat plate or a curved surface according to the purpose of use.
  • the optical product according to another exemplary embodiment effectively blocks blue light and exhibits high transparency, thereby making it possible to easily provide molded articles of various colors.
  • Bisphenol A-type linear polycarbonate (weight average molecular weight: 21,100 g / mol; MFR (300 ° C, 1.2 kg): 30 g / 10 min; manufactured by LG Chem) 0.200 wt% of 2-( 2,4-dimethoxybenzylidene)malononitrile was added to prepare a polycarbonate composition.
  • a polycarbonate composition was prepared in the same manner as in Example 1, except that the type and content of the light blocking agent were adjusted as shown in Table 1 below.
  • T326 Tinuvin 326 (manufactured by BASF)
  • T329 Tinuvin 329 (manufactured by BASF)
  • Transmittance at 410 nm and 420 nm was measured using UltraScan PRO (manufactured by HunterLab) according to ASTM D1003.
  • the light blocking agent content is in weight percent based on the solids weight of the polycarbonate composition.
  • a) 5YT420 is a value obtained by adding transmittance in the 420 nm region to 5 times the yellow index.
  • YT410 is the value obtained by adding the transmittance at 410 nm to the yellow index value.
  • the degree of increase in the yellow index was greater compared to the degree of decrease in blue light transmittance according to the increase in the amount of the light blocker. Even if adjusted, it is confirmed that 5YT420, an index that can confirm the balance of the yellow index and the blue light transmittance, does not lower to the level of the embodiment.
  • Comparative Examples 6 to 10 YT410 is lowered to the level of the Example, but the polycarbonate composition of Comparative Example 9, in which YT410 is low as 11.32, exhibits an impact strength of 642 J/m and a TVOC of 226 ppm for spectacle lenses, light guide plates Alternatively, it is difficult to use for applications that must meet a certain level of impact resistance and TVOC, such as LED lighting.
  • the specimens formed from the polycarbonate compositions of Examples 1 to 4 have very low 5YT420, 62.85 to 70.75, and YT410, 9.95 to 12.34, which is an index that can confirm the balance of yellow index and blue light transmittance, and have excellent impact resistance. And it is confirmed that the TVOC is very low.
  • the polycarbonate composition according to an embodiment of the present invention it is possible to effectively block blue light while maintaining excellent transparency and impact resistance of the polycarbonate, and to provide an optical product with a low TVOC.

Abstract

본 발명은 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품에 관한 것이다. 상기 폴리카보네이트 조성물은 기존의 노르스름한 청색광 차단 제품과 달리 낮은 황색 지수를 나타내 다양한 색상 구현이 가능하므로, 다양한 색상의 광학 제품을 제공할 수 있으며, 이 중에서도 눈에 해로운 청색광을 차단하면서 고투명성이 요구되는 안경에 매우 적합하다.

Description

폴리카보네이트 조성물 및 이로부터 형성된 광학 제품
[관련 출원(들)과의 상호 인용]
본 출원은 2019년 12월 4일자 한국 특허 출원 제 10-2019-0160110 호, 2020년 11월 24일자 한국 특허 출원 제 10-2020-0159262 호, 2020년 11월 24일자 한국 특허 출원 제 10-2020-0159263 호 및 2020년 11월 24일자 한국 특허 출원 제 10-2020-0159264 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품에 관한 것이다.
폴리카보네이트는 비스페놀 A와 같은 방향족 디올 화합물과 포스겐과 같은 카보네이트 전구체를 축중합하여 제조된다. 이렇게 제조된 폴리카보네이트는 우수한 충격강도, 수치안정성, 내열성 및 투명성 등을 가지며, 전기전자 제품의 외장재, 자동차 부품, 건축 소재, 광학 부품, 의류 소재 등 광범위한 분야에 적용된다.
특히, 폴리카보네이트의 투명한 특성으로 인해 광학 부품 관련 분야에서 폴리카보네이트의 사용 범위가 지속적으로 확대되어 가고 있는 추세이다. 광학 부품의 하나로서 안경은 다양한 파장 영역에서의 광 투과율 제어가 요구되는데, 최근 청색광이 눈에 해롭다는 사실이 알려지면서 380 내지 500 nm 영역에서 충분히 낮은 광 투과율을 나타낼 것이 요구되고 있다. 하지만, 청색광을 차단하기 위해 첨가되는 광 차단제는 폴리카보네이트로부터 제조한 광학 부품을 노르스름하여(yellowish) 투명하면서 청색광을 효과적으로 차단할 수 있는 광학 부품을 제공하기 위한 연구가 절실한 실정이다.
본 발명은 폴리카보네이트 조성물을 제공한다.
본 발명은 또한 상기 폴리카보네이트 조성물로부터 형성된 광학 제품을 제공한다.
발명의 일 구현예에 따르면, 폴리카보네이트 및 광 차단제를 포함하는 폴리카보네이트 조성물로서, 하기 식 1로 계산되는 5YT420이 2.5 내지 71인 폴리카보네이트 조성물이 제공된다.
[식 1]
5YT420 = (5 * Y) + T420
상기 식 1에서 Y는 상기 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1925에 의거하여 측정한 황색 지수이며,
T420은 ASTM D1003에 의거하여 측정한 420 nm 영역에서의 투과율이다.
한편, 발명의 다른 구현예에 따르면, 상기 폴리카보네이트 조성물로부터 형성된 광학 제품이 제공된다.
발명의 일 구현예에 따른 폴리카보네이트 조성물은 고유의 투명성 및 내충격성 등과 같은 제반 물성을 우수한 수준으로 유지하면서 유해성 문제 없이 청색광을 차단할 수 있다. 특히, 상기 폴리카보네이트 조성물은 기존의 노르스름한(yellowish) 청색광 차단 제품과 달리 낮은 황색 지수를 나타내 다양한 색상 구현이 가능하므로, 다양한 색상의 광학 제품을 제공할 수 있으며, 이 중에서도 눈에 해로운 청색광을 차단하면서 고투명성이 요구되는 안경에 매우 적합하다.
이하 발명의 구체적인 구현예에 따른 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 폴리카보네이트 및 광 차단제를 포함하는 폴리카보네이트 조성물로서, 하기 식 1로 계산되는 5YT420이 2.5 내지 71인 폴리카보네이트 조성물이 제공된다.
[식 1]
5YT420 = (5 * Y) + T420
상기 식 1에서 Y는 상기 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1925에 의거하여 측정한 황색 지수이며,
T420은 ASTM D1003에 의거하여 측정한 420 nm 영역에서의 투과율이다.
기존의 청색광 차단 제품들은 청색광을 차단하기 위해 첨가되는 광 차단제로 인하여 노르스름한(yellowish) 색상을 띠어 다양한 용도로 활용하기 어려운 문제가 있었다. 특히, 황색 지수와 청색광 투과율은 트레이드 오프(trade off) 관계에 있기 때문에, 청색광 차단 효율이 높을수록 제품이 노르스름해지는 문제가 발생하였다.
본 발명자들은 이에 대해 열심히 연구한 결과, 낮은 황색 지수를 가지면서 청색광 영역에서 낮은 투과율을 보이는 광학 제품을 제공할 수 있는 폴리카보네이트 조성물을 개발하고, 본 발명을 완성하였다.
구체적으로, 상기 폴리카보네이트 조성물은 황색 지수가 높아지는 정도에 비하여 청색광 투과율이 급격히 낮아져 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 상기 식 1로 계산되는 5YT420이 2.5 내지 71일 수 있다.
상기 5YT420은 황색 지수의 5 배 값에 420 nm 영역에서의 투과율을 더한 값으로, 동등한 수준의 청색광 투과율을 나타내더라도, 청색광 투과율이 낮아지는 정도 대비 황색 지수가 급격히 증가하는 경우 큰 값으로 나타나며, 청색광 투과율이 낮아지는 정도 대비 황색 지수는 크게 증가하지 않은 경우 작은 값으로 나타난다. 따라서, 5YT420의 수치가 낮을수록 황색 지수와 청색광 투과율이 모두 우수한 것으로 이해될 수 있다.
상기 일 구현예에 따른 폴리카보네이트 조성물은 상기 식 1로 계산되는 5YT420이 10 내지 71, 30 내지 71, 50 내지 71, 60 내지 71, 60 내지 70, 60 내지 68, 60 내지 66, 60 내지 65 또는 61 내지 64일 수 있다.
상기 일 구현예에 따른 폴리카보네이트 조성물은 하기 식 2로 계산되는 YT410이 2 내지 13일 수 있다.
[식 2]
YT410 = Y + T410
상기 식 2에서 Y는 상기 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1925에 의거하여 측정한 황색 지수이며,
T410은 ASTM D1003에 의거하여 측정한 410 nm 영역에서의 투과율이다.
상기 식 2로 계산되는 YT410은 황색 지수 값에 410 nm 영역에서의 투과율을 더한 값으로, 상기 5YT420과 같이 그 수치가 낮을수록 황색 지수와 청색광 투과율이 모두 우수한 것으로 이해될 수 있다.
상기 일 구현예에 따른 폴리카보네이트 조성물은 상기 식 2로 계산되는 YT410이 5 내지 13, 7 내지 13, 9 내지 13, 5 내지 12.5, 7 내지 12, 9 내지 11 또는 9 내지 10일 수 있다.
상기 일 구현예에 따른 폴리카보네이트 조성물은 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 5YT420이 작은 값을 가져 낮은 청색광 투과율을 나타낼 수 있다.
구체적으로, 상기 폴리카보네이트 조성물은 이로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1003에 의거하여 측정한 420 nm 영역에서의 투과율이 0.1 내지 47 %, 0.1 내지 40 %, 0.1 내지 35 %, 0.1 내지 30 %, 0.1 내지 25 %, 0.1 내지 20 %, 15 내지 30 % 또는 20 내지 27 %로, 매우 우수한 청색광 차단 효과를 나타낼 수 있다.
또한, 상기 폴리카보네이트 조성물은 이로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1003에 의거하여 측정한 410 nm 영역에서의 투과율이 0.01 내지 6.0 %, 0.01 내지 5.0 %, 0.01 내지 3.0 %, 0.01 내지 2.7 %, 1.0 내지 5.0 %, 2.0 내지 3.0 % 또는 2.0 내지 2.7 %로, 매우 우수한 청색광 차단 효과를 나타낼 수 있다.
상기 일 구현예에 따른 폴리카보네이트 조성물은 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 5YT420이 작은 값을 가져 낮은 황색 지수를 나타낼 수 있다.
구체적으로, 상기 폴리카보네이트 조성물은 이로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1925에 의거하여 측정한 황색 지수가 0.1 내지 11.5, 0.1 내지 10.0, 0.1 내지 9.0, 1.0 내지 10.0, 3.0 내지 9.0 또는 5.0 내지 9.0으로 매우 낮아 투명한 특성을 나타낼 수 있다.
또한, 상기 일 구현예에 따른 폴리카보네이트 조성물은 폴리카보네이트의 우수한 고유 물성을 유지하면서 청색광 차단 효과를 구현할 수 있어 우수한 내충격성을 나타낼 수 있다.
구체적으로, 상기 폴리카보네이트 조성물은 이로부터 형성된 두께가 6.35 mm인 시편에 대하여 ASTM D256에 의거하여 측정한 충격 강도가 680 내지 800 J/m, 690 내지 800 J/m, 700 내지 800 J/m, 710 내지 800 J/m, 715 내지 800 J/m, 680 내지 750 J/m, 690 내지 730 J/m 또는 700 내지 730 J/m로 매우 높은 내충격성을 나타낼 수 있다. 이에 따라, 상기 일 구현예에 따른 폴리카보네이트 조성물은 폴리카보네이트 고유의 투명성 및 내충격성을 우수한 수준으로 유지하면서 청색광 차단 효과를 나타내 기존의 청색광 차단 제품의 적용 한계를 극복할 수 있을 것으로 기대된다.
상기 일 구현예에 따른 폴리카보네이트 조성물은 유해성 문제 없이 청색광 차단 효과를 구현할 수 있다. 이에 따라, 상기 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에서 280 ℃에서 15 분간 방출된 총 휘발성 유기 화합물(Total Volatile Organic Compounds; TVOC)의 함량은 0 내지 210 ppm, 0 내지 200 ppm, 0 내지 150 ppm, 0 내지 120 ppm, 0 내지 100 ppm, 0 내지 70 ppm, 50 내지 150 ppm 또는 60 내지 120 ppm으로 극히 적은 유해 물질을 포함할 수 있다.
상기 일 구현예에 따른 폴리카보네이트 조성물은 폴리카보네이트 및 광 차단제를 포함하는데, 상기 광 차단제는 하기 화학식 1로 표시되는 화합물을 포함하여 투명하면서 청색광을 효과적으로 차단할 수 있는 광학 제품을 제공할 수 있다.
[화학식 1]
Figure PCTKR2020016759-appb-img-000001
상기 화학식 1에서,
R 1은 수소, 할로겐, 히드록시기 또는 시아노기이며,
R 2 내지 R 6는 각각 독립적으로 수소, 할로겐, 히드록시기, 시아노기 또는 탄소수 1 내지 5의 알콕시기이되, R 2 내지 R 6 중 적어도 하나 이상은 할로겐, 히드록시기, 시아노기 또는 탄소수 1 내지 5의 알콕시기이다.
상기 화학식 1에서, R 1이 할로겐일 경우 F, Cl, Br 또는 I일 수 있다. 구체적으로, 상기 화학식 1에서 R 1은 수소일 수 있다.
상기 화학식 1에서, R 2 내지 R 6 중 적어도 어느 하나가 할로겐일 경우 F, Cl, Br 또는 I일 수 있고, R 2 내지 R 6 중 적어도 어느 하나가 탄소수 1 내지 5의 알콕시기일 경우 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, 이소부톡시기, t-부톡시기, n-펜톡시기, 이소펜톡시기 또는 네오펜톡시기일 수 있다.
구체적으로, 상기 화학식 1에서 R 2 내지 R 6 중 적어도 하나는 탄소수 1 내지 5의 알콕시기이고, 나머지는 수소, 할로겐, 히드록시기, 시아노기 또는 탄소수 1 내지 5의 알콕시기일 수 있다. 보다 구체적으로, 상기 화학식 1에서 R 2 내지 R 6 중 2 개 내지 4 개는 탄소수 1 내지 5의 알콕시기이고, 나머지는 수소일 수 있다. 이때, 상기 탄소수 1 내지 5의 알콕시기는 메톡시기 또는 에톡시기일 수 있고, 바람직하게 메톡시기일 수 있다.
상기 화학식 1로 표시되는 화합물은 기존의 광 차단제 대비 소량만 사용되더라도 청색광을 효과적으로 차단할 수 있다. 일 예로, 상기 광 차단제는 폴리카보네이트 및 광 차단제의 총 중량에 대하여 0.001 내지 0.500 중량%, 0.005 내지 0.400 중량%, 0.010 내지 0.300 중량%, 0.015 내지 0.400 중량%, 0.020 내지 0.300 중량%, 0.040 내지 0.250 중량%, 0.050 내지 0.250 중량% 또는 0.050 내지 0.150 중량%로 포함될 수 있다.
상기 광 차단제로는 청색광을 효과적으로 흡수하면서 투명한 폴리카보네이트 조성물을 제공하기 위해, 상기 화학식 1로 표시되는 화합물을 단독으로 사용할 수 있다. 그러나, 이에 한정되는 것은 아니고, 필요에 따라 본 발명이 속한 기술분야에 알려진 다양한 광 차단제(광 흡수제)를 추가로 포함할 수 있다.
한편, 상기 폴리카보네이트는 하기 화학식 2로 표시되는 반복 단위를 포함할 수 있다.
[화학식 2]
Figure PCTKR2020016759-appb-img-000002
상기 화학식 2에서,
R 7 내지 R 10는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 또는 할로겐이고,
Z는 비치환되거나 또는 페닐로 치환된 탄소수 1 내지 10의 알킬렌기, 비치환되거나 또는 탄소수 1 내지 10의 알킬기로 치환된 탄소수 3 내지 15의 시클로알킬렌기, O, S, SO, SO 2, 또는 CO이다.
일 예로, 상기 화학식 2에서 R 7 내지 R 10은 각각 독립적으로 수소, 메틸기, 메톡시기, Cl, 또는 Br일 수 있다.
일 예로, 상기 화학식 2에서 Z는 비치환되거나 또는 페닐로 치환된 직쇄 또는 분지쇄의 탄소수 1 내지 10의 알킬렌기일 수 있다. 구체적으로, Z는 메틸렌기, 에탄-1,1-디일기, 프로판-2,2-디일기, 부탄-2,2-디일기, 1-페닐에탄-1,1-디일기, 또는 디페닐메틸렌기일 수 있다. 또한, Z는 시클로헥산-1,1-디일기, O, S, SO, SO 2, 또는 CO일 수 있다.
상기 화학식 2로 표시되는 반복 단위는 방향족 디올 화합물과 카보네이트 전구체를 반응하여 형성된 것일 수 있다.
비제한적인 예로, 상기 방향족 디올 화합물로는 비스(4-히드록시페닐)메탄, 비스(4-히드록시페닐)에테르, 비스(4-히드록시페닐)설폰, 비스(4-히드록시페닐)설폭사이드, 비스(4-히드록시페닐)설파이드, 비스(4-히드록시페닐)케톤, 1,1-비스(4-히드록시페닐)에탄, 비스페놀 A, 2,2-비스(4-히드록시페닐)부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(4-히드록시-3,5-디브로모페닐)프로판, 2,2-비스(4-히드록시-3,5-디클로로페닐)프로판, 2,2-비스(4-히드록시-3-브로모페닐)프로판, 2,2-비스(4-히드록시-3-클로로페닐)프로판, 2,2-비스(4-히드록시-3-메틸페닐)프로판, 2,2-비스(4-히드록시-3,5-디메틸페닐)프로판, 1,1-비스(4-히드록시페닐)-1-페닐에탄 및 비스(4-히드록시페닐)디페닐메탄으로 이루어진 군으로부터 선택된 1 종 이상을 예시할 수 있다. 그리고, 상기 카보네이트 전구체로는 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트, 디페닐 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, 디-m-크레실 카보네이트, 디나프틸 카보네이트, 비스(디페닐) 카보네이트, 포스겐, 트리포스겐, 디포스겐, 브로모포스겐 및 비스할로포르메이트로 이루어진 군으로부터 선택된 1 종 이상을 예시할 수 있다.
상기 방향족 디올 화합물과 상기 카보네이트 전구체는, 예를 들면, 계면 중합 방식으로 중합되어 폴리카보네이트를 제공할 수 있다. 계면 중합이란, 카보네이트 전구체를 포함하는 유기 용매와 방향족 디올 화합물을 포함하는 수용액을 함께 혼합하고, 이들의 상 계면에서 중합이 일어나는 것을 의미한다.
이 경우 상압과 낮은 온도에서 중합 반응이 가능하며 분자량 조절이 용이하다. 상기 계면 중합은 산 결합제 및 유기 용매의 존재 하에서 수행될 수 있다. 또한, 상기 계면 중합은 일례로 선중합(pre-polymerization) 후 커플링제를 투입한 다음, 다시 중합시키는 단계를 포함할 수 있고, 이 경우 고분자량의 폴리카보네이트를 얻을 수 있다.
상기 중합 온도는 0℃ 내지 40℃, 반응 시간은 10 분 내지 5 시간이 바람직하다. 또한, 반응 중 pH는 9 이상 또는 11 이상으로 유지하는 것이 바람직하다.
상기 중합에 사용할 수 있는 용매로는, 당업계에서 폴리카보네이트의 중합에 사용되는 용매이면 특별히 제한되지 않으며, 일례로 메틸렌클로라이드, 클로로벤젠 등의 할로겐화 탄화수소를 사용할 수 있다.
또한, 상기 중합은 산 결합제의 존재 하에 수행하는 것이 바람직하며, 상기 산 결합제로 수산화나트륨, 수산화칼륨 등의 알칼리금속 수산화물 또는 피리딘 등의 아민 화합물을 사용할 수 있다.
또한, 상기 중합시 폴리카보네이트의 분자량 조절을 위하여, 분자량 조절제의 존재 하에 중합하는 것이 바람직하다. 상기 분자량 조절제로 탄소수 1 내지 20의 알킬페놀을 사용할 수 있으며, 이의 구체적인 예로 p-tert-부틸페놀, p-쿠밀페놀, 데실페놀, 도데실페놀, 테트라데실페놀, 헥사데실페놀, 옥타데실페놀, 에이코실페놀, 도코실페놀 또는 트리아콘틸페놀 등을 들 수 있다. 상기 분자량 조절제는, 중합 개시 전, 중합 개시 중 또는 중합 개시 후에 투입될 수 있다.
상기 폴리카보네이트는 ASTM D1238에 따른 용융 흐름 속도(MFR, Melt flow rate)가 5 내지 50 g/10min일 수 있다. 상기 범위의 용융 흐름 속도를 가지는 폴리카보네이트를 사용할 경우, 전술한 다른 성분과의 조합 사용으로 제품에 적용 시에 우수한 물성을 구현할 수 있으며, 일 구현예의 폴리카보네이트 조성물이 우수한 가공성을 나타낼 수 있다.
상기 용융 흐름 속도는 ASTM D1238에 따라 300℃에서 1.2 kg의 하중 조건으로 측정될 수 있다.
상기 용융 흐름 속도가 5 g/min 미만인 경우, 가공성이 저하되어 생산성 저하의 문제가 발생할 수 있으며, 50 g/min 초과인 경우 해당 가공 조건에서 수지 흐름이 초과하여 성형 제품에 표면 불량을 발생시키는 문제가 발생할 수 있다. 또한, 상기 용융 흐름 속도는 보다 적절하게는 7 내지 45 g/10min, 10 내지 40 g/10min, 15 내지 40 g/10min, 20 내지 40 g/10min, 혹은 25 내지 35 g/10min을 만족할 수 있으며, 이 경우 일 구현예의 폴리카보네이트 조성물이 보다 우수한 가공성 및 기계적 물성 등을 나타낼 수 있다.
또, 상기 폴리카보네이트는 중량 평균 분자량이 10,000 g/mol 내지 60,000 g/mol, 혹은 15,000 g/mol 내지 40,000 g/mol, 혹은 19,000 g/mol 내지 30,000 g/mol일 수 있다. 이러한 폴리카보네이트의 중량 평균 분자량은, 예를 들어, ASTM D5296의 방법에 따라, 폴리스티렌을 표준 물질로 사용하여 측정할 수 있다. 상기 폴리카보네이트가 상기 중량 평균 분자량 범위를 충족함에 따라, 일 구현예의 폴리카보네이트 조성물 및 이를 포함한 광학 제품 등은 우수한 기계적 물성 및 광학 특성을 나타낼 수 있다.
상술한 폴리카보네이트는 일 구현예의 폴리카보네이트 조성물을 주 성분으로서, 전체 폴리카보네이트 조성물의 고형분에 대해 80 내지 99.999 중량%, 90 내지 99.999 중량%, 95 내지 99.999 중량%, 99 내지 99.999 중량% 혹은 99.5 내지 99.999 중량%의 함량으로 포함될 수 있다. 이로써, 일 구현예의 폴리카보네이트 조성물이 폴리카보네이트 특유의 내열성, 내충격성, 기계적 강도 및/또는 투명성을 나타낼 수 있다.
상기 폴리카보네이트 조성물은 상술한 광 차단제 외에 본 발명이 속한 기술 분야에 알려진 다양한 첨가제를 추가로 포함할 수 있다. 비제한적인 예로, 상기 폴리카보네이트 조성물은 산화 방지제, 열 안정제, 광 안정화제, 가소제, 대전방지제, 핵제, 난연제, 활제, 충격보강제, 형광증백제, 자외선 흡수제, 안료 및 염료로 이루어진 군으로부터 선택된 어느 하나 이상을 추가로 포함할 수 있다.
한편, 발명의 다른 일 구현예에 따르면, 상기 폴리카보네이트 조성물로부터 형성된 광학 제품이 제공된다.
상기 광학 제품은 안경 렌즈, 도광판, LED 조명 등 다양한 광학 부품 관련 분야에 적용될 수 있다.
상기 광학 제품은 앞서 설명한 폴리카보네이트 조성물로 제조되기 때문에 황색 지수가 매우 낮아 투명한 특성을 보이면서, 청색광 투과율이 매우 낮아 우수한 청색광 차단 효과를 나타낼 수 있다.
상기 광학 제품은 매우 낮은 황색 지수 및 청색광 영역에서의 저투과율을 나타내 상술한 적용 분야 중에서도 안경 렌즈에 적용되어 투명하면서도 효과적으로 청색광이 차단된 안경을 제공할 수 있다.
상기 폴리카보네이트 조성물로부터 광학 제품을 제공하는 방법은 특별히 한정되지 않는다. 비제한적인 예로, 상기 폴리카보네이트 조성물에 필요에 따라 본 발명이 속하는 기술 분야에서 통상적으로 사용하는 첨가제를 첨가한 후 혼합하고, 상기 혼합물을 압출기로 압출 성형하여 펠릿으로 제조한 후, 상기 펠릿을 건조시킨 다음 사출 성형기로 사출하는 방법으로 광학 제품을 제공할 수 있다.
상기 폴리카보네이트 조성물을 혼합하는 것은 용융 혼련 방식으로 실시할 수 있으며, 예컨대, 리본 블렌더, 헨셀 믹서, 밴버리 믹서, 드럼 텀블러, 단축 스크루압출기, 2축 스크루 압출기, 코니더, 다축 스크루 압출기 등을 사용하는 방법에 의해 실시할 수 있다. 상기 용융 혼련의 온도는 필요에 따라 적절히 조절할 수 있다.
다음으로, 상기 용융 혼련물 또는 펠릿을 원료로 하여, 사출 성형법, 사출 압축 성형법, 압출 성형법, 진공 성형법, 블로우 성형법, 프레스 성형법, 압공 성형법, 발포 성형법, 열 굽힘 성형법, 압축 성형법, 캘린더 성형법 및 회전 성형법 등의 성형법을 적용할 수 있다.
사출 성형법을 이용할 경우, 200 내지 400 ℃의 고온의 조건 하에 놓이게 되는데, 상기 폴리카보네이트 조성물은 내열성이 뛰어나므로, 전술한 용융 혼련 공정이나 사출 공정에서 고분자 변성이나 황변 발생이 거의 없어 바람직하다.
광학 제품의 크기, 두께 등은 사용 목적에 따라 적절히 조절할 수 있으며, 이의 형상 또한 사용 목적에 따라 평판 또는 곡면의 형태를 가질 수 있다.
앞서 설명한 바와 같이, 다른 일 구현예에 따른 광학 제품은 효과적으로 청색광을 차단하면서도 고투명성을 나타내 다양한 색상의 성형품을 용이하게 제공할 수 있다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
실시예 1: 폴리카보네이트 조성물의 제조
비스페놀 A형 선형 폴리카보네이트(중량평균분자량: 21,100 g/mol; MFR (300℃, 1.2 kg): 30 g/10min; LG화학사 제조)에 전체 폴리카보네이트 조성물 총 중량에 대해 0.200 중량%의 2-(2,4-디메톡시벤질리덴)말로노니트릴을 첨가하여 폴리카보네이트 조성물을 제조하였다.
실시예 2 내지 4 및 비교예 1 내지 12: 폴리카보네이트 조성물의 제조
광 차단제의 종류 및 함량을 하기 표 1과 같이 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리카보네이트 조성물을 제조하였다.
폴리카보네이트 광 차단제
PB-074 T326 M-T326 T329 EV-290
실시예 1 99.800 0.200
실시예 2 99.900 0.100
실시예 3 99.930 0.070
실시예 4 99.960 0.040
비교예 1 99.395 0.600 0.005
비교예 2 99.390 0.600 0.010
비교예 3 99.385 0.600 0.015
비교예 4 98.500 1.500
비교예 5 99.980 0.020
비교예 6 99.960 0.040
비교예 7 99.930 0.070
비교예 8 99.900 0.100
비교예 9 99.500 0.500
비교예 10 99.000 1.000
비교예 11 99.600 0.400
비교예 12 99.200 0.800
(단위: 중량%)
PB-074: 2-(2,4-디메톡시벤질리덴)말로노니트릴
Figure PCTKR2020016759-appb-img-000003
T326: Tinuvin 326 (BASF사 제조)
Figure PCTKR2020016759-appb-img-000004
M-T326: 2-tert-부틸-4-메틸-6-(5-(페닐티오)-2H-벤조[d][1,2,3]트리아졸-2-일)페놀
Figure PCTKR2020016759-appb-img-000005
T329: Tinuvin 329 (BASF사 제조)
Figure PCTKR2020016759-appb-img-000006
EV-290: X-GUARD EV-290 (Chempia사 제조)
Figure PCTKR2020016759-appb-img-000007
시험예: 폴리카보네이트 조성물의 물성 평가
하기 기재된 방법으로 실시예 및 비교예에서 제조한 폴리카보네이트 조성물로부터 시편을 제조한 후 이의 물성을 평가하고 그 결과를 표 2에 나타내었다.
1) 시편의 제조
2축 압출기(L/D=36, Φ=45, 배럴온도 240℃)에 시간당 55 kg의 속도로 폴리카보네이트 조성물을 공급하여 펠렛을 제조한 후, 이를 사출 성형하여 가로, 세로 및 두께가 50 mm, 30 mm 및 3 mm인 시편을 제조하였다.
2) 황색 지수(Yellow Index; YI) 측정
ASTM D1925에 의거하여 UltraScan PRO (HunterLab사 제조)를 이용하여 상온(20℃)에서의 YI 값을 측정하였다.
3) 투과율 측정
ASTM D1003에 의거하여 UltraScan PRO (HunterLab사 제조)를 사용하여 410 nm 및 420 nm에서의 투과율을 측정하였다.
4) 충격 강도(Notched Izod Impact Strength)
ASTM D256에 의거하여 1/4" 시편(두께 1/4 inch (6.35 mm) 시편)의 충격 강도를 측정하였다.
5) 총 휘발성 유기 화합물의 방출량(Total Volatile Organic Compounds; TVOC)
상기에서 제조한 각각의 시편을 가열 탈착 장치(heating desorption apparatus, Japan Analytical Industry 社의 JTD-505III)에 넣고 280 ℃에서 15 분간 상기 시편으로부터 방출된 휘발성 유기 화합물을 모은 후 그 함량을 GC-MS로 측정하였다.
광 차단제
함량 *
황색 지수 410 nm에서의 투과율(%) 420 nm에서의 투과율(%) 5YT420 a) YT410 b) 충격 강도
(J/m)
TVOC
(ppm)
실시예 1 0.200 11.20 1.14 10.32 66.32 12.34 697 207
실시예 2 0.100 8.92 2.02 20.88 65.48 10.94 715 114
실시예 3 0.070 7.33 2.62 26.20 62.85 9.95 720 65
실시예 4 0.040 4.82 5.91 46.65 70.75 10.73 711 48
비교예 1 0.605 8.57 6.70 41.81 84.66 15.27 547 450
비교예 2 0.610 10.24 4.55 34.65 85.85 14.79 550 471
비교예 3 0.615 11.95 3.40 28.45 88.20 15.35 552 462
비교예 4 1.500 12.00 1.21 15.38 75.38 13.21 109 951
비교예 5 0.020 14.18 5.32 29.23 100.31 19.50 724 42
비교예 6 0.040 2.83 43.54 78.85 93.00 46.37 698 34
비교예 7 0.070 3.44 28.62 73.29 90.43 32.06 718 39
비교예 8 0.100 4.06 19.97 67.88 88.18 24.03 709 48
비교예 9 0.500 9.78 1.54 22.38 71.28 11.32 642 226
비교예 10 1.000 12.98 1.08 9.43 74.33 14.06 498 430
비교예 11 0.400 2.88 38.78 76.35 90.75 41.66 699 244
비교예 12 0.800 2.53 46.89 79.34 91.99 49.42 546 430
* 광 차단제 함량은 폴리카보네이트 조성물 고형분 중량에 대한 중량%이다.
a) 5YT420은 황색 지수의 5 배 값에 420 nm 영역에서의 투과율을 더한 값이다.
b) YT410은 황색 지수 값에 410 nm에서의 투과율을 더한 값이다.
광 차단제로 T326 및 EV-290을 함께 사용한 비교예 1 내지 3을 참조하면, 청색광 투과율을 충분히 낮추기 위해 광 차단제의 함량을 높일 경우 황색 지수가 너무 높아져, 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 5YT420이 84.66 내지 88.20이고, YT410이 14.79 내지 15.35로 매우 높은 것이 확인된다. 또한, 비교예 1 내지 3의 경우 청색광 투과율을 일정 수준으로 낮추기 위해 광 차단제를 상당량 첨가함에 따라 매우 낮은 내충격성과 높은 TVOC 값을 나타내는 것이 확인된다.
비교예 4에서는 광 차단제로 T326만 과량 사용하여 420 nm에서의 투과율을 15.38 %까지 낮추었으나, 황색 지수가 12로 매우 높아 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 5YT420이 75.38이고, YT410이 13.21로 높은 것이 확인되며, 내충격성이 매우 열악해 지고 TVOC가 급격하게 증가한 것이 확인된다.
비교예 5를 참조하면, 광 차단제로 EV-290을 사용한 경우 소량만 사용하더라도 충분히 낮은 청색광 투과율을 달성함에 따라 내충격성이 우수하고 TVOC가 적은 시편을 제공할 수 있으나, EV-290는 매우 소량만 첨가되더라도 황색 지수가 급격히 증가하여 노란빛이 강한 시편을 제공하는 것이 확인된다.
광 차단제로 M-T326을 사용한 비교예 6 내지 10을 참조하면, 광 차단제 함량 증가에 따른 청색광 투과율의 감소 정도 대비 황색 지수의 증가 정도가 더욱 커 광 차단제의 함량을 0.040 중량%에서 1.000 중량%로 조절하더라도 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 5YT420이 실시예 수준으로 낮아지지 않는 것이 확인된다. 비교예 6 내지 10에서 YT410은 실시예 수준으로 낮아지는 지점이 있긴 하지만, YT410이 11.32로 낮은 비교예 9의 폴리카보네이트 조성물은 642 J/m의 충격 강도 및 226 ppm의 TVOC를 나타내 안경 렌즈, 도광판 또는 LED 조명 등과 같이 일정 수준의 내충격성 및 TVOC를 충족하여야 하는 용도로는 활용이 어렵다.
광 차단체로 T329를 사용한 비교예 11 및 12의 경우에도 광 차단제를 실시예 대비 과량 사용하였음에도 청색광 투과율을 충분히 낮추지 못하여 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 5YT420이 90.75 내지 91.99, 그리고 YT410이 41.66 내지 49.42로 매우 높은 것이 확인된다. 또한, 비교예 11의 경우 TVOC가 높고, 비교예 12의 경우 TVOC 뿐 아니라 내충격성도 열악한 것이 확인된다.
이에 반해, 실시예 1 내지 4의 폴리카보네이트 조성물로부터 형성된 시편은 황색 지수와 청색광 투과율의 밸런스를 확인할 수 있는 지수인 5YT420이 62.85 내지 70.75, 그리고 YT410이 9.95 내지 12.34로 매우 낮으며, 내충격성이 우수하고 TVOC가 매우 낮은 것이 확인된다.
이로써, 본 발명의 일 구현예에 따른 폴리카보네이트 조성물을 사용하면, 폴리카보네이트의 우수한 투명성 및 내충격성을 유지하면서도 청색광을 효과적으로 차단할 수 있으며, TVOC도 낮은 광학 제품을 제공할 수 있음을 확인할 수 있다.

Claims (16)

  1. 폴리카보네이트 및 광 차단제를 포함하는 폴리카보네이트 조성물로서,
    하기 식 1로 계산되는 5YT420이 2.5 내지 71인, 폴리카보네이트 조성물:
    [식 1]
    5YT420 = (5 * Y) + T420
    상기 식 1에서 Y는 상기 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1925에 의거하여 측정한 황색 지수이며,
    T420은 ASTM D1003에 의거하여 측정한 420 nm 영역에서의 투과율이다.
  2. 제 1 항에 있어서, 상기 식 1로 계산되는 5YT420이 60 내지 66인, 폴리카보네이트 조성물.
  3. 제 1 항에 있어서, 하기 식 2로 계산되는 YT410이 2 내지 13인, 폴리카보네이트 조성물:
    [식 2]
    YT410 = Y + T410
    상기 식 2에서 Y는 상기 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1925에 의거하여 측정한 황색 지수이며,
    T410은 ASTM D1003에 의거하여 측정한 410 nm 영역에서의 투과율이다.
  4. 제 1 항에 있어서, 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1003에 의거하여 측정한 420 nm 영역에서의 투과율이 0.1 내지 47 %인, 폴리카보네이트 조성물.
  5. 제 1 항에 있어서, 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1003에 의거하여 측정한 410 nm 영역에서의 투과율이 0.01 내지 6.0 %인, 폴리카보네이트 조성물.
  6. 제 1 항에 있어서, 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에 대하여 ASTM D1925에 의거하여 측정한 황색 지수가 0.1 내지 11.5인, 폴리카보네이트 조성물.
  7. 제 1 항에 있어서, 폴리카보네이트 조성물로부터 형성된 두께가 6.35 mm인 시편에 대하여 ASTM D256에 의거하여 측정한 충격 강도가 680 내지 800 J/m인, 폴리카보네이트 조성물.
  8. 제 1 항에 있어서, 폴리카보네이트 조성물로부터 형성된 두께가 3 mm인 시편에서 280 ℃에서 15 분간 방출된 총 휘발성 유기 화합물의 함량은 0 내지 210 ppm인, 폴리카보네이트 조성물.
  9. 제 1 항에 있어서, 상기 광 차단제는 하기 화학식 1로 표시되는 화합물을 포함하는, 폴리카보네이트 조성물:
    [화학식 1]
    Figure PCTKR2020016759-appb-img-000008
    상기 화학식 1에서,
    R 1은 수소, 할로겐, 히드록시기 또는 시아노기이며,
    R 2 내지 R 6는 각각 독립적으로 수소, 할로겐, 히드록시기, 시아노기 또는 탄소수 1 내지 5의 알콕시기이되, R 2 내지 R 6 중 적어도 하나 이상은 할로겐, 히드록시기, 시아노기 또는 탄소수 1 내지 5의 알콕시기이다.
  10. 제 9 항에 있어서, R 1은 수소인, 폴리카보네이트 조성물.
  11. 제 9 항에 있어서, R 2 내지 R 6 중 적어도 하나는 탄소수 1 내지 5의 알콕시기이고, 나머지는 수소, 할로겐, 히드록시기, 시아노기 또는 탄소수 1 내지 5의 알콕시기인, 폴리카보네이트 조성물.
  12. 제 9 항에 있어서, R 2 내지 R 6 중 2 개 내지 4 개는 탄소수 1 내지 5의 알콕시기이고, 나머지는 수소인, 폴리카보네이트 조성물.
  13. 제 1 항에 있어서, 상기 광 차단제는 폴리카보네이트 및 광 차단제의 총 중량에 대하여 0.001 내지 0.500 중량%로 포함되는, 폴리카보네이트 조성물.
  14. 제 1 항에 있어서, 상기 폴리카보네이트는 하기 화학식 2로 표시되는 반복 단위를 포함하는, 폴리카보네이트 조성물:
    [화학식 2]
    Figure PCTKR2020016759-appb-img-000009
    상기 화학식 2에서,
    R 7 내지 R 10는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 또는 할로겐이고,
    Z는 비치환되거나 또는 페닐로 치환된 탄소수 1 내지 10의 알킬렌기, 비치환되거나 또는 탄소수 1 내지 10의 알킬기로 치환된 탄소수 3 내지 15의 시클로알킬렌기, O, S, SO, SO 2, 또는 CO이다.
  15. 제 1 항의 폴리카보네이트 조성물로부터 형성된 광학 제품.
  16. 제 15 항에 있어서, 상기 광학 제품은 안경 렌즈인, 광학 제품.
PCT/KR2020/016759 2019-12-04 2020-11-25 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품 WO2021112473A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/432,196 US11773259B2 (en) 2019-12-04 2020-11-25 Polycarbonate composition and optical product formed therefrom
EP20896773.7A EP3910015A4 (en) 2019-12-04 2020-11-25 POLYCARBONATE COMPOSITION AND OPTICAL PRODUCT MADE THEREOF
CN202080014803.6A CN113474416B (zh) 2019-12-04 2020-11-25 聚碳酸酯组合物和由其形成的光学产品
JP2021547258A JP7271690B2 (ja) 2019-12-04 2020-11-25 ポリカーボネート組成物およびこれから形成された光学製品

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2019-0160110 2019-12-04
KR20190160110 2019-12-04
KR1020200159263A KR102493341B1 (ko) 2019-12-04 2020-11-24 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품
KR10-2020-0159263 2020-11-24
KR10-2020-0159262 2020-11-24
KR1020200159264A KR102493342B1 (ko) 2019-12-04 2020-11-24 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품
KR1020200159262A KR102493340B1 (ko) 2019-12-04 2020-11-24 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품
KR10-2020-0159264 2020-11-24

Publications (1)

Publication Number Publication Date
WO2021112473A1 true WO2021112473A1 (ko) 2021-06-10

Family

ID=76222584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016759 WO2021112473A1 (ko) 2019-12-04 2020-11-25 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품

Country Status (5)

Country Link
US (1) US11773259B2 (ko)
EP (1) EP3910015A4 (ko)
JP (1) JP7271690B2 (ko)
TW (1) TW202136405A (ko)
WO (1) WO2021112473A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166306B1 (ko) * 2018-08-20 2020-10-15 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이를 포함하는 광학 성형품

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100113641A1 (en) * 2008-11-04 2010-05-06 Alcon, Inc. Uv/visible light absorbers for ophthalmic lens materials
JP2010522356A (ja) * 2007-03-26 2010-07-01 カルソ アンド フリーランド 眼保護の増大のための装置
WO2014133111A1 (ja) * 2013-02-27 2014-09-04 三井化学株式会社 光学材料、光学材料用組成物およびその用途
KR20180130529A (ko) * 2016-04-21 2018-12-07 에씰로 앙터나시오날 적색-이동 벤조트리아졸 uv 흡수제를 포함하는 광학 물질

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840282A (en) 1995-06-21 1998-11-24 Givaudan-Roure (International) Sa Light screening compositions
JPH09157512A (ja) 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
RU2293731C2 (ru) 2002-02-13 2007-02-20 Ф.Хоффманн-Ля Рош Аг Производные пиридина и пиримидина, способы их получения (варианты), фармацевтическая композиция и применение
US7094510B2 (en) 2003-02-28 2006-08-22 Samsung Electric Co., Ltd. Organophotoreceptor with a charge transport material having two (9-fluorenylidene)malononitrile groups
DE102005041952A1 (de) 2005-09-03 2007-03-08 Bayer Materialscience Ag Zusammensetzungen enthaltend Polycarbonat und neuartige UV-Absorber
KR101849444B1 (ko) 2013-02-27 2018-04-16 미쓰이 가가쿠 가부시키가이샤 광학 재료 및 그 용도
US20160313575A1 (en) 2013-12-13 2016-10-27 Mitsui Chemicals, Inc. Polymerizable composition for optical materials, optical material, and process for producing same
JP6105752B2 (ja) 2013-12-13 2017-03-29 三井化学株式会社 光学材料用重合性組成物
KR102095002B1 (ko) 2016-11-01 2020-03-30 주식회사 엘지화학 폴리카보네이트 조성물 및 이를 포함하는 물품
WO2019066493A1 (ko) 2017-09-29 2019-04-04 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이로 이루어진 광학 성형품
KR102179473B1 (ko) 2017-09-29 2020-11-16 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이로 이루어진 광학 성형품
KR102166306B1 (ko) 2018-08-20 2020-10-15 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이를 포함하는 광학 성형품

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522356A (ja) * 2007-03-26 2010-07-01 カルソ アンド フリーランド 眼保護の増大のための装置
US20100113641A1 (en) * 2008-11-04 2010-05-06 Alcon, Inc. Uv/visible light absorbers for ophthalmic lens materials
WO2014133111A1 (ja) * 2013-02-27 2014-09-04 三井化学株式会社 光学材料、光学材料用組成物およびその用途
KR20180130529A (ko) * 2016-04-21 2018-12-07 에씰로 앙터나시오날 적색-이동 벤조트리아졸 uv 흡수제를 포함하는 광학 물질

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. PRIYADHARSHINI , S. KALAINATHAN: "Bulk crystal growth, spectral, optical, thermal, electrical and third-order NLO properties of benzylidene malononitrile derivative single crystal: a promising material for nonlinear optical device applications", JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 29, no. 4, 10 November 2017 (2017-11-10), pages 2698 - 2708, XP036398611, ISSN: 0957-4522, DOI: 10.1007/s10854-017-8196-4 *

Also Published As

Publication number Publication date
EP3910015A1 (en) 2021-11-17
TW202136405A (zh) 2021-10-01
US11773259B2 (en) 2023-10-03
JP2022520416A (ja) 2022-03-30
US20220186025A1 (en) 2022-06-16
EP3910015A4 (en) 2022-05-04
JP7271690B2 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2014092412A1 (ko) 내광성 및 난연성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2015041441A1 (ko) 코폴리카보네이트 수지 및 이를 포함하는 물품
WO2015002429A1 (ko) 히드록시 캡핑 단량체, 이의 폴리카보네이트 및 이를 포함하는 물품
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2015026014A1 (ko) 열전도성 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2021112473A1 (ko) 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품
WO2017116043A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2014092243A1 (ko) 폴리카보네이트 수지, 그 제조방법 및 이를 포함하는 성형품
WO2020040504A1 (ko) 폴리카보네이트 수지 조성물 및 이를 포함하는 광학 성형품
KR102493341B1 (ko) 폴리카보네이트 조성물 및 이로부터 형성된 광학 제품
WO2016195312A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2017111337A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2022005181A1 (ko) 폴리포스포네이트 수지 조성물 및 이로부터 제조된 성형품
WO2016137065A1 (ko) 폴리에스테르카보네이트 수지, 이의 제조방법 및 이를 포함하는 성형품
WO2015064859A1 (ko) 내화학성 및 보스 강성이 우수한 열가소성 수지 조성물
WO2013042827A1 (ko) 폴리카보네이트 및 그 제조방법
WO2023018136A1 (ko) 폴리카보네이트 공중합체
WO2022260417A1 (ko) 폴리카보네이트 공중합체 및 이의 제조 방법
WO2023234584A1 (ko) 폴리카보네이트 공중합체
WO2020138772A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019212222A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2020242228A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2017057905A1 (ko) 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
WO2021045390A1 (ko) 코폴리카보네이트 및 이를 포함하는 폴리카보네이트 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547258

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020896773

Country of ref document: EP

Effective date: 20210812

NENP Non-entry into the national phase

Ref country code: DE