WO2021112075A1 - 電磁波シールドフィルム - Google Patents

電磁波シールドフィルム Download PDF

Info

Publication number
WO2021112075A1
WO2021112075A1 PCT/JP2020/044658 JP2020044658W WO2021112075A1 WO 2021112075 A1 WO2021112075 A1 WO 2021112075A1 JP 2020044658 W JP2020044658 W JP 2020044658W WO 2021112075 A1 WO2021112075 A1 WO 2021112075A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
resin
electromagnetic wave
conductive adhesive
Prior art date
Application number
PCT/JP2020/044658
Other languages
English (en)
French (fr)
Inventor
晃司 高見
渡辺 正博
茂樹 竹下
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to CN202080081151.8A priority Critical patent/CN114731777A/zh
Priority to US17/781,482 priority patent/US11647619B2/en
Priority to JP2021513347A priority patent/JP7256869B2/ja
Publication of WO2021112075A1 publication Critical patent/WO2021112075A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent

Definitions

  • the present invention relates to an electromagnetic wave shielding film. More specifically, the present invention relates to an electromagnetic wave shielding film used for a printed wiring board.
  • Printed wiring boards are often used in electronic devices such as mobile phones, video cameras, and laptop computers to incorporate circuits into their mechanisms. It is also used to connect a movable part such as a printer head to a control part. Electromagnetic wave shielding measures are indispensable for these electronic devices, and shielded printed wiring boards with electromagnetic wave shielding measures are also used in the printed wiring boards used in the devices.
  • shield film An electromagnetic wave shield film (hereinafter, may be simply referred to as "shield film”) is used for the shield printed wiring board.
  • a shield film used by adhering to a printed wiring board has a shield layer such as a metal layer and a conductive adhesive sheet provided on the surface of the shield layer.
  • shield film having a conductive adhesive sheet for example, those disclosed in Patent Documents 1 and 2 are known.
  • the shield film is used by adhering the exposed surface of the conductive adhesive sheet to the surface of the printed wiring board, specifically, the coverlay surface provided on the surface of the printed wiring board.
  • These conductive adhesive sheets are usually thermocompression bonded under high temperature and high pressure conditions to be bonded and laminated on a printed wiring board.
  • the shield film arranged on the printed wiring board in this way exhibits a performance (shielding performance) of shielding electromagnetic waves from the outside of the printed wiring board.
  • shield films may be required to have the ability to be easily aligned when attached to a printed wiring board. For this reason, the shield film tends to be required to be transparent.
  • As a method of improving the transparency it is conceivable to thin the metal layer in the shield film.
  • the transparent metal layer is deteriorated in a high temperature and high humidity environment or an environment in which an electrolyte is present, and becomes cloudy and the transparency is impaired, and the shielding performance is lowered, that is, the environment resistance. There was a problem of being inferior in sex.
  • the present invention has been made in view of the above, and an object of the present invention is that it can be easily adhered to an adherend, has excellent electrical connection stability, and has excellent transparency, shielding performance, and environmental resistance.
  • the purpose is to provide an electromagnetic wave shielding film.
  • an electromagnetic wave shielding film using a specific conductive adhesive layer and having a specific layer structure can be easily adhered to an adherend. We have found that it has excellent electrical connection stability, transparency, shielding performance, and environmental resistance. The present invention has been completed based on these findings.
  • the first insulating layer, the transparent metal layer, the second insulating layer, and the conductive adhesive layer are laminated in this order.
  • the thickness of the second insulating layer is 10 to 500 nm, and the thickness of the second insulating layer is 10 to 500 nm.
  • the conductive adhesive layer contains a binder component and spherical conductive particles, and contains The median diameter of the spherical conductive particles is 3 to 50 ⁇ m.
  • the content ratio of the spherical conductive particles is 5 to 20% by mass with respect to 100% by mass of the conductive adhesive layer.
  • the second insulating layer and the transparent metal layer are directly laminated.
  • the second insulating layer preferably has an inorganic material layer formed of an inorganic material.
  • the inorganic layer is directly laminated with the transparent metal layer.
  • the second insulating layer preferably has a laminated structure of an inorganic material layer formed of an inorganic material and a resin layer formed of a resin.
  • the resin layer is directly laminated with the conductive adhesive layer, and the inorganic layer is directly laminated with the transparent metal layer.
  • the electromagnetic wave shielding film preferably has a total light transmittance of 62% or more.
  • the present invention also provides a shield-printed wiring board provided with the above-mentioned electromagnetic wave shield film.
  • the electromagnetic wave shielding film of the present invention can be easily adhered to an adherend, yet has excellent electrical connection stability, transparency, shielding performance, and environmental resistance.
  • the shield film of the present invention has a layer structure in which a first insulating layer, a transparent metal layer, a second insulating layer, and a conductive adhesive layer are laminated in this order.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the shield film of the present invention.
  • the shield film 1 of the present invention shown in FIG. 1 has a first insulating layer 11, a transparent metal layer 12, a second insulating layer 13, and a conductive adhesive layer 14 in this order.
  • the first insulating layer is a transparent base material that functions as a support in the shield film of the present invention.
  • Examples of the first insulating layer include a plastic base material (particularly a plastic film) and a glass plate.
  • the first insulating layer may be a single layer, or may be a laminate of the same type or different types.
  • Examples of the resin constituting the plastic base material include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultra-low-density polyethylene, random copolymerized polypropylene, block copolymerized polypropylene, and homopolyprolene.
  • Polybutene polymethylpentene, ethylene-vinyl acetate copolymer (EVA), ionomer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene- Polyolefin resins such as butene copolymers and ethylene-hexene copolymers; polyurethane; polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate and polybutylene terephthalate (PBT); polycarbonate (PC); polyimide (PI); polyether Etherketone (PEEK); polyetherimide; polyamide such as aramid and total aromatic polyamide; polyphenylsulfide; polysulfone (PS); polyethersulfone (PES); acrylic resin such as polymethylmethacrylate (PMMA); acrylonitrile-butadiene -Styrene copolymer (ABS); fluor
  • polyester and cellulose resins are preferable, and polyethylene terephthalate and triacetyl cellulose are more preferable, from the viewpoint of being more excellent in transparency.
  • the surface of the first insulating layer (particularly, the surface on the transparent metal layer side) is subjected to, for example, corona discharge treatment, plasma treatment, sand mat treatment, etc. for the purpose of improving adhesion, retention, etc. with an adjacent layer such as a transparent metal layer.
  • Physical treatment such as treatment, ozone exposure treatment, flame exposure treatment, high-voltage impact treatment, ionizing radiation treatment; chemical treatment such as chromium acid treatment; surface treatment such as easy adhesion treatment with a coating agent (undercoating agent) You may be. It is preferable that the surface treatment for enhancing the adhesion is applied to the entire surface of the first insulating layer on the transparent metal layer side.
  • the thickness of the first insulating layer is not particularly limited, but is preferably 1 to 15 ⁇ m, more preferably 3 to 10 ⁇ m. When the thickness is 1 ⁇ m or more, the shield film can be more sufficiently supported and the transparent metal layer can be protected. When the thickness is 15 ⁇ m or less, the transparency and flexibility are excellent, and it is economically advantageous. When the first insulating layer has a multi-layer structure, the thickness of the first insulating layer is the total of all the layer thicknesses.
  • the transparent metal layer is an element that functions as a shield layer in the shield film of the present invention.
  • the transparent metal layer may be a single layer, or may be a laminate of the same type or different types.
  • Examples of the metal constituting the transparent metal layer include gold, silver, copper, aluminum, lithium, nickel, tin, palladium, chromium, titanium, zinc, or alloys thereof.
  • Examples of the alloy include silver / copper alloy, magnesium / copper alloy, magnesium / silver alloy, magnesium / aluminum alloy, magnesium / indium alloy, lithium / aluminum alloy, ITO (Indium Tin Oxide; indium tin oxide) and the like. Can be mentioned.
  • copper and silver are preferable from the viewpoint of excellent electromagnetic wave shielding performance, and silver / copper alloy is preferable from the viewpoint of excellent migration resistance and sulfurization resistance.
  • the method for forming the transparent metal layer is not particularly limited, and examples thereof include electrolysis, vapor deposition (for example, vacuum deposition), sputtering, CVD method, metal organic (MO), plating, and rolling. Of these, a transparent metal layer formed by vapor deposition or sputtering is preferable from the viewpoint of ease of manufacture.
  • the thickness of the transparent metal layer is preferably 10 to 100 nm, more preferably 10 to 50 nm. When the thickness is 10 nm or more, the shielding performance is more excellent. When the thickness is 100 nm or less, the transparency is excellent. When the transparent metal layer has a multi-layer structure, the thickness of the transparent metal layer is the total of all the layer thicknesses.
  • the second insulating layer is a transparent layer that protects the transparent metal layer.
  • the second insulating layer By interposing the second insulating layer between the transparent metal layer and the conductive adhesive layer, it is possible to improve the environmental resistance and suppress the deterioration of the transparency and the connection stability. It is presumed that the decrease in transparency and connection stability is caused by deterioration of the transparent metal layer due to moisture and acid components in the conductive adhesive layer, electrolytes such as salt contained in sweat, and the like.
  • the second insulating layer may be either a single layer or a plurality of layers.
  • the second insulating layer examples include a resin layer mainly formed of a resin or an inorganic material layer formed of an inorganic material.
  • the second insulating layer is an inorganic layer, it is possible to protect the transparent metal layer and prevent the transparent metal layer from deteriorating and deteriorating the transparency and shielding performance in a high temperature and high humidity environment or an environment in which an electrolyte is present. That is, it has excellent environmental resistance.
  • the second insulating layer is a resin layer, it has excellent environmental resistance as in the case of an inorganic layer, and is more flexible than the inorganic layer, so that it is excellent in embedding in a hole having a small diameter and can be connected. Better in stability.
  • the resin forming the resin layer is preferably a thermoplastic resin, a thermosetting resin, or an active energy ray-curable compound.
  • thermoplastic resin, the thermosetting resin, and the active energy ray-curable compound include those exemplified as a binder component that can be contained in the conductive adhesive layer described later. Only one kind of the above resin may be used, or two or more kinds may be used.
  • Examples of the inorganic substances forming the inorganic substance layer include glass, clay, mica, talc, kaolinite (kaolin), halloysite, zeolite, acid clay, activated clay, boehmite, pseudo-boehmite, inorganic oxides, and metal salts [for example. , Alkaline earth metal salt, etc.] and other inorganic transparent pigments; organic transparent pigments such as styrene resin, polydivinylbenzene, polytetrafluoroethylene and other resin pigments; Examples thereof include transparent particles such as hollow particles having. The transparent particles may be those that have been subjected to a known or conventional surface treatment.
  • Examples of the inorganic oxide include aluminum oxide (alumina), magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, and silicon oxide.
  • Examples of the alkaline earth metal salt include magnesium carbonate, calcium carbonate, barium carbonate, magnesium silicate, calcium silicate, magnesium hydroxide, magnesium phosphate, magnesium hydrogen phosphate, magnesium sulfate, calcium sulfate, and sulfate. Examples thereof include carbonates, silicates, sulfates, fluoride salts and the like such as barium, magnesium hydroxide and calcium fluoride.
  • Examples of metal salts other than alkaline earth metal salts include aluminum silicate, aluminum hydroxide, zinc sulfide and the like.
  • the inorganic oxide aluminum oxide, magnesium oxide, titanium oxide, and silicon oxide are preferable, and titanium oxide is more preferable, from the viewpoint of transparency and economy.
  • the second insulating layer is an inorganic layer
  • examples of the forming method include electrolysis, vapor deposition (for example, vacuum deposition), sputtering, CVD method, metal organic (MO), plating, and rolling. Of these, an inorganic layer formed by vapor deposition or sputtering is preferable from the viewpoint of ease of production.
  • a known method such as coating can be adopted as the forming method.
  • the second insulating layer may contain other components other than the resin forming the resin layer and the inorganic substance forming the inorganic substance layer as long as the effects of the present invention are not impaired.
  • the other components include a curing agent, a curing accelerator, a plasticizer, a flame retardant, a defoaming agent, a viscosity modifier, an antioxidant, a diluent, an antioxidant, a filler, a leveling agent, and a coupling agent. , UV absorbers, tackifier resins, antiblocking agents and the like. As the above other components, only one kind may be used, or two or more kinds may be used.
  • the thickness of the second insulating layer is 10 to 500 nm, preferably 10 to 300 nm.
  • the thickness is 10 nm or more, the connection stability is excellent and the environmental resistance is excellent. Since the thickness is 500 nm or less, the connection stability is excellent even when it is adhered to the printed wiring board under relatively gentle conditions.
  • the thickness of the second insulating layer is the total of all the layer thicknesses.
  • the second insulating layer is preferably directly laminated with the transparent metal layer.
  • the inorganic layer is directly laminated with the transparent metal layer.
  • the second insulating layer preferably has a laminated structure of the resin layer and the inorganic material layer from the viewpoint of being excellent in transparency, connection stability, and environmental resistance.
  • the inorganic layer is on the transparent metal layer side and the resin layer is the conductive. It is preferable that the configuration is on the adhesive layer side. Further, it is preferable that the conductive adhesive layer and the resin layer are directly laminated, and the transparent metal layer and the inorganic material layer are directly laminated.
  • the second insulating layer has a laminated structure of an inorganic material layer 13a and a resin layer 13b, and is composed of the laminated structure.
  • the inorganic layer 13a is arranged on the transparent metal layer 12 side and the resin layer 13b on the conductive adhesive layer 14 side.
  • the inorganic layer 13a is on the transparent metal layer 12 and the resin layer 13b is on the conductive adhesive layer 14. And each is directly laminated.
  • the conductive adhesive layer has, for example, adhesiveness for adhering the shield film of the present invention to a printed wiring board and conductivity for electrically connecting to the transparent metal layer. It also functions as a shield layer that exhibits shielding performance together with the transparent metal layer.
  • the conductive adhesive layer may be either a single layer or a plurality of layers.
  • the conductive adhesive layer contains a binder component and spherical conductive particles.
  • conductive particles used for the conductive adhesive layer in the shield film dendritic (dendrite-like) conductive particles are generally used from the viewpoint of connection stability, but the shield film of the present invention has a spherical shape. Use conductive particles. As a result, the transparency is more excellent than when dendritic conductive particles are used.
  • the binder component examples include thermoplastic resins, thermosetting resins, active energy ray-curable compounds, and the like. As the binder component, only one kind may be used, or two or more kinds may be used.
  • the thermosetting resin include both a thermosetting resin (thermosetting resin) and a resin obtained by curing the thermosetting resin.
  • the thermoplastic resin include polystyrene-based resin, vinyl acetate-based resin, polyester-based resin, polyolefin-based resin (for example, polyethylene-based resin, polypropylene-based resin composition, etc.), polyimide-based resin, acrylic-based resin, and the like. Be done. As the thermoplastic resin, only one kind may be used, or two or more kinds may be used.
  • thermosetting resin examples include phenolic resin, epoxy resin, urethane resin, urethane urea resin, melamine resin, alkyd resin and the like.
  • thermosetting resin only one kind may be used, or two or more kinds may be used.
  • epoxy resin examples include bisphenol type epoxy resin, spiro ring type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, terpen type epoxy resin, glycidyl ether type epoxy resin, and glycidyl amine type.
  • examples thereof include epoxy-based resins and novolak-type epoxy-based resins.
  • Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabrom bisphenol A type epoxy resin and the like.
  • Examples of the glycidyl ether type epoxy resin include tris (glycidyloxyphenyl) methane and tetrakis (glycidyloxyphenyl) ethane.
  • Examples of the glycidylamine type epoxy resin include tetraglycidyldiaminodiphenylmethane.
  • Examples of the novolak type epoxy resin include cresol novolac type epoxy resin, phenol novolac type epoxy resin, ⁇ -naphthol novolac type epoxy resin, brominated phenol novolac type epoxy resin and the like.
  • the active energy ray-curable compound examples include both a compound that can be cured by irradiation with active energy rays (active energy ray curable compound) and a compound obtained by curing the active energy ray curable compound.
  • the active energy ray-curable compound is not particularly limited, and examples thereof include a polymerizable compound having at least two radical reactive groups (for example, (meth) acryloyl group) in the molecule.
  • the active energy ray-curable compound only one kind may be used, or two or more kinds may be used.
  • thermosetting resin is preferable.
  • the binder component can be cured by pressurization and heating, and the adhesiveness with the printed wiring board is good. Become.
  • a curing agent for accelerating the heat curing reaction may be contained as a component constituting the binder component.
  • the curing agent can be appropriately selected depending on the type of the thermosetting resin. As the curing agent, only one kind may be used, or two or more kinds may be used.
  • the content ratio of the binder component in the conductive adhesive layer is not particularly limited, but is preferably 5 to 95% by mass, more preferably 40 to 95% by mass, based on 100% by mass of the total amount of the conductive adhesive layer. More preferably, it is 60 to 95% by mass. When the content ratio is 5% by mass or more, the adhesion to the printed wiring board is more excellent. When the content ratio is 95% by mass or less, the conductive particles can be sufficiently contained.
  • the spherical conductive particles include metal particles, metal-coated resin particles, carbon filler, and the like. As the spherical conductive particles, only one kind may be used, or two or more kinds may be used.
  • Examples of the metal constituting the coating portion of the metal particles and the metal-coated resin particles include gold, silver, copper, nickel, zinc and the like. Only one kind of the above metal may be used, or two or more kinds may be used.
  • the metal particles include copper particles, silver particles, nickel particles, silver-coated copper particles, gold-coated copper particles, silver-coated nickel particles, gold-coated nickel particles, and silver-coated alloy particles.
  • the silver-coated alloy particles include silver-coated copper alloy particles in which alloy particles containing copper (for example, copper alloy particles made of an alloy of copper, nickel, and zinc) are coated with silver.
  • the metal particles can be produced by an electrolysis method, an atomizing method, a reduction method or the like.
  • silver particles silver particles, silver-coated copper particles, and silver-coated copper alloy particles are preferable.
  • Silver-coated copper particles and silver-coated copper alloy particles are particularly preferable from the viewpoints of excellent conductivity, suppression of oxidation and aggregation of metal particles, and reduction of cost of metal particles.
  • the median diameter (D50) of the spherical conductive particles is 3 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the median diameter is the median diameter of all the spherical conductive particles in the conductive adhesive layer, and refers to the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the median diameter can be measured by, for example, a laser diffraction type particle size distribution measuring device (trade name “SALD-2200”, manufactured by Shimadzu Corporation).
  • the content ratio of the spherical conductive particles in the conductive adhesive layer is 5 to 20% by mass, preferably 5 to 15% by mass, based on 100% by mass of the conductive adhesive layer.
  • the spherical conductive particles having a specific median diameter are within the above range, the transparency is excellent and the connection resistance value is excellent.
  • the content ratio exceeds 20% by mass, the connection resistance value becomes high. It is presumed that this is because the excess conductive particles damage the transparent metal layer.
  • the content of the spherical conductive particles in the conductive adhesive layer is not particularly limited, but is preferably 1 to 30 parts by mass, more preferably 1 to 30 parts by mass, based on 100 parts by mass of the binder component in the conductive adhesive layer. Is 5 to 20 parts by mass. When the content is within the above range, the transparency tends to be excellent and the connection stability tends to be excellent.
  • the conductive adhesive layer may contain other components other than the above-mentioned components as long as the effects of the present invention are not impaired.
  • the other components include components contained in known or conventional adhesive layers.
  • the other components include a curing accelerator, a plasticizer, a flame retardant, a defoaming agent, a viscosity modifier, an antioxidant, a diluent, an antioxidant, a filler, a leveling agent, a coupling agent, and an ultraviolet absorbing agent.
  • agents, tackifier resins, and antiblocking agents are examples of the above other components, only one kind may be used, or two or more kinds may be used.
  • the content of the conductive particles other than the spherical conductive particles is, for example, less than 10 parts by mass, preferably less than 5 parts by mass, and more preferably less than 1 part by mass with respect to 100 parts by mass of the spherical conductive particles.
  • the thickness of the conductive adhesive layer is not particularly limited, but is preferably 3 to 20 ⁇ m, more preferably 5 to 15 ⁇ m. When the thickness is 3 ⁇ m or more, the shielding performance is more excellent. When the thickness is 20 ⁇ m or less, the surface of the spherical conductive particles tends to be closer to or exposed from the surface of the layer, and the connection stability is more excellent.
  • the ratio of the conductive adhesive layer thickness to the D50 of the spherical conductive particles is not particularly limited, but is preferably 0.5 to 1.2, and more preferably 0. It is 8 to 1.0.
  • the adhesiveness to an adherend such as a printed wiring board becomes better.
  • the above ratio is 1.2 or less, the amount of spherical conductive particles exposed from the surface of the conductive adhesive layer increases, and the connection stability is more excellent.
  • the shield film of the present invention may have a third insulating layer 15 between the first insulating layer 11 and the transparent metal layer 12.
  • the third insulating layer By providing the third insulating layer, the connection stability when bonded to the printed wiring board under relatively gentle conditions becomes better, and the transparent metal layer is also protected from the first insulating layer side to withstand it. It is more environmentally friendly.
  • the third insulating layer may be either a single layer or a plurality of layers.
  • Examples of the third insulating layer include a resin layer mainly formed of a resin or an inorganic substance layer formed of an inorganic substance.
  • Examples of the resin include thermoplastic resins, thermosetting resins, active energy ray-curable compounds and the like.
  • Examples of the thermoplastic resin, the thermosetting resin, and the active energy ray-curable compound include those exemplified as the binder component that can be contained in the conductive adhesive layer described above. Only one kind of the above resin may be used, or two or more kinds may be used.
  • the third insulating layer is preferably an inorganic layer.
  • the transparent metal layer can be protected to improve the environmental resistance and the transparency can be further improved.
  • the inorganic substance forming the inorganic substance layer include those exemplified and described as the inorganic substance that can be contained in the above-mentioned second insulating layer. Of these, inorganic oxides are preferable, and titanium oxide is more preferable, from the viewpoint of transparency and economy. As the above-mentioned inorganic substance, only one kind may be used, or two or more kinds may be used.
  • the third insulating layer is a plurality of layers, it is preferable that the third insulating layer, which is an inorganic layer, is on the transparent metal layer side (particularly, it is directly laminated with the transparent metal layer).
  • the third insulating layer may contain other components other than the resin forming the resin layer and the inorganic substance forming the inorganic substance layer as long as the effects of the present invention are not impaired.
  • the other components include a curing agent, a curing accelerator, a plasticizer, a flame retardant, a defoaming agent, a viscosity modifier, an antioxidant, a diluent, an antioxidant, a filler, a leveling agent, and a coupling agent. , UV absorbers, tackifier resins, antiblocking agents and the like. As the above other components, only one kind may be used, or two or more kinds may be used.
  • the thickness of the third insulating layer is not particularly limited, but is preferably 10 to 500 nm, more preferably 10 to 300 nm. When the thickness is 10 nm or more, the connection stability and environmental resistance are excellent. When the thickness is 500 nm or less, the connection stability is excellent even when it is adhered to the printed wiring board under relatively gentle conditions. When the third insulating layer has a multi-layer structure, the thickness of the third insulating layer is the total of all the layer thicknesses.
  • FIG. 4 shows another embodiment of the shield film of the present invention.
  • the shield film 4 shown in FIG. 4 has a structure similar to that of the second insulating layer in the shield film 2 shown in FIG. 2, that is, a structure having a laminated structure of the inorganic layer 13a and the resin layer 13b as the second insulating layer.
  • a third insulating layer 15 is provided between the first insulating layer 11 and the transparent metal layer 12.
  • the third insulating layer 15 is preferably an inorganic layer.
  • the transparent metal layer 12 is sandwiched between the inorganic layers to protect both sides of the transparent metal layer 12, the environmental resistance of the shield film 4 is remarkably excellent, and the presence of the resin layer 13b makes it transparent. Damage to the metal layer 14 is suppressed.
  • the connection stability of the shield film 4 becomes remarkably good even when it is adhered to the printed wiring board under relatively gentle conditions.
  • the shield film of the present invention may have a separator (release film) on the conductive adhesive layer side.
  • the separators are laminated so that they can be peeled off from the shield film of the present invention.
  • the separator is an element for coating and protecting the conductive adhesive layer, and is peeled off when the shield film of the present invention is used.
  • separator examples include polyethylene terephthalate (PET) film, polyethylene film, polypropylene film, plastic film and paper surface-coated with a release agent such as a fluorine-based release agent and a long-chain alkyl acrylate-based release agent. ..
  • PET polyethylene terephthalate
  • a release agent such as a fluorine-based release agent and a long-chain alkyl acrylate-based release agent.
  • the thickness of the separator is preferably 10 to 200 ⁇ m, more preferably 15 to 150 ⁇ m. When the thickness is 10 ⁇ m or more, the protection performance is more excellent. When the thickness is 200 ⁇ m or less, the separator can be easily peeled off during use.
  • the shield film of the present invention may have a first insulating layer, a transparent metal layer, a second insulating layer, a conductive adhesive layer, and other layers other than the third insulating layer.
  • the other layers include other insulating layers, antireflection layers, antiglare layers, antifouling layers, hard coat layers, ultraviolet absorbing layers, anti-Newton ring layers, and the like.
  • the shield film of the present invention has excellent transparency.
  • the total light transmittance of the shield film of the present invention is preferably 62% or more, more preferably 65% or more, and particularly preferably 67% or more.
  • the total light transmittance can be measured using a known spectrophotometer.
  • the total light transmittance is measured for a laminate having the first insulating layer and the conductive adhesive layer as both end layers.
  • the shield film of the present invention is preferably used for a printed wiring board, and particularly preferably for a flexible printed wiring board (FPC).
  • the shield film of the present invention can be easily adhered to an adherend, yet has excellent electrical connection stability and excellent shielding performance. In addition, it has excellent transparency and is easy to align on a printed wiring board. Therefore, the shield film of the present invention can be preferably used as an electromagnetic wave shield film for a flexible printed wiring board.
  • the transparent metal layer 12 is formed on the first insulating layer 11.
  • the transparent metal layer 12 is preferably formed by a vapor deposition method or a sputtering method.
  • a vapor deposition method and the sputtering method known or commonly used methods can be adopted.
  • a composition for forming the second insulating layer 13 is applied (coated) on the surface of the formed transparent metal layer 12, and if necessary, the solvent is removed and / or partially cured to form the transparent metal layer 12. be able to.
  • the above composition contains, for example, a solvent (solvent) in addition to each component contained in the above-mentioned second insulating layer.
  • a solvent solvent
  • examples of the solvent include toluene, acetone, methyl ethyl ketone, methanol, ethanol, propanol, dimethylformamide and the like.
  • the solid content concentration of the composition is appropriately set according to the thickness of the second insulating layer to be formed and the like.
  • a known coating method may be used for coating the above composition.
  • a coater such as a gravure roll coater, a reverse roll coater, a kiss roll coater, a lip coater, a dip roll coater, a bar coater, a knife coater, a spray coater, a comma coater, a direct coater, or a slot die coater may be used.
  • the adhesive composition for forming the conductive adhesive layer 14 is applied (coated) on the surface of the formed second insulating layer 13, and if necessary, the solvent is removed and / or partially cured. Can be formed.
  • the adhesive composition contains, for example, a solvent in addition to each component contained in the conductive adhesive layer described above.
  • the solvent include those exemplified as the solvent that can be contained in the composition for forming the second insulating layer described above.
  • the solid content concentration of the adhesive composition is appropriately set according to the thickness of the conductive adhesive layer to be formed and the like.
  • a known coating method may be used for applying the adhesive composition.
  • those exemplified as a coater used for coating the above-mentioned composition can be mentioned.
  • a composition for forming the inorganic layer 13a is applied to the surface of the transparent metal layer 12 formed in the same manner as the shield film 1 shown in FIG. It can be (coated) and, if necessary, desolvated to form.
  • a resin composition for forming a resin layer 13b may be applied (coated) on the surface of the formed inorganic layer 13a, and if necessary, desolvated and / or partially cured to form the resin layer 13a. it can.
  • Each of the above compositions contains, for example, a solvent (solvent) in addition to each component contained in the above-mentioned inorganic layer or resin layer.
  • the solvent examples include those exemplified as the solvent that can be contained in the above composition.
  • the solid content concentration of the composition is appropriately set according to the thickness of the inorganic material layer or the resin layer to be formed.
  • a known coating method may be used for coating the above composition.
  • those exemplified as a coater used for coating the above-mentioned composition can be mentioned.
  • the conductive adhesive layer 14 is formed on the surface of the formed resin layer 13b.
  • Other methods are the same as the method for producing the shield film 1 of the present invention shown in FIG.
  • the third insulating layer 15 is formed on the first insulating layer 11 before the transparent metal layer 12 is formed.
  • the third insulating layer 15 can be formed, for example, by applying (coating) a composition for forming the third insulating layer 15 and, if necessary, removing the solvent and / or partially curing the composition.
  • the composition contains, for example, a solvent (solvent) in addition to each component contained in the above-mentioned third insulating layer.
  • the solvent include those exemplified as the solvent that can be contained in the above composition.
  • the solid content concentration of the composition is appropriately set according to the thickness of the third insulating layer to be formed and the like.
  • a known coating method may be used for coating the above composition.
  • those exemplified as a coater used for coating the above-mentioned composition can be mentioned.
  • the transparent metal layer 12 is formed on the surface of the formed third insulating layer 15.
  • Other methods are the same as the method for producing the shield film 1 of the present invention shown in FIG.
  • the shield film 4 of the present invention shown in FIG. 4 can be produced by appropriately combining the methods for producing the shield film 2 shown in FIG. 2 and the shield film 3 shown in FIG.
  • each layer has been described, but the method is not limited to such a method, and is not limited to such a method, for example, on a temporary base material such as a separate film or a base material. It may be produced by a method (lamination method) in which individually formed layers are laminated and sequentially bonded.
  • a printed wiring board can be produced using the shield film of the present invention.
  • a printed wiring board for example, a coverlay
  • the conductive adhesive layer may be thermoset.
  • the blending amount shown in Table 1 is the relative blending amount (pure content) of each component, and is represented by "parts by mass” unless otherwise specified.
  • Example 1 An epoxy resin insulating film is coated on the surface of a PET film (thickness 6 ⁇ m) with a toluene solution of epoxy resin (epoxy resin concentration: 23.6% by mass) using a wire bar and heated at 100 ° C. for 3 minutes. (Thickness 100 nm) was formed. Next, a silver / copper alloy foil (thickness 10 nm) was formed on the surface of the epoxy resin insulating film by a sputtering method. Next, a polyester-based resin composition was applied to the surface of the alloy foil using a wire bar, and heated at 100 ° C. for 3 minutes to form a polyester insulating film (thickness 100 nm).
  • the adhesive composition obtained by blending and mixing the epoxy resin toluene solution and the silver-coated copper powder (spherical, median diameter 6 ⁇ m) in the blending amounts shown in Table 1 was applied to the surface of the polyester insulating film. It was applied using a wire bar and heated at 100 ° C. for 3 minutes to form a conductive adhesive layer (thickness 5 ⁇ m). As described above, the shield film of Example 1 was produced.
  • Comparative Example 5 A shield film was produced in the same manner as in Example 1 except that silver-coated copper powder (spherical, median diameter 2 ⁇ m) was used instead of silver-coated copper powder (spherical, median diameter 6 ⁇ m).
  • Comparative Example 6 A shield film was produced in the same manner as in Example 1 except that silver-coated copper powder (spherical, median diameter 55 ⁇ m) was used instead of silver-coated copper powder (spherical, median diameter 6 ⁇ m).
  • Comparative Example 7 A shield film was produced in the same manner as in Example 1 except that silver-coated copper powder (dendritic, median diameter 6 ⁇ m) was used instead of silver-coated copper powder (spherical, median diameter 6 ⁇ m).
  • connection resistance value Two electrodes having a width of 10 mm and a length of 30 mm were arranged on a polyimide film having a thickness of 25 ⁇ m so as to have an interval of 100 mm. Then, the shield films obtained in Examples and Comparative Examples are punched to a width of 10 mm and a length of 130 mm on the electrode arrangement surface, and the conductive adhesive layer surface is bonded so as to connect the electrodes by reciprocating once with a 2 kg roller. It was. After bonding the conductive adhesive layer surfaces, the resistance value between the two electrodes was measured using a 4-terminal method tester (trade name "RM3542", manufactured by Hioki Electric Co., Ltd.).
  • salt water resistance With respect to the shield films obtained in Examples and Comparative Examples, salt water is sprayed on the shield film based on the conditions specified in JIS Z2371, and the silver / copper alloy foil of the shield film changes from colorless and transparent to cloudy. Whether or not it was visually observed. Then, the case where the cloudiness could not be visually confirmed was evaluated as ⁇ , and the case where it could be visually confirmed was evaluated as x.
  • the shield film of the present invention has high total light transmittance, excellent transparency, low connection resistance value, excellent shielding performance, good salt water resistance, and excellent environmental resistance. Was confirmed.
  • the adhesive layer did not contain conductive particles, the connection resistance value was high and the shielding property was inferior (Comparative Example 1). Further, when the content ratio of the conductive particles was excessive, the connection resistance value was high and the shielding property was inferior (Comparative Example 2).
  • the thickness of the second insulating layer was thin, the salt water resistance was poor and the environmental resistance was inferior (Comparative Example 3).
  • Shield film 11 1st insulating layer 12 Transparent metal layer 13 2nd insulating layer 13a Inorganic layer 13b Resin layer 14 Conductive adhesive layer 15 3rd insulating layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Structure Of Printed Boards (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

簡易に被着体に接着可能であり且つ電気的接続安定性に優れ、透明性、シールド性能、及び耐環境性に優れる電磁波シールドフィルムを提供する。 本発明の電磁波シールドフィルムは、第1絶縁層、透明金属層、第2絶縁層、及び導電性接着剤層がこの順に積層されており、前記第2絶縁層の厚さは10~500nmであり、前記導電性接着剤層は、バインダー成分及び球状導電性粒子を含み、前記球状導電性粒子のメディアン径は3~50μmであり、前記球状導電性粒子の含有割合は、前記導電性接着剤層100質量%に対し5~20質量%である。

Description

電磁波シールドフィルム
 本発明は、電磁波シールドフィルムに関する。より詳細には、本発明は、プリント配線板に使用される電磁波シールドフィルムに関する。
 プリント配線板は、携帯電話、ビデオカメラ、ノートパソコンなどの電子機器において、機構の中に回路を組み込むために多用されている。また、プリンタヘッドのような可動部と制御部との接続にも利用されている。これらの電子機器では、電磁波シールド対策が必須となっており、装置内で使用されるプリント配線板においても、電磁波シールド対策を施したシールドプリント配線板が用いられている。
 シールドプリント配線板には、電磁波シールドフィルム(以下、単に「シールドフィルム」と称する場合がある)が使用される。例えば、プリント配線板に接着して使用されるシールドフィルムは、金属層などのシールド層と当該シールド層の表面に設けられた導電性接着シートとを有する。
 導電性接着シートを有するシールドフィルムとしては、例えば、特許文献1及び2に開示のものが知られている。上記シールドフィルムは、導電性接着シートが露出した表面が、プリント配線板表面、具体的にはプリント配線板の表面に設けられたカバーレイ表面と貼着するように貼り合わせて使用される。これらの導電性接着シートは、通常、高温・高圧条件下で熱圧着してプリント配線板に接着及び積層される。このようにしてプリント配線板上に配置されたシールドフィルムは、プリント配線板の外部からの電磁波を遮蔽する性能(シールド性能)を発揮する。
特開2015-110769号公報 特開2012-28334号公報
 近年、シールドフィルムには、プリント配線板に貼り付ける際、位置合わせをしやすいという性能が求められる場合がある。このため、シールドフィルムには、透明性が求められる傾向がある。透明性を向上させる方法として、シールドフィルムにおける金属層を薄くすることが考えられる。しかしながら、この方法では、透明性が向上する一方、高温高湿環境や電解質が存在する環境において透明金属層が劣化して白濁して透明性が損なわれる、シールド性能が低下する、すなわち、耐環境性に劣るという問題があった。
 また、近年、高温・高圧条件下ではなく、比較的緩やかな条件でプリント配線板に接着することができる導電性接着剤層を有するシールドフィルムが求められる傾向がある。しかしながら、シールドフィルムにおける導電性接着剤層として従来の異方導電性粘着シートを用いた場合、外部グランドとの電気的接続が不安定であるという問題があった。電気的接続の安定性を向上させるべく、従来の異方導電性粘着シートにおける導電性粒子の配合量を増やす方法が考えられる。この場合、接続安定性を向上させることができるが、金属層の薄膜化による耐環境性の低下を補うことはできず、また透明性が低下する。
 本発明は上記に鑑みてなされたものであり、本発明の目的は、簡易に被着体に接着可能であり且つ電気的接続安定性に優れ、透明性、シールド性能、及び耐環境性に優れる電磁波シールドフィルムを提供することにある。
 本発明者らは、上記目的を達成するため鋭意検討した結果、特定の導電性接着剤層を用い、且つ特定の層構成を有する電磁波シールドフィルムは、簡易に被着体に接着可能であり且つ電気的接続安定性に優れ、透明性、シールド性能、及び耐環境性に優れることを見出した。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、第1絶縁層、透明金属層、第2絶縁層、及び導電性接着剤層がこの順に積層されており、
 上記第2絶縁層の厚さは10~500nmであり、
 上記導電性接着剤層は、バインダー成分及び球状導電性粒子を含み、
 上記球状導電性粒子のメディアン径は3~50μmであり、
 上記球状導電性粒子の含有割合は、上記導電性接着剤層100質量%に対し5~20質量%である、
 電磁波シールドフィルムを提供する。
 上記第2絶縁層と上記透明金属層とは直接積層していることが好ましい。
 上記第2絶縁層は無機物から形成される無機物層を有することが好ましい。
 上記無機物層は上記透明金属層と直接積層していることが好ましい。
 上記第2絶縁層は無機物から形成される無機物層と樹脂から形成される樹脂層の積層構造を有することが好ましい。
 上記樹脂層は上記導電性接着剤層と直接積層しており、上記無機物層は上記透明金属層と直接積層していることが好ましい。
 上記第1絶縁層と上記透明金属層の間に第3絶縁層を有することが好ましい。
 上記電磁波シールドフィルムは全光線透過率が62%以上であることが好ましい。
 また、本発明は、上記電磁波シールドフィルムを備えたシールドプリント配線板を提供する。
 本発明の電磁波シールドフィルムは、簡易に被着体に接着可能であり、それでいて電気的接続安定性に優れ、透明性、シールド性能、及び耐環境性にも優れる。
本発明の電磁波シールドフィルムの一実施形態を示す断面模式図である。 本発明の電磁波シールドフィルムの他の実施形態を示す断面模式図である。 本発明の電磁波シールドフィルムのさらに他の実施形態を示す断面模式図である。 本発明の電磁波シールドフィルムのさらに他の実施形態を示す断面模式図である。
[シールドフィルム]
 本発明のシールドフィルムは、第1絶縁層、透明金属層、第2絶縁層、及び導電性接着剤層がこの順に積層された層構成を有する。
 本発明のシールドフィルムの一実施形態について、以下に説明する。図1は、本発明のシールドフィルムの一実施形態を示す断面模式図である。図1に示す本発明のシールドフィルム1は、第1絶縁層11と、透明金属層12と、第2絶縁層13と、導電性接着剤層14とをこの順に有する。
(第1絶縁層)
 第1絶縁層は、本発明のシールドフィルムにおいて支持体として機能する透明基材である。第1絶縁層としては、例えば、プラスチック基材(特にプラスチックフィルム)、ガラス板などが挙げられる。第1絶縁層は、単層であってもよいし、同種又は異種の積層体であってもよい。
 上記プラスチック基材を構成する樹脂としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン、エチレン-酢酸ビニル共重合体(EVA)、アイオノマー、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体等のポリオレフィン樹脂;ポリウレタン;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリブチレンテレフタレート(PBT)等のポリエステル;ポリカーボネート(PC);ポリイミド(PI);ポリエーテルエーテルケトン(PEEK);ポリエーテルイミド;アラミド、全芳香族ポリアミド等のポリアミド;ポリフェニルスルフィド;ポリスルホン(PS);ポリエーテルスルホン(PES);ポリメチルメタクリレート(PMMA)等のアクリル樹脂;アクリロニトリル-ブタジエン-スチレン共重合体(ABS);フッ素樹脂;ポリ塩化ビニル;ポリ塩化ビニリデン;トリアセチルセルロース(TAC)等のセルロース樹脂;シリコーン樹脂などが挙げられる。上記樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。上記樹脂としては、透明性により優れる観点から、中でも、ポリエステル、セルロース樹脂が好ましく、より好ましくはポリエチレンテレフタレート、トリアセチルセルロースである。
 第1絶縁層の表面(特に、透明金属層側の表面)は、透明金属層などの隣接層との密着性、保持性等を高める目的で、例えば、コロナ放電処理、プラズマ処理、サンドマット加工処理、オゾン暴露処理、火炎暴露処理、高圧電撃暴露処理、イオン化放射線処理等の物理的処理;クロム酸処理等の化学的処理;コーティング剤(下塗り剤)による易接着処理等の表面処理が施されていてもよい。密着性を高めるための表面処理は、第1絶縁層における透明金属層側の表面全体に施されていることが好ましい。
 第1絶縁層の厚さは、特に限定されないが、1~15μmであることが好ましく、より好ましくは3~10μmである。上記厚さが1μm以上であると、より充分にシールドフィルムを支持及び透明金属層を保護することができる。上記厚さが15μm以下であると、透明性及び柔軟性に優れ、また経済的にも有利である。なお、第1絶縁層が複層構成である場合、上記第1絶縁層の厚さは、全ての層厚さの合計である。
(透明金属層)
 上記透明金属層は、本発明のシールドフィルムにおいてシールド層として機能する要素である。上記透明金属層は、単層であってもよいし、同種又は異種の積層体であってもよい。
 上記透明金属層を構成する金属としては、例えば、金、銀、銅、アルミニウム、リチウム、ニッケル、スズ、パラジウム、クロム、チタン、亜鉛、又はこれらの合金などが挙げられる。上記合金としては、例えば、銀/銅合金、マグネシウム/銅合金、マグネシウム/銀合金、マグネシウム/アルミニウム合金、マグネシウム/インジウム合金、リチウム/アルミニウム合金、ITO(Indium Tin Oxide;酸化インジウム・スズ)などが挙げられる。上記金属としては、中でも、電磁波シールド性能により優れる観点から、銅、銀が好ましく、耐マイグレーション性及び耐硫化性により優れる観点から、銀/銅合金であることが好ましい。
 上記透明金属層の形成方法は特に限定されず、例えば、電解、蒸着(例えば真空蒸着)、スパッタリング、CVD法、メタルオーガニック(MO)、メッキ、圧延加工などが挙げられる。中でも、製造容易性の観点から、蒸着又はスパッタリングにより形成された透明金属層が好ましい。
 上記透明金属層の厚さは、10~100nmが好ましく、より好ましくは10~50nmである。上記厚さが10nm以上であると、シールド性能により優れる。上記厚さが100nm以下であると、透明性が優れる。なお、透明金属層が複層構成である場合、上記透明金属層の厚さは、全ての層厚さの合計である。
(第2絶縁層)
 第2絶縁層は、透明金属層を保護する透明層である。第2絶縁層が透明金属層と導電性接着剤層との間に介在することにより、耐環境性を向上させ、透明性及び接続安定性の低下を抑制することができる。上記透明性及び接続安定性の低下は、導電性接着剤層中の水分や酸成分、あるいは汗に含まれる塩分等の電解質などにより透明金属層が劣化することに起因するものと推測される。第2絶縁層は、単層、複層のいずれであってもよい。
 第2絶縁層は、主に樹脂から形成される樹脂層、又は、無機物から形成される無機物層が挙げられる。第2絶縁層が無機物層である場合、透明金属層を保護し、高温高湿環境や電解質が存在する環境において透明金属層が劣化して透明性やシールド性能が低下するのを抑制することができ、すなわち、耐環境性に優れる。一方、第2絶縁層が樹脂層である場合、無機物層である場合と同様に耐環境性に優れ、さらに、無機物層よりも柔軟性に優れるため、小径のホールへの埋め込み性に優れ、接続安定性により優れる。
 上記樹脂層を形成する樹脂としては、熱可塑性樹脂、熱硬化型樹脂、又は活性エネルギー線硬化型化合物であることが好ましい。上記熱可塑性樹脂、熱硬化型樹脂、及び活性エネルギー線硬化型化合物としては、それぞれ、後述の導電性接着剤層が含み得るバインダー成分として例示されたものが挙げられる。上記樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記無機物層を形成する無機物としては、例えば、ガラス、クレー、雲母、タルク、カオリナイト(カオリン)、ハロイサイト、ゼオライト、酸性白土、活性白土、ベーマイト、擬ベーマイト、無機酸化物や、金属塩[例えば、アルカリ土類金属塩等]等の無機透明顔料;スチレン系樹脂、ポリジビニルベンゼン、ポリテトラフルオロエチレン等の樹脂顔料等の有機透明顔料;上記有機透明顔料から構成され、中空構造(バルーン構造)を有する中空粒子などの透明粒子が挙げられる。上記透明粒子は、公知乃至慣用の表面処理が施されたものであってもよい。
 上記無機酸化物としては、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化ケイ素などが挙げられる。また、上記アルカリ土類金属塩としては、例えば、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、ケイ酸マグネシウム、ケイ酸カルシウム、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、フッ化マグネシウム、フッ化カルシウムなどの、炭酸塩、ケイ酸塩、硫酸塩、フッ化物塩などが挙げられる。また、アルカリ土類金属塩以外の金属塩としては、例えば、ケイ酸アルミニウム、水酸化アルミニウム、硫化亜鉛などが挙げられる。
 中でも、上記無機酸化物としては、透明性及び経済性の観点から、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ケイ素が好ましく、より好ましくは酸化チタンである。
 第2絶縁層が無機物層である場合には、その形成方法としては、電解、蒸着(例えば真空蒸着)、スパッタリング、CVD法、メタルオーガニック(MO)、メッキ、圧延加工などが挙げられる。中でも、製造容易性の観点から、蒸着又はスパッタリングにより形成された無機物層が好ましい。第2絶縁層が樹脂層である場合には、その形成方法は、コーティング等、公知の方法を採用することができる。
 第2絶縁層は、本発明の効果を損なわない範囲内において、上記樹脂層を形成する樹脂及び無機物層を形成する無機物以外のその他の成分を含有していてもよい。上記その他の成分としては、例えば、硬化剤、硬化促進剤、可塑剤、難燃剤、消泡剤、粘度調整剤、酸化防止剤、希釈剤、沈降防止剤、充填剤、レベリング剤、カップリング剤、紫外線吸収剤、粘着付与樹脂、ブロッキング防止剤などが挙げられる。上記その他の成分は、一種のみを使用してもよいし、二種以上を使用してもよい。
 第2絶縁層の厚さは、10~500nmであり、好ましくは10~300nmである。上記厚さが10nm以上であることにより、接続安定性に優れ、また、耐環境性に優れる。上記厚さが500nm以下であることにより、比較的緩やかな条件でプリント配線板に接着した場合であっても接続安定性に優れる。なお、第2絶縁層が複層構成である場合、上記第2絶縁層の厚さは、全ての層厚さの合計である。
 第2絶縁層は、上記透明金属層を保護する観点から、上記透明金属層と直接積層していることが好ましい。特に、耐環境性をより良好とする観点から、上記無機物層が上記透明金属層と直接積層していることが好ましい。
 また、第2絶縁層は、透明性、接続安定性、及び耐環境性により優れる観点から、上記樹脂層と上記無機物層との積層構造を有することが好ましい。この場合、上記透明金属層の、耐環境性に基づく保護性能及び上記導電性接着剤層による損傷に基づく保護性能の観点から、無機物層が上記透明金属層側であり、樹脂層が上記導電性接着剤層側となる構成であることが好ましい。さらに、上記導電性接着剤層と上記樹脂層とが直接積層しており、上記透明金属層と上記無機物層とが直接積層していることが好ましい。
 例えば、図2に示すシールドフィルム2において、第2絶縁層は、無機物層13a及び樹脂層13bの積層構造を有し、当該積層構造から構成される。無機物層13aは透明金属層12側、樹脂層13bは導電性接着剤層14側となるように配置されており、無機物層13aは透明金属層12と、樹脂層13bは導電性接着剤層14と、それぞれ直接積層している。
(導電性接着剤層)
 上記導電性接着剤層は、例えば本発明のシールドフィルムをプリント配線板に接着するための接着性と、上記透明金属層と電気的接続するための導電性を有する。また、上記透明金属層とともにシールド性能を発揮するシールド層としても機能する。上記導電性接着剤層は、単層、複層のいずれであってもよい。
 上記導電性接着剤層は、バインダー成分及び球状導電性粒子を含有する。シールドフィルムにおける導電性接着剤層に用いられる導電性粒子は、接続安定性の観点から一般的に樹枝状(デンドライト状)導電性粒子が用いられることが多いが、本発明のシールドフィルムでは、球状導電性粒子を用いる。これにより、樹枝状導電性粒子を用いる場合に比べて透明性がより優れる。
 上記バインダー成分としては、熱可塑性樹脂、熱硬化型樹脂、活性エネルギー線硬化型化合物などが挙げられる。上記バインダー成分は、一種のみを使用してもよいし、二種以上を使用してもよい。上記熱硬化型樹脂としては、熱硬化性を有する樹脂(熱硬化性樹脂)および上記熱硬化性樹脂を硬化して得られる樹脂の両方が挙げられる。上記熱可塑性樹脂としては、例えば、ポリスチレン系樹脂、酢酸ビニル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂(例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂組成物等)、ポリイミド系樹脂、アクリル系樹脂などが挙げられる。上記熱可塑性樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記熱硬化性樹脂としては、例えば、フェノール系樹脂、エポキシ系樹脂、ウレタン系樹脂、ウレタンウレア系樹脂、メラミン系樹脂、アルキド系樹脂などが挙げられる。上記熱硬化性樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記エポキシ系樹脂としては、例えば、ビスフェノール型エポキシ系樹脂、スピロ環型エポキシ系樹脂、ナフタレン型エポキシ系樹脂、ビフェニル型エポキシ系樹脂、テルペン型エポキシ系樹脂、グリシジルエーテル型エポキシ系樹脂、グリシジルアミン型エポキシ系樹脂、ノボラック型エポキシ系樹脂などが挙げられる。
 上記ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂などが挙げられる。上記グリシジルエーテル型エポキシ樹脂としては、例えば、トリス(グリシジルオキシフェニル)メタン、テトラキス(グリシジルオキシフェニル)エタンなどが挙げられる。上記グリシジルアミン型エポキシ樹脂としては、例えばテトラグリシジルジアミノジフェニルメタンなどが挙げられる。上記ノボラック型エポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α-ナフトールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂などが挙げられる。
 上記活性エネルギー線硬化型化合物は、活性エネルギー線照射により硬化し得る化合物(活性エネルギー線硬化性化合物)および上記活性エネルギー線硬化性化合物を硬化して得られる化合物の両方が挙げられる。活性エネルギー線硬化性化合物としては、特に限定されないが、例えば、分子中に少なくとも2個のラジカル反応性基(例えば、(メタ)アクリロイル基)を有する重合性化合物などが挙げられる。上記活性エネルギー線硬化性化合物は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記バインダー成分としては、中でも、熱硬化型樹脂が好ましい。この場合、プリント配線板に接着するために本発明のシールドフィルムをプリント配線板上に配置した後、加圧及び加熱によりバインダー成分を硬化させることができ、プリント配線板との接着性が良好となる。
 上記バインダー成分が熱硬化型樹脂を含む場合、上記バインダー成分を構成する成分として、熱硬化反応を促進するための硬化剤を含んでいてもよい。上記硬化剤は、上記熱硬化型樹脂の種類に応じて適宜選択することができる。上記硬化剤は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記導電性接着剤層におけるバインダー成分の含有割合は、特に限定されないが、導電性接着剤層の総量100質量%に対して、5~95質量%が好ましく、より好ましくは40~95質量%、さらに好ましくは60~95質量%である。上記含有割合が5質量%以上であると、プリント配線板に対する密着性により優れる。上記含有割合が95質量%以下であると、導電性粒子を充分に含有させることができる。
 上記球状導電性粒子としては、例えば、金属粒子、金属被覆樹脂粒子、カーボンフィラーなどが挙げられる。上記球状導電性粒子は、一種のみを使用してもよいし、二種以上を使用してもよい。
 上記金属粒子及び上記金属被覆樹脂粒子の被覆部を構成する金属としては、例えば、金、銀、銅、ニッケル、亜鉛などが挙げられる。上記金属は一種のみを使用してもよいし、二種以上を使用してもよい。
 上記金属粒子としては、具体的には、例えば、銅粒子、銀粒子、ニッケル粒子、銀被覆銅粒子、金被覆銅粒子、銀被覆ニッケル粒子、金被覆ニッケル粒子、銀被覆合金粒子などが挙げられる。上記銀被覆合金粒子としては、例えば、銅を含む合金粒子(例えば、銅とニッケルと亜鉛との合金からなる銅合金粒子)が銀により被覆された銀被覆銅合金粒子などが挙げられる。上記金属粒子は、電解法、アトマイズ法、還元法などにより作製することができる。
 上記金属粒子としては、中でも、銀粒子、銀被覆銅粒子、銀被覆銅合金粒子が好ましい。導電性に優れ、金属粒子の酸化及び凝集を抑制し、且つ金属粒子のコストを下げることができる観点から、特に、銀被覆銅粒子、銀被覆銅合金粒子が好ましい。
 上記球状導電性粒子のメディアン径(D50)は、3~50μmであり、好ましくは5~30μmである。上記メディアン径は、上記導電性接着剤層中の全ての球状導電性粒子のメディアン径であり、レーザー回折・散乱法により求めた粒度分布における積算値50%での粒径をいうものとする。上記メディアン径が上記範囲内であることにより、球状導電性粒子を用いた本発明において接続安定性に優れる。上記メディアン径は、例えば、レーザー回折式粒子径分布測定装置(商品名「SALD-2200」、株式会社島津製作所製)により測定することができる。
 上記導電性接着剤層における球状導電性粒子の含有割合は、導電性接着剤層100質量%に対して、5~20質量%であり、好ましくは5~15質量%である。特定のメディアン径を有する球状導電性粒子が上記範囲内であることにより、透明性に優れつつ接続抵抗値に優れる。上記含有割合が20質量%を超えると、接続抵抗値が高くなる。これは、過剰となった導電性粒子が上記透明金属層を損傷させることによるものと推測される。
 上記導電性接着剤層における球状導電性粒子の含有量は、特に限定されないが、導電性接着剤層中のバインダー成分100質量部に対して、1~30質量部であることが好ましく、より好ましくは5~20質量部である。上記含有量が上記範囲内であると、透明性に優れつつ接続安定性に優れる傾向がある。
 上記導電性接着剤層は、本発明の効果を損なわない範囲内において、上述の各成分以外のその他の成分を含有していてもよい。上記その他の成分としては、公知乃至慣用の接着剤層に含まれる成分が挙げられる。上記その他の成分としては、例えば、硬化促進剤、可塑剤、難燃剤、消泡剤、粘度調整剤、酸化防止剤、希釈剤、沈降防止剤、充填剤、レベリング剤、カップリング剤、紫外線吸収剤、粘着付与樹脂、ブロッキング防止剤などが挙げられる。上記その他の成分は、一種のみを使用してもよいし、二種以上を使用してもよい。なお、球状導電性粒子以外の導電性粒子の含有量は、球状導電性粒子100質量部に対して、例えば10質量部未満、好ましくは5質量部未満、より好ましくは1質量部未満である。
 上記導電性接着剤層の厚さは、特に限定されないが、3~20μmであることが好ましく、より好ましくは5~15μmである。上記厚さが3μm以上であると、シールド性能がより優れる。上記厚さが20μm以下であると、球状導電性粒子の表面が層表面により近く或いは表面から露出する傾向にあり、接続安定性により優れる。
 上記導電性接着剤層厚さと球状導電性粒子のD50の比[接着剤層厚さ/D50]は、特に限定されないが、0.5~1.2であることが好ましく、より好ましくは0.8~1.0である。上記比が0.5以上であると、プリント配線板等の被着体に対する接着性がより良好となる。上記比が1.2以下であると、導電性接着剤層表面から露出する球状導電性粒子の量が多くなり、接続安定性により優れる。
 本発明のシールドフィルムは、図3に示すように、第1絶縁層11と透明金属層12の間に、第3絶縁層15を有していてもよい。
 第3絶縁層を備えることで、比較的緩やかな条件でプリント配線板に接着した場合の接続安定性がより良好となり、また、上記透明金属層を第1絶縁層側からも保護することで耐環境性により優れる。第3絶縁層は、単層、複層のいずれであってもよい。
 第3絶縁層は、主に樹脂から形成される樹脂層、又は、無機物から形成される無機物層が挙げられる。上記樹脂としては、熱可塑性樹脂、熱硬化型樹脂、活性エネルギー線硬化型化合物などが挙げられる。上記熱可塑性樹脂、熱硬化型樹脂、及び活性エネルギー線硬化型化合物としては、それぞれ、上述の導電性接着剤層が含み得るバインダー成分として例示されたものが挙げられる。上記樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
 第3絶縁層は、無機物層であることが好ましい。無機物層である場合、透明金属層を保護し耐環境性をより良好とするとともに、透明性をより向上させることができる。上記無機物層を形成する無機物としては、上述の第2絶縁層中に含まれ得る無機物として例示及び説明されたものが挙げられる。中でも、透明性及び経済性の観点から、無機酸化物が好ましく、より好ましくは酸化チタンである。上記無機物は、一種のみを使用してもよいし、二種以上を使用してもよい。なお、第3絶縁層が複層である場合、無機物層である第3絶縁層が上記透明金属層側であること(特に、上記透明金属層と直接積層すること)が好ましい。
 第3絶縁層は、本発明の効果を損なわない範囲内において、上記樹脂層を形成する樹脂及び上記無機物層を形成する無機物以外のその他の成分を含有していてもよい。上記その他の成分としては、例えば、硬化剤、硬化促進剤、可塑剤、難燃剤、消泡剤、粘度調整剤、酸化防止剤、希釈剤、沈降防止剤、充填剤、レベリング剤、カップリング剤、紫外線吸収剤、粘着付与樹脂、ブロッキング防止剤などが挙げられる。上記その他の成分は、一種のみを使用してもよいし、二種以上を使用してもよい。
 第3絶縁層の厚さは、特に限定されないが、10~500nmが好ましく、より好ましくは10~300nmである。上記厚さが10nm以上であると、接続安定性及び耐環境性により優れる。上記厚さが500nm以下であると、比較的緩やかな条件でプリント配線板に接着した場合であっても接続安定性に優れる。なお、第3絶縁層が複層構成である場合、上記第3絶縁層の厚さは、全ての層厚さの合計である。
 図4に、本発明のシールドフィルムの他の実施形態を示す。図4に示すシールドフィルム4は、第2絶縁層として、図2に示すシールドフィルム2における第2絶縁層と同様の構成、すなわち無機物層13a及び樹脂層13bの積層構造からなる構成を有する。また、図3に示すシールドフィルム3と同様に、第1絶縁層11と透明金属層12の間に、第3絶縁層15を有する。第3絶縁層15は、無機物層であることが好ましい。図4に示すように、透明金属層12が無機物層に挟まれることにより透明金属層12両面が保護され、シールドフィルム4としての耐環境性が格段に優れ、また、樹脂層13bの存在により透明金属層14の損傷が抑制される。これにより、比較的緩やかな条件でプリント配線板に接着した場合でもシールドフィルム4の接続安定性が格段に良好となる。
 本発明のシールドフィルムは、導電性接着剤層側にセパレータ(剥離フィルム)を有していてもよい。セパレータは、本発明のシールドフィルムから剥離可能なように積層される。セパレータは、導電性接着剤層を被覆して保護するための要素であり、本発明のシールドフィルムを使用する際には剥がされる。
 上記セパレータとしては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、フッ素系剥離剤や長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙類などが挙げられる。
 上記セパレータの厚さは、10~200μmであることが好ましく、より好ましくは15~150μmである。上記厚さが10μm以上であると、保護性能により優れる。上記厚さが200μm以下であると、使用時にセパレータを剥離しやすい。
 本発明のシールドフィルムは、第1絶縁層、透明金属層、第2絶縁層、導電性接着剤層、及び第3絶縁層以外のその他の層を有していてもよい。上記その他の層としては、例えば、その他の絶縁層、反射防止層、防眩層、防汚層、ハードコート層、紫外線吸収層、アンチニュートンリング層などが挙げられる。
 本発明のシールドフィルムは透明性に優れる。本発明のシールドフィルムの全光線透過率は、62%以上が好ましく、より好ましくは65%以上、特に好ましくは67%以上である。上記全光線透過率は、公知の分光光度計を用いて測定することができる。なお、上記全光線透過率は、第1絶縁層と上記導電性接着剤層とを両端層とする積層体について測定される。
 本発明のシールドフィルムは、プリント配線板用途であることが好ましく、フレキシブルプリント配線板(FPC)用途であることが特に好ましい。本発明のシールドフィルムは、簡易に被着体に接着可能であり、それでいて電気的接続安定性に優れ、シールド性能にも優れる。また、透明性に優れ、プリント配線板上での位置合わせが容易である。従って、本発明のシールドフィルムは、フレキシブルプリント配線板用の電磁波シールドフィルムとして好ましく使用することができる。
(電磁波シールドフィルムの製造方法)
 本発明のシールドフィルムの製造方法の一実施形態について説明する。
 図1に示す本発明のシールドフィルム1の作製においては、まず、第1絶縁層11上に透明金属層12を形成する。透明金属層12の形成は、蒸着法又はスパッタリング法により行うことが好ましい。上記蒸着法及びスパッタリング法は、公知乃至慣用の方法が採用できる。このように、蒸着法又はスパッタリング法により透明金属層12を形成することで、適度な厚さ及び透明性を有する金属層を容易に製造することができる。
 次に、形成された透明金属層12表面に、例えば、第2絶縁層13形成用の組成物を塗布(塗工)し、必要に応じて、脱溶媒及び/又は一部硬化させて形成することができる。
 上記組成物は、例えば、上述の第2絶縁層に含まれる各成分に加え、溶剤(溶媒)を含む。溶剤としては、例えば、トルエン、アセトン、メチルエチルケトン、メタノール、エタノール、プロパノール、ジメチルホルムアミドなどが挙げられる。上記組成物の固形分濃度は、形成する第2絶縁層の厚さなどに応じて適宜設定される。
 上記組成物の塗布には、公知のコーティング法が用いられてもよい。例えば、グラビアロールコーター、リバースロールコーター、キスロールコーター、リップコーターディップロールコーター、バーコーター、ナイフコーター、スプレーコーター、コンマコーター、ダイレクトコーター、スロットダイコーターなどのコーターが用いられてもよい。
 次に、形成された第2絶縁層13表面に、導電性接着剤層14形成用の接着剤組成物を塗布(塗工)し、必要に応じて、脱溶媒及び/又は一部硬化させて形成することができる。
 上記接着剤組成物は、例えば、上述の導電性接着剤層に含まれる各成分に加え、溶剤(溶媒)を含む。溶剤としては、上述の第2絶縁層を形成するための組成物が含み得る溶剤として例示されたものが挙げられる。上記接着剤組成物の固形分濃度は、形成する導電性接着剤層の厚さなどに応じて適宜設定される。
 上記接着剤組成物の塗布には、公知のコーティング法が用いられてもよい。例えば、上述の組成物の塗布に用いられるコーターとして例示されたものが挙げられる。
 なお、図2に示す本発明のシールドフィルム2の作製においては、図1に示すシールドフィルム1と同様にして形成された透明金属層12表面に、例えば、無機物層13a形成用の組成物を塗布(塗工)し、必要に応じて、脱溶媒させて形成することができる。次に、形成された無機物層13a表面に、例えば、樹脂層13b形成用の樹脂組成物を塗布(塗工)し、必要に応じて、脱溶媒及び/又は一部硬化させて形成することができる。上記各組成物は、例えば、上述の無機物層又は樹脂層に含まれる各成分に加え、溶剤(溶媒)を含む。溶剤としては、上述の組成物が含み得る溶剤として例示されたものが挙げられる。上記組成物の固形分濃度は、形成する無機物層又は樹脂層の厚さなどに応じて適宜設定される。上記組成物の塗布には、公知のコーティング法が用いられてもよい。例えば、上述の組成物の塗布に用いられるコーターとして例示されたものが挙げられる。その後、形成された樹脂層13b表面に、導電性接着剤層14を形成する。その他の方法は、図1に示す本発明のシールドフィルム1の作製方法と同様である。
 また、図3に示す本発明のシールドフィルム3の作製においては、まず、透明金属層12形成の前に、第1絶縁層11上に第3絶縁層15を形成する。第3絶縁層15は、例えば、第3絶縁層15形成用の組成物を塗布(塗工)し、必要に応じて、脱溶媒及び/又は一部硬化させて形成することができる。上記組成物は、例えば、上述の第3絶縁層に含まれる各成分に加え、溶剤(溶媒)を含む。溶剤としては、上述の組成物が含み得る溶剤として例示されたものが挙げられる。上記組成物の固形分濃度は、形成する第3絶縁層の厚さなどに応じて適宜設定される。上記組成物の塗布には、公知のコーティング法が用いられてもよい。例えば、上述の組成物の塗布に用いられるコーターとして例示されたものが挙げられる。その後、形成された第3絶縁層15表面に、透明金属層12を形成する。その他の方法は、図1に示す本発明のシールドフィルム1の作製方法と同様である。
 また、図4に示す本発明のシールドフィルム4は、図2に示すシールドフィルム2及び図3に示すシールドフィルム3の作製方法を適宜組み合わせて作製することができる。
 なお、上述した製造方法では、各層を順次形成して作製する方法(ダイレクトコート法)について説明したが、このような方法に限定されず、例えば、セパレートフィルムなどの仮基材又は基材上に個別に形成した各層をラミネートして順次貼り合わせる方法(ラミネート法)により作製してもよい。
 本発明のシールドフィルムを用いてプリント配線板を作製することができる。例えば、本発明のシールドフィルムの導電性接着剤層をプリント配線板(例えば、カバーレイ)に貼り合わせることで、プリント配線板に本発明のシールドフィルムが貼り合わされたシールドプリント配線板を得ることができる。上記シールドプリント配線板において、上記導電性接着剤層は、熱硬化していてもよい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。なお、表1に記載の配合量は各成分の相対的な配合量(純分)であり、特記しない限り「質量部」で表す。
 実施例1
 PETフィルム(厚さ6μm)の表面に、エポキシ樹脂のトルエン溶液(エポキシ樹脂濃度:23.6質量%)を、ワイヤーバーを用いて塗布し、100℃で3分加熱することでエポキシ樹脂絶縁膜(厚さ100nm)を形成した。次に、上記エポキシ樹脂絶縁膜表面に、スパッタリング法により銀/銅合金箔(厚さ10nm)を形成した。次に、上記合金箔表面に、ポリエステル系樹脂組成物を、ワイヤーバーを用いて塗布し、100℃で3分加熱することでポリエステル絶縁膜(厚さ100nm)を形成した。そして、表1に示した配合量で、上記エポキシ樹脂トルエン溶液及び銀コート銅粉(球状、メディアン径6μm)を配合し混合して得られた接着剤組成物を、上記ポリエステル絶縁膜表面に、ワイヤーバーを用いて塗布し、100℃で3分加熱することで導電性接着剤層(厚さ5μm)を形成した。以上のようにして、実施例1のシールドフィルムを作製した。
 実施例2~3及び比較例1~2
 使用した接着剤組成物を表1に示す組成のものに変更したこと以外は実施例1と同様にして、各シールドフィルムを作製した。
 実施例4~5及び比較例3~4
 ポリエステル絶縁膜(第2絶縁層)の厚さを表1に示すものに変更したこと以外は実施例1と同様にして、各シールドフィルムを作製した。
 比較例5
 銀コート銅粉(球状、メディアン径6μm)の代わりに、銀コート銅粉(球状、メディアン径2μm)を使用したこと以外は実施例1と同様にして、シールドフィルムを作製した。
 比較例6
 銀コート銅粉(球状、メディアン径6μm)の代わりに、銀コート銅粉(球状、メディアン径55μm)を使用したこと以外は実施例1と同様にして、シールドフィルムを作製した。
 比較例7
 銀コート銅粉(球状、メディアン径6μm)の代わりに、銀コート銅粉(樹枝状、メディアン径6μm)を使用したこと以外は実施例1と同様にして、シールドフィルムを作製した。
(評価)
 実施例及び比較例で得られた各シールドフィルムについて以下の通り評価した。評価結果は表に記載した。
(1)接続抵抗値測定
 幅10mm×長さ30mmの電極2つを間隔100mmになるように厚さ25μmのポリイミドフィルム上に配置した。そして、電極の配置面に、実施例及び比較例で得られたシールドフィルムを、幅10mm×長さ130mmに打ち抜き、2kgローラーで1往復させ電極間を繋ぐように導電性接着剤層面を貼り合わせた。導電性接着剤層面を貼り合わせた後、2つの電極間の抵抗値を、4端子法テスター(商品名「RM3542」、日置電機株式会社製)を用いて測定した。
(2)耐塩水性
 実施例及び比較例で得られたシールドフィルムについて、JIS Z2371に定める条件に基づいてシールドフィルムに塩水を噴霧し、シールドフィルムの銀/銅合金箔が無色透明から白濁に変化するかどうかを、目視で観察した。そして、白濁したことが目視で確認できなかった場合を○、目視で確認できた場合を×として評価した。
(3)全光線透過率
 実施例及び比較例で得られたシールドフィルムについて、ヘーズメーター装置(商品名「NDH4000」、日本電色工業株式会社製)を用いて、JIS K7361-1に準拠して、PETフィルム面が積分球側となるように測定光を照射して測定した。
Figure JPOXMLDOC01-appb-T000001
 本発明のシールドフィルムは、全光線透過率が高く優れた透明性を有し、接続抵抗値が低く優れたシールド性能を有し、さらに、耐塩水性が良好であり耐環境性に優れていることが確認された。一方、接着剤層が導電性粒子を含まない場合、接続抵抗値が高くシールド性に劣っていた(比較例1)。また、導電性粒子の含有割合が過剰である場合も、接続抵抗値が高くシールド性に劣っていた(比較例2)。第2絶縁層の厚さが薄い場合、耐塩水性が不良であり耐環境性に劣っていた(比較例3)。第2絶縁層の厚さが厚い場合(比較例4)、及び、導電性粒子のメディアン径が小さい場合(比較例5)、接続抵抗値が高くシールド性に劣っていた。導電性粒子のメディアン径が大きい場合(比較例6)、及び、導電性粒子の形状が樹枝状である場合(比較例7)、全光線透過率が低く透明性が低かった。
 1~4 シールドフィルム
 11 第1絶縁層
 12 透明金属層
 13 第2絶縁層
 13a 無機物層
 13b 樹脂層
 14 導電性接着剤層
 15 第3絶縁層

Claims (9)

  1.  第1絶縁層、透明金属層、第2絶縁層、及び導電性接着剤層がこの順に積層されており、
     前記第2絶縁層の厚さは10~500nmであり、
     前記導電性接着剤層は、バインダー成分及び球状導電性粒子を含み、
     前記球状導電性粒子のメディアン径は3~50μmであり、
     前記球状導電性粒子の含有割合は、前記導電性接着剤層100質量%に対し5~20質量%である、
     電磁波シールドフィルム。
  2.  前記第2絶縁層と前記透明金属層とは直接積層している請求項1に記載の電磁波シールドフィルム。
  3.  前記第2絶縁層は無機物から形成される無機物層を有する請求項1又は2に記載の電磁波シールドフィルム。
  4.  前記無機物層は前記透明金属層と直接積層している請求項3に記載の電磁波シールドフィルム。
  5.  前記第2絶縁層は無機物から形成される無機物層と樹脂から形成される樹脂層の積層構造を有する請求項1又は2に記載の電磁波シールドフィルム。
  6.  前記樹脂層は前記導電性接着剤層と直接積層しており、前記無機物層は前記透明金属層と直接積層している、請求項5に記載の電磁波シールドフィルム。
  7.  前記第1絶縁層と前記透明金属層の間に第3絶縁層を有する請求項1~6のいずれか1項に記載の電磁波シールドフィルム。
  8.  全光線透過率が62%以上である請求項1~7のいずれか1項に記載の電磁波シールドフィルム。
  9.  請求項1~8のいずれか1項に記載の電磁波シールドフィルムを備えたシールドプリント配線板。
PCT/JP2020/044658 2019-12-03 2020-12-01 電磁波シールドフィルム WO2021112075A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080081151.8A CN114731777A (zh) 2019-12-03 2020-12-01 电磁波屏蔽膜
US17/781,482 US11647619B2 (en) 2019-12-03 2020-12-01 Electromagnetic wave shielding film
JP2021513347A JP7256869B2 (ja) 2019-12-03 2020-12-01 電磁波シールドフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-218526 2019-12-03
JP2019218526 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021112075A1 true WO2021112075A1 (ja) 2021-06-10

Family

ID=76222383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044658 WO2021112075A1 (ja) 2019-12-03 2020-12-01 電磁波シールドフィルム

Country Status (5)

Country Link
US (1) US11647619B2 (ja)
JP (1) JP7256869B2 (ja)
CN (1) CN114731777A (ja)
TW (1) TWI815049B (ja)
WO (1) WO2021112075A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271697A (ja) * 1989-04-13 1990-11-06 Nitto Denko Corp 静電気、電磁波シールド材
WO2010001591A1 (ja) * 2008-07-04 2010-01-07 戸田工業株式会社 透明導電性転写版の製造方法、透明導電性転写版、透明導電性転写版を用いた透明導電性基材の製造方法、透明導電性基材、および透明導電性基材を用いた成形体
JP2016054261A (ja) * 2014-09-04 2016-04-14 信越ポリマー株式会社 電磁波シールドフィルムおよび電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324683A (ja) * 1991-04-25 1992-11-13 Fujitsu Ltd 薄膜トランジスタ及びその製造方法
US6519087B2 (en) * 1997-04-10 2003-02-11 3M Innovative Properties Company Rear projection screen incorporating diffuser
IL165319A0 (en) * 2002-05-28 2006-01-15 Spraker Ronald L A system and methods for filtering electromagneticvisual and minimizing acoustic transmissions
JP4538266B2 (ja) * 2004-05-21 2010-09-08 ソニーケミカル&インフォメーションデバイス株式会社 接着フィルム、接着剤付き基板の製造方法、及び接着フィルムの製造方法
JP4324683B2 (ja) 2006-03-20 2009-09-02 實 佐々木 排出物処理移動体
CN101680973A (zh) * 2007-06-15 2010-03-24 株式会社普利司通 显示器用光学过滤器、具备该光学过滤器的显示器以及等离子体显示面板
CN103120042B (zh) * 2010-06-23 2016-03-23 印可得株式会社 电磁波屏蔽膜的制备方法及由其制备的电磁波屏蔽膜
JP5672201B2 (ja) 2011-09-07 2015-02-18 デクセリアルズ株式会社 異方性導電フィルム及び接続構造体の製造方法
CN103959927B (zh) * 2011-11-30 2017-07-18 加川清二 复合电磁波吸收片
JP5974992B2 (ja) * 2013-07-10 2016-08-23 日立金属株式会社 高周波信号伝送用同軸ケーブル
WO2015068611A1 (ja) 2013-11-07 2015-05-14 東洋インキScホールディングス株式会社 導電性接着剤、導電性接着シート、配線デバイス、および配線デバイスの製造方法
JP2017097169A (ja) * 2015-11-24 2017-06-01 パナソニックIpマネジメント株式会社 エレクトロクロミック素子
US20210059042A1 (en) * 2017-07-10 2021-02-25 Tatsuta Electric Wire & Cable Co., Ltd. Electromagnetic Shielding Film and Shielded Printed Wiring Board Including the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271697A (ja) * 1989-04-13 1990-11-06 Nitto Denko Corp 静電気、電磁波シールド材
WO2010001591A1 (ja) * 2008-07-04 2010-01-07 戸田工業株式会社 透明導電性転写版の製造方法、透明導電性転写版、透明導電性転写版を用いた透明導電性基材の製造方法、透明導電性基材、および透明導電性基材を用いた成形体
JP2016054261A (ja) * 2014-09-04 2016-04-14 信越ポリマー株式会社 電磁波シールドフィルムおよび電磁波シールドフィルム付きフレキシブルプリント配線板の製造方法

Also Published As

Publication number Publication date
US11647619B2 (en) 2023-05-09
JPWO2021112075A1 (ja) 2021-12-09
JP7256869B2 (ja) 2023-04-12
TW202130506A (zh) 2021-08-16
US20230007817A1 (en) 2023-01-05
CN114731777A (zh) 2022-07-08
TWI815049B (zh) 2023-09-11

Similar Documents

Publication Publication Date Title
US11317548B2 (en) Electromagnetic wave shield film, printed wiring board using same, and rolled copper foil
US20160076829A1 (en) Heat dissipating sheet
TWI602478B (zh) 形狀保持膜、及具備該形狀保持膜的形狀保持型撓性電路板
TW201930513A (zh) 電磁波屏蔽膜
WO2021112075A1 (ja) 電磁波シールドフィルム
TWI754611B (zh) Fpc用導電性黏著片材及使用此片材之fpc
JP7027618B2 (ja) 電磁波シールドフィルム
TWI842957B (zh) 電磁波屏蔽膜
JP6956926B1 (ja) 電磁波シールドフィルム
KR102669973B1 (ko) 전자파 차폐 필름
WO2022255438A1 (ja) 電磁波シールドフィルム
WO2021177328A1 (ja) 電磁波シールドフィルム
WO2021131244A1 (ja) 電磁波シールドフィルム
US11758705B2 (en) Electromagnetic wave shielding film
US20240182759A1 (en) Electroconductive adhesive layer
KR20240023018A (ko) 전자파 차폐 필름

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021513347

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896565

Country of ref document: EP

Kind code of ref document: A1