WO2021111839A1 - 産業車両 - Google Patents

産業車両 Download PDF

Info

Publication number
WO2021111839A1
WO2021111839A1 PCT/JP2020/042232 JP2020042232W WO2021111839A1 WO 2021111839 A1 WO2021111839 A1 WO 2021111839A1 JP 2020042232 W JP2020042232 W JP 2020042232W WO 2021111839 A1 WO2021111839 A1 WO 2021111839A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
forklift
control device
state
upper limit
Prior art date
Application number
PCT/JP2020/042232
Other languages
English (en)
French (fr)
Inventor
久保谷岳央
水城琢
五十嵐智也
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020132987A external-priority patent/JP7459716B2/ja
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to KR1020227018205A priority Critical patent/KR20220086689A/ko
Priority to CN202080082919.3A priority patent/CN114787073A/zh
Priority to CA3159403A priority patent/CA3159403A1/en
Priority to EP20896652.3A priority patent/EP4071102A4/en
Priority to AU2020394957A priority patent/AU2020394957B2/en
Priority to US17/781,443 priority patent/US20220411246A1/en
Publication of WO2021111839A1 publication Critical patent/WO2021111839A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07572Propulsion arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/121Fork lift trucks, Clarks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • the present invention relates to an industrial vehicle.
  • the industrial vehicle As an industrial vehicle used in a workplace such as a factory, a commercial facility, or a harbor, for example, the vehicle described in Patent Document 1 is known.
  • the industrial vehicle includes an accelerator pedal operated by an operator, an accelerator sensor that detects the amount of operation of the accelerator pedal, and a control device that controls the vehicle speed from the detection result of the accelerator sensor.
  • the operator of an industrial vehicle can adjust the vehicle speed by adjusting the amount of operation of the accelerator pedal.
  • the operator of an industrial vehicle may adjust the amount of operation of the accelerator pedal to reduce the vehicle speed when approaching a person or an obstacle.
  • the operator of the industrial vehicle needs to frequently adjust the operation amount of the accelerator pedal, which may reduce workability.
  • An object of the present invention is to provide an industrial vehicle capable of improving workability.
  • An industrial vehicle that solves the above problems includes a drive device, a travel control device that controls the drive device, and a main control device that gives a command to the travel control device.
  • the traveling direction of the industrial vehicle is in the direction approaching the object.
  • the main control device includes a vehicle speed upper limit setting unit that imposes a vehicle speed limit on the industrial vehicle by setting a vehicle speed upper limit value, and the main control device is described so that the vehicle speed of the industrial vehicle does not exceed the vehicle speed upper limit value.
  • the command is given to the travel control device.
  • the vehicle speed upper limit is set.
  • the main control device controls the industrial vehicle so as not to exceed the upper limit of the vehicle speed.
  • the vehicle speed of the industrial vehicle is adjusted so as not to exceed the upper limit of the vehicle speed even if there is no deceleration operation by the operator of the industrial vehicle. Therefore, the workability of the operator of the industrial vehicle is improved.
  • an automatic deceleration area is set within the detectable range of the object by the object detection unit, and in the vehicle speed upper limit setting unit, the object is within the automatic deceleration area and within the expected locus. If it exists, the upper limit value of the vehicle speed may be set lower than that in the case where the object exists in the automatic deceleration area and outside the expected locus.
  • the object detection unit includes a determination unit for determining whether the object is a person or an obstacle other than a person, and the vehicle speed upper limit setting unit is the object when the object is determined to be a person.
  • the vehicle speed upper limit value may be set lower than that in the case where is determined to be an obstacle.
  • the upper limit of the vehicle speed is set higher than when the object is a person. Therefore, the vehicle speed allowed for industrial vehicles is high, and workability can be further improved.
  • a start restriction area is set within the range in which the object can be detected by the object detection unit, and the vehicle speed upper limit setting unit is within the start restriction area while the industrial vehicle is stopped. Moreover, when the object exists in the predicted locus, the vehicle speed upper limit value may be set to 0.
  • the start of industrial vehicles is prohibited. If an object exists in the start restricted area and in the expected trajectory, the progress of the industrial vehicle may be hindered. In this case, by prohibiting the start of the industrial vehicle, the operator is urged to change the direction of travel or turn. As a result, the progress of the industrial vehicle is suppressed from being hindered, and the workability is further improved.
  • the predicted locus deriving unit may lengthen the dimension of the predicted locus with respect to the traveling direction as the vehicle speed increases.
  • the higher the speed of an industrial vehicle the shorter the time it takes to reach an object. Therefore, the higher the vehicle speed of the industrial vehicle, the longer the predicted locus is in the traveling direction, so that it is possible to appropriately limit the vehicle speed according to the vehicle speed of the industrial vehicle.
  • the predicted locus deriving unit may derive the predicted locus from the steering angle of the industrial vehicle. Since the predicted locus derivation unit derives the predicted locus from the steering angle, when the industrial vehicle turns, the predicted locus is derived according to the turning direction of the industrial vehicle. The accuracy of the derived expected trajectory can be improved.
  • the industrial vehicle may be provided with a cargo handling device on which a load is loaded.
  • Industrial vehicles that are loaded with loads are required to be stable because they are loaded with loads. By setting the upper limit of the vehicle speed, the stability of the industrial vehicle can be improved.
  • the industrial vehicle is provided with a weight sensor that detects the weight of the load loaded on the cargo handling device, and the vehicle speed upper limit setting unit may lower the vehicle speed upper limit value as the weight of the load is heavier.
  • the industrial vehicle may be provided with a lift sensor that detects the lift height of the cargo handling device, and the vehicle speed upper limit setting unit may lower the vehicle speed upper limit value as the lift height of the cargo handling device increases.
  • Perspective view of a forklift Schematic block diagram of a forklift.
  • Schematic block diagram of a forklift A flowchart showing a process performed by an obstacle detection device.
  • the figure which shows the predicted locus schematically.
  • State transition diagram of start restriction control A table showing the correspondence between each state in which the main controller transitions and the vehicle speed upper limit value, acceleration upper limit value, and deceleration upper limit value.
  • State transition diagram of travel restriction control State transition diagram of vehicle speed limit control.
  • the forklift 10 as an industrial vehicle includes a vehicle body 11, two drive wheels 12 and 13 arranged in the lower front part of the vehicle body 11, and two steering wheels arranged in the lower rear part of the vehicle body 11.
  • a 14 and a cargo handling device 20 are provided.
  • the drive wheels 12 and 13 are arranged apart from each other in the vehicle width direction.
  • the two steering wheels 14 are arranged adjacent to each other in the vehicle width direction.
  • the two steering wheels 14 are arranged at a central position between the drive wheels 12 and 13 in the vehicle width direction.
  • the forklift 10 can be regarded as a three-wheel type forklift.
  • the vehicle body 11 includes a head guard 15 provided above the driver's seat.
  • front / rear / left / right refers to front / rear / left / right of the forklift 10.
  • the cargo handling device 20 includes a mast 21 erected at the front portion of the vehicle body 11, a pair of forks 22 provided so as to be able to move up and down together with the mast 21, and a lift cylinder 23 for raising and lowering the mast 21.
  • a load is loaded on the fork 22.
  • the lift cylinder 23 is a hydraulic cylinder.
  • the forklift 10 of the present embodiment is operated by an operator to perform a traveling operation and a cargo handling operation.
  • the forklift 10 includes a main control device 31, an accelerator sensor 34, a direction sensor 35, a tire angle sensor 36, a lift sensor 37, a weight sensor 38, a traveling motor 41, and the like. It includes a rotation speed sensor 42, a travel control device 43, an object detection unit 51, and a bus 60.
  • the main control device 31 includes a processor 32 such as a CPU and a GPU, and a storage unit 33 including a RAM and a ROM.
  • the storage unit 33 stores a program for operating the forklift 10. It can be said that the storage unit 33 stores a program code or an instruction configured to cause the processor 32 to execute the process.
  • the storage unit 33 i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
  • the main control device 31 may be configured by a hardware circuit such as an ASIC: Application Specific Integrated Circuit or an FPGA: Field Programmable Gate Array.
  • the main control unit 31, which is a processing circuit may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
  • the accelerator sensor 34 detects the amount of operation of the accelerator pedal 16, that is, the accelerator opening degree.
  • the accelerator sensor 34 outputs an electric signal according to the accelerator opening degree to the main control device 31.
  • the main control device 31 can recognize the accelerator opening degree by the electric signal from the accelerator sensor 34.
  • the direction sensor 35 detects the operating direction of the direction lever 17 that indicates the traveling direction.
  • the direction sensor 35 detects whether the direction lever 17 is operated in the direction instructing forward or the direction lever 17 is operated in the direction instructing reverse, with reference to neutrality.
  • the direction sensor 35 outputs an electric signal corresponding to the operation direction of the direction lever 17 to the main control device 31.
  • the main control device 31 can recognize the operating direction of the direction lever 17 by an electric signal from the direction sensor 35.
  • the main control device 31 can grasp whether the operator has instructed to move forward, to move backward, or not.
  • the tire angle sensor 36 detects the steering angle of the steering wheel 14.
  • the tire angle sensor 36 outputs an electric signal according to the steering angle to the main control device 31.
  • the main control device 31 can recognize the steering angle by the electric signal from the tire angle sensor 36.
  • the lift sensor 37 detects the lift of the cargo handling device 20.
  • the lift of the cargo handling device 20 is the height from the road surface to the fork 22.
  • the lift sensor 37 is, for example, a reel sensor.
  • the lift sensor 37 outputs an electric signal corresponding to the lift to the main control device 31.
  • the main control device 31 can recognize the lift of the cargo handling device 20 by an electric signal from the lift sensor 37.
  • the weight sensor 38 detects the weight of the load loaded on the cargo handling device 20.
  • the weight sensor 38 is, for example, a pressure sensor that detects the oil pressure of the lift cylinder 23.
  • the weight sensor 38 outputs an electric signal according to the weight of the load to the main control device 31.
  • the main control device 31 can recognize the weight of the load by the electric signal from the weight sensor 38.
  • the traveling motor 41 is a driving device for traveling the forklift 10.
  • the forklift 10 travels by rotating the drive wheels 12 and 13 by driving the traveling motor 41.
  • the rotation speed sensor 42 detects the rotation speed of the traveling motor 41.
  • the rotation speed sensor 42 for example, a rotary encoder can be used.
  • the rotation speed sensor 42 outputs an electric signal corresponding to the rotation speed of the traveling motor 41 to the traveling control device 43.
  • the travel control device 43 is a motor driver that controls the rotation speed of the travel motor 41.
  • the travel control device 43 can recognize the rotation speed and the rotation direction of the travel motor 41 from the electric signal of the rotation speed sensor 42.
  • the rotation direction of the traveling motor 41 is represented by a + or-symbol.
  • a + rotation speed indicates a forward rotation
  • a-sign indicates a reverse rotation.
  • the traveling motor 41, the rotation speed sensor 42, and the traveling control device 43 are individually provided for each of the two drive wheels 12 and 13. By individually controlling the rotation speed and the rotation direction of the traveling motor 41 provided for each of the two drive wheels 12 and 13 by the traveling control device 43, the rotation speed and the rotation direction of the two drive wheels 12 and 13 can be changed. It can be controlled independently.
  • the rotation speed of the traveling motor 41 provided for each of the two drive wheels 12 and 13 can be individually detected by the rotation speed sensor 42.
  • the object detection unit 51 includes a stereo camera 52, an obstacle detection device 55 that detects an object from an image captured by the stereo camera 52, and an alarm device 58.
  • the stereo camera 52 is arranged on the head guard 15.
  • the stereo camera 52 is arranged so that the road surface on which the forklift 10 travels can be seen from above the forklift 10.
  • the stereo camera 52 of the present embodiment images the rear of the forklift 10. Therefore, the object detected by the obstacle detection device 55 is the object behind the forklift 10.
  • the alarm device 58 and the obstacle detection device 55 may be unitized with the stereo camera 52 and arranged on the head guard 15 together with the stereo camera 52. Further, the alarm device 58 and the obstacle detection device 55 may be arranged at different positions from the head guard 15.
  • the stereo camera 52 includes two cameras 53 and 54.
  • the cameras 53 and 54 use, for example, a CCD image sensor or a CMOS image sensor.
  • the cameras 53 and 54 are arranged so that their optical axes are parallel to each other. Since the two cameras 53 and 54 are separated from each other, the same object is shifted in the images captured by the two cameras 53 and 54. More specifically, when the same object is imaged, the object captured in the image captured by the two cameras 53 and 54 has a pixel shift depending on the distance between the two cameras 53 and 54.
  • a wide-angle stereo camera having a horizontal angle of view of 100 ° or more is used, but as the stereo camera 52, a non-wide-angle stereo camera may be used.
  • the obstacle detection device 55 includes a processor 56 such as a CPU and a GPU, and a storage unit 57 including a RAM and a ROM.
  • the storage unit 57 stores various programs for detecting an object from the image captured by the stereo camera 52. It can be said that the storage unit 57 stores a program code or an instruction configured to cause the processor 56 to execute the process.
  • the storage unit 57 i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
  • the obstacle detection device 55 may be configured by a hardware circuit such as an ASIC: Application Specific Integrated Circuit or an FPGA: Field Programmable Gate Array.
  • the obstacle detection device 55 which is a processing circuit, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
  • the obstacle detection device 55 detects an object existing around the forklift 10 by repeating the following processing at a predetermined control cycle. Further, the obstacle detection device 55 derives the position of the detected object.
  • the position of the object is the relative position between the forklift 10 and the object.
  • step S100 the obstacle detection device 55 acquires images from the cameras 53 and 54 of the stereo camera 52.
  • step S110 the obstacle detection device 55 acquires a parallax image by performing stereo processing.
  • the parallax image is a pixel associated with a parallax [px].
  • the parallax image does not necessarily require display, and indicates data in which parallax is associated with each pixel in the parallax image.
  • the parallax is obtained by comparing the images captured by the two cameras 53 and 54 included in the stereo camera 52 and deriving the difference in the number of pixels between the images for the same feature point appearing in each image.
  • the obstacle detection device 55 uses one of the images captured by the two cameras 53 and 54 as a reference image and the other as a comparison image, and extracts the pixels of the most similar comparison image for each pixel of the reference image.
  • the obstacle detection device 55 calculates the difference in the number of pixels between the pixels of the reference image and the pixels of the comparison image as parallax. As a result, it is possible to acquire a parallax image in which parallax is associated with each pixel of the reference image.
  • the feature point is a part that can be recognized as a boundary, such as an edge of an object. The feature points can be detected from the luminance information and the like.
  • the obstacle detection device 55 derives the coordinates of the feature points in the world coordinate system, which is the coordinate system in the real space.
  • the axis extending in the vehicle width direction of the forklift 10 in the horizontal direction is the X axis
  • the axis orthogonal to the X axis in the horizontal direction is the Y axis
  • the vertical direction is a coordinate system in which the extending axis is the Z axis.
  • the coordinates are world coordinates. It is done by converting to the coordinates in the system. As shown in FIG. 1, the X-axis, Y-axis, and Z-axis are illustrated by arrows X, Y, and Z.
  • the obstacle detection device 55 extracts an object by clustering feature points.
  • the obstacle detection device 55 sets a set of feature points that are assumed to represent the same object among the feature points that represent a part of the object as one point group, and extracts the point cloud as an object.
  • the obstacle detection device 55 clusters the feature points located within a predetermined range as one point cloud from the coordinates of the feature points in the world coordinate system derived in step S120.
  • the obstacle detection device 55 regards a clustered point cloud as one object.
  • the feature point clustering performed in step S130 can be performed by various methods.
  • the obstacle detection device 55 derives the coordinates of the object in the world coordinate system.
  • the coordinates of the object can be derived from the coordinates of the feature points that make up the point cloud.
  • the coordinates of an object in the world coordinate system represent the relative positions of the forklift 10 and the object. More specifically, among the coordinates of an object in the world coordinate system, the X coordinate represents the distance from the origin to the object in the left-right direction, and the Y coordinate represents the distance from the origin to the object in the front-back direction.
  • the origin is, for example, the coordinates where the X coordinate and the Y coordinate are the arrangement positions of the stereo camera 52 and the Z coordinate is the road surface. It is also possible to derive the Euclidean distance from the arrangement position of the stereo camera 52 to the object from the X coordinate and the Y coordinate.
  • the Z coordinate represents the height of the object from the road surface.
  • the obstacle detection device 55 determines whether the object is a person or an obstacle other than a person. Whether or not an object is a person can be determined by various methods.
  • the obstacle detection device 55 performs a person detection process on an image captured by any of the two cameras 53 and 54 of the stereo camera 52.
  • the obstacle detection device 55 converts the coordinates of the object in the world coordinate system obtained in step S140 into camera coordinates, and converts the camera coordinates into the coordinates of the images captured by the cameras 53 and 54.
  • the obstacle detection device 55 converts the coordinates of the object in the world coordinate system into the coordinates of the reference image.
  • the obstacle detection device 55 performs a person detection process on the coordinates of the object in the reference image.
  • the human detection process is performed using, for example, feature quantity extraction and a human determination device that has been machine-learned in advance.
  • the feature amount extraction include a method of extracting the feature amount of a local region in an image such as HOG: Histogram of Oriented Gradients feature amount and Haar-Like feature amount.
  • the human judgment device for example, a machine learning device using a supervised learning model is used.
  • a supervised learning model for example, a support vector machine, a neural network, naive bays, deep learning, a decision tree, or the like can be adopted.
  • image-specific components such as human shape elements and appearance elements extracted from images are used. Examples of the shape element include the size and contour of a person.
  • the appearance element examples include light source information, texture information, camera information, and the like.
  • the light source information includes information on reflectance, shading, and the like.
  • the texture information includes color information and the like.
  • the camera information includes information on image quality, resolution, angle of view, and the like.
  • the alarm device 58 is a device that gives an alarm to the operator of the forklift 10. Examples of the alarm device 58 include a buzzer that gives an alarm by sound, a lamp that gives an alarm by light, and a combination thereof.
  • the main control device 31, the travel control device 43, and the object detection unit 51 are configured so that information can be acquired from each other by the bus 60.
  • the main control device 31, the travel control device 43, and the object detection unit 51 acquire information from each other by performing communication according to a communication protocol for a vehicle such as CAN: Controller Area Network or LIN: Local Interconnect Network.
  • the main control device 31 acquires the rotation speed and the rotation direction of the traveling motor 41 from the traveling control device 43, and acquires the steering angle from the tire angle sensor 36 to derive the vehicle speed of the forklift 10.
  • the vehicle speed of the forklift 10 is the rotation speed and rotation direction of each of the traveling motors 41 provided for each of the drive wheels 12 and 13, the gear ratio, the outer diameters of the drive wheels 12 and 13, and the steering angle detected by the tire angle sensor 36. It can be derived by using such as.
  • the main control device 31 derives the traveling direction of the forklift 10 as well as the vehicle speed.
  • the traveling direction of the forklift 10 is either a forward direction or a reverse direction.
  • the traveling direction of the forklift 10 is represented by a + or-code attached to the vehicle speed.
  • a + vehicle speed indicates a forward direction
  • a-sign indicates a reverse direction.
  • the vehicle speed means the vehicle speed excluding the + or-sign. That is, the vehicle speed in this embodiment indicates the absolute value of the vehicle speed
  • the main control device 31 operates the alarm device 58 by transmitting an alarm command via the bus 60. More specifically, the object detection unit 51 includes an operating unit that activates the alarm device 58, and when the alarm command is received, the operating unit activates the alarm device 58.
  • Vehicle speed control performed by the forklift 10 will be described.
  • the vehicle speed is controlled by the main control device 31 according to the position of the object detected by the object detection unit 51 and the type of the object.
  • the type of object is either a person or an obstacle other than a person.
  • an obstacle refers to an object other than a human being.
  • Vehicle speed control includes automatic deceleration control and start restriction control.
  • the automatic deceleration area AA2 used for the automatic deceleration control and the start restriction area AA1 used for the start restriction control are set within the detectable range of the object by the object detection unit 51. ..
  • the range in which the object can be detected by the object detection unit 51 can be said to be the range in which the stereo camera 52 can capture an image.
  • the automatic deceleration area AA2 is the same area as the detectable range of the object by the object detection unit 51.
  • the automatic deceleration area AA2 is an area extending from the arrangement position of the stereo camera 52 to the rear of the forklift 10 and in the vehicle width direction of the forklift 10.
  • the automatic deceleration area AA2 is an area defined by the X coordinate and the Y coordinate in the world coordinate system.
  • the start restriction area AA1 is an area set in the automatic deceleration area AA2 and is narrower than the automatic deceleration area AA2.
  • the start restriction area AA1 is an area extending from the arrangement position of the stereo camera 52 to the rear of the forklift 10 and in the vehicle width direction of the forklift 10.
  • the start restriction area AA1 is an area defined by the X coordinate and the Y coordinate in the world coordinate system. It can be said that the automatic deceleration area AA2 includes a position farther from the forklift 10 than the start restriction area AA1.
  • the start restriction area AA1 is divided into three parts: a central region N, a left region NL located to the left of the central region N, and a right region NR located to the right of the central region N. ..
  • the central region N is an region facing the forklift 10 in the front-rear direction.
  • the left-right dimension of the central region N matches the dimension of the forklift 10 in the vehicle width direction.
  • the central region N can also be said to be an region through which the forklift 10 passes when the forklift 10 is moved straight in the reverse direction.
  • the left region NL can be said to be an region through which the forklift 10 passes when the forklift 10 is turned left in the reverse direction.
  • the right region NR can be said to be an region through which the forklift 10 passes when the forklift 10 is turned to the right in the reverse direction.
  • the main control device 31 derives the expected locus T of the forklift 10.
  • the expected locus T is a locus that the forklift 10 is expected to pass through.
  • the main control device 31 is expected to pass the forklift 10 when the traveling direction of the forklift 10 is the reverse direction, for example, when the direction lever 17 is operated in the direction instructing the reverse movement by the operator.
  • the expected trajectory T is derived.
  • the expected locus T can be derived from the steering angle of the steering wheel 14 and the dimensional information of the forklift 10.
  • the dimensional information of the forklift 10 includes the dimensions [mm] from the central axes of the drive wheels 12 and 13 to the rear end of the vehicle body 11, the wheelbase [mm], and the vehicle width [mm]. Since the dimensional information of the forklift 10 is known information, it can be stored in advance in the storage unit 33 or the like of the main control device 31.
  • the expected locus T is a locus between the locus LT through which the left end LE of the vehicle body 11 passes and the locus RT through which the right end RE of the vehicle body 11 passes.
  • the main control device 31 derives the X coordinate and the Y coordinate in the world coordinate system of the expected locus T extending behind the forklift 10.
  • the expected trajectory T is a trajectory extending linearly from the forklift 10 in the backward direction.
  • the expected locus T is a locus that bends in the backward direction from the forklift 10.
  • the main control device 31 derives the expected locus T extending in the turning direction when the forklift 10 is turning.
  • the forklift 10 shown in FIG. 6 has a higher vehicle speed than the forklift 10 in the state shown in FIG.
  • the forklift 10 shown in FIG. 8 has a higher vehicle speed than the forklift 10 shown in FIG. 7.
  • the main control device 31 lengthens the expected locus T in the traveling direction as the vehicle speed of the forklift 10 increases.
  • the trajectory derivation threshold value YT is changed depending on the vehicle speed.
  • the locus derivation threshold value YT is a threshold value set for the Y coordinate in the world coordinate system, and the higher the vehicle speed, the farther the Y coordinate is from the forklift 10.
  • the main control device 31 derives the expected locus T from the forklift 10 to the locus derivation threshold value YT. Note that the higher the vehicle speed of the forklift 10 is, the longer the expected locus T is in the traveling direction. If this is the case, there may be a correlation in which the length of the expected locus T in the traveling direction becomes longer.
  • the expected trajectory T is derived in the automatic deceleration area AA2.
  • the minimum value of the locus derivation threshold value YT the Y coordinate of the position farthest from the forklift 10 in the start restriction area AA1 can be mentioned. That is, even if the forklift 10 is stopped and the vehicle speed is 0 [km / h], the locus derivation threshold value YT is set so that at least the expected locus T in the start restriction area AA1 is derived.
  • the main control device 31 functions as a prediction locus derivation unit.
  • the start restriction control will be described.
  • the X-coordinate and the Y-coordinate in the following description are the X-coordinate and the Y-coordinate in the world coordinate system.
  • the state of the main control device 31 is one of the normal control state S10, the start restriction state S2, the start prohibition state S3, the forced operation state S4, and the forced operation pre-release state S5. By setting the state, control is performed according to each state.
  • the normal control state S10 is a state in which the vehicle speed limit is not imposed. Further, in the normal control state S10, no limitation is imposed on the acceleration and the deceleration.
  • the main control device 31 calculates the target vehicle speed from the accelerator opening degree detected by the accelerator sensor 34.
  • the main control device 31 calculates the target rotation speed from the target vehicle speed.
  • the target rotation speed is the rotation speed for bringing the forklift 10 to the target vehicle speed.
  • the target rotation speed is individually derived for each of the two traveling motors 41. Further, the main control device 31 determines whether to move the forklift 10 forward or backward from the operating direction of the direction lever 17.
  • the main control device 31 generates a command including information indicating the target rotation speed and information indicating the rotation direction of the traveling motor 41, and gives the command to the traveling control device 43.
  • the travel control device 43 controls the travel motor 41 so as to follow the target rotation speed according to the command.
  • the travel control device 43 controls the travel motor 41 so that the travel motor 41 rotates in the direction of rotation according to the command.
  • the forklift 10 travels at a vehicle speed corresponding to the amount of operation of the accelerator pedal 16 by the operator.
  • the turning operation by the operator that is, the two traveling motors 41 according to the angle of the steering wheel.
  • the forklift 10 can be turned by adjusting the rotation speed and the rotation direction. Therefore, in the case of the forklift 10 that makes a turn by utilizing the difference in the rotation speeds of the two traveling motors 41, the main control device 31 derives the target rotation speed according to the target vehicle speed and the angle of the steering wheel.
  • the state in which the vehicle speed limit is not imposed means that, in addition to the mode in which the vehicle speed upper limit value is not set, the vehicle speed upper limit value higher than the maximum reachable speed of the forklift 10 is set. Includes an aspect of setting a vehicle speed upper limit value.
  • the state in which the acceleration limit is not imposed does not substantially function, such as setting an acceleration higher than the maximum reachable acceleration of the forklift 10 in addition to the mode in which the acceleration upper limit value is not set.
  • the aspect of setting the acceleration upper limit value is included.
  • the deceleration limit is the same as the acceleration limit.
  • the main control device 31 transitions from the normal control state S10 to the start limit state S2.
  • the establishment of the start restriction condition means that all of the following conditions A1, A2, and A3 are satisfied.
  • Condition A1 An object exists in the start restriction area AA1.
  • Condition A2 ...
  • the detection result of the direction sensor 35 is neutral, or the detection result of the direction sensor 35 is backward, and the regions N, NL, NR in which the object exists and the direction of the expected locus T coincide with each other.
  • Condition A3 ...
  • the forklift 10 is stopped.
  • the object of condition A1 may be a human being or an obstacle other than a human being.
  • the obstacle detection device 55 determines whether the object is a person or an obstacle after deriving the position of the object. Since it takes a long time to determine whether an object is a human or not, the obstacle detection device 55 transmits information indicating the position of the object to the main control device 31, and then transmits information on whether or not the object is a human. May be configured. Since the main control device 31 can determine that the condition A1 is satisfied at the stage of recognizing the position of the object, it determines whether or not the condition A1 is satisfied after determining whether the object is a person or an obstacle. The determination speed can be improved as compared with the case.
  • Whether or not the condition A1 is satisfied can be determined from the X coordinate and the Y coordinate of the object. Since the start restriction area AA1 is defined by the X coordinate and the Y coordinate, it can be determined from the X coordinate and the Y coordinate of the object whether or not the object exists in the start restriction area AA1.
  • the main control device 31 sets each region. It is determined that an object exists in N, NL, and NR. In this case, the main control device 31 determines that the condition A2 is satisfied when any one of the regions N, NL, and NR in which the object exists and the direction of the expected locus T match.
  • Condition A1 and condition A2 can be represented by the table shown in FIG. FIG. 11 shows the correspondence between the regions N, NL, and NR in which the object exists and the detection result and the expected locus T of the direction sensor 35 when the conditions A1 and A2 are satisfied. “All” shown in FIG. 11 indicates that the expected locus T may extend in any direction. The "left cut” shown in FIG. 11 indicates that the expected locus T extends to the left. The “right turn” shown in FIG. 11 indicates that the expected locus T extends to the right. As shown in FIG. 11, when an object exists in the start restriction area AA1 and the detection result of the direction sensor 35 is neutral, it can be said that the conditions A1 and A2 are satisfied regardless of the extending direction of the expected locus T.
  • Whether or not the condition A3 is satisfied can be determined from the vehicle speed calculated by the main control device 31.
  • the main control device 31 determines that the forklift 10 is stopped when the vehicle speed is equal to or less than the stop determination threshold value [km / h].
  • the stop determination threshold value is set to a value at which the forklift 10 can be regarded as stopped, and for example, an arbitrary value can be set from 0 [km / h] to 0.5 [km / h].
  • the start restriction state S2 is a state in which the forklift 10 is prohibited from starting from a stopped state by setting the vehicle speed upper limit value to 0. Note that starting means shifting the forklift 10 from a state in which the forklift 10 is stopped to a state in which the forklift 10 is running.
  • the main control device 31 controls so that the vehicle speed of the forklift 10 does not exceed the vehicle speed upper limit value. For example, when the target vehicle speed calculated from the accelerator opening is less than the vehicle speed upper limit value, the main control device 31 calculates the target rotation speed from the target vehicle speed calculated from the accelerator opening, while calculating the target rotation speed from the accelerator opening.
  • the target rotation speed is calculated using the vehicle speed upper limit value instead of the target vehicle speed. Then, a command is given to the traveling control device 43 so that the target rotation speed and the rotation speed of the traveling motor 41 match.
  • the vehicle speed upper limit value is 0, it can be said that the forklift 10 is prohibited from traveling. Further, in the start restricted state S2, an alarm is issued by the alarm device 58.
  • the main control device 31 transitions from the start restriction state S2 to the normal control state S10.
  • the establishment of the start restriction release condition means that at least one of the following conditions B1, B2, and B3 is satisfied.
  • Condition B1 There is no object in the start restriction area AA1.
  • Condition B2 ...
  • the detection result of the direction sensor 35 advances.
  • Condition B3 ...
  • the detection result of the direction sensor 35 is backward, and the directions of the regions N, NL, and NR in which the object exists do not match the direction of the expected locus T.
  • Conditions B1, B2 and B3 can be represented by the table shown in FIG. FIG. 12 shows the correspondence between the regions N, NL, and NR in which the object exists and the detection result and the expected locus T of the direction sensor 35 when the conditions B1, B2, and B3 are satisfied. “All”, “right cut”, and “left cut” shown in FIG. 12 have the same meaning as in FIG. As shown in FIG. 12, when no object exists in the start restriction area AA1, the condition B1 is satisfied regardless of the detection result of the direction sensor 35. Even when an object exists in the start restriction area AA1, the condition B2 is satisfied when the detection result of the direction sensor 35 is forward.
  • the condition B3 is satisfied when the directions of the regions N, NL, and NR in which the object exists and the expected locus T do not match. It can be said that the start restriction release condition is satisfied when at least one of the conditions A1 and A2 is not satisfied.
  • the main control device 31 transitions from the start restricted state S2 to the start prohibited state S3.
  • the establishment of the start prohibition condition means that all of the following conditions C1 and C2 are satisfied.
  • the main control device 31 gives priority to the start restriction release condition and transitions to the normal control state S10.
  • Condition C1 The detection result of the direction sensor 35 is other than neutral.
  • Condition C2 ... Accelerator on.
  • Condition C1 is satisfied when the detection result of the direction sensor 35 is forward or backward.
  • the main control device 31 transitions to the normal control state S10 when the condition B2 is satisfied. Therefore, it can be said that the condition C1 is substantially satisfied when the detection result of the direction sensor 35 is backward.
  • the accelerator on condition C2 indicates that the accelerator pedal 16 has been operated by the operator of the forklift 10. It can be determined from the detection result of the accelerator sensor 34 that the accelerator pedal 16 has been operated.
  • the start prohibition state S3 is a state in which the forklift 10 is prohibited from starting by setting the vehicle speed upper limit value to 0. It can be said that the start prohibition state S3 is a state in which the same vehicle speed restriction as the start restriction state S2 is imposed.
  • the start prohibition state S3 and the start restriction state S2 differ in the transition mode to other states, such as whether or not to allow the transition to the normal control state S10. Further, in the start prohibition state S3, the alarm by the alarm device 58 may be stronger than in the start restriction state S2.
  • the alarm device 58 is a buzzer, the buzzer sound is increased, or if the alarm device 58 is a combination of a lamp and a buzzer, one alarm of the lamp and the buzzer is changed to an alarm of both. Switching is mentioned. That is, it makes it easier for the operator to recognize that the object exists in the expected locus T.
  • the main control device 31 transitions from the start prohibition state S3 to the forced operation state S4.
  • the establishment of the forced operation condition means that the following condition D1 is satisfied.
  • Accelerator off means that the accelerator pedal 16 is not operated by the operator of the forklift 10. It can be determined from the detection result of the accelerator sensor 34 that the accelerator pedal 16 is not operated. It can be said that the condition D1 is satisfied when the condition C2 is not satisfied.
  • the forced operation state S4 is a state in which the vehicle speed limit is imposed on the forklift 10 by setting the vehicle speed upper limit value to VS1 [km / h].
  • VS1 is a value greater than 0, which is lower than the maximum reachable vehicle speed of the forklift 10. It can be said that the main control device 31 allows the forklift 10 to travel below VS1.
  • VS1 for example, a vehicle speed allowed when the forklift 10 is retracted is set.
  • no restriction is imposed on acceleration and deceleration.
  • the alarm by the alarm device 58 may be weaker than in the start prohibition state S3.
  • the main control device 31 transitions from the forced operation state S4 to the normal control state S10.
  • the establishment of the forced operation release condition means that all of the following conditions E1, E2, and E3 are satisfied.
  • Condition E1 At least one of conditions B1, B2, and B3 is satisfied.
  • Condition E2 ...
  • the detection result of the direction sensor 35 is different from the previous value.
  • Condition E3 ...
  • the forklift 10 is running.
  • Condition E1 can be said to be the same condition as the start restriction release condition.
  • Condition E2 is satisfied when the detection result of the direction sensor 35 changes from forward to neutral, forward to reverse, neutral to forward, neutral to reverse, reverse to neutral, or reverse to forward by operating the direction lever 17.
  • Condition E3 can be determined from the vehicle speed. The main control device 31 determines that the forklift 10 is traveling when the vehicle speed is higher than the stop determination threshold value [km / h].
  • the main control device 31 transitions from the forced operation state S4 to the forced operation pre-release state S5.
  • the establishment of the forced operation pre-release condition means that the following condition F1 is satisfied.
  • the main control device 31 gives priority to the forced operation release condition and transitions to the normal control state S10.
  • Condition F1 At least one of conditions B1, B2, and B3 is satisfied. It can be said that the forced operation pre-release condition is the same as the start restriction release condition.
  • the vehicle speed limit is released, while the acceleration limit is imposed by setting the acceleration upper limit value to AS1 [m / s 2]. It is in a state.
  • AS1 is a value greater than 0, which is lower than the maximum possible acceleration of the forklift 10.
  • the main controller 31 allows the forklift 10 to accelerate below AS1.
  • the main control device 31 controls so that the acceleration of the forklift 10 does not exceed the acceleration upper limit value.
  • the main control device 31 transmits a command for instructing the target rotation speed and a command for instructing the target acceleration to the travel control device 43.
  • the travel control device 43 controls the rotation speed of the travel motor 41 from the target rotation speed and the target acceleration so that the acceleration of the forklift 10 becomes the target acceleration.
  • the acceleration upper limit value is set, the main control device 31 transmits the acceleration upper limit value as the target acceleration to the traveling control device 43.
  • the main control device 31 can impose an acceleration limit on the forklift 10.
  • the alarm device 58 does not give an alarm.
  • Condition G1 The vehicle speed of the forklift 10 reaches a value obtained by subtracting the first predetermined value from the target vehicle speed.
  • Condition G2 ... Accelerator off.
  • Condition G1 can be said to be that the speed deviation, which is the difference between the target vehicle speed and the vehicle speed of the forklift 10, is less than the first predetermined value.
  • the first predetermined value is set to determine that the vehicle speed of the forklift 10 has reached the target vehicle speed intended by the operator while the acceleration limit is imposed.
  • the first predetermined value for example, an arbitrary value can be set from 0.5 [km / h] to 2.0 [km / h].
  • the automatic deceleration control includes a travel limit control for stopping the forklift 10 and a vehicle speed limit control for allowing the forklift 10 to travel below the upper limit of the vehicle speed.
  • a travel limit control for stopping the forklift 10
  • a vehicle speed limit control for allowing the forklift 10 to travel below the upper limit of the vehicle speed.
  • the state of the main control device 31 is set to any one of the normal control state S10, the pre-travel restriction state S11, the travel restriction state S12, and the travel restriction pre-release state S13. Then, control is performed according to each state.
  • the normal control state S10 is the same state as the normal control state S10 in the start restriction control.
  • the pre-running restriction condition is satisfied when the main control device 31 is in the normal control state S10, the main control device 31 transitions to the pre-running restriction state S11.
  • the establishment of the pre-running restriction condition means that both of the following conditions H1 and H2 are satisfied.
  • Condition H1 A person exists in the alarm area.
  • Condition H2 ...
  • the forklift 10 is traveling in the reverse direction.
  • the warning area is an area within the automatic deceleration area AA2 that is different from the area where the vehicle speed limit is imposed.
  • the alarm area is an area set so that the alarm device 58 can issue an alarm before a person enters the expected locus T.
  • the warning area of the condition H1 may be the entire automatic deceleration area AA2 excluding the inside of the predicted locus T, or may be an area of a predetermined range extending from the predicted locus T to the outside of the predicted locus T.
  • Whether or not the forklift 10 is traveling in the reverse direction can be determined from the vehicle speed and the traveling direction calculated by the main controller 31.
  • the main control device 31 determines that the forklift 10 is traveling in the reverse direction when the traveling direction of the forklift 10 is the reverse direction and the vehicle speed is higher than the stop determination threshold value.
  • the pre-running restriction state S11 is a state in which an alarm is issued by the alarm device 58.
  • the vehicle speed limit, the acceleration limit, and the deceleration limit are not imposed.
  • the warning in the pre-travel restricted state S11 is not issued at the time of switchback of the forklift 10.
  • the switchback is an operation of switching from forward to reverse or reverse to forward by operating the direction lever 17.
  • the main control device 31 turns on the switchback flag when the detection result of the direction sensor 35 and the traveling direction of the forklift 10 do not match.
  • the main control device 31 does not give an alarm by the alarm device 58 even if the switchback flag is on and the state transitions to the pre-travel restriction state S11.
  • the switchback flag is released, for example, when the main control device 31 transitions from the pre-running restriction state S11 to another state.
  • the main control device 31 transitions to the normal control state S10.
  • the establishment of the pre-running restriction release condition means that at least one of the following conditions I1 and I2 is satisfied.
  • Condition I1 There is no person in the expected locus T and in the warning area.
  • Condition I2 The vehicle has stopped traveling in the reverse direction, and the vehicle has not been operated in the reverse direction. Stopping traveling in the reverse direction means that the vehicle speed of the forklift 10 is from a state higher than the stop determination threshold value to a stop determination threshold value or less. That is, the traveling forklift 10 is stopped.
  • the state in which the detection result of the direction sensor 35 is not backward is a state in which the detection result of the direction sensor 35 is neutral or forward.
  • the main control device 31 transitions to the travel restriction state S12.
  • the establishment of the traveling restriction condition means that all of the following conditions J1 and J2 are satisfied.
  • Condition J1 A person exists in the expected locus T.
  • Condition J2 ...
  • the forklift 10 is traveling in the reverse direction. Whether or not the condition J1 is satisfied can be determined from the X-coordinate and the Y-coordinate of the person. Since the predicted locus T is defined by the X coordinate and the Y coordinate, it can be determined from the X coordinate and the Y coordinate of the person whether or not the person exists in the predicted locus T. Since the predicted locus T is derived in the automatic deceleration area AA2, when a person exists in the predicted locus T, it can be said that the person exists in the automatic deceleration area AA2 and in the predicted locus T.
  • the condition J2 is the same as the condition H2.
  • the traveling restriction state S12 is a state in which the traveling forklift 10 is decelerated and stopped by setting the vehicle speed upper limit value to 0. Further, in the traveling restriction state S12 of the present embodiment, a deceleration restriction is imposed. In the traveling restriction state S12, the deceleration upper limit value is set to DS1 [m / s 2 ]. DS1 is a value greater than 0, which is lower than the maximum deceleration of the forklift 10. The main controller 31 allows the forklift 10 to decelerate below DS1. When the deceleration limit is imposed, the main control device 31 controls so that the deceleration of the forklift 10 does not exceed the deceleration upper limit value.
  • the main control device 31 transmits a command for instructing the target rotation speed and a command for instructing the target deceleration to the travel control device 43.
  • the travel control device 43 controls the travel motor 41 so that the deceleration of the forklift 10 becomes the target deceleration based on the target rotation speed and the target deceleration.
  • the main control device 31 transmits the deceleration upper limit value to the traveling control device 43 as the target deceleration.
  • the main control device 31 can impose a deceleration limit on the forklift 10.
  • an alarm is issued by the alarm device 58.
  • the main control device 31 gives priority to the deceleration operation by the operator and does not limit the deceleration.
  • Examples of the deceleration operation include accelerator off, operation of the direction lever 17 to the neutral position, brake operation, and switchback operation.
  • the main control device 31 transitions to the normal control state S10.
  • the establishment of the travel restriction release condition means that the following condition K1 is satisfied.
  • Condition K1 ...
  • the vehicle has stopped traveling in the reverse direction and has not been operated in the reverse direction.
  • the condition K1 is the same as the condition I2.
  • the main control device 31 transitions to the travel restriction pre-release state S13.
  • the establishment of the travel restriction pre-release condition means that all of the following conditions L1 and L2 are satisfied.
  • Condition L1 There is no person in the expected locus T.
  • Condition L2 ...
  • the forklift 10 is traveling in the reverse direction. It can be said that the condition L1 is satisfied when the condition J1 is not satisfied.
  • the condition L2 is the same as the condition H2.
  • the traveling restriction pre-release state S13 is a state in which the vehicle speed restriction is released while the acceleration restriction is imposed.
  • the main control device 31 sets the acceleration upper limit value to AS2 [m / s 2 ], and controls so that the acceleration of the forklift 10 does not exceed AS2.
  • AS2 is a value greater than 0, which is lower than the maximum possible acceleration of the forklift 10.
  • AS2 may have the same value as AS1 or may have a different value.
  • the alarm device 58 does not give an alarm.
  • Condition M1 The vehicle speed of the forklift 10 reaches a value obtained by subtracting the second predetermined value from the target vehicle speed.
  • Condition M2 The reverse operation is not performed.
  • Condition M1 can be said to be that the speed deviation, which is the difference between the target vehicle speed and the vehicle speed of the forklift 10, is less than the second predetermined value.
  • the second predetermined value is set to determine that the vehicle speed of the forklift 10 has reached the target vehicle speed intended by the operator while the acceleration limit is imposed.
  • the second predetermined value for example, an arbitrary value can be set from 0.5 [km / h] to 2.0 [km / h].
  • the second predetermined value may be the same value as the first predetermined value or may be a different value.
  • the main control device 31 transitions to the travel restriction state S12. Similarly, when the main control device 31 is in the normal control state S10 and the travel restriction condition is satisfied, the main control device 31 transitions to the travel restriction state S12.
  • the main control device 31 extends the expected trajectory T in the traveling direction as the vehicle speed of the forklift 10 increases. If the main control device 31 transitions to the traveling restricted state S12 and the expected locus T is shortened in the traveling direction as the vehicle speed of the forklift 10 decreases, a person may be out of the expected locus T. Then, although the forklift 10 and the person are approaching each other, the main control device 31 alternately transitions between the traveling restriction state S12 and the traveling restriction pre-release state S13.
  • the main control device 31 when the main control device 31 detects a person existing in the predicted locus T, the main control device 31 sets the length of the predicted locus T in the traveling direction, that is, the locus derivation threshold value YT, regardless of the vehicle speed of the forklift 10. maintain.
  • the maintenance of the locus derivation threshold value YT is released, for example, when a person disappears in the expected locus T.
  • Vehicle speed limit control is performed differently depending on whether the object is a person or an obstacle. Since the state transition diagram is the same when the object is a person and when the object is an obstacle, the vehicle speed limit control when the object is a person and when the object is an obstacle will be described with reference to FIG. First, the vehicle speed limit control when the object is a person will be described.
  • the state of the main control device 31 is set to any one of the limit release state S21, the pre-limit start state S22, the limit start state S23, and the limit pre-release state S24. , Control is performed according to each state.
  • the restriction release state S21 is a state in which the vehicle speed limit is not imposed. Further, in the restriction release state S21, no restriction is imposed on the acceleration and the deceleration. As shown in FIG. 14, when the pre-restriction start condition is satisfied when the main control device 31 is in the restriction release state S21, the main control device 31 transitions to the pre-restriction start state S22.
  • the establishment of the pre-restriction start condition means that all of the following conditions N1 and N2 are satisfied.
  • Condition N1 There is a person in the advance warning area of the automatic deceleration area AA2.
  • Condition N2 The forklift 10 is traveling in the reverse direction.
  • the advance warning area is an area that exists farther than the vehicle speed limit area where the vehicle speed limit is imposed.
  • the vehicle speed limit area is an area within the automatic deceleration area AA2 and outside the expected trajectory T where the vehicle speed limit is imposed.
  • the vehicle speed limit may not be imposed at a position in the automatic deceleration area AA2 far from the forklift 10.
  • the automatic deceleration area AA2 there may be both a vehicle speed limit area where the vehicle speed limit is imposed and an area which is farther from the forklift 10 than the vehicle speed limit area and where the vehicle speed limit is not imposed.
  • the vehicle speed limiting area is an area extending from the predicted locus T to the rear of the predicted locus T and to the left and right of the predicted locus T.
  • the vehicle speed restriction area is determined by the vehicle speed of the forklift 10 and the expected trajectory T.
  • the advance warning area is an area in which a vehicle speed upper limit value higher than the vehicle speed of the forklift 10 is set.
  • the advance warning area is derived from the vehicle speed of the forklift 10 and the vehicle speed upper limit value set according to the position of the person, and the time from when the person enters the advance warning area to when the person enters the vehicle speed restriction area is predetermined. It is derived so that the set time is reached.
  • the predetermined set time is, for example, 1 second to 3 seconds.
  • the pre-restriction start state S22 is a state in which an alarm is issued by the alarm device 58.
  • the pre-restriction start state S22 can be said to be a state for warning the operator that the vehicle speed limit may be imposed before the vehicle speed limit is imposed.
  • the vehicle speed limit, the acceleration limit, and the deceleration limit are not imposed. Even in the pre-restriction start state S22, no alarm is issued when the forklift 10 is switched back, as in the case of the pre-travel restriction state S11.
  • the pre-restriction start release condition is that at least one of the following conditions O1 and O2 is satisfied.
  • Condition O1 There are no people in the vehicle speed restriction area and the advance warning area.
  • Condition O2 The vehicle has stopped traveling in the reverse direction and has not been operated in the reverse direction.
  • the establishment of the first restriction start condition means that all of the following conditions P1 and P2 are satisfied.
  • Condition P1 There is a person in the vehicle speed limit area of the automatic deceleration area AA2.
  • Condition P2 The forklift 10 is traveling in the reverse direction.
  • the restriction start state S23 is a state in which the vehicle speed limit is imposed on the forklift 10 by the presence of a person in the vehicle speed restriction area in the automatic deceleration area AA2.
  • the vehicle speed upper limit is set to a lower value as the distance from the forklift 10 to a person is shorter.
  • a map in which a vehicle speed upper limit value is associated with the distance from the forklift 10 to a person is stored in a storage medium such as a storage unit 33 of the main control device 31 or an external storage device.
  • the main control device 31 sets a map value, which is a vehicle speed upper limit value according to the map, as a vehicle speed upper limit value.
  • the vehicle speed upper limit is not limited to a mode in which the distance from the forklift 10 to a person decreases in proportion to the decrease, and there is a correlation that the vehicle speed upper limit decreases as the distance from the forklift 10 to a person decreases. Just do it.
  • the vehicle speed upper limit is determined by the position of the person closest to the forklift 10.
  • a deceleration limit is imposed.
  • the deceleration upper limit value is set to DS2 [m / s 2 ].
  • DS2 is a value greater than 0, which is lower than the maximum deceleration of the forklift 10.
  • DS2 may have the same value as DS1 or may have a different value.
  • the traveling restriction state S12 when the deceleration operation is performed by the operator, the main control device 31 gives priority to the deceleration operation by the operator and does not limit the deceleration. Good.
  • the restriction start release condition when the restriction start release condition is satisfied when the main control device 31 is in the restriction start state S23, the main control device 31 transitions to the restriction release state S21.
  • the establishment of the restriction start release condition means that the following condition Q1 is satisfied. Further, when the first restriction start condition is satisfied when the main control device 31 is in the restriction release state S21, the main control device 31 transitions to the restriction start state S23.
  • Condition Q1 ...
  • the vehicle has stopped traveling in the reverse direction and has not been operated in the reverse direction.
  • the restriction pre-release condition is satisfied when the main control device 31 is in the restriction start state S23, the main control device 31 transitions to the restriction pre-release state S24.
  • the establishment of the restriction pre-release condition means that the following condition R1 is satisfied.
  • the restriction pre-release state S24 is a state in which the acceleration limit is imposed by setting the acceleration upper limit value to AS3 [m / s 2] while the vehicle speed limit is released. is there.
  • AS3 is a value greater than 0, which is lower than the maximum possible acceleration of the forklift 10.
  • the main controller 31 allows the forklift 10 to accelerate below AS3.
  • AS3 may have the same value as AS1 or AS2, or may have a different value.
  • the main control device 31 transitions to the restriction start state S23.
  • the establishment of the second restriction start condition means that the following condition S1 is satisfied.
  • restriction main release condition S1 There is a person in the vehicle speed limit area of the automatic deceleration area AA2. If the restriction main release condition is satisfied when the main control device 31 is in the restriction pre-release state S24, the main control device 31 transitions to the restriction release state S21.
  • the establishment of the restriction release condition means that at least one of the following conditions T1 and T2 is satisfied.
  • Condition T1 The vehicle speed of the forklift 10 reaches a value obtained by subtracting the third predetermined value from the target vehicle speed.
  • Condition T2 The reverse operation is not performed.
  • Condition T1 can be said to be that the speed deviation, which is the difference between the target vehicle speed and the vehicle speed of the forklift 10, is less than the third predetermined value.
  • the third predetermined value is set to determine that the vehicle speed of the forklift 10 has reached the target vehicle speed intended by the operator while the acceleration limit is imposed.
  • the third predetermined value for example, any value can be set from 0.5 [km / h] to 2.0 [km / h].
  • the third predetermined value may be the same value as the first predetermined value or the second predetermined value, or may be a different value.
  • the main control device 31 may maintain the trajectory derivation threshold value YT when detecting a person existing in the vehicle speed restriction area.
  • the vehicle speed limit control when the object is an obstacle will be described.
  • the points different from the vehicle speed limit control performed when the object is a person will be described, and the description of the same points as the vehicle speed limit control performed when the object is a person will be omitted.
  • the pre-restriction start condition is satisfied when both of the following conditions U1 and U2 are satisfied.
  • Condition U1 There is an obstacle in the advance warning area of the automatic deceleration area AA2.
  • the forklift 10 is traveling in the reverse direction.
  • the vehicle speed limiting area is an area within the predicted trajectory T in the automatic deceleration area AA2.
  • the point that the vehicle speed limiting area is set in the expected locus T is different from the case where the object is a person.
  • the advance warning area is an area that exists farther than the vehicle speed limit area.
  • the advance warning area is derived from the vehicle speed of the forklift 10 and the vehicle speed upper limit value set according to the position of the obstacle, and the time from when the obstacle enters the advance warning area to when it enters the vehicle speed restriction area is predetermined. It is derived so that the set time is set.
  • the predetermined set time is, for example, 1 second to 3 seconds.
  • the advance warning area includes, for example, an area within the predicted locus T that is farther than the vehicle speed limiting area, an area outside the predicted locus T and on an extension of the predicted locus T, or both. It is one of the areas.
  • the pre-restriction start release condition, the first restriction start condition, the restriction start release condition, the restriction pre-release condition, the second restriction start condition, and the restriction main release condition make a person an obstacle. It becomes the condition changed to.
  • the upper limit of the vehicle speed imposed on the forklift 10 when the object is an obstacle is set to a lower value as the distance from the forklift 10 to the obstacle is shorter.
  • a map in which a vehicle speed upper limit value is associated with the distance from the forklift 10 to an obstacle is stored in a storage medium such as a storage unit 33 of the main control device 31 or an external storage device.
  • the main control device 31 sets the vehicle speed upper limit value from the map.
  • the vehicle speed upper limit is not limited to a mode in which the distance from the forklift 10 to the obstacle decreases in proportion to the decrease, and the correlation is such that the vehicle speed upper limit decreases as the distance from the forklift 10 to the obstacle decreases. All you need is.
  • the vehicle speed upper limit value imposed when the object is an obstacle is a value higher than the vehicle speed upper limit value when a person is an obstacle. More specifically, if the distance from the forklift 10 is the same, the upper limit of the vehicle speed is set higher when the object is an obstacle than when the object is a person.
  • the main control device 31 sets the vehicle speed upper limit value according to the state.
  • the main control device 31 functions as a vehicle speed upper limit setting unit. The operation of this embodiment will be described.
  • the main control device 31 When the forklift 10 is stopped and the correspondence in the table shown in FIG. 12 is established, the main control device 31 is in the normal control state S10. When no object exists in the start restriction area AA1 and in the expected locus T, the forklift 10 is not subject to vehicle speed restriction. Since the vehicle speed limit is not imposed by the main control device 31, the operator of the forklift 10 can start the forklift 10. When there is no object in the start restriction area AA1, the forklift 10 is allowed to start because there is no object that hinders the running of the forklift 10. In the forklift 10 of the present embodiment, when the forklift 10 is moved backward, an object that hinders the progress of the forklift 10 is detected, and the driver is urged to avoid the object. Therefore, even if the forklift 10 is stopped and an object exists in the start restriction area AA1, if the forklift 10 is to be advanced, the operator of the forklift 10 will use the forklift 10. Can be started.
  • the main control device 31 When the correspondence in the table shown in FIG. 11 is established, that is, when the object exists in the predicted locus T and the detection result of the direction sensor 35 is not forward, the main control device 31 is in the start restricted state S2. Therefore, the start of the forklift 10 is prohibited. In the start restricted state S2, there is a possibility that the operator is trying to start the forklift 10 in the reverse direction without recognizing that the object exists in the expected locus T. Therefore, the main control device 31 prohibits the forklift 10 from starting. When the operator recognizes that an object exists in the predicted locus T and changes the steering angle or changes the traveling direction to the forward direction, the object does not exist in the predicted locus T. The main control device 31 transitions to the normal control state S10, and the forklift 10 is allowed to start.
  • the main control device 31 transitions to the start prohibited state S3.
  • the main control device 31 transitions to the start prohibition state S3
  • the operator of the forklift 10 is notified that the object exists in the expected locus T.
  • the forklift 10 is allowed to start even if an object exists in the start restriction area AA1. That is, after it is considered that the operator of the forklift 10 recognizes that an object exists in the start restriction area AA1, it is considered that the operator of the forklift 10 can start while avoiding the object, and the forklift 10 Allow the start of.
  • the main control device 31 transitions to the forced operation pre-release state S5. Acceleration limit is imposed in the forced operation pre-release state S5. In the forced operation state S4, since the vehicle speed limit is imposed, the speed deviation may be large. Therefore, the forklift 10 is gradually accelerated by interposing the forced operation pre-release state S5 before transitioning from the forced operation state S4 to the normal control state S10. In the forced operation state S4, when the detection result of the direction sensor 35 becomes a value different from the previous value due to the operation of the direction lever 17 by the operator, the main control device 31 transitions to the normal control state S10.
  • the main controller 31 enters the normal control state S10.
  • the forced operation pre-release state S5 since the acceleration limit is imposed, it is not possible to efficiently accelerate.
  • the workability is improved by enabling the forced operation pre-release state S5 to be released by releasing the accelerator. Further, if the start restriction condition is satisfied again before the transition from the forced operation pre-release state S5 to the normal control state S10, the main control device 31 transitions to the start restriction state S2.
  • the start restriction control functions.
  • the start restriction control when the forklift 10 is stopped, it is in the start restriction area AA1 and an object exists in the expected trajectory T, the forklift 10 is set to 0 by setting the vehicle speed upper limit value to 0. Restrict the start of. It can be said that the forklift 10 is suppressed from approaching the object by imposing the vehicle speed limit when the traveling direction of the forklift 10 is the direction approaching the object.
  • the main control device 31 transitions to the pre-restriction start state S22.
  • the main control device 31 gives an alarm by the alarm device 58 to make the operator recognize that a person may enter the expected locus T.
  • the main control device 31 transitions to the restriction release state S21.
  • the main control device 31 transitions to the limit start state S23.
  • the main control device 31 sets the vehicle speed upper limit value to a value according to the map. At this time, by setting the deceleration upper limit value DS2, the deceleration is also restricted. Therefore, the forklift 10 slowly decelerates.
  • the forklift 10 is allowed to run below the vehicle speed upper limit value. The operator can run the forklift 10 while avoiding people.
  • the restriction start release condition is satisfied when the main control device 31 is in the restriction start state S23, the main control device 31 shifts to the restriction release state S21 to release the vehicle speed limit.
  • the main controller 31 transitions to the restriction pre-release state S24.
  • the vehicle speed limit is lifted.
  • the restriction pre-release state S24 the acceleration is restricted.
  • the limit start state S23 since the vehicle speed limit is imposed, the speed deviation may be large. Therefore, the forklift 10 is gradually accelerated by interposing the restriction pre-release state S24 before transitioning from the restriction start state S23 to the restriction release state S21.
  • the main controller 31 transitions to the restriction release state S21.
  • the restriction pre-release state S24 the acceleration is restricted, so that the acceleration cannot be performed efficiently.
  • the workability is improved by enabling the release of the restriction pre-release state S24 by releasing the accelerator.
  • the main control device 31 transitions to the restriction release state S21. Further, if a person enters the vehicle speed limiting area again before transitioning from the restriction pre-release state S24 to the restriction release state S21, the main control device 31 transitions to the restriction start state S23.
  • the main controller 31 transitions to the pre-travel restricted state S11.
  • the main control device 31 gives an alarm by the alarm device 58 to make the operator recognize that a person may enter the expected locus T.
  • the main control device 31 transitions to the normal control state S10.
  • the main controller 31 transitions to the travel restricted state S12.
  • the main controller 31 sets the vehicle speed upper limit value to 0, and the forklift 10 stops. At this time, since the deceleration upper limit value DS1 is set, the deceleration is also restricted, so that the forklift 10 stops gently.
  • the main control device 31 transitions to the normal control state S10.
  • the main control device 31 transitions to the travel restriction state S12 without going through the pre-travel restriction state S11.
  • the situation where the travel restriction condition is satisfied without satisfying the pre-travel restriction condition is, for example, when the speed of the forklift 10 is high or the object enters the expected trajectory T from the blind spot of the object detection range by the object detection unit 51. The situation is assumed.
  • the main control device 31 When the main control device 31 is in the travel restriction state S12, if no person exists in the expected locus T before the forklift 10 stops, the main control device 31 transitions to the travel restriction pre-release state S13. Further, when a person enters the expected locus T again after the transition to the travel restriction pre-release state S13, the main control device 31 transitions to the travel restriction state S12. In the travel restriction pre-release state S13, the acceleration is restricted. In the traveling restriction state S12, since the vehicle speed restriction is imposed, the speed deviation may be large. Therefore, the forklift 10 is gradually accelerated by interposing the travel restriction pre-release state S13 before transitioning from the travel restriction state S12 to the normal control state S10.
  • the main control device 31 transitions to the normal control state S10.
  • the acceleration is restricted, so that the acceleration cannot be performed efficiently.
  • the workability is improved by enabling the release of the travel restriction pre-release state S13 by releasing the accelerator.
  • the vehicle speed limit control for the person functions in the automatic deceleration area AA2 and outside the expected trajectory T.
  • the forklift 10 is decelerated.
  • the forklift 10 is stopped by the function of the traveling restriction control. It can be said that the vehicle speed limit is imposed when the traveling direction of the forklift 10 is in the direction of approaching a person.
  • the main control device 31 transitions to the pre-restriction start state S22.
  • the main control device 31 gives an alarm by the alarm device 58 to recognize that an obstacle is nearby.
  • the main control device 31 transitions to the restriction release state S21.
  • the main control device 31 transitions to the limit start state S23.
  • the main control device 31 sets the vehicle speed upper limit value to a value according to the map. At this time, by setting the deceleration upper limit value DS2, the deceleration is also restricted. Therefore, the forklift 10 slowly decelerates.
  • the restriction start state S23 although the vehicle speed upper limit value is set, the forklift 10 is allowed to run below the vehicle speed upper limit value. The operator can run the forklift 10 while avoiding obstacles.
  • the restriction start release condition is satisfied when the main control device 31 is in the restriction start state S23, the main control device 31 shifts to the restriction release state S21 to release the vehicle speed limit.
  • the restriction release state S21 When the object is an obstacle, the vehicle speed limiting area is set in the expected locus T, so that the restriction start release condition can be satisfied more easily than when the object is a person.
  • the restriction pre-release state S24 the same effect as when the object is a human can be obtained.
  • the vehicle speed limit control for the obstacle functions, so that the vehicle is in the automatic deceleration area AA2 and the expected trajectory. If an obstacle enters the T, the vehicle speed will be restricted. On the other hand, when the obstacle is outside the expected trajectory T, the vehicle speed is not limited.
  • the vehicle speed upper limit is set to 0 when there is a person in the expected trajectory T.
  • the vehicle speed upper limit value is set to a value higher than 0.
  • the vehicle speed upper limit value is set to a value higher than 0.
  • the main control device 31 sets the vehicle speed upper limit value lower when the object is determined to be a person than when the object is determined to be an obstacle.
  • the main control device 31 is used when an object exists in the automatic deceleration area AA2 and in the expected locus T, or when an object exists in the automatic deceleration area AA2 and outside the expected locus T. It can be said that the upper limit of vehicle speed is set lower than that.
  • "setting the vehicle speed upper limit value low" includes a mode in which the vehicle speed upper limit value is set with respect to the state in which the vehicle speed upper limit value is not set. Regardless of whether an object exists in the predicted locus T or an object outside the predicted locus T, the vehicle speed limit is not limited to the mode in which the vehicle speed limit is imposed, and the predicted locus as in the embodiment The vehicle speed limit may not be imposed when an object exists outside the T.
  • state transitions of start restriction control, travel restriction control, vehicle speed limit control for people, and vehicle speed limit control for obstacles are performed in parallel. Therefore, there is a possibility that different vehicle speed upper limit values and warning modes are set for each state transition.
  • the priority may be set in advance and the control corresponding to any one of the states may be performed.
  • the main control device 31 performs the control defined in the state where the upper limit value of the vehicle speed is the lowest.
  • the main control device 31 sets the vehicle speed upper limit value when an object exists in the predicted locus T. Specifically, in each of the start limit control, the travel limit control, the vehicle speed limit control for a person, and the vehicle speed limit control for an obstacle, the vehicle speed upper limit value is set when an object exists in the expected trajectory T. I am trying to be done.
  • the main control device 31 controls the forklift 10 so as not to exceed the vehicle speed upper limit value.
  • the vehicle speed of the forklift 10 is set to be equal to or lower than the upper limit of the vehicle speed even if there is no deceleration operation by the operator of the forklift 10. Therefore, the workability of the operator of the forklift 10 is improved.
  • the upper limit of vehicle speed is set lower than that of.
  • the upper limit of the vehicle speed is set to 0 when the person is in the expected locus T, whereas the vehicle speed is set to 0 when the person is outside the expected locus T.
  • the upper limit is set to a value greater than 0.
  • the vehicle speed upper limit value larger than 0 is set when the obstacle exists in the predicted locus T, whereas the vehicle speed when the obstacle exists outside the predicted locus T. No upper limit is set.
  • the upper limit of the vehicle speed is always set when an object exists in the expected locus T, the workability will be deteriorated. For example, regardless of the expected trajectory T, if a person exists in the automatic deceleration area AA2 and the main control device 31 sets the vehicle speed upper limit value to 0, the person exists at a position that does not hinder the running of the forklift 10. Even in that case, the forklift 10 will stop. In this case, the forklift 10 stops frequently, resulting in a decrease in workability. Even if the object is an obstacle, the workability is similarly reduced.
  • the forklift 10 is often used in an environment where many objects are present in the surroundings.
  • the forklift 10 makes a sharp turn more frequently than a passenger car, and a wide-angle stereo camera is often used rather than a stereo camera mounted on the passenger car. Therefore, in the forklift 10, if the vehicle speed upper limit value when an object exists in the expected locus T is always set, the workability is significantly reduced.
  • the forklift 10 of the embodiment even if an object exists in the automatic deceleration area AA2, if the object does not exist in the predicted locus T, it is in the predicted locus T. Vehicle speeds higher than the vehicle speed upper limit when an object is present are allowed. An object existing in the predicted locus T is more likely to hinder the running of the forklift 10 than an object existing outside the predicted locus T. Therefore, the workability can be further improved by relaxing the vehicle speed limit when the object does not exist in the expected locus T.
  • the upper limit of the vehicle speed is set higher than when the object is a person.
  • the forklift 10 is often used in an environment where many objects are present in the surroundings. Therefore, when the object is an obstacle, the workability can be further improved by increasing the vehicle speed allowed for the forklift 10. In particular, when the object is an obstacle and the obstacle does not exist in the expected locus T, the workability can be improved by not imposing the vehicle speed limit.
  • the obstacle detection device 55 can determine whether the object is a person or an obstacle.
  • the vehicle speed upper limit value is lowered when the object is a person than when the object is an obstacle.
  • the vehicle speed upper limit value is set to 0 when the person is in the expected locus T, whereas the vehicle speed upper limit value is larger than 0 when the obstacle is in the expected locus T. Is set to.
  • the vehicle speed upper limit is set lower than when the obstacle is outside the expected trajectory T. A person is more likely to move than an obstacle and may approach the forklift 10. Therefore, when the object is a person, the upper limit value of the vehicle speed is lowered as compared with the case where the object is an obstacle, thereby urging the operator of the forklift 10 to avoid it.
  • the main control device 31 sets the vehicle speed upper limit value to a value larger than 0 outside the predicted trajectory T, and sets the vehicle speed upper limit value to 0 inside the predicted trajectory T. Further, when a person exists outside the expected trajectory T, the main control device 31 lowers the vehicle speed upper limit value as the distance from the forklift 10 to the person becomes shorter. Since the vehicle speed of the forklift 10 decreases as the person approaches the forklift 10, the forklift 10 can be stopped gently when the person enters the expected trajectory T and the upper limit of the vehicle speed is set to 0.
  • the vehicle speed upper limit value is set to 0.
  • the start of the forklift 10 is prohibited.
  • the object is in the start restriction area AA1 and in the expected locus T, the progress of the forklift 10 may be hindered.
  • the operator is urged to change the direction of travel or turn. As a result, the progress of the forklift 10 is suppressed from being hindered, and workability is further improved.
  • the main control device 31 lengthens the expected locus T in the traveling direction as the vehicle speed of the forklift 10 increases.
  • the main control device 31 derives the expected locus T from the steering angle.
  • the main control device 31 derives the expected locus T in accordance with the turning direction of the forklift 10. Therefore, the accuracy of the derived expected locus T can be improved.
  • the forklift 10 includes a cargo handling device 20 on which a load is loaded.
  • stability is required because the load is loaded.
  • the stability of the forklift 10 can be improved.
  • the forced operation state S4 is set for the start restriction control.
  • the forklift 10 is allowed to start even when an object exists in the start restriction area AA1 and the expected locus T. If the start of the forklift 10 is always prohibited when an object exists in the start restriction area AA1 and the expected trajectory T, the forklift 10 can be started even if the object can be avoided and the forklift 10 can be started. The start of 10 will be prohibited.
  • the alarm device 58 gives an alarm when an object exists in the expected locus T, and the alarm device 58 does not give an alarm when an object exists outside the expected locus T.
  • the warning device 58 gives an alarm when a person is present in the warning area, and the warning device 58 does not give a warning when a person is farther than the warning area.
  • an alarm is given by the alarm device 58 when an object exists in the advance warning area, and an alarm is given when an object exists farther than the advance warning area. No alarm is given by the device 58.
  • the main control device 31 limits the area in which the alarm device 58 issues an alarm within the range in which the object can be detected by the object detection unit 51.
  • the alarm device 58 always gives an alarm, the alarm will be issued even if the object does not hinder the progress of the forklift 10. In this case, even if the operator becomes accustomed to the alarm and the progress of the forklift 10 is actually hindered by the object, the operator may not be able to recognize the object.
  • the alarm device 58 it is possible to prevent the operator from becoming accustomed to the alarm.
  • the embodiment can be modified and implemented as follows. The embodiments and the following modifications can be implemented in combination with each other to the extent that they are technically consistent.
  • the vehicle speed upper limit value set in the forced operation state S4 may be a lower value as the lift of the cargo handling device 20 is higher.
  • the vehicle speed upper limit value is not limited to a mode in which the vehicle speed upper limit value is lowered in proportion to the increase in the lifting height of the cargo handling device 20, and when the mast 21 is raised from the lowest position to the highest position, the vehicle speed upper limit value is at least one point. It is sufficient that there is no point where the vehicle speed becomes low and the vehicle speed upper limit becomes high.
  • a lift threshold is set for the lift, and when the lift is lower than the lift threshold, it is set as low lift, and when the lift is equal to or higher than the lift threshold, it is set as high lift.
  • the main control device 31 sets the vehicle speed upper limit value lower than when the lift height is low lift height.
  • the vehicle speed upper limit value set in the restriction start state S23 may be set to a lower value as the lift of the cargo handling device 20 is higher.
  • the vehicle speed upper limit value set in the restriction start state S23 is set according to the distance to the object and the lift height, and the shorter the distance to the object, the lower the value, and the cargo handling device 20 The higher the lift, the lower the value.
  • the vehicle speed upper limit value set in the restriction start state S23 may be a value that does not change according to the distance to the object but changes only according to the lifting height of the cargo handling device 20.
  • the vehicle speed upper limit value set in the forced operation state S4 may be a lower value as the weight of the load loaded on the cargo handling device 20 is heavier.
  • the vehicle speed upper limit is not limited to a mode in which the upper limit of the vehicle speed is lowered in proportion to the weight of the load, and at least when the weight of the load is changed from the weight when the load is not loaded to the maximum load weight. It is sufficient that there is no point where the upper limit of the vehicle speed is lowered and the upper limit of the vehicle speed is increased at one point.
  • a weight threshold is set for the weight of the load, and when the weight of the load is lower than the weight threshold, it is set as a light weight, and when the weight of the load is equal to or more than the weight threshold, it is set as a heavy weight.
  • the main control device 31 sets the vehicle speed upper limit value lower when the load weight is heavy than when the load weight is light weight.
  • the vehicle speed upper limit value set in the restriction start state S23 may be set to a lower value as the weight of the load is heavier.
  • the vehicle speed upper limit value set in the restriction start state S23 is set according to the distance to the object and the weight of the load, and the shorter the distance to the object, the lower the value and the weight of the load. The heavier the value, the lower the value.
  • the vehicle speed upper limit value set in the restriction start state S23 may be a value that does not change according to the distance to the object but changes only according to the weight of the load.
  • At least one of the vehicle speed upper limit value set in the forced operation state S4 and the vehicle speed upper limit value set in the restriction start state S23 is lower as the lift of the cargo handling device 20 is higher, and the load is loaded. The heavier the weight of, the lower the value may be. That is, the above two modifications described for the vehicle speed upper limit value may be combined.
  • the upper limit of acceleration set by either of them may be a lower value as the lifting height of the cargo handling device 20 is higher. In this case, the higher the lift of the cargo handling device 20, the more slowly the forklift 10 accelerates.
  • the upper limit of acceleration set by either of them may be a lower value as the weight of the load is heavier. In this case, the heavier the load, the slower the forklift 10 will accelerate.
  • the upper limit of acceleration set by either of them may be a lower value as the lift of the cargo handling device 20 is higher and a lower value as the weight of the load is heavier. That is, the above two modifications described for the acceleration upper limit value may be combined.
  • the deceleration upper limit value to be set may be set to a lower value as the lift of the cargo handling device 20 is higher. In this case, the higher the lift of the cargo handling device 20, the more slowly the forklift 10 decelerates.
  • the deceleration upper limit value to be set may be a value lower as the weight of the load is heavier. In this case, the heavier the load, the slower the forklift 10 will decelerate.
  • the deceleration upper limit value to be set may be a lower value as the lift of the cargo handling device 20 is higher, and a lower value as the weight of the load is heavier. That is, the above two modifications described for the deceleration upper limit value may be combined.
  • the forklift 10 does not have to be provided with the lift height sensor 37.
  • the forklift 10 may not be provided with the weight sensor 38.
  • the vehicle speed upper limit value set in the restriction start state S23 does not have to be changed according to the distance to the object. That is, the vehicle speed upper limit value set in the restriction start state S23 may be a fixed value. In this case, the upper limit of the vehicle speed when the person is outside the expected locus T and is in the automatic deceleration area AA2 is larger than the upper limit of the vehicle speed when the obstacle is in the expected locus T. A low value is preferable.
  • the length of the expected locus T with respect to the traveling direction is a predetermined constant length.
  • the main control device 31 does not have to change the expected locus T according to the steering angle of the steering wheel 14. That is, the predicted locus T may be the predicted locus T when the forklift 10 is traveling straight in the reverse direction regardless of whether or not the forklift 10 is turning.
  • the main control device 31 is located outside this region in addition to the region between the locus LT through which the left end LE of the vehicle body 11 passes and the locus RT through which the right end RE of the vehicle body 11 passes.
  • the region extending along the locus RT may be the predicted locus T. That is, the predicted locus T may be a region where the forklift 10 is expected to pass, plus a margin extending in the vehicle width direction of the forklift 10.
  • the predicted locus T may be derived depending on the steering angle. For example, a threshold value that can determine turning to the right and a threshold value that can determine turning to the left are set in the steering angle, and the forklift 10 goes straight, turns to the right, or turns to the left from the steering angle. To be able to judge whether to do it.
  • the main control device 31 determines from which region N, NL, NR the forklift 10 passes from the steering angle when the start restriction control is performed. In this case, each region N, NL, NR can be regarded as a predicted locus.
  • the main control device 31 may derive the expected locus T from a map in which the vehicle speed and steering angle of the forklift 10 are associated with the X coordinate and the Y coordinate. ⁇ The main control device 31 performs start restriction control and does not have to perform automatic deceleration control. In this case, the automatic deceleration area AA2 is not set within the detectable range of the object by the object detection unit 51, and the start restriction area AA1 is set. Further, the obstacle detection device 55 does not have to determine whether or not the object is a person.
  • the main control device 31 performs automatic deceleration control and does not have to perform start restriction control.
  • the start restriction area AA1 is not set within the detectable range of the object by the object detection unit 51, and the automatic deceleration area AA2 is set.
  • the main control device 31 does not have to perform different control depending on whether the object is a person or an obstacle. More specifically, when the main control device 31 performs automatic deceleration control, if an object exists in the predicted locus T, the forklift 10 stops traveling, and the object exists in the predicted locus T. If not, it is not necessary to limit the vehicle speed. Further, when the main control device 31 performs automatic deceleration control, when an object exists in the predicted locus T, the vehicle speed upper limit value is set as compared with the case where the object exists outside the predicted locus T. It may be lowered. In this case, the obstacle detection device 55 does not have to determine whether or not the object is a person.
  • the start restriction control may be performed by changing the state of the main control device 31 to at least two states, a normal control state S10 and a start restriction state S2.
  • the main control device 31 transitions to the start restriction state S2 when the start restriction condition is satisfied, and the main control device 31 transitions to the normal control state S10 when the start restriction release condition is satisfied. That is, when the object exists in the expected locus T, the main control device 31 may be able to prohibit the forklift 10 from starting in the direction approaching the object.
  • the travel restriction control may be performed by changing the state of the main control device 31 to at least two states, a normal control state S10 and a travel restriction state S12.
  • a normal control state S10 when the travel restriction condition is satisfied, the main control device 31 transitions to the travel restriction state S12, and when the travel restriction release condition is satisfied, the main control device 31 transitions to the normal control state S10. That is, the main control device 31 may set the vehicle speed upper limit value to 0 when a person is present in the expected locus T.
  • the vehicle speed limit control may be performed by changing the state of the main control device 31 to at least two states, a limit release state S21 and a limit start state S23.
  • the main control device 31 transitions to the restriction start state S23
  • the restriction start release condition is satisfied
  • the main control device 31 transitions to the restriction release state S21. That is, the main control device 31 may set the vehicle speed upper limit value when the object exists in the vehicle speed limiting area.
  • the forced operation pre-release state S5 of the start restriction control may be omitted. In this case, if the condition F1 is satisfied when the main control device 31 is in the forced operation state S4, the main control device 31 transitions to the normal control state S10.
  • the main control device 31 only needs to be able to set at least the vehicle speed upper limit value, and it is not necessary to set the acceleration upper limit value or the deceleration upper limit value in each of the automatic deceleration control and the start limit control.
  • the automatic deceleration area AA2 may be an area narrower than the detectable range of the object by the object detection unit 51.
  • the acceleration upper limit value and the deceleration upper limit value may be set for each state in which the acceleration upper limit value and the deceleration upper limit value are not restricted.
  • each condition may be changed as follows.
  • the establishment of the start restriction condition may be that all of the following conditions A11, A12, and A13 are satisfied.
  • Condition A11 An object exists in the start restriction area AA1 and in the expected locus T.
  • Condition A12 ...
  • the forklift 10 is stopped.
  • Condition A13 ...
  • the detection result of the direction sensor 35 is not forward.
  • condition A11 Whether or not the condition A11 is satisfied can be determined from the X coordinate and the Y coordinate of the object. Since the start restriction area AA1 and the expected locus T are defined by the X coordinate and the Y coordinate, it can be determined from the X coordinate and the Y coordinate of the object whether the object exists in the start restriction area AA1 and the expected locus T. It can be determined.
  • the condition A12 is the same as the condition A3.
  • Condition A13 indicates that the detection result of the direction sensor 35 is reverse or neutral.
  • the starting restriction release condition may be that at least one of the following conditions B11 and B12 is satisfied.
  • Condition B11 There is no object in the start restriction area AA1 and the expected locus T.
  • Condition B12 ...
  • Condition B11 can be said to be the failure of condition A11.
  • Condition B12 can be said to be that condition A13 is not satisfied.
  • the start restriction area AA1 does not have to be divided into a plurality of areas N, NL, and NR.
  • the condition B11 may be satisfied when the forced operation pre-release condition is satisfied.
  • condition for releasing the present release may be satisfied by any of the conditions G1 and G2 of the embodiment and the following condition G11.
  • Condition G11 ...
  • the detection result of the direction sensor 35 advances.
  • condition G11 By adding the condition G11 to the forced operation main release condition, when the operator changes the traveling direction to the forward direction during the forced operation pre-release state S5, the main control device 31 transitions to the normal control state S10.
  • the operator can intentionally shift the main control device 31 to the normal control state S10 by changing the traveling direction to the forward direction.
  • This release condition may be satisfied by any of the conditions G1, G2, G11 and the following condition G12.
  • Condition G12 ... Both the following condition G21 and condition G22 are satisfied.
  • Condition G21 The state in which the detection result of the direction sensor 35 is backward and the directions of the regions N, NL, NR in which the object exists and the direction of the expected locus T do not match continues for a specified time.
  • Condition G22 ... The forklift 10 is running.
  • the operator of the forklift 10 When the condition G21 is satisfied, it is probable that the operator of the forklift 10 has changed the turning direction in the direction in which the object does not exist by operating the steering wheel. That is, it is considered that the operator of the forklift 10 recognizes the existence of the object by any of the vehicle speed limit, the acceleration limit, and the warning, and performs an avoidance operation for avoiding the object. Any value can be set for the specified time under the condition G21.
  • the specified time is set to a time at which the operator of the forklift 10 can determine that the avoidance operation is being performed. Even if the turning direction is changed in the direction in which the object does not exist by operating the steering wheel, if the turning direction is returned in the direction in which the object exists before the specified time elapses, the avoidance operation is performed. It is considered not to be.
  • the specified time can be arbitrarily set in the range of 1 second to 3 seconds, for example.
  • the condition G22 is the same as the condition E3.
  • the main control device 31 determines that the forklift 10 is traveling when the vehicle speed is higher than the stop determination threshold value [km / h].
  • the forced operation pre-release state S5 can be changed to the normal control state S10 when the operator is performing the avoidance operation.
  • the operator recognizes an object that hinders the progress of the forklift 10, and may perform an avoidance operation to avoid this object.
  • the acceleration limit is imposed, the acceleration of the forklift 10 is limited, so that the forklift 10 cannot proceed smoothly, which may lead to a decrease in workability.
  • the acceleration limitation can be released by shifting the main control device 31 to the normal control state S10. As a result, it is possible to suppress the imposition of an acceleration limit when the forklift 10 travels during or after the avoidance operation, and it is possible to suppress a decrease in workability.
  • the main control device 31 may immediately transition to the start restriction state S2 after the transition to the normal control state S10 due to the satisfaction of the condition G12. For example, if the turning direction is changed in the direction in which the object does not exist while the forklift 10 is stopped, but then the turning direction is returned in the direction in which the object exists, the main control device 31 limits the start.
  • the condition for canceling this release may be satisfied by any one of the conditions G1, G2, G11, and G21. Even in this case, according to the condition G21, the forced operation pre-release state S5 can be changed to the normal control state S10 when the operator is performing the avoidance operation. As a result, it is possible to suppress a decrease in workability. Even if the condition G22 is not satisfied, the main controller 31 is made to transition to the normal control state S10 by satisfying the condition G21, so that the main controller 31 is immediately put into the start restriction state S2 after the transition to the normal control state S10. Can be transitioned to.
  • Condition A1 and condition A2 may be satisfied when the main control device 31 transitions from the forced operation pre-release state S5 to the normal control state S10, such as when an object approaches the forklift 10. At this time, if the condition G21 and the condition G22 are satisfied and the forced operation main release condition is satisfied, the condition A3 may be suppressed and the start restriction for the newly detected object may not function. On the other hand, even if the condition G22 is not satisfied, the start restriction for the newly detected object is likely to function by shifting the main control device 31 to the normal control state S10 when the condition G21 is satisfied.
  • This release condition may be satisfied by any of the conditions G1, G2, G12 and the following condition G13.
  • Condition G13 ... Both condition G22 and the following condition G23 are satisfied.
  • Condition G23 The state in which the detection result of the direction sensor 35 is advanced continues for a specified time.
  • the specified time under the condition G23 is the same time as the specified time under the condition G21. Forced operation when either condition G12 or condition G13 is satisfied By satisfying this release condition, the main control device can be operated in the same manner regardless of whether the forklift 10 is moving forward or backward.
  • 31 can be transitioned to the normal control state S10. More specifically, the main controller 31 is usually used regardless of whether the avoidance operation in the forward direction is continuously performed for a specified time or the avoidance operation in the reverse direction is continuously performed for a specified time. It transitions to the control state S10. Regardless of whether the forklift 10 is traveling in the forward direction or the reverse direction, the operator may perform the same operation in order to shift the main control device 31 to the normal control state S10, and the operability is improved. It is planned.
  • the condition for canceling this release may be satisfied by any one of the conditions G1, G2, G21, and G23.
  • the main control device 31 can be transitioned to the normal control state S10 by satisfying either the condition G21 or the condition G23.
  • the start restriction for the newly detected object is likely to work.
  • the operator may perform the same operation in order to make the main control device 31 transition to the normal control state S10, and the operability is improved. Improvement is planned.
  • the condition for releasing the present release may be satisfied by any one of the conditions G1, G2, and G12. Any of the conditions G1, G2, and G21 may be satisfied. Forced operation The condition for this release may be satisfied by any one of the conditions G1, G2, G11, G12, and G13. In this case, when the condition G13 is satisfied, the condition G11 is satisfied, and the condition G13 is a condition that does not substantially function. Therefore, it is possible to obtain the same effect as when any one of the conditions G1, G2, G11, and G12 is satisfied when the forced operation main release condition is satisfied.
  • the forced operation condition may be a steering wheel operation by the operator. Whether or not the steering wheel has been operated can be determined from the detection results of the steering wheel angle sensor that detects the angle of the steering wheel and the tire angle sensor 36. That is, the forced operation condition may be any condition as long as it can be determined that the operator has recognized that the object exists in the start restriction area AA1.
  • the determination of whether the forklift 10 such as the condition A3 of the start restriction condition is stopped or running may be determined by a vehicle speed other than the vehicle speed calculated by the main control device 31.
  • the object detection unit 51 determines whether or not the forklift 10 is stopped, and the main control device 31 determines whether the forklift 10 is stopped or running by acquiring the determination result of the object detection unit 51. You may.
  • the object detection unit 51 determines whether or not the forklift 10 is stopped, it can be determined by determining whether or not the image captured by the stereo camera 52 has changed between consecutive frames.
  • the forklift 10 is traveling, the pixels of the image captured by the stereo camera 52 change between consecutive frames.
  • the forklift 10 it is possible to determine whether or not the forklift 10 is stopped by determining whether or not the image has changed between consecutive frames. Further, it can be determined whether or not the forklift 10 is stopped from various factors such as the accelerator pedal 16 not being operated for a predetermined time or longer.
  • the alarm by the alarm device 58 does not have to be weaker than in the start prohibition state S3, and the same alarm as in the start prohibition state S3 may be issued. Further, in the forced operation state S4, it is not necessary to give an alarm by the alarm device 58.
  • the pre-travel restriction state S11 may be omitted. In this case, the alarm area does not have to be set. -The alarm in the pre-restriction restriction state S11 and the pre-restriction start state S22 may be issued even when the forklift 10 is switched back.
  • the pre-restriction start state S22 may be omitted in at least one of the vehicle speed limit control for a person and the vehicle speed limit control for an obstacle. In this case, the advance warning area does not have to be set.
  • the forklift 10 does not have to include the alarm device 58.
  • the start restriction area AA1 may be divided into four or more areas.
  • the dimension of the central region N in the left-right direction may be slightly longer or shorter than the dimension of the forklift 10 in the vehicle width direction.
  • the detection result of the steering wheel angle sensor may be used.
  • the steering wheel angle sensor detects the angle of the steering wheel and outputs the detection result to the main control device 31. Since the steering angle is controlled according to the detection result of the steering wheel angle sensor, the steering angle can be detected from the detection result of the steering wheel angle sensor.
  • the object detection unit 51 may detect the position of an object existing in the forward direction in the traveling direction of the forklift 10.
  • the stereo camera 52 is arranged so as to face the front of the forklift 10.
  • the automatic deceleration area AA2 and the start restriction area AA1 are areas that extend forward from the forklift 10. Further, when the forklift 10 is moving forward, the start limit control, the travel limit control, the vehicle speed limit control for a person, and the vehicle speed limit control for an obstacle will function.
  • the forklift can be lifted by reversing the "rear" and "front” described in the embodiment.
  • a vehicle speed limit can be imposed according to the position of the object.
  • the object detection unit 51 detects the position of an object existing in the forward direction in the traveling direction of the forklift 10, the main control device 31 derives an expected locus T extending in the forward direction.
  • the object detection unit 51 may be capable of detecting the position of an object existing in either the backward direction or the forward direction in the traveling direction of the forklift 10.
  • one object detection unit 51 may be able to detect an object existing in either the reverse direction or the forward direction of the traveling direction of the forklift 10, and the object detection unit 51 for the forward direction and the reverse direction may be detected.
  • the object detection unit 51 for the direction may be provided.
  • the forced operation main release condition is satisfied among the conditions G1, G2, G12, and G13. It is preferable that either one holds.
  • the condition G23 may be changed as follows.
  • Condition G23 The state in which the detection result of the direction sensor 35 is forward and the region where the object exists and the direction of the expected locus do not match continues for a specified time. It can be said that the main control device 31 determines whether or not the state in which the predicted locus extending forward of the forklift 10 and the region where the object in front of the forklift 10 exists does not match continues for a predetermined time.
  • the object detection unit 51 may use a ToF: Time of Flight camera, a LIDAR: Laser Imaging Detection and Ringing, a millimeter wave radar, or the like instead of the stereo camera 52.
  • the ToF camera includes a camera and a light source that irradiates light, and derives a distance in the depth direction for each pixel of the image captured by the camera from the time until the reflected light of the light emitted from the light source is received. It is a thing.
  • LIDAR is a rangefinder that can recognize the surrounding environment by irradiating a laser while changing the irradiation angle and receiving the reflected light reflected from the part hit by the laser.
  • the millimeter-wave radar is capable of recognizing the surrounding environment by irradiating the surroundings with radio waves in a predetermined frequency band.
  • the stereo camera 52, the ToF camera, the LIDAR, and the millimeter wave radar are sensors capable of measuring three-dimensional coordinates in the world coordinate system.
  • the object detection unit 51 preferably includes a sensor capable of measuring three-dimensional coordinates.
  • the obstacle detection device 55 can determine whether the object is a person or an obstacle by using a human determination device that has been machine-learned in advance. it can.
  • the object detection unit 51 may include a combination of a plurality of sensors such as a stereo camera 52 and LIDAR.
  • the object detection unit 51 may be provided with a sensor capable of measuring the coordinates of the object on the XY plane, which is the seat surface representing the horizontal plane, instead of the stereo camera 52. That is, as the sensor, a sensor capable of measuring the two-dimensional coordinates of the object may be used. As this type of sensor, for example, a two-dimensional LIDAR that irradiates a laser while changing the irradiation angle in the horizontal direction can be used.
  • the stereo camera 52 may include three or more cameras.
  • the obstacle detection device 55 may determine whether the object is a person or an obstacle by using a comparative image among the images captured by the stereo camera 52. Since the coordinates of the object are derived from the reference image, if the coordinates of the object on the comparison image are derived from the coordinates of the object, a deviation according to the baseline length occurs. Therefore, the obstacle detection device 55 corrects the coordinates of the object on the comparative image according to the baseline length, and performs the person detection process on the corrected coordinates.
  • the alarm device 58 may be provided by a device other than the object detection unit 51. ⁇ The alarm device 58 may be operated directly by the main control device 31. ⁇ The forklift 10 may travel by driving an engine, which is a driving device. In this case, the travel control device 43 is a device that controls the fuel injection amount to the engine and the like.
  • the forklift 10 may be a four-wheel type forklift 10.
  • the main control device 31 derives the predicted locus T from the formula or map for deriving the predicted locus T of the four-wheel forklift 10. That is, the formula or map for deriving the expected trajectory T is changed depending on the type of industrial vehicle.
  • the forklift 10 may be capable of switching between automatic operation and manual operation.
  • the forklift 10 may be remotely controlled by an operator who is not on the forklift 10.
  • the forklift 10 may rotate two drive wheels 12 and 13 with one traveling motor.
  • the expected locus derivation unit and the vehicle speed upper limit setting unit may be different from the main control device 31.
  • the expected locus derivation unit, the vehicle speed upper limit setting unit, and the main control device 31 are connected by the bus 60, and the main control device 31, the expected locus derivation unit, and the vehicle speed upper limit setting unit are configured to be able to acquire each other's information.
  • the main control device 31, the travel control device 43, and the object detection unit 51 may be configured so that information on each other can be acquired by a radio.
  • the industrial vehicle may be any vehicle used for work in a limited area, such as a towing vehicle used for transporting loads and an order picker used for picking work. That is, the industrial vehicle may not be provided with the cargo handling device 20 for unloading and loading.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

フォークリフト(10)は、主制御装置(31)と、走行用モータ(41)と、走行制御装置(43)と、物体検出部(51)と、を備える。走行制御装置(43)は、走行用モータ(41)を制御する。物体検出部(51)は、フォークリフト(10)の後進方向に存在する物体の位置を検出する。主制御装置(31)は、フォークリフト(10)の予想軌跡(T)を導出する。主制御装置(31)は、物体検出部(51)により検出された物体が予想軌跡(T)内に位置している場合であってフォークリフト(10)の進行方向が物体に近づく方向の場合に車速上限値(VS,AS1,AS2,DS1,DS2)を設定することでフォークリフト(10)に車速制限を課す。主制御装置(31)は、フォークリフト(10)の車速が車速上限値(VS,AS1,AS2,DS1,DS2)を上回らないように走行制御装置(43)に指令を与える。

Description

産業車両
 本発明は、産業車両に関する。
 工場、商業施設、港湾などの作業場で使用される産業車両としては、例えば、特許文献1に記載の車両が知られている。産業車両は、操作者に操作されるアクセルペダルと、アクセルペダルの操作量を検出するアクセルセンサと、アクセルセンサの検出結果から車速を制御する制御装置と、を備える。産業車両の操作者は、アクセルペダルの操作量を調整することで、車速を調整することができる。
特開平8-256401号公報
 産業車両の操作者は、人や障害物に近づくと、アクセルペダルの操作量を調整して、車速を低下させる場合がある。人や障害物などの物体が多く存在する環境で産業車両が使用される場合、産業車両の操作者はアクセルペダルの操作量を頻繁に調整する必要があり、作業性が低下するおそれがある。
 本発明の目的は、作業性を向上させることができる産業車両を提供することにある。
 上記課題を解決する産業車両は、駆動装置と、前記駆動装置を制御する走行制御装置と、前記走行制御装置に指令を与える主制御装置と、を備え、前記主制御装置の指令に応じて前記走行制御装置が前記駆動装置を制御することで走行する産業車両であって、前記産業車両の進行方向に存在する物体の位置を検出する物体検出部と、前記産業車両が通過すると予想される軌跡である予想軌跡を導出する予想軌跡導出部と、前記物体検出部により検出された前記物体が前記予想軌跡内に位置している場合であって前記産業車両の進行方向が前記物体に近づく方向の場合に車速上限値を設定することで、前記産業車両に車速制限を課す車速上限設定部と、を備え、前記主制御装置は、前記産業車両の車速が前記車速上限値を上回らないように前記走行制御装置に前記指令を与える。
 予想軌跡内に物体が存在すると、車速上限値が設定される。主制御装置は、車速上限値を上回らないように産業車両を制御する。産業車両の操作者による減速操作がなくても産業車両の車速は車速上限値を上回らないように調整される。従って、産業車両の操作者の作業性が向上される。
 上記産業車両について、前記物体検出部による物体の検出可能範囲内には自動減速エリアが設定されており、前記車速上限設定部は、前記自動減速エリア内、かつ、前記予想軌跡内に前記物体が存在している場合、前記自動減速エリア内、かつ、前記予想軌跡外に前記物体が存在している場合に比べて前記車速上限値を低く設定してもよい。
 自動減速エリア内に物体が存在している場合に、予想軌跡内に物体が存在している場合の車速上限値が常に設定されると、作業性の低下を招く。自動減速エリア内に物体が存在している場合であっても、予想軌跡内に物体が存在していない場合には、予想軌跡内に物体が存在している場合の車速上限値よりも高い車速を許容することで、作業性の更なる向上が図られる。
 上記産業車両について、前記物体検出部は、前記物体が人か、人以外の障害物かを判定する判定部を備え、前記車速上限設定部は、前記物体が人と判定された場合、前記物体が障害物と判定された場合に比べて前記車速上限値を低く設定してもよい。
 物体検出部により検出された物体が障害物の場合、物体が人の場合に比べて車速上限値が高く設定される。このため、産業車両に許容される車速が高く、作業性の更なる向上が図られる。
 上記産業車両について、前記物体検出部による物体の検出可能範囲内には発進制限エリアが設定されており、前記車速上限設定部は、前記産業車両が停止している状態で、前記発進制限エリア内、かつ、前記予想軌跡内に前記物体が存在している場合、前記車速上限値を0に設定してもよい。
 車速上限値が0に設定されることで、産業車両の発進が禁止される。発進制限エリア内、かつ、予想軌跡内に物体が存在している場合、産業車両の進行が阻害されるおそれがある。この場合には、産業車両の発進を禁止することで、操作者に対して進行方向の変更や、旋回を促す。これにより、産業車両の進行が阻害されることが抑制され、作業性の更なる向上が図られる。
 上記産業車両について、前記予想軌跡導出部は、前記車速が高いほど、前記進行方向に対する前記予想軌跡の寸法を長くしてもよい。
 産業車両の車速が高いほど、物体に到達するまでの時間が短い。このため、産業車両の車速が高いほど、予想軌跡を進行方向に長くすることで、産業車両の車速に応じた適正な車速制限を行うことが可能になる。
 前記予想軌跡導出部は、前記産業車両の操舵角から前記予想軌跡を導出してもよい。
 予想軌跡導出部は、操舵角から予想軌跡を導出するため、産業車両が旋回すると、産業車両の旋回方向に合わせて予想軌跡を導出する。導出される予想軌跡の精度を向上させることができる。
 上記産業車両について、荷が積載される荷役装置を備えていてもよい。
 荷が積載される産業車両では、荷が積載される関係上、安定性が求められる。車速上限値が設定されることで、産業車両の安定性を高めることができる。
 上記産業車両について、前記荷役装置に積載された荷の重量を検出する重量センサを備え、前記車速上限設定部は、前記荷の重量が重いほど前記車速上限値を低くしてもよい。
 上記産業車両について、前記荷役装置の揚高を検出する揚高センサを備え、前記車速上限設定部は、前記荷役装置の揚高が高いほど前記車速上限値を低くしてもよい。
 本発明によれば、作業性を向上させることができる。
フォークリフトの斜視図。 フォークリフトの概略構成図。 障害物検出装置が行う処理を示すフローチャート。 自動減速エリアと発進制限エリアを模式的に示す図。 予想軌跡を模式的に示す図。 フォークリフトの車速を高くした場合の予想軌跡を模式的に示す図。 フォークリフトが旋回している場合の予想軌跡を模式的に示す図。 フォークリフトが旋回している状態でフォークリフトの車速を高くした場合の予想軌跡を模式的に示す図。 発進制限制御の状態遷移図。 主制御装置が遷移する各状態と、車速上限値、加速度上限値及び減速度上限値との対応関係を示す表。 発進制限条件の成立を説明するための表。 発進制限解除条件の成立を説明するための表。 走行制限制御の状態遷移図。 車速制限制御の状態遷移図。
 以下、産業車両の一実施形態について説明する。
 図1に示すように、産業車両としてのフォークリフト10は、車体11と、車体11の前下部に配置された2つの駆動輪12,13と、車体11の後下部に配置された2つの操舵輪14と、荷役装置20と、を備える。駆動輪12,13は、車幅方向に離間して配置されている。2つの操舵輪14は、車幅方向に隣接して配置されている。2つの操舵輪14は、車幅方向において、駆動輪12,13同士の間の中央位置に配置されている。隣接して配置された2つの操舵輪14を1つの操舵輪14とみなすと、フォークリフト10は三輪式のフォークリフトとみなすことができる。車体11は、運転席の上部に設けられたヘッドガード15を備える。以下の説明において、前後左右は、フォークリフト10の前後左右を示す。
 荷役装置20は、車体11の前部に立設されたマスト21と、マスト21とともに昇降可能に設けられた一対のフォーク22と、マスト21を昇降動作させるリフトシリンダ23と、を備える。フォーク22には、荷が積載される。リフトシリンダ23は油圧シリンダである。リフトシリンダ23の伸縮によってマスト21が昇降すると、これに伴いフォーク22が昇降する。本実施形態のフォークリフト10は、操作者による操作によって走行動作及び荷役動作が行われるものである。
 図2に示すように、フォークリフト10は、主制御装置31と、アクセルセンサ34と、ディレクションセンサ35と、タイヤ角センサ36と、揚高センサ37と、重量センサ38と、走行用モータ41と、回転数センサ42と、走行制御装置43と、物体検出部51と、バス60と、を備える。
 主制御装置31は、CPUやGPU等のプロセッサ32と、RAM及びROM等からなる記憶部33と、を備える。記憶部33には、フォークリフト10を動作させるためのプログラムが記憶されている。記憶部33は、処理をプロセッサ32に実行させるように構成されたプログラムコードまたは指令を格納しているといえる。記憶部33、すなわち、コンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。主制御装置31は、ASIC:Application Specific Integrated CircuitやFPGA:Field Programmable Gate Array等のハードウェア回路によって構成されていてもよい。処理回路である主制御装置31は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。
 アクセルセンサ34は、アクセルペダル16の操作量、すなわちアクセル開度を検出する。アクセルセンサ34は、アクセル開度に応じた電気信号を主制御装置31に出力する。主制御装置31は、アクセルセンサ34からの電気信号によりアクセル開度を認識可能である。
 ディレクションセンサ35は、進行方向を指示するディレクションレバー17の操作方向を検出する。ディレクションセンサ35は、中立を基準として、前進を指示する方向にディレクションレバー17が操作されているか、後進を指示する方向にディレクションレバー17が操作されているかを検出する。ディレクションセンサ35は、ディレクションレバー17の操作方向に応じた電気信号を主制御装置31に出力する。主制御装置31は、ディレクションセンサ35からの電気信号によりディレクションレバー17の操作方向を認識可能である。主制御装置31は、操作者により前進が指示されているか、後進が指示されているか、いずれも指示されていないかを把握することができる。
 タイヤ角センサ36は、操舵輪14の操舵角を検出する。タイヤ角センサ36は、操舵角に応じた電気信号を主制御装置31に出力する。主制御装置31は、タイヤ角センサ36からの電気信号により操舵角を認識可能である。
 揚高センサ37は、荷役装置20の揚高を検出する。荷役装置20の揚高とは、路面からフォーク22までの高さである。揚高センサ37は、例えば、リールセンサである。揚高センサ37は、揚高に応じた電気信号を主制御装置31に出力する。主制御装置31は、揚高センサ37からの電気信号により荷役装置20の揚高を認識可能である。
 重量センサ38は、荷役装置20に積載された荷の重量を検出する。重量センサ38は、例えば、リフトシリンダ23の油圧を検出する圧力センサである。重量センサ38は、荷の重量に応じた電気信号を主制御装置31に出力する。主制御装置31は、重量センサ38からの電気信号により荷の重量を認識可能である。
 走行用モータ41は、フォークリフト10を走行させるための駆動装置である。走行用モータ41の駆動により、駆動輪12,13が回転することでフォークリフト10は走行する。
 回転数センサ42は、走行用モータ41の回転数を検出する。回転数センサ42としては、例えば、ロータリエンコーダを用いることができる。回転数センサ42は、走行用モータ41の回転数に応じた電気信号を走行制御装置43に出力する。
 走行制御装置43は、走行用モータ41の回転数を制御するモータドライバである。走行制御装置43は、回転数センサ42の電気信号から、走行用モータ41の回転数、及び回転方向を認識可能である。走行用モータ41の回転方向は、+または-の符号で表される。+の回転数であれば正回転、-の符号であれば逆回転を示す。
 走行用モータ41、回転数センサ42、及び走行制御装置43は、2つの駆動輪12,13毎に個別に設けられている。2つの駆動輪12,13毎に設けられた走行用モータ41の回転数及び回転方向を走行制御装置43により個別に制御することで、2つの駆動輪12,13の回転数及び回転方向は、独立して制御可能である。2つの駆動輪12,13毎に設けられた走行用モータ41の回転数は、回転数センサ42により個別に検出可能である。
 物体検出部51は、ステレオカメラ52と、ステレオカメラ52によって撮像された画像から物体の検出を行う障害物検出装置55と、警報装置58と、を備える。図1に示すように、ステレオカメラ52は、ヘッドガード15に配置されている。ステレオカメラ52は、フォークリフト10の上方からフォークリフト10の走行する路面を鳥瞰できるように配置されている。本実施形態のステレオカメラ52は、フォークリフト10の後方を撮像する。従って、障害物検出装置55で検出される物体は、フォークリフト10の後方の物体となる。警報装置58及び障害物検出装置55は、ステレオカメラ52とユニット化されて、ステレオカメラ52とともにヘッドガード15に配置されていてもよい。また、警報装置58及び障害物検出装置55は、ヘッドガード15とは異なる位置に配置されていてもよい。
 図2に示すように、ステレオカメラ52は、2つのカメラ53,54を備える。カメラ53,54は、例えば、CCDイメージセンサや、CMOSイメージセンサを用いたものである。各カメラ53,54は、互いの光軸が平行となるように配置されている。2つのカメラ53,54は、互いに離間しているため、2つのカメラ53,54によって撮像される画像では同一物体がずれて写ることになる。詳細にいえば、同一物体を撮像した場合、2つのカメラ53,54によって撮像される画像に写る物体には、2つのカメラ53,54間の距離に応じた画素のずれが生じることになる。本実施形態のステレオカメラ52としては、水平画角が100°以上の広角のステレオカメラを用いているが、ステレオカメラ52としては、広角ではないステレオカメラを用いてもよい。
 障害物検出装置55は、CPUやGPU等のプロセッサ56と、RAM及びROM等からなる記憶部57と、を備える。記憶部57には、ステレオカメラ52によって撮像された画像から物体を検出するための種々のプログラムが記憶されている。記憶部57は、処理をプロセッサ56に実行させるように構成されたプログラムコードまたは指令を格納しているといえる。記憶部57、すなわち、コンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。障害物検出装置55は、ASIC:Application Specific Integrated CircuitやFPGA:Field Programmable Gate Array等のハードウェア回路によって構成されていてもよい。処理回路である障害物検出装置55は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。
 障害物検出装置55は、以下の処理を所定の制御周期で繰り返し行うことで、フォークリフト10の周囲に存在する物体の検出を行う。また、障害物検出装置55は、検出した物体の位置を導出する。物体の位置とは、フォークリフト10と物体との相対的な位置である。
 図3に示すように、ステップS100において、障害物検出装置55は、ステレオカメラ52の各カメラ53,54から画像を取得する。
 次に、ステップS110において、障害物検出装置55は、ステレオ処理を行うことで、視差画像を取得する。視差画像は、画素に対して視差[px]を対応付けたものである。視差画像とは、必ずしも表示を要するものではなく、視差画像における各画素に視差が対応付けられたデータのことを示す。視差は、ステレオカメラ52の備える2つのカメラ53,54によって撮像された画像を比較し、各画像に写る同一特徴点について画像間の画素数の差を導出することで得られる。障害物検出装置55は、2つのカメラ53,54によって撮像された画像のうち一方を基準画像、他方を比較画像とし、基準画像の画素毎に、最も類似する比較画像の画素を抽出する。障害物検出装置55は、基準画像の画素と、比較画像の画素の画素数の差を視差として算出する。これにより、基準画像の各画素に視差が対応付けられた視差画像を取得することができる。なお、特徴点とは、物体のエッジなど、境目として認識可能な部分である。特徴点は、輝度情報などから検出することができる。
 次に、ステップS120において、障害物検出装置55は、実空間上の座標系であるワールド座標系における特徴点の座標を導出する。ワールド座標系は、フォークリフト10が水平面に位置している状態で水平方向のうちフォークリフト10の車幅方向に延びる軸をX軸、水平方向のうちX軸に直交する軸をY軸、鉛直方向に延びる軸をZ軸とする座標系である。特徴点の座標の導出は、ステレオカメラ52の基線長、ステレオカメラ52の焦点距離、及びステップS110で得られた視差画像からカメラ座標系における特徴点の座標を導出した後に、当該座標をワールド座標系における座標に変換することで行われる。なお、図1に示すように、X軸、Y軸及びZ軸を矢印X,Y,Zで図示している。
 図3に示すように、ステップS130において、障害物検出装置55は、特徴点をクラスタ化することで物体の抽出を行う。障害物検出装置55は、物体の一部を表す点である特徴点のうち同一物体を表していると想定される特徴点の集合を1つの点群とし、当該点群を物体として抽出する。障害物検出装置55は、ステップS120で導出されたワールド座標系における特徴点の座標から、所定範囲内に位置する特徴点を1つの点群とみなすクラスタ化を行う。障害物検出装置55は、クラスタ化された点群を1つの物体とみなす。なお、ステップS130で行われる特徴点のクラスタ化は種々の手法で行うことができる。
 次に、ステップS140において、障害物検出装置55は、ワールド座標系における物体の座標を導出する。物体の座標は、点群を構成する特徴点の座標から導出可能である。ワールド座標系における物体の座標は、フォークリフト10と物体との相対位置を表している。詳細にいえば、ワールド座標系における物体の座標のうちX座標は原点から物体までの左右方向の距離を表しており、Y座標は原点から物体までの前後方向の距離を表している。原点は、例えば、X座標及びY座標をステレオカメラ52の配置位置とし、Z座標を路面とする座標である。X座標及びY座標から、ステレオカメラ52の配置位置から物体までのユークリッド距離を導出することも可能である。ワールド座標系における物体の座標のうちZ座標は、路面からの物体の高さを表す。
 次に、ステップS150において、障害物検出装置55は、物体が人か人以外の障害物かを判定する。物体が人か否かの判定は、種々の方法で行うことができる。本実施形態において、障害物検出装置55は、ステレオカメラ52の2つのカメラ53,54のうちいずれかで撮像された画像に対して、人検出処理を行う。障害物検出装置55は、ステップS140で得られたワールド座標系における物体の座標をカメラ座標に変換し、当該カメラ座標をカメラ53,54によって撮像された画像の座標に変換する。本実施形態において、障害物検出装置55は、ワールド座標系における物体の座標を基準画像の座標に変換する。障害物検出装置55は、基準画像における物体の座標に対して、人検出処理を行う。人検出処理は、例えば、特徴量抽出と、事前に機械学習を行った人判定器と、を用いて行われる。特徴量抽出としては、例えば、HOG:Histogram of Oriented Gradients特徴量、Haar-Like特徴量などの画像における局所領域の特徴量を抽出する手法が挙げられる。人判定器としては、例えば、教師有り学習モデルによる機械学習を行ったものが用いられる。教師有り学習モデルとしては、例えば、サポートベクタマシン、ニューラルネットワーク、ナイーブベイズ、ディープラーニング、決定木等を採用することが可能である。機械学習に用いる教師データとしては、画像から抽出された人の形状要素や、外観要素などの画像固有成分が用いられる。形状要素として、例えば、人の大きさや輪郭などが挙げられる。外観要素としては、例えば、光源情報、テクスチャ情報、カメラ情報などが挙げられる。光源情報には、反射率や、陰影等に関する情報が含まれる。テクスチャ情報には、カラー情報等が含まれる。カメラ情報には、画質、解像度、画角等に関する情報が含まれる。ステップS150の処理を行うことで、障害物検出装置55は物体が人か、人以外の障害物かを判定する判定部として機能する。
 警報装置58は、フォークリフト10の操作者に対して警報を行う装置である。警報装置58としては、例えば、音による警報を行うブザー、光による警報を行うランプ、あるいは、これらの組み合わせ等を挙げることができる。
 主制御装置31、走行制御装置43及び物体検出部51は、バス60によって互いに情報を取得可能に構成されている。主制御装置31、走行制御装置43及び物体検出部51は、CAN:Controller Area NetworkやLIN:Local Interconnect Networkなどの車両用の通信プロトコルに従った通信を行うことで、互いに情報を取得する。
 主制御装置31は、走行制御装置43から走行用モータ41の回転数及び回転方向を取得し、タイヤ角センサ36から操舵角を取得することで、フォークリフト10の車速を導出する。フォークリフト10の車速は、駆動輪12,13毎に設けられた走行用モータ41それぞれの回転数及び回転方向、ギヤ比、駆動輪12,13の外径、タイヤ角センサ36により検出された操舵角などを用いることで導出可能である。なお、主制御装置31は、車速とともにフォークリフト10の進行方向も導出する。フォークリフト10の進行方向とは、前進方向及び後進方向のいずれかである。フォークリフト10の進行方向は、車速に付される+または-の符号で表される。+の車速であれば前進方向、-の符号であれば後進方向を示す。なお、本実施形態において、車速とは、+または-の符号を除いた車速を示す。即ち、本実施形態での車速は、車速の絶対値を示す。
 主制御装置31は、バス60を介して警報指令を送信することで、警報装置58を作動させる。詳細にいえば、物体検出部51は、警報装置58を作動させる作動部を備え、警報指令を受信すると作動部は警報装置58を作動させる。
 次に、フォークリフト10で行われる車速の制御について説明する。
 フォークリフト10では、物体検出部51によって検出された物体の位置、及び物体の種類に応じて主制御装置31によって車速の制御が行われる。物体の種類とは、人と、人以外の障害物のいずれかである。以下の説明において、障害物とは人以外の物体を示す。車速の制御には、自動減速制御と、発進制限制御と、が含まれる。
 図4に示すように、物体検出部51による物体の検出可能範囲内には、自動減速制御に用いられる自動減速エリアAA2と、発進制限制御に用いられる発進制限エリアAA1と、が設定されている。物体検出部51による物体の検出可能範囲とは、ステレオカメラ52による撮像可能範囲ともいえる。本実施形態において、自動減速エリアAA2は、物体検出部51による物体の検出可能範囲と同一の領域である。自動減速エリアAA2は、ステレオカメラ52の配置位置からフォークリフト10の後方、及びフォークリフト10の車幅方向に拡がる領域である。自動減速エリアAA2は、ワールド座標系におけるX座標及びY座標で規定されるエリアである。発進制限エリアAA1は、自動減速エリアAA2内に設定されたエリアであり、自動減速エリアAA2よりも狭いエリアである。発進制限エリアAA1は、ステレオカメラ52の配置位置からフォークリフト10の後方、及びフォークリフト10の車幅方向に拡がる領域である。発進制限エリアAA1は、ワールド座標系におけるX座標及びY座標で規定されるエリアである。自動減速エリアAA2は、発進制限エリアAA1よりもフォークリフト10から離れた位置を含んだエリアといえる。
 本実施形態において、発進制限エリアAA1は、中央領域Nと、中央領域Nの左方に位置する左領域NLと、中央領域Nの右方に位置する右領域NRの3つに分割されている。中央領域Nは、前後方向にフォークリフト10と向かい合う領域である。中央領域Nの左右方向の寸法は、フォークリフト10の車幅方向の寸法と一致している。中央領域Nは、フォークリフト10を後進方向に直進させた場合にフォークリフト10が通過する領域ともいえる。左領域NLは、フォークリフト10を後進方向に左折させた場合にフォークリフト10が通過する領域といえる。右領域NRは、フォークリフト10を後進方向に右折させた場合にフォークリフト10が通過する領域といえる。
 図5に示すように、主制御装置31は、フォークリフト10の予想軌跡Tを導出する。予想軌跡Tとは、フォークリフト10が通過すると予想される軌跡である。本実施形態において、主制御装置31は、フォークリフト10の進行方向が後進方向の場合、例えば、操作者により後進を指示する方向にディレクションレバー17が操作されている場合にフォークリフト10が通過すると予想される予想軌跡Tを導出する。
 予想軌跡Tは、操舵輪14の操舵角及びフォークリフト10の寸法情報から導出することができる。フォークリフト10の寸法情報には、駆動輪12,13の中心軸線から車体11の後端までの寸法[mm]、ホイールベース[mm]、及び車幅[mm]が含まれる。フォークリフト10の寸法情報は、既知情報であるため、主制御装置31の記憶部33等に予め記憶しておくことができる。予想軌跡Tは、車体11の左端LEが通過する軌跡LTと、車体11の右端REが通過する軌跡RTとの間の軌跡である。主制御装置31は、フォークリフト10の後方に延びる予想軌跡Tのワールド座標系におけるX座標及びY座標を導出する。
 図5及び図6に示すように、フォークリフト10が直進している場合、予想軌跡Tは、フォークリフト10から後進方向に向けて直線状に延びる軌跡となる。図7及び図8に示すように、フォークリフト10が旋回している場合、予想軌跡Tは、フォークリフト10から後進方向に向けて曲がる軌跡となる。フォークリフト10が右方に旋回している場合、予想軌跡Tは右方に延び、フォークリフト10が左方に旋回している場合、予想軌跡Tは左方に延びる。主制御装置31は、フォークリフト10が旋回している場合、旋回方向に向けて延びる予想軌跡Tを導出するといえる。
 図6に示すフォークリフト10は、図5に示す状態のフォークリフト10よりも車速が高い。同様に、図8に示すフォークリフト10は、図7に示すフォークリフト10よりも車速が高い。図5~図8に示すように、主制御装置31は、フォークリフト10の車速が高いほど、予想軌跡Tを進行方向に長くする。本実施形態では、車速によって軌跡導出閾値YTが変更される。軌跡導出閾値YTは、ワールド座標系におけるY座標に対して設定された閾値であり、車速が高いほどフォークリフト10から離れたY座標になる。主制御装置31は、フォークリフト10から軌跡導出閾値YTまでの予想軌跡Tを導出する。なお、フォークリフト10の車速が高いほど予想軌跡Tを進行方向に長くするとは、フォークリフト10の車速と予想軌跡Tの進行方向の長さとが比例関係になる態様に限られず、フォークリフト10の車速が高くなれば予想軌跡Tの進行方向の長さが長くなる相関があればよい。
 予想軌跡Tは、自動減速エリアAA2内で導出される。軌跡導出閾値YTの最低値としては、発進制限エリアAA1のうちフォークリフト10から最も離れた位置のY座標を挙げることができる。即ち、フォークリフト10が停止しており、車速が0[km/h]であっても、少なくとも発進制限エリアAA1内での予想軌跡Tが導出されるように軌跡導出閾値YTは設定されている。本実施形態において、主制御装置31が予想軌跡導出部として機能している。
 発進制限制御について説明する。なお、以下の説明におけるX座標及びY座標は、ワールド座標系におけるX座標及びY座標である。
 図9に示すように、発進制限制御では、主制御装置31の状態を通常制御状態S10、発進制限状態S2、発進禁止状態S3、強制動作状態S4、及び強制動作プレ解除状態S5のいずれかの状態にすることで、各状態に応じた制御が行われる。
 図10に示すように、通常制御状態S10とは、車速制限が課されていない状態である。また、通常制御状態S10では、加速度及び減速度についても制限が課されない。主制御装置31が通常制御状態S10の場合、主制御装置31は、アクセルセンサ34により検出されたアクセル開度から目標車速を演算する。主制御装置31は、目標車速から目標回転数を演算する。目標回転数は、フォークリフト10を目標車速に到達させるための回転数である。目標回転数は、2つの走行用モータ41毎に個別に導出される。また、主制御装置31は、ディレクションレバー17の操作方向からフォークリフト10を前進させるか後進させるかを判断する。主制御装置31は、目標回転数を示す情報と走行用モータ41の回転方向を示す情報を含む指令を生成し、走行制御装置43に指令を与える。走行制御装置43は、指令による目標回転数に追従するように走行用モータ41を制御する。走行制御装置43は、指令による回転方向に走行用モータ41が回転するように走行用モータ41を制御する。これにより、通常制御状態S10では、操作者によるアクセルペダル16の操作量に応じた車速でフォークリフト10は走行する。なお、本実施形態のように、2つの駆動輪12,13の回転数を独立して制御できるフォークリフト10では、操作者による旋回操作、即ち、ハンドルの角度に応じて2つの走行用モータ41の回転数及び回転方向を調整することでフォークリフト10の旋回を行うことができる。従って、2つの走行用モータ41の回転数の差を利用して旋回を行うフォークリフト10の場合、主制御装置31は、目標車速及びハンドルの角度に応じて目標回転数を導出する。
 なお、車速制限が課されていない状態とは、車速上限値が設定されていない態様に加えて、フォークリフト10の到達し得る最高速度よりも高い車速上限値を設定する等、実質的には機能しない車速上限値を設定する態様を含む。同様に、加速度制限が課されていない状態とは、加速度上限値が設定されていない態様に加えて、フォークリフト10の到達し得る最高加速度よりも高い加速度を設定する等、実質的には機能しない加速度上限値を設定する態様を含む。減速度制限についても、加速度制限と同様である。
 図9に示すように、主制御装置31が通常制御状態S10の際に、発進制限条件が成立すると、主制御装置31は、通常制御状態S10から発進制限状態S2に遷移する。発進制限条件の成立とは、以下の条件A1,A2,A3の全てが成立することである。
 条件A1…発進制限エリアAA1に物体が存在。
 条件A2…ディレクションセンサ35の検出結果が中立、又はディレクションセンサ35の検出結果が後進であって物体が存在する領域N,NL,NRと予想軌跡Tの方向とが一致している。
 条件A3…フォークリフト10が停止している。
 条件A1の物体は、人であってもよいし、人以外の障害物であってもよい。前述したように、障害物検出装置55では、物体の位置を導出した後に、当該物体が人か障害物かの判定が行われる。物体が人か否かの判定に要する時間は長いため、障害物検出装置55は物体の位置を示す情報を主制御装置31に送信した後に、物体が人か否かの情報を送信するように構成される場合がある。主制御装置31は、物体の位置を認識した段階で条件A1が成立したと判定できるため、物体が人か障害物かの判定が行われた後に条件A1が成立しているか否かを判定する場合に比べて、判定速度を向上させることができる。条件A1が成立しているか否かは、物体のX座標及びY座標から判定することができる。発進制限エリアAA1は、X座標及びY座標で規定されているため、物体のX座標及びY座標から、物体が発進制限エリアAA1に存在しているかを判定することができる。
 物体が存在する領域N,NL,NRと予想軌跡Tの方向とが一致している状態は、発進制限エリアAA1を分割した中央領域N、左領域NL及び右領域NRのうち物体が存在する領域と、予想軌跡Tとが重なり合う状態ともいえる。即ち、予想軌跡T内に物体が存在している状態と捉えることができる。1つの物体が複数の領域N,NL,NRに跨がって位置している場合や、複数の物体が異なる領域N,NL,NRに位置している場合、主制御装置31は、各領域N,NL,NRに物体が存在していると判断する。この場合、主制御装置31は、物体が存在する領域N,NL,NRのいずれかと予想軌跡Tの方向とが一致した場合に条件A2が成立したと判断する。
 条件A1及び条件A2は、図11に示す表で表すことができる。図11には、物体が存在する領域N,NL,NRと、条件A1及び条件A2が成立する場合のディレクションセンサ35の検出結果及び予想軌跡Tとの対応関係を示している。図11に示す「全て」とは、予想軌跡Tがいずれの方向に延びていてもよい旨を示す。図11に示す「左切」とは予想軌跡Tが左に延びていることを示す。図11に示す「右切」とは予想軌跡Tが右に延びていることを示す。図11に示すように、発進制限エリアAA1に物体が存在する場合であって、ディレクションセンサ35の検出結果が中立の場合、予想軌跡Tの延びる方向に関わらず条件A1,A2は成立するといえる。左領域NLに物体が存在する場合、ディレクションセンサ35の検出結果が中立の場合に加えて、ディレクションセンサ35の検出結果が後進であって予想軌跡T=旋回方向が左の場合に条件A1及び条件A2は成立する。左領域NL及び右領域NRに物体が存在し、中央領域Nに物体が存在しない場合、ディレクションセンサ35の検出結果が後進で予想軌跡Tが右又は左に延びる場合には条件A1及び条件A2が成立することになる。また、フォークリフト10は、旋回する場合であっても中央領域Nを通過することになるため、中央領域Nに物体が存在する場合には、予想軌跡Tがいずれの方向に延びる場合であっても、条件A1及び条件A2は成立することになる。
 条件A3が成立するか否かは、主制御装置31によって演算される車速から判定することができる。主制御装置31は、車速が停止判定閾値[km/h]以下の場合にはフォークリフト10は停止していると判断する。停止判定閾値は、フォークリフト10が停止しているとみなせる値に設定され、例えば、0[km/h]~0.5[km/h]から任意の値を設定することができる。
 図10に示すように、発進制限状態S2とは、車速上限値を0にすることで、フォークリフト10が停止している状態からの発進を禁止する状態である。なお、発進とは、フォークリフト10が停止している状態からフォークリフト10が走行している状態にフォークリフト10を遷移させることである。車速上限値が設定されている場合、主制御装置31は、フォークリフト10の車速が車速上限値を上回らないように制御を行う。例えば、主制御装置31は、アクセル開度から演算される目標車速が車速上限値未満の場合には、アクセル開度から演算された目標車速から目標回転数を演算する一方で、アクセル開度から演算される目標車速が車速上限値以上の場合には、目標車速に代えて車速上限値を用いて目標回転数を演算する。そして、目標回転数と走行用モータ41の回転数が一致するように走行制御装置43に指令を与える。車速上限値が0の場合、フォークリフト10の進行が禁止された状態といえる。また、発進制限状態S2では、警報装置58による警報が行われる。
 図9に示すように、主制御装置31が発進制限状態S2の際に、発進制限解除条件が成立すると、主制御装置31は、発進制限状態S2から通常制御状態S10に遷移する。発進制限解除条件の成立とは、以下の条件B1,B2,B3のうち少なくともいずれかが成立することである。
 条件B1…発進制限エリアAA1に物体が存在しない。
 条件B2…ディレクションセンサ35の検出結果が前進。
 条件B3…ディレクションセンサ35の検出結果が後進であって物体が存在する領域N,NL,NRと予想軌跡Tの方向とが一致していない。
 条件B1,B2,B3は、図12に示す表で表すことができる。図12には、物体が存在する領域N,NL,NRと、条件B1,B2,B3が成立する場合のディレクションセンサ35の検出結果及び予想軌跡Tとの対応関係を示している。図12に示す「全て」「右切」「左切」は、図11と同一の意味である。図12に示すように、発進制限エリアAA1に物体が存在しない場合ディレクションセンサ35の検出結果に関わらず条件B1は成立する。発進制限エリアAA1に物体が存在する場合であっても、ディレクションセンサ35の検出結果が前進の場合には条件B2が成立する。発進制限エリアAA1に物体が存在する場合であっても、物体の存在する領域N,NL,NRと予想軌跡Tの方向とが一致していない場合、条件B3が成立する。発進制限解除条件は、条件A1,A2の少なくともいずれかが不成立になることで成立するといえる。
 図9に示すように、主制御装置31が発進制限状態S2の際に、発進禁止条件が成立すると、主制御装置31は、発進制限状態S2から発進禁止状態S3に遷移する。発進禁止条件の成立とは、以下の条件C1,C2の全てが成立することである。なお、発進禁止条件と、発進制限解除条件の両方が成立した場合、主制御装置31は発進制限解除条件を優先し、通常制御状態S10に遷移する。
 条件C1…ディレクションセンサ35の検出結果が中立以外。
 条件C2…アクセルオン。
 条件C1は、ディレクションセンサ35の検出結果が前進又は後進の場合に成立する。発進制限状態S2の際に、ディレクションセンサ35の検出結果が前進になると、条件B2の成立により主制御装置31は通常制御状態S10に遷移する。従って、条件C1は、実質的にはディレクションセンサ35の検出結果が後進の場合に成立するといえる。
 条件C2のアクセルオンとは、フォークリフト10の操作者によりアクセルペダル16が操作されたことを示す。アクセルペダル16が操作されたことは、アクセルセンサ34の検出結果から判断することができる。なお、アクセルオンには、アクセルペダル16の遊び=不感帯領域でのアクセルペダル16の操作も含まれる。
 図10に示すように、発進禁止状態S3とは、車速上限値を0にすることで、フォークリフト10の発進を禁止する状態である。発進禁止状態S3は、発進制限状態S2と同一の車速制限が課される状態といえる。発進禁止状態S3と発進制限状態S2では、通常制御状態S10への遷移を許容するか否か等、他の状態への遷移態様が異なる。また、発進禁止状態S3では、発進制限状態S2よりも警報装置58による警報を強くしてもよい。警報を強くするとは、例えば、警報装置58がブザーであれば、ブザー音を大きくしたり、警報装置58がランプとブザーの組み合わせであれば、ランプ及びブザーの一方の警報から両方での警報に切り替えることが挙げられる。即ち、予想軌跡T内に物体が存在することを操作者に認識させやすくする。
 図9に示すように、主制御装置31が発進禁止状態S3の際に、強制動作条件が成立すると、主制御装置31は、発進禁止状態S3から強制動作状態S4に遷移する。強制動作条件の成立とは、以下の条件D1が成立することである。
 条件D1…アクセルオフ。
 アクセルオフとは、フォークリフト10の操作者によりアクセルペダル16が操作されていないことを示す。アクセルペダル16が操作されていないことは、アクセルセンサ34の検出結果から判断することができる。条件D1は、条件C2が不成立になることで成立するといえる。
 図10に示すように、強制動作状態S4とは、車速上限値をVS1[km/h]に設定することで、フォークリフト10に車速制限を課す状態である。VS1は、0より大きい値であり、フォークリフト10の到達し得る最高車速よりも低い値である。主制御装置31は、VS1以下でのフォークリフト10の走行を許容するといえる。VS1としては、例えば、フォークリフト10の退避走行時に許容される車速が設定される。なお、強制動作状態S4では、加速度及び減速度については制限が課されない。強制動作状態S4では、発進禁止状態S3よりも警報装置58による警報を弱くしてもよい。
 図9に示すように、主制御装置31が強制動作状態S4の際に、強制動作解除条件が成立すると、主制御装置31は、強制動作状態S4から通常制御状態S10に遷移する。強制動作解除条件の成立とは、以下の条件E1,E2,E3の全てが成立することである。
 条件E1…条件B1,B2,B3の少なくともいずれかが成立。
 条件E2…ディレクションセンサ35の検出結果が前回値とは異なる。
 条件E3…フォークリフト10が走行している。
 条件E1は、発進制限解除条件と同一条件といえる。条件E2は、ディレクションレバー17の操作により、ディレクションセンサ35の検出結果が前進から中立、前進から後進、中立から前進、中立から後進、後進から中立、後進から前進のいずれかに変化した場合に成立する。条件E3は、車速から判定することができる。主制御装置31は、車速が停止判定閾値[km/h]より高い場合にはフォークリフト10は走行していると判断する。
 主制御装置31が強制動作状態S4の際に、強制動作プレ解除条件が成立すると、主制御装置31は、強制動作状態S4から強制動作プレ解除状態S5に遷移する。強制動作プレ解除条件の成立とは、以下の条件F1が成立することである。なお、強制動作解除条件と強制動作プレ解除条件の両方が成立した場合、主制御装置31は強制動作解除条件を優先し、通常制御状態S10に遷移する。
 条件F1…条件B1,B2,B3の少なくともいずれかが成立。
 強制動作プレ解除条件は、発進制限解除条件と同一条件といえる。
 図10に示すように、強制動作プレ解除状態S5とは、車速制限が解除される一方で、加速度上限値がAS1[m/s]に設定されることで、加速度に制限が課される状態である。AS1は、0より大きい値であり、フォークリフト10の到達し得る最高加速度よりも低い値である。主制御装置31は、AS1以下でのフォークリフト10の加速を許容する。加速度制限が課されている場合、主制御装置31は、フォークリフト10の加速度が加速度上限値を上回らないように制御を行う。例えば、主制御装置31は、目標回転数を指示する指令と、目標加速度とを指示する指令とを走行制御装置43に送信する。走行制御装置43は、目標回転数と目標加速度から、フォークリフト10の加速度が目標加速度となるように走行用モータ41の回転数を制御する。主制御装置31は、加速度上限値が設定されると、目標加速度として加速度上限値を走行制御装置43に送信する。これにより、主制御装置31は、フォークリフト10に加速度制限を課すことができる。強制動作プレ解除状態S5では、警報装置58による警報は行われない。
 図9に示すように、主制御装置31が強制動作プレ解除状態S5の際に、強制動作本解除条件が成立すると、主制御装置31は通常制御状態S10に遷移する。強制動作本解除条件の成立とは、以下の条件G1,G2の少なくともいずれかが成立することである。
 条件G1…フォークリフト10の車速が目標車速から第1所定値を減算した値に到達。
 条件G2…アクセルオフ。
 条件G1は、目標車速と、フォークリフト10の車速との差である速度偏差が第1所定値未満になることといえる。強制動作プレ解除状態S5では、加速度制限が課されるため、フォークリフト10の速度追従性が低下し、フォークリフト10の車速が目標車速に到達しにくい。第1所定値は、加速度制限が課されている状態で、フォークリフト10の車速が操作者の意図する目標車速に到達したと判定するために設定されている。第1所定値としては、例えば、0.5[km/h]~2.0[km/h]から任意の値を設定することができる。
 主制御装置31が強制動作プレ解除状態S5の際に、発進制限条件が成立すると、主制御装置31は発進制限状態S2に遷移する。
 次に、自動減速制御について説明する。
 自動減速制御には、フォークリフト10を停止させる走行制限制御と、車速上限値以下でのフォークリフト10の走行を許容する車速制限制御と、が含まれる。まず、走行制限制御について説明する。
 図13に示すように、走行制限制御では、主制御装置31の状態を通常制御状態S10、プレ走行制限状態S11、走行制限状態S12、及び走行制限プレ解除状態S13のいずれかの状態にすることで、各状態に応じた制御が行われる。
 通常制御状態S10は、発進制限制御での通常制御状態S10と同一の状態である。
 主制御装置31が通常制御状態S10の際に、プレ走行制限条件が成立すると、主制御装置31はプレ走行制限状態S11に遷移する。プレ走行制限条件の成立とは、以下の条件H1,H2の両方が成立することである。
 条件H1…警報エリアに人が存在している。
 条件H2…フォークリフト10が後進方向に走行している。
 警報エリアは、自動減速エリアAA2内のうち車速制限が課されるエリアとは異なるエリアである。警報エリアとは、予想軌跡T内に人が入る前に警報装置58による警報を行えるように設定されたエリアである。条件H1の警報エリアは、予想軌跡T内を除く自動減速エリアAA2の全体であってもよいし、予想軌跡Tから予想軌跡T外に拡がる所定の範囲のエリアであってもよい。
 フォークリフト10が後進方向に走行しているか否かは、主制御装置31により演算される車速及び進行方向から判定することができる。主制御装置31は、フォークリフト10の進行方向が後進方向であり、かつ、車速が停止判定閾値より高い場合にフォークリフト10が後進方向に走行していると判断する。
 プレ走行制限状態S11とは、警報装置58による警報が行われる状態である。プレ走行制限状態S11では、車速制限、加速度制限、及び減速度制限は課されない。なお、プレ走行制限状態S11での警報は、フォークリフト10のスイッチバック時には行われない。スイッチバックとは、ディレクションレバー17の操作により前進から後進又は後進から前進を切り替える動作である。主制御装置31は、ディレクションセンサ35の検出結果と、フォークリフト10の進行方向とが不一致になると、スイッチバックフラグをオンにする。主制御装置31は、スイッチバックフラグがオンの状態で、プレ走行制限状態S11に遷移しても、警報装置58による警報を行わない。スイッチバックフラグは、例えば、プレ走行制限状態S11から他の状態に主制御装置31が遷移することで解除される。
 主制御装置31がプレ走行制限状態S11の際に、プレ走行制限解除条件が成立すると、主制御装置31は通常制御状態S10に遷移する。プレ走行制限解除条件の成立とは、以下の条件I1,I2の少なくともいずれかが成立することである。
 条件I1…予想軌跡T内及び警報エリア内に人が存在しない。
 条件I2…後進方向への走行停止、かつ、後進操作されていない。
 後進方向への走行停止とは、フォークリフト10の車速が停止判定閾値より高い状態から停止判定閾値以下となることである。即ち、走行しているフォークリフト10を停止させることである。後進操作されていない状態とは、アクセル開度が0%=アクセルペダル16が操作されていない状態、及びディレクションセンサ35の検出結果が後進ではない状態の少なくともいずれかが成立する状態である。ディレクションセンサ35の検出結果が後進ではない状態とは、ディレクションセンサ35の検出結果が中立又は前進の状態である。
 主制御装置31がプレ走行制限状態S11の際に、走行制限条件が成立すると、主制御装置31は走行制限状態S12に遷移する。走行制限条件の成立とは、以下の条件J1,J2の全てが成立することである。
 条件J1…予想軌跡T内に人が存在する。
 条件J2…フォークリフト10が後進方向に走行している。
 条件J1が成立しているか否かは、人のX座標及びY座標から判定することができる。予想軌跡Tは、X座標及びY座標で規定されているため、人のX座標及びY座標から、人が予想軌跡T内に存在しているかを判定することができる。予想軌跡Tは、自動減速エリアAA2内で導出されるため、予想軌跡T内に人が存在する場合、当該人は自動減速エリアAA2内、かつ、予想軌跡T内に存在しているといえる。条件J2は、条件H2と同一条件である。
 図10に示すように、走行制限状態S12は、車速上限値を0にすることで、走行しているフォークリフト10を減速させて、停止させる状態である。また、本実施形態の走行制限状態S12では、減速度制限が課される。走行制限状態S12では、減速度上限値をDS1[m/s]に設定する。DS1は、0より大きい値であり、フォークリフト10の最高減速度よりも低い値である。主制御装置31は、DS1以下でのフォークリフト10の減速を許容する。減速度制限が課されている場合、主制御装置31は、フォークリフト10の減速度が減速度上限値を上回らないように制御を行う。例えば、主制御装置31は、目標回転数を指示する指令と、目標減速度とを指示する指令とを走行制御装置43に送信する。走行制御装置43は、目標回転数と目標減速度から、フォークリフト10の減速度が目標減速度となるように走行用モータ41を制御する。主制御装置31は、減速度上限値が設定されると、目標減速度として減速度上限値を走行制御装置43に送信する。これにより、主制御装置31は、フォークリフト10に減速度制限を課すことができる。走行制限状態S12では、警報装置58による警報が行われる。なお、主制御装置31は、操作者による減速操作が行われている場合には、操作者による減速操作を優先し、減速度の制限を行わない。減速操作としては、例えば、アクセルオフ、ディレクションレバー17の中立位置への操作、ブレーキ操作、スイッチバック操作等を挙げることができる。
 図13に示すように、主制御装置31が走行制限状態S12の際に、走行制限解除条件が成立すると、主制御装置31は通常制御状態S10に遷移する。走行制限解除条件の成立とは、以下の条件K1が成立することである。
 条件K1…後進方向への走行停止、かつ、後進操作されていない。
 条件K1は、条件I2と同一条件である。
 主制御装置31が走行制限状態S12の際に、走行制限プレ解除条件が成立すると、主制御装置31は走行制限プレ解除状態S13に遷移する。走行制限プレ解除条件の成立とは、以下の条件L1,L2の全てが成立することである。
 条件L1…予想軌跡T内に人が存在していない。
 条件L2…フォークリフト10が後進方向に走行している。
 条件L1は、条件J1が不成立になると成立するといえる。条件L2は、条件H2と同一条件である。
 図10に示すように、走行制限プレ解除状態S13とは、車速制限が解除される一方で、加速度制限が課される状態である。主制御装置31は、加速度上限値をAS2[m/s]に設定し、フォークリフト10の加速度がAS2を上回らないように制御を行う。AS2は、0より大きい値であり、フォークリフト10の到達し得る最高加速度よりも低い値である。AS2は、AS1と同一の値であってもよいし、異なる値であってもよい。走行制限プレ解除状態S13では、警報装置58による警報は行われない。
 図13に示すように、主制御装置31が走行制限プレ解除状態S13の際に、走行制限本解除条件が成立すると、主制御装置31は通常制御状態S10に遷移する。走行制限本解除条件の成立とは、以下の条件M1,M2の少なくともいずれかが成立することである。
 条件M1…フォークリフト10の車速が目標車速から第2所定値を減算した値に到達。
 条件M2…後進操作されていない。
 条件M1は、目標車速と、フォークリフト10の車速との差である速度偏差が第2所定値未満になることといえる。走行制限プレ解除状態S13では、加速度制限が課されるため、フォークリフト10の速度追従性が低下し、フォークリフト10の車速が目標車速に到達しにくい。第2所定値は、加速度制限が課されている状態で、フォークリフト10の車速が操作者の意図する目標車速に到達したと判定するために設定されている。第2所定値としては、例えば、0.5[km/h]~2.0[km/h]から任意の値を設定できる。第2所定値は、第1所定値と同一の値であってもよいし、異なる値であってもよい。
 主制御装置31が走行制限プレ解除状態S13の際に、走行制限条件が成立すると、主制御装置31は、走行制限状態S12に遷移する。同様に、主制御装置31が通常制御状態S10の際に、走行制限条件が成立すると、主制御装置31は、走行制限状態S12に遷移する。
 なお、前述したように、主制御装置31は、フォークリフト10の車速が高いほど予想軌跡Tを進行方向に延ばす。主制御装置31が走行制限状態S12に遷移し、フォークリフト10の車速が低くなるにつれて予想軌跡Tを進行方向に短くすると、人が予想軌跡T外となるおそれがある。すると、フォークリフト10と人とが近づいているにも関わらず、主制御装置31は走行制限状態S12と走行制限プレ解除状態S13とを交互に遷移することになる。これを抑制するため、主制御装置31は、予想軌跡T内に存在する人を検出した場合、フォークリフト10の車速に関わらず予想軌跡Tの進行方向への長さ、即ち、軌跡導出閾値YTを維持する。軌跡導出閾値YTの維持は、例えば、予想軌跡T内に人が存在しなくなることを契機に解除される。
 次に、車速制限制御について説明する。車速制限制御は、物体が人の場合と、物体が障害物の場合で異なる制御が行われる。物体が人の場合と、物体が障害物の場合で状態遷移図は同一となるため、図14を用いて物体が人の場合と、物体が障害物の場合の車速制限制御について説明を行う。まず、物体が人の場合の車速制限制御について説明する。
 図14に示すように、車速制限制御では、主制御装置31の状態を制限解除状態S21、プレ制限開始状態S22、制限開始状態S23、及び制限プレ解除状態S24のいずれかの状態にすることで、各状態に応じた制御が行われる。
 図10に示すように、制限解除状態S21とは、車速制限が課されていない状態である。また、制限解除状態S21では、加速度及び減速度についても制限が課されない。
 図14に示すように、主制御装置31が制限解除状態S21の際に、プレ制限開始条件が成立すると、主制御装置31はプレ制限開始状態S22に遷移する。プレ制限開始条件の成立とは、以下の条件N1,N2の全てが成立することである。
 条件N1…自動減速エリアAA2のうち事前警報エリアに人が存在。
 条件N2…フォークリフト10が後進方向に走行している。
 事前警報エリアとは、車速制限が課される車速制限エリアよりも遠方に存在するエリアである。車速制限エリアとは、自動減速エリアAA2内、かつ、予想軌跡T外のエリアのうち車速制限が課されるエリアである。自動減速エリアAA2内のうちフォークリフト10から遠方の位置では、車速制限を課さない場合がある。即ち、自動減速エリアAA2内には、車速制限が課される車速制限エリアと車速制限エリアよりもフォークリフト10から離れたエリアであって車速制限が課されないエリアの両方が存在し得る。車速制限エリアは、予想軌跡Tから予想軌跡Tの後方及び予想軌跡Tの左右に拡がる領域である。車速制限エリアは、フォークリフト10の車速及び予想軌跡Tから定まる。事前警報エリアは、フォークリフト10の車速よりも高い車速上限値が設定されるエリアである。事前警報エリアは、フォークリフト10の車速と、人の位置に応じて設定される車速上限値から導出され、人が事前警報エリア内に入ってから車速制限エリアに入るまでの時間が予め定められた設定時間となるように導出される。予め定められた設定時間としては、例えば、1秒~3秒等である。
 プレ制限開始状態S22とは、警報装置58による警報が行われる状態である。プレ制限開始状態S22とは、車速制限が課される前に操作者に対して車速制限が課されるおそれがあることを警報するための状態といえる。プレ制限開始状態S22では、車速制限、加速度制限、及び減速度制限は課されない。プレ制限開始状態S22でも、プレ走行制限状態S11の場合と同様に、フォークリフト10のスイッチバック時には警報が行われない。
 主制御装置31がプレ制限開始状態S22の際に、プレ制限開始解除条件が成立すると、主制御装置31は制限解除状態S21に遷移する。プレ制限開始解除条件は、以下の条件O1,O2の少なくともいずれかが成立することである。
 条件O1…車速制限エリア及び事前警報エリアに人が存在しない。
 条件O2…後進方向への走行停止、かつ、後進操作されていない。
 主制御装置31がプレ制限開始状態S22の際に、第1制限開始条件が成立すると、主制御装置31は制限開始状態S23に遷移する。第1制限開始条件の成立とは、以下の条件P1,P2の全てが成立することである。
 条件P1…自動減速エリアAA2のうち車速制限エリアに人が存在。
 条件P2…フォークリフト10が後進方向に走行している。
 図10に示すように、制限開始状態S23とは、自動減速エリアAA2のうち車速制限エリアに人が存在することで、フォークリフト10に車速制限が課される状態である。車速上限値は、フォークリフト10から人までの距離が短いほど低い値に設定される。主制御装置31の記憶部33、あるいは、外部記憶装置などの記憶媒体には、フォークリフト10から人までの距離に車速上限値を対応付けたマップが記憶されている。主制御装置31は、マップに応じた車速上限値であるマップ値を車速上限値として設定する。なお、車速上限値は、フォークリフト10から人までの距離が短くなるのに比例して低くなる態様に限られず、フォークリフト10から人までの距離が短くなると車速上限値が低くなるような相関があればよい。自動減速エリアAA2のうち車速制限エリアに複数の人が存在する場合、最もフォークリフト10に近い人の位置によって車速上限値は定まる。
 制限開始状態S23では、減速度制限が課される。制限開始状態S23では、減速度上限値をDS2[m/s]に設定する。DS2は、0より大きい値であり、フォークリフト10の最高減速度よりも低い値である。DS2は、DS1と同一の値であってもよいし、異なる値であってもよい。なお、走行制限状態S12の場合と同様に、主制御装置31は、操作者による減速操作が行われている場合には、操作者による減速操作を優先し、減速度の制限を行わなくてもよい。
 図14に示すように、主制御装置31が制限開始状態S23の際に、制限開始解除条件が成立すると、主制御装置31は制限解除状態S21に遷移する。制限開始解除条件の成立とは、以下の条件Q1が成立することである。また、主制御装置31が制限解除状態S21の際に、第1制限開始条件が成立すると、主制御装置31は制限開始状態S23に遷移する。
 条件Q1…後進方向への走行停止、かつ、後進操作されていない。
 主制御装置31が制限開始状態S23の際に、制限プレ解除条件が成立すると、主制御装置31は制限プレ解除状態S24に遷移する。制限プレ解除条件の成立とは、以下の条件R1が成立することである。
 条件R1…自動減速エリアAA2のうち車速制限エリアに人が存在しない。
 図10に示すように、制限プレ解除状態S24とは、車速制限が解除される一方で、加速度上限値がAS3[m/s]に設定されることで、加速度制限が課される状態である。AS3は、0より大きい値であり、フォークリフト10の到達し得る最高加速度よりも低い値である。主制御装置31は、AS3以下でのフォークリフト10の加速を許容する。AS3は、AS1やAS2と同一の値であってもよいし、異なる値であってもよい。
 図14に示すように、主制御装置31が制限プレ解除状態S24の際に、第2制限開始条件が成立すると、主制御装置31は制限開始状態S23に遷移する。第2制限開始条件の成立とは、以下の条件S1が成立することである。
 条件S1…自動減速エリアAA2のうち車速制限エリアに人が存在。
 主制御装置31が制限プレ解除状態S24の際に、制限本解除条件が成立すると、主制御装置31は制限解除状態S21に遷移する。制限本解除条件の成立とは、以下の条件T1,T2の少なくともいずれかが成立することである。
 条件T1…フォークリフト10の車速が目標車速から第3所定値を減算した値に到達。
 条件T2…後進操作されていない。
 条件T1は、目標車速と、フォークリフト10の車速との差である速度偏差が第3所定値未満になることといえる。制限プレ解除状態S24では、加速度制限が課されるため、フォークリフト10の速度追従性が低下し、フォークリフト10の車速が目標車速に到達しにくい。第3所定値は、加速度制限が課されている状態で、フォークリフト10の車速が操作者の意図する目標車速に到達したと判定するために設定されている。第3所定値としては、例えば、0.5[km/h]~2.0[km/h]から任意の値を設定することができる。第3所定値は、第1所定値や第2所定値と同一の値であってもよいし、異なる値であってもよい。
 なお、走行制限制御の場合と同様に、主制御装置31は、車速制限エリアに存在する人を検出した場合、軌跡導出閾値YTを維持するようにしてもよい。
 次に、物体が障害物の場合の車速制限制御について説明する。以下では、物体が人の場合に行われる車速制限制御と異なる点について説明し、物体が人の場合に行われる車速制限制御と同様な点については説明を省略する。
 物体が障害物の場合のプレ制限開始条件の成立とは、以下の条件U1,U2の両方が成立することである。
 条件U1…自動減速エリアAA2のうち事前警報エリアに障害物が存在。
 条件U2…フォークリフト10が後進方向に走行している。
 物体が障害物の場合の車速制限エリアは、自動減速エリアAA2のうち予想軌跡T内のエリアである。物体が障害物の場合、予想軌跡T内で車速制限エリアが設定される点が、物体が人の場合とは異なる。事前警報エリアは、車速制限エリアよりも遠方に存在するエリアである。事前警報エリアは、フォークリフト10の車速と、障害物の位置に応じて設定される車速上限値から導出され、障害物が事前警報エリア内に入ってから車速制限エリアに入るまでの時間が予め定められた設定時間となるように導出される。予め定められた設定時間としては、例えば、1秒~3秒等である。物体が障害物の場合、事前警報エリアは、例えば、予想軌跡T内のうち車速制限エリアよりも遠方のエリア、予想軌跡T外であって予想軌跡Tの延長線上のエリア、及びこれら両方を含むエリアのいずれかである。
 物体が障害物の場合のプレ制限開始解除条件、第1制限開始条件、制限開始解除条件、制限プレ解除条件、第2制限開始条件、及び制限本解除条件の各条件については、人を障害物に変更した条件となる。
 なお、物体が障害物の場合にフォークリフト10に課される車速上限値は、フォークリフト10から障害物までの距離が短いほど低い値に設定される。主制御装置31の記憶部33、あるいは、外部記憶装置などの記憶媒体には、フォークリフト10から障害物までの距離に車速上限値を対応付けたマップが記憶されている。主制御装置31は、マップから車速上限値を設定している。なお、車速上限値は、フォークリフト10から障害物までの距離が短くなるのに比例して低くなる態様に限られず、フォークリフト10から障害物までの距離が短くなると車速上限値が低くなるような相関があればよい。また、物体が障害物の場合に課される車速上限値は、人が障害物の場合の車速上限値よりも高い値である。詳細にいえば、フォークリフト10からの距離が同一であれば、物体が人である場合に比べて物体が障害物のほうが車速上限値は高い値に設定される。
 上記したように、主制御装置31は、状態に応じて車速上限値を設定する。本実施形態では、主制御装置31が車速上限設定部として機能しているといえる。
 本実施形態の作用について説明する。
 フォークリフト10が停止している状態、かつ、図12に示す表の対応関係が成立する場合、主制御装置31は通常制御状態S10である。発進制限エリアAA1内、かつ、予想軌跡T内に物体が存在していない場合には、フォークリフト10には車速制限が課されない。主制御装置31により車速制限が課されていないため、フォークリフト10の操作者はフォークリフト10を発進させることができる。発進制限エリアAA1に物体が存在しない場合には、フォークリフト10の走行を阻害する物体が存在しないため、フォークリフト10の発進が許容される。本実施形態のフォークリフト10では、フォークリフト10を後進させるときにフォークリフト10の進行を阻害する物体を検出し、当該物体の回避を運転者に促す。このため、フォークリフト10が停止している状態で、かつ、発進制限エリアAA1に物体が存在している状態であっても、フォークリフト10を前進させようとした場合、フォークリフト10の操作者はフォークリフト10を発進させることができる。
 図11に示す表の対応関係が成立する場合、即ち、予想軌跡T内に物体が存在している状態で、ディレクションセンサ35の検出結果が前進ではない場合、主制御装置31は発進制限状態S2であり、フォークリフト10の発進が禁止される。発進制限状態S2の場合、操作者が予想軌跡T内に物体が存在していることを認識せずに、フォークリフト10を後進方向に発進させようとしているおそれがある。このため、主制御装置31は、フォークリフト10の発進を禁止する。予想軌跡T内に物体が存在していることを操作者が認識して操舵角を変更したり、進行方向を前進方向に変更したりすることにより予想軌跡T内に物体が存在しなくなると、主制御装置31は通常制御状態S10に遷移し、フォークリフト10の発進は許容される。
 発進制限状態S2のままフォークリフト10を後進方向に発進させようとし、操作者がアクセルペダル16を操作すると、主制御装置31は発進禁止状態S3に遷移する。主制御装置31が発進禁止状態S3に遷移した場合、フォークリフト10の操作者が予想軌跡T内に物体が存在していることを認識していないとみなし、警報装置58による警報が強められる。これにより、フォークリフト10の操作者に対して予想軌跡T内に物体が存在していることを通知する。
 主制御装置31が発進禁止状態S3に遷移した後に操作者によるアクセルペダル16の操作が解除されると、アクセルペダル16の操作が解除されたことで、フォークリフト10の操作者が予想軌跡T内に物体が存在していることを認識したとみなす。これにより、主制御装置31は強制動作状態S4に遷移する。
 強制動作状態S4では、発進制限エリアAA1に物体が存在していても、フォークリフト10の発進が許容される。即ち、フォークリフト10の操作者が発進制限エリアAA1内に物体が存在していることを認識したとみなした後には、フォークリフト10の操作者は物体を回避しながら発進を行えるものとみなし、フォークリフト10の発進を許容する。
 フォークリフト10、及び物体のうち少なくとも一方の移動により、発進制限エリアAA1内に物体が存在しなくなると、主制御装置31は強制動作プレ解除状態S5に遷移する。強制動作プレ解除状態S5では加速度制限が課される。強制動作状態S4では、車速制限が課されているため、速度偏差が大きくなっている場合がある。このため、強制動作状態S4から通常制御状態S10に遷移する前に強制動作プレ解除状態S5を介在させることで、フォークリフト10を緩やかに加速させる。強制動作状態S4の際に、操作者によるディレクションレバー17の操作によりディレクションセンサ35の検出結果が前回値とは異なる値になると、主制御装置31は通常制御状態S10に遷移する。
 強制動作プレ解除状態S5のまま、フォークリフト10が加速し、速度偏差が小さくなると、主制御装置31は通常制御状態S10になる。強制動作プレ解除状態S5では、加速度制限が課されているため、効率良く加速を行うことができない。効率良く加速を行いたい場合、アクセルオフにより強制動作プレ解除状態S5の解除を可能にすることで、作業性の向上を図っている。また、強制動作プレ解除状態S5から通常制御状態S10に遷移する前に、再度、発進制限条件が成立した場合、主制御装置31は発進制限状態S2に遷移する。
 上記したように、フォークリフト10が停止している状態から発進しようとする際には、発進制限制御が機能する。発進制限制御では、フォークリフト10が停止している状態で、発進制限エリアAA1内であり、かつ、予想軌跡T内に物体が存在している場合、車速上限値を0に設定することでフォークリフト10の発進を制限する。フォークリフト10の進行方向が物体に近づく方向の場合に車速制限が課されることで、フォークリフト10が物体に近づくことが抑制されているといえる。
 フォークリフト10の走行中に、事前警報エリアに人が入ると、主制御装置31はプレ制限開始状態S22に遷移する。主制御装置31は、警報装置58による警報を行うことで、操作者に予想軌跡T内に人が入るおそれがあることを認識させる。操作者が人から離れる方向にフォークリフト10を旋回させたり、フォークリフト10を停止させて後進操作を行わないようにすると、主制御装置31は制限解除状態S21に遷移する。主制御装置31がプレ制限開始状態S22に遷移した状態で人が車速制限エリアに入ると、主制御装置31は制限開始状態S23に遷移する。主制御装置31は、車速上限値をマップに応じた値に設定する。この際、減速度上限値DS2が設定されることで、減速度にも制限が課される。従って、フォークリフト10は緩やかに減速する。
 制限開始状態S23では、車速上限値は設定されるものの、車速上限値以下でのフォークリフト10の走行は許容されている。操作者は、人を回避しながらフォークリフト10を走行させることが可能である。主制御装置31が制限開始状態S23の際に制限開始解除条件が成立すると、主制御装置31は制限解除状態S21に遷移することで、車速制限を解除する。
 制限開始状態S23のまま操作者がフォークリフト10の走行を継続し、車速制限エリアから人が存在しなくなると、主制御装置31は制限プレ解除状態S24に遷移する。これにより、車速制限は解除される。制限プレ解除状態S24では加速度に制限が課される。制限開始状態S23では、車速制限が課されているため、速度偏差が大きくなっている場合がある。このため、制限開始状態S23から制限解除状態S21に遷移する前に制限プレ解除状態S24を介在させることで、フォークリフト10を緩やかに加速させる。
 制限プレ解除状態S24のまま、フォークリフト10が加速し、速度偏差が小さくなると、主制御装置31は制限解除状態S21に遷移する。制限プレ解除状態S24では、加速度に制限が課されているため、効率良く加速を行うことができない。効率良く加速を行いたい場合、アクセルオフにより制限プレ解除状態S24の解除を可能にすることで、作業性の向上を図っている。制限プレ解除状態S24中に、操作者が進行方向を前進方向に変更すると、主制御装置31は制限解除状態S21に遷移する。また、制限プレ解除状態S24から制限解除状態S21に遷移する前に、再度、人が車速制限エリアに入った場合、主制御装置31は制限開始状態S23に遷移する。
 フォークリフト10の走行中に、警報エリアに人が入ると、主制御装置31はプレ走行制限状態S11に遷移する。主制御装置31は、警報装置58による警報を行うことで、操作者に予想軌跡T内に人が入るおそれがあることを認識させる。操作者が人から離れる方向にフォークリフト10を旋回させたり、フォークリフト10を停止させて後進操作を行わないようにすると、主制御装置31は通常制御状態S10に遷移する。主制御装置31がプレ走行制限状態S11に遷移した状態で人が予想軌跡Tに入ると、主制御装置31は走行制限状態S12に遷移する。主制御装置31は、車速上限値を0に設定し、フォークリフト10は停止することになる。この際、減速度上限値DS1が設定されることで、減速度にも制限が課されるため、フォークリフト10は緩やかに停止する。
 主制御装置31が走行制限状態S12に遷移した後に、フォークリフト10が停止し、操作者による後進操作がされていないと、主制御装置31は通常制御状態S10に遷移する。主制御装置31が通常制御状態S10の際に、走行制限条件が成立すると、主制御装置31はプレ走行制限状態S11を介することなく、走行制限状態S12に遷移する。プレ走行制限条件が成立することなく、走行制限条件が成立する状況とは、例えば、フォークリフト10の速度が高い場合や、物体検出部51による物体検出範囲の死角から物体が予想軌跡T内に進入してくる状況が想定される。
 主制御装置31が走行制限状態S12の際に、フォークリフト10が停止する前に予想軌跡T内に人が存在しなくなると、主制御装置31は走行制限プレ解除状態S13に遷移する。また、走行制限プレ解除状態S13に遷移した後に、再度、予想軌跡T内に人が入ると、主制御装置31は走行制限状態S12に遷移する。走行制限プレ解除状態S13では加速度に制限が課される。走行制限状態S12では、車速制限が課されているため、速度偏差が大きくなっている場合がある。このため、走行制限状態S12から通常制御状態S10に遷移する前に走行制限プレ解除状態S13を介在させることで、フォークリフト10を緩やかに加速させる。
 走行制限プレ解除状態S13のまま、フォークリフト10が加速し、速度偏差が小さくなると、主制御装置31は通常制御状態S10に遷移する。走行制限プレ解除状態S13では、加速度に制限が課されているため、効率良く加速を行うことができない。効率良く加速を行いたい場合、アクセルオフにより走行制限プレ解除状態S13の解除を可能にすることで、作業性の向上を図っている。
 上記したように、フォークリフト10が走行している状態で、物体検出部51により人が検出されると、自動減速エリアAA2内、かつ、予想軌跡T外で人に対する車速制限制御が機能することでフォークリフト10の減速が行われる。更に、人が予想軌跡T内に入ると、走行制限制御が機能することでフォークリフト10が停止する。フォークリフト10の進行方向が人に近づく方向の場合に車速制限が課されているといえる。
 フォークリフト10の走行中に、事前警報エリアに障害物が入ると、主制御装置31はプレ制限開始状態S22に遷移する。主制御装置31は、警報装置58による警報を行うことで、障害物が近くにあることを認識させる。操作者が障害物から離れる方向にフォークリフト10を旋回させたり、フォークリフト10を停止させて後進操作を行わないようにすると、主制御装置31は制限解除状態S21に遷移する。主制御装置31がプレ制限開始状態S22に遷移した状態で障害物が車速制限エリアに入ると、主制御装置31は制限開始状態S23に遷移する。主制御装置31は、車速上限値をマップに応じた値に設定する。この際、減速度上限値DS2が設定されることで、減速度にも制限が課される。従って、フォークリフト10は緩やかに減速する。
 制限開始状態S23では、車速上限値は設定されるものの、車速上限値以下でのフォークリフト10の走行は許容されている。操作者は、障害物を回避しながらフォークリフト10を走行させることが可能である。主制御装置31が制限開始状態S23の際に制限開始解除条件が成立すると、主制御装置31は制限解除状態S21に遷移することで、車速制限を解除する。物体が障害物の場合、車速制限エリアは予想軌跡T内に設定されているため、物体が人の場合よりも容易に制限開始解除条件を成立させることができる。制限プレ解除状態S24では、物体が人の場合と同様の作用が得られる。
 上記したように、フォークリフト10が走行している状態で、物体検出部51により障害物が検出されると、障害物に対する車速制限制御が機能することで、自動減速エリアAA2内、かつ、予想軌跡T内に障害物が入ると車速制限が課される。一方で、障害物が予想軌跡T外に存在する場合、車速制限は行われない。
 自動減速制御では、予想軌跡T内に人が存在する場合、車速上限値は0に設定される。一方で、予想軌跡T内に障害物が存在する場合、車速上限値は0よりも高い値に設定される。予想軌跡T外に人が存在する場合、車速上限値は0よりも高い値に設定される。一方で、予想軌跡T外に障害物が存在する場合、車速制限は課されない。従って、主制御装置31は、物体が人と判定された場合、物体が障害物と判定された場合に比べて車速上限値を低く設定しているといえる。また、主制御装置31は、自動減速エリアAA2内、かつ、予想軌跡T内に物体が存在している場合、自動減速エリアAA2内、かつ、予想軌跡T外に物体が存在している場合に比べて車速上限値を低く設定するといえる。なお、「車速上限値を低く設定する」とは、車速上限値が設定されていない状態に対して、車速上限値を設定している態様も含まれる。予想軌跡T内に物体が存在している場合であっても予想軌跡T外に物体が存在している場合であっても車速制限が課される態様に限らず、実施形態のように予想軌跡T外に物体が存在している場合に車速制限が課されていなくてもよい。
 本実施形態では、発進制限制御、走行制限制御、人に対する車速制限制御、及び障害物に対する車速制限制御それぞれの状態遷移が並行して行われる。このため、各状態遷移で異なる車速上限値及び警報態様が設定されるおそれがある。この場合には、予め優先度を設定しておき、いずれか1つの状態に対応する制御が行われればよい。例えば、主制御装置31は、車速上限値が最も低くなる状態で定められた制御を行う。
 本実施形態の効果について説明する。
 (1)主制御装置31は、予想軌跡T内に物体が存在すると、車速上限値を設定する。詳細にいえば、発進制限制御、走行制限制御、人に対する車速制限制御、及び障害物に対する車速制限制御のそれぞれの制御で、予想軌跡T内に物体が存在する場合には、車速上限値が設定されるようにしている。主制御装置31は、車速上限値を上回らないようにフォークリフト10を制御する。フォークリフト10の操作者による減速操作がなくてもフォークリフト10の車速は車速上限値以下にされる。従って、フォークリフト10の操作者の作業性が向上される。
 (2)主制御装置31は、自動減速エリアAA2内、かつ、予想軌跡T内に物体が存在している場合、自動減速エリアAA2内、かつ、予想軌跡T外に物体が存在している場合に比べて車速上限値を低く設定している。実施形態では、物体が人の場合には予想軌跡T内に人が存在する場合には車速上限値が0に設定されるのに対して、予想軌跡T外に人が存在する場合には車速上限値は0より大きい値に設定される。物体が障害物の場合には予想軌跡T内に障害物が存在する場合には0より大きい車速上限値が設定されるのに対して、予想軌跡T外に障害物が存在する場合には車速上限値は設定されない。
 仮に、予想軌跡T内に物体が存在している場合の車速上限値が常に設定されると、作業性の低下を招く。例えば、予想軌跡Tに関わらず、自動減速エリアAA2内に人が存在している場合に主制御装置31が車速上限値を0に設定すると、フォークリフト10の走行を阻害しない位置に人が存在する場合であってもフォークリフト10が停止することになる。この場合、フォークリフト10が停止する頻度が多くなり、作業性の低下を招く。物が障害物の場合であっても、同様に作業性の低下を招く。フォークリフト10は、多くの物体が周囲に存在している環境で使用されることが多い。更に、フォークリフト10は、乗用車に比べて急旋回が行われる頻度が多く、乗用車に搭載されるステレオカメラよりも広角のステレオカメラが用いられることが多い。従って、フォークリフト10では、予想軌跡T内に物体が存在している場合の車速上限値が常に設定されると、作業性の低下が著しい。
 これに対して、実施形態のフォークリフト10では、自動減速エリアAA2内に物体が存在している場合であっても、予想軌跡T内に物体が存在していない場合には、予想軌跡T内に物体が存在している場合の車速上限値よりも高い車速が許容される。予想軌跡T内に存在する物体は、予想軌跡T外に存在する物体に比べてフォークリフト10の走行を阻害する可能性が高い。従って、予想軌跡T内に物体が存在しない場合の車速制限を緩くすることで、作業性の更なる向上が図られる。
 (3)物体検出部51により検出された物体が障害物の場合、物体が人の場合に比べて車速上限値が高く設定される。フォークリフト10は、周囲に多くの物体が存在している環境で使用されることが多い。従って、物体が障害物の場合には、フォークリフト10に許容される車速を高くすることで、作業性の更なる向上が図られる。特に、物体が障害物の場合であり、当該障害物が予想軌跡T内に存在しない場合には車速制限を課さないことで、作業性の向上を図ることができる。
 (4)障害物検出装置55は、物体が人か障害物かを判別することができる。主制御装置31は、自動減速制御を行う際には、物体が障害物の場合に比べて、物体が人の場合のほうが車速上限値を低くする。実施形態では、人が予想軌跡T内に存在する場合には車速上限値が0に設定されるのに対し、障害物が予想軌跡T内に存在する場合には車速上限値が0より大きい値に設定される。同様に、人が予想軌跡T外に存在する場合にも、障害物が予想軌跡T外に存在する場合に比べて車速上限値は低く設定される。人は障害物に比べて移動する可能性が高く、フォークリフト10に近づいてくるおそれがある。このため、物体が人の場合には、物体が障害物の場合に比べて車速上限値を低くすることで、フォークリフト10の操作者に回避を促す。
 (5)主制御装置31は、物体が人の場合、予想軌跡T外で車速上限値を0よりも大きな値にし、予想軌跡T内で車速上限値を0に設定している。また、主制御装置31は、予想軌跡T外に人が存在する場合、フォークリフト10から人までの距離が短いほど、車速上限値を低くしている。人がフォークリフト10に近づくほどフォークリフト10の車速は減少していくため、人が予想軌跡T内に入り車速上限値が0に設定されたときにフォークリフト10の緩やかな停止が可能になる。
 (6)主制御装置31は、発進制限エリアAA1内であり、かつ、予想軌跡T内に物体が存在している場合、車速上限値を0に設定している。車速上限値が0に設定されることで、フォークリフト10の発進が禁止される。発進制限エリアAA1内であり、かつ、予想軌跡T内に物体が存在している場合、フォークリフト10の進行が阻害されるおそれがある。この場合には、フォークリフト10の発進を禁止することで、操作者に対して進行方向の変更や、旋回を促す。これにより、フォークリフト10の進行が阻害されることが抑制され、作業性の更なる向上が図られる。
 (7)主制御装置31は、フォークリフト10の車速が高いほど進行方向に予想軌跡Tを長くする。フォークリフト10の車速が高いほど、物体に到達するまでの時間が短い。このため、フォークリフト10の車速が高いほど、予想軌跡Tを長くすることで、フォークリフト10の車速に応じた適正な車速制限を行うことが可能になる。
 (8)主制御装置31は、操舵角から予想軌跡Tを導出する。主制御装置31は、フォークリフト10が旋回すると、フォークリフト10の旋回方向に合わせて予想軌跡Tを導出する。従って、導出される予想軌跡Tの精度を向上させることができる。
 (9)フォークリフト10は、荷が積載される荷役装置20を備える。荷が積載されるフォークリフト10では、荷が積載される関係上、安定性が求められる。車速上限値が設定されることで、フォークリフト10の安定性を高めることができる。
 (10)発進制限制御に強制動作状態S4を設定している。主制御装置31は、強制動作状態S4に遷移すると、発進制限エリアAA1、かつ、予想軌跡T内に物体が存在する場合であってもフォークリフト10の発進を許容している。仮に、発進制限エリアAA1、かつ、予想軌跡T内に物体が存在する場合にフォークリフト10の発進が常に禁止されると、物体を回避してフォークリフト10を発進させることができる場合であってもフォークリフト10の発進が禁止されることになる。強制動作状態S4で、車速上限値を設定して、車速が低い状態でのフォークリフト10の発進を許容することで、作業性の更なる向上を図ることができる。
 (11)発進制限制御では、予想軌跡T内に物体が存在する場合に警報装置58による警報を行い、予想軌跡T外に物体が存在する場合には警報装置58による警報を行っていない。走行制限制御では、警報エリアに人が存在する場合に警報装置58による警報を行い、警報エリアよりも遠方に人が存在している場合には警報装置58による警報を行っていない。人に対する車速制限制御及び障害物に対する車速制限制御では、事前警報エリアに物体が存在する場合には警報装置58による警報を行い、事前警報エリアよりも遠方に物体が存在している場合には警報装置58による警報を行っていない。このように、主制御装置31は、物体検出部51による物体の検出可能範囲のうち警報装置58による警報を行うエリアを制限しているといえる。物体検出部51により物体が検出された場合に、常に警報装置58による警報を行っていると、物体によりフォークリフト10の進行が阻害されない場合であっても警報が行われることになる。この場合、操作者が警報に慣れてしまい、実際にフォークリフト10の進行が物体によって阻害される場合であっても、操作者が物体を認識できない場合が生じ得る。警報装置58による警報を制限することで、操作者が警報に慣れることを抑制することができる。
 実施形態は、以下のように変更して実施することができる。実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○強制動作状態S4の際に設定される車速上限値は、荷役装置20の揚高が高いほど低い値としてもよい。この場合、荷役装置20の揚高が高くなるのに比例して車速上限値が低くなる態様に限られず、マスト21を最低位置から最高位置まで上昇させた際に、少なくとも1点で車速上限値が低くなり、かつ、車速上限値が高くなる点が存在しなければよい。例えば、揚高に揚高閾値を設定し、揚高が揚高閾値よりも低い場合には低揚高、揚高が揚高閾値以上の場合には高揚高とする。主制御装置31は、揚高が高揚高の場合には揚高が低揚高の場合に比べて車速上限値を低く設定する。
 同様に、制限開始状態S23の際に設定される車速上限値を荷役装置20の揚高が高いほど低い値としてもよい。制限開始状態S23の際に設定される車速上限値は、物体までの距離と揚高に応じて設定されることになり、物体までの距離が短いほど低い値であり、かつ、荷役装置20の揚高が高いほど低い値となる。なお、人が予想軌跡T外であり、かつ、自動減速エリアAA2内に存在している場合の車速上限値と、障害物が予想軌跡T内に存在している場合の車速上限値のうち一方について荷役装置20の揚高が高いほど低い値としてもよいし、両方について荷役装置20の揚高が高いほど低い値としてもよい。また、制限開始状態S23の際に設定される車速上限値は、物体までの距離に応じて変化せず、荷役装置20の揚高に応じてのみ変化する値であってもよい。
 ○強制動作状態S4の際に設定される車速上限値は、荷役装置20に積載された荷の重量が重いほど低い値としてもよい。この場合、荷の重量が重くなるのに比例して車速上限値が低くなる態様に限られず、荷が積載されていない場合の重量から最大積載重量まで荷の重量を変化させた際に、少なくとも1点で車速上限値が低くなり、かつ、車速上限値が高くなる点が存在しなければよい。例えば、荷の重量に重量閾値を設定し、荷の重量が重量閾値よりも低い場合には軽重量、荷の重量が重量閾値以上の場合には重重量とする。主制御装置31は、荷の重量が重重量の場合には荷の重量が軽重量の場合に比べて車速上限値を低く設定する。
 同様に、制限開始状態S23の際に設定される車速上限値を荷の重量が重いほど低い値としてもよい。制限開始状態S23の際に設定される車速上限値は、物体までの距離と荷の重量に応じて設定されることになり、物体までの距離が短いほど低い値であり、かつ、荷の重量が重いほど低い値となる。なお、人が予想軌跡T外であり、かつ、自動減速エリアAA2内に存在している場合の車速上限値と、障害物が予想軌跡T内に存在している場合の車速上限値のうち一方について荷の重量が重いほど低い値としてもよいし、両方について荷の重量が重いほど低い値としてもよい。また、制限開始状態S23の際に設定される車速上限値は、物体までの距離に応じて変化せず、荷の重量に応じてのみ変化する値であってもよい。
 ○強制動作状態S4の際に設定される車速上限値、及び制限開始状態S23の際に設定される車速上限値の少なくともいずれかは、荷役装置20の揚高が高いほど低い値、かつ、荷の重量が重いほど低い値としてもよい。即ち、車速上限値について記載した上記2つの変形例を組み合わせてもよい。
 ○強制動作プレ解除状態S5、人が予想軌跡T外に存在しているときの制限プレ解除状態S24、及び障害物が予想軌跡T外に存在しているときの制限プレ解除状態S24のうち少なくともいずれかで設定される加速度上限値は、荷役装置20の揚高が高いほど低い値としてもよい。この場合、荷役装置20の揚高が高いほど、フォークリフト10は緩やかに加速することになる。
 ○強制動作プレ解除状態S5、人が予想軌跡T外に存在しているときの制限プレ解除状態S24、及び障害物が予想軌跡T外に存在しているときの制限プレ解除状態S24のうち少なくともいずれかで設定される加速度上限値は、荷の重量が重いほど低い値としてもよい。この場合、荷の重量が重いほど、フォークリフト10は緩やかに加速することになる。
 ○強制動作プレ解除状態S5、人が予想軌跡T外に存在しているときの制限プレ解除状態S24、及び障害物が予想軌跡T外に存在しているときの制限プレ解除状態S24のうち少なくともいずれかで設定される加速度上限値は、荷役装置20の揚高が高いほど低い値、かつ、荷の重量が重いほど低い値としてもよい。即ち、加速度上限値について記載した上記2つの変形例を組み合わせてもよい。
 ○走行制限状態S12、人が予想軌跡T外に存在しているときの制限開始状態S23、及び障害物が予想軌跡T内に存在しているときの制限開始状態S23のうち少なくともいずれかで設定される減速度上限値は、荷役装置20の揚高が高いほど低い値としてもよい。この場合、荷役装置20の揚高が高いほど、フォークリフト10は緩やかに減速することになる。
 ○走行制限状態S12、人が予想軌跡T外に存在しているときの制限開始状態S23、及び障害物が予想軌跡T内に存在しているときの制限開始状態S23のうち少なくともいずれかで設定される減速度上限値は、荷の重量が重いほど低い値としてもよい。この場合、荷の重量が重いほど、フォークリフト10は緩やかに減速することになる。
 ○走行制限状態S12、人が予想軌跡T外に存在しているときの制限開始状態S23、及び障害物が予想軌跡T内に存在しているときの制限開始状態S23のうち少なくともいずれかで設定される減速度上限値は、荷役装置20の揚高が高いほど低い値、かつ、荷の重量が重いほど低い値としてもよい。即ち、減速度上限値について記載した上記2つの変形例を組み合わせてもよい。
 ○荷役装置20の揚高に応じて車速上限値、加速度上限値及び減速度上限値のいずれも変更しない場合、フォークリフト10は揚高センサ37を備えていなくてもよい。
 ○荷の重量に応じて車速上限値、加速度上限値及び減速度上限値のいずれも変更しない場合、フォークリフト10は重量センサ38を備えていなくてもよい。
 ○制限開始状態S23の際に設定される車速上限値は、物体までの距離に応じて変更しなくてもよい。即ち、制限開始状態S23の際に設定される車速上限値は、固定値であってもよい。この場合、人が予想軌跡T外であり、かつ、自動減速エリアAA2内に存在している場合の車速上限値を、障害物が予想軌跡T内に存在している場合の車速上限値よりも低い値にすることが好ましい。
 ○主制御装置31は、フォークリフト10の車速が高いほど、進行方向に対する予想軌跡Tの長さを長くしなくてもよい。この場合、進行方向に対する予想軌跡Tの長さは、予め定められた一定の長さとする。
 ○主制御装置31は、操舵輪14の操舵角に応じて予想軌跡Tを変更しなくてもよい。即ち、予想軌跡Tは、フォークリフト10が旋回しているか否かに関わらず、フォークリフト10が後進方向に直進している場合の予想軌跡Tであってもよい。
 ○主制御装置31は、車体11の左端LEが通過する軌跡LTと、車体11の右端REが通過する軌跡RTとの間の領域に加えて、この領域よりも外側に位置し、軌跡LTと軌跡RTに沿って延びる領域を予想軌跡Tとしてもよい。即ち、予想軌跡Tは、フォークリフト10が通過すると予想される領域に、フォークリフト10の車幅方向に拡がるマージンを加えたものであってもよい。
 ○主制御装置31は、フォークリフト10の予想軌跡Tを導出する際に、操舵角によって予想軌跡Tを導出してもよい。例えば、操舵角に右方への旋回を判定できる閾値、及び左方への旋回を判定できる閾値を設定し、操舵角からフォークリフト10が直進するか、右方へ旋回するか、左方へ旋回するかを判定できるようにする。主制御装置31は、発進制限制御を行う際に、操舵角から、いずれの領域N,NL,NRをフォークリフト10が通過するかを判定する。この場合、各領域N,NL,NRを予想軌跡と捉えることができる。
 ○主制御装置31は、フォークリフト10の車速及び操舵角と、X座標及びY座標とを対応付けたマップから予想軌跡Tを導出してもよい。
 ○主制御装置31は、発進制限制御を行い、自動減速制御を行わなくてもよい。この場合、物体検出部51による物体の検出可能範囲内には自動減速エリアAA2が設定されず、発進制限エリアAA1が設定される。また、障害物検出装置55は、物体が人か否かの判定を行わなくてもよい。
 ○主制御装置31は、自動減速制御を行い、発進制限制御を行わなくてもよい。この場合、物体検出部51による物体の検出可能範囲内には発進制限エリアAA1が設定されず、自動減速エリアAA2が設定される。
 ○主制御装置31は、物体が人か障害物かによって異なる制御を行わなくてもよい。詳細にいえば、主制御装置31は、自動減速制御を行う際に、予想軌跡T内に物体が存在している場合にはフォークリフト10の走行を停止させ、予想軌跡T内に物体が存在していない場合には車速制限を行わなくてもよい。また、主制御装置31は、自動減速制御を行う際に、予想軌跡T内に物体が存在している場合には、予想軌跡T外に物体が存在している場合に比べて車速上限値を低くしてもよい。この場合、障害物検出装置55は、物体が人か否かの判定を行わなくてもよい。
 ○発進制限制御は、主制御装置31の状態を少なくとも通常制御状態S10及び発進制限状態S2の2つの状態にできればよい。この場合、発進制限条件の成立で主制御装置31は発進制限状態S2に遷移し、発進制限解除条件の成立で主制御装置31は通常制御状態S10に遷移する。即ち、主制御装置31は、予想軌跡T内に物体が存在している場合には、物体に近づく方向へのフォークリフト10の発進を禁止することができればよい。
 ○走行制限制御は、主制御装置31の状態を少なくとも通常制御状態S10及び走行制限状態S12の2つの状態にできればよい。この場合、走行制限条件の成立で主制御装置31は走行制限状態S12に遷移し、走行制限解除条件の成立で主制御装置31は通常制御状態S10に遷移する。即ち、主制御装置31は、予想軌跡T内に人が存在している場合に、車速上限値を0にできればよい。
 ○車速制限制御は、主制御装置31の状態を少なくとも制限解除状態S21及び制限開始状態S23の2つの状態にできればよい。この場合、第1制限開始条件の成立で主制御装置31は制限開始状態S23に遷移し、制限開始解除条件の成立で主制御装置31は制限解除状態S21に遷移する。即ち、主制御装置31は、物体が車速制限エリアに存在している場合に、車速上限値を設定できればよい。
 ○発進制限制御の強制動作プレ解除状態S5は省略してもよい。この場合、主制御装置31が強制動作状態S4の際に条件F1が成立すると、主制御装置31は通常制御状態S10に遷移する。
 ○主制御装置31は、少なくとも車速上限値を設定できればよく、自動減速制御及び発進制限制御のそれぞれで、加速度上限値の設定や減速度上限値の設定を行わなくてもよい。
 ○自動減速エリアAA2は、物体検出部51による物体の検出可能範囲よりも狭いエリアであってもよい。
 ○加速度上限値や減速度上限値の制限を行っていない各状態について、加速度上限値や減速度上限値を設定するようにしてもよい。
 ○発進制限制御での状態遷移において、各条件は以下のように変更してもよい。
 発進制限条件の成立は、以下の条件A11,A12,A13の全てが成立することであってもよい。
 条件A11…発進制限エリアAA1、かつ、予想軌跡T内に物体が存在する。
 条件A12…フォークリフト10が停止している。
 条件A13…ディレクションセンサ35の検出結果が前進ではない。
 条件A11が成立しているか否かは、物体のX座標及びY座標から判定することができる。発進制限エリアAA1及び予想軌跡Tは、X座標及びY座標で規定されているため、物体のX座標及びY座標から、物体が発進制限エリアAA1、かつ、予想軌跡T内に存在しているかを判定することができる。条件A12は、条件A3と同一条件である。条件A13は、ディレクションセンサ35の検出結果が、後進又は中立であることを示す。
 発進制限解除条件は、以下の条件B11,B12のうち少なくともいずれかが成立することとしてもよい。
 条件B11…発進制限エリアAA1、かつ、予想軌跡T内に物体が存在していない。
 条件B12…ディレクションセンサ35の検出結果が前進。
 条件B11は、条件A11が不成立になったことともいえる。条件B12は、条件A13が不成立になったことともいえる。
 発進制限条件及び発進制限解除条件を上記のように設定する場合、発進制限エリアAA1を複数の領域N,NL,NRに分割しなくてもよい。
 強制動作プレ解除条件の成立は、条件B11が成立することとしてもよい。
 強制動作本解除条件の成立は、実施形態の条件G1,G2及び以下の条件G11のいずれかが成立することとしてもよい。
 条件G11…ディレクションセンサ35の検出結果が前進。
 強制動作本解除条件に条件G11を追加することで、強制動作プレ解除状態S5中に、操作者が進行方向を前進方向に変更すると、主制御装置31は通常制御状態S10に遷移する。操作者は、進行方向を前進方向に変更することで、意図的に主制御装置31を通常制御状態S10に遷移させることができる。
 強制動作本解除条件の成立は、条件G1,G2,G11及び以下の条件G12のうちのいずれかが成立することとしてもよい。
 条件G12…以下の条件G21及び条件G22の両方が成立。
 条件G21…ディレクションセンサ35の検出結果が後進であって物体が存在する領域N,NL,NRと予想軌跡Tの方向とが一致していない状態が規定時間継続している。
 条件G22…フォークリフト10が走行している。
 条件G21が成立する場合、フォークリフト10の操作者は、ハンドル操作により物体が存在しない方向に旋回方向を変更したと考えられる。即ち、フォークリフト10の操作者は、車速制限、加速度制限及び警報のいずれかによって物体の存在を認識しており、この物体を回避するための回避動作を行っていると考えられる。条件G21における規定時間は、任意の値を設定することができる。規定時間は、フォークリフト10の操作者が回避動作を行っていると判定できるような時間に設定されている。ハンドル操作によって、物体が存在しない方向に旋回方向が変更された場合であっても、規定時間が経過する前に物体が存在する方向に旋回方向が戻された場合には、回避動作が行われていないとみなされる。規定時間は、例えば、1秒~3秒の範囲で任意に設定することができる。
 条件G22は、条件E3と同一の条件である。主制御装置31は、車速が停止判定閾値[km/h]より高い場合にはフォークリフト10は走行していると判断する。
 条件G12が成立するための条件の1つを条件G21とすることで、操作者が回避動作を行っている場合に強制動作プレ解除状態S5を通常制御状態S10に遷移させることができる。主制御装置31が強制動作プレ解除状態S5の場合、操作者はフォークリフト10の進行の妨げとなる物体を認識しており、この物体を回避するための回避動作を行っている場合がある。この際、加速度制限が課されていると、フォークリフト10の加速が制限されることで、フォークリフト10を円滑に進行させることができず、作業性の低下を招くおそれがある。条件G12が成立した場合には、主制御装置31を通常制御状態S10に遷移させることで、加速度制限を解除することができる。これにより、回避動作中や回避動作後のフォークリフト10の走行時に加速度制限が課されることが抑制され、作業性の低下を抑制することができる。
 条件G12が成立するための条件の1つを条件G22とすることで、条件G12の成立による通常制御状態S10への遷移後、即座に主制御装置31が発進制限状態S2に遷移することを抑制できる。仮に、条件G12が成立するための条件を条件G21のみとした場合、フォークリフト10が停止している状態であっても条件G12が成立し得る。この場合、条件G12の成立による通常制御状態S10への遷移後、即座に主制御装置31が発進制限状態S2に遷移する場合がある。例えば、フォークリフト10が停止している状態で物体が存在しない方向に旋回方向を変更したにも関わらず、その後、物体が存在する方向に旋回方向を戻した場合には主制御装置31が発進制限状態S2に遷移する場合がある。この場合、操作者が回避動作を行おうとしているにも関わらず、この回避動作が発進制限状態S2への遷移により阻害されるおそれがある。条件G12が成立するための条件の1つを条件G22とすることで、フォークリフト10が走行している場合に条件G12は成立する。条件G12の成立により主制御装置31が通常制御状態S10に遷移した場合、条件A3の成立が抑制されており、発進制限条件が成立しにくい。このため、回避動作が阻害されることを抑制できる。
 強制動作本解除条件の成立は、条件G1,G2,G11,G21のうちいずれかが成立することとしてもよい。この場合であっても条件G21により、操作者が回避動作を行っている場合に強制動作プレ解除状態S5を通常制御状態S10に遷移させることができる。これにより、作業性の低下を抑制することができる。条件G22が成立していなくても、条件G21の成立により主制御装置31を通常制御状態S10に遷移させることで、通常制御状態S10への遷移後、即座に主制御装置31を発進制限状態S2に遷移させることができる。物体がフォークリフト10に近付いてきた場合など、主制御装置31が強制動作プレ解除状態S5から通常制御状態S10に遷移した際に条件A1及び条件A2が成立する場合がある。この際、条件G21と条件G22の両方の成立により強制動作本解除条件が成立するとしていると、条件A3の成立が抑制され、新たに検出された物体に対する発進制限が機能しない場合がある。これに対し、条件G22が成立していなくても、条件G21の成立により主制御装置31を通常制御状態S10に遷移させることで、新たに検出された物体に対する発進制限が機能しやすい。
 強制動作本解除条件の成立は、条件G1,G2,G12及び以下の条件G13のうちいずれかが成立することとしてもよい。
 条件G13…条件G22及び以下の条件G23の両方が成立。
 条件G23…ディレクションセンサ35の検出結果が前進の状態が規定時間継続している。
 条件G23における規定時間は、条件G21における規定時間と同一の時間である。条件G12及び条件G13のいずれかが成立した場合に強制動作本解除条件を成立させることで、フォークリフト10の進行方向が前進方向であっても後進方向であっても、同様の操作によって主制御装置31を通常制御状態S10に遷移させることができる。詳細にいえば、前進方向への回避動作が規定時間継続して行われた場合と後進方向への回避動作が規定時間継続して行われた場合のいずれであっても主制御装置31は通常制御状態S10に遷移する。フォークリフト10の進行方向が前進方向であっても後進方向であっても、主制御装置31を通常制御状態S10に遷移させるために、操作者は同様の操作を行えばよく、操作性の向上が図られる。
 強制動作本解除条件の成立は、条件G1,G2,G21,G23のうちいずれかが成立することとしてもよい。この場合、条件G22が成立していなくても、条件G21及び条件G23のいずれかの成立により主制御装置31を通常制御状態S10に遷移させることができる。これにより、新たに検出された物体に対する発進制限が機能しやすい。また、フォークリフト10の進行方向が前進方向であっても後進方向であっても、主制御装置31を通常制御状態S10に遷移させるために、操作者は同様の操作を行えばよく、操作性の向上が図られる。
 強制動作本解除条件の成立は、条件G1,G2,G12のうちいずれかが成立することとしてもよい。条件G1,G2,G21のうちいずれかが成立することとしてもよい。
 強制動作本解除条件の成立は、条件G1,G2,G11,G12,G13のうちいずれかが成立することとしてもよい。この場合、条件G13が成立する場合には、条件G11が成立しており、条件G13は実質的に機能しない条件となる。従って、強制動作本解除条件の成立を条件G1,G2,G11,G12のいずれかの成立とした場合と同様の効果を得ることができる。
 ○強制動作条件は、操作者によるハンドル操作であってもよい。ハンドルが操作されたか否かは、ハンドルの角度を検出するハンドル角センサや、タイヤ角センサ36の検出結果から判定することができる。即ち、強制動作条件は、操作者が発進制限エリアAA1に物体が存在していることを認識したと判断できれば、どのような条件であってもよい。
 ○発進制限条件の条件A3等のフォークリフト10が停止しているか走行しているかの判定は、主制御装置31によって演算される車速以外で判定されてもよい。例えば、フォークリフト10が停止しているか否かを物体検出部51によって判定し、主制御装置31は物体検出部51の判定結果を取得することでフォークリフト10が停止しているか走行しているかを判定してもよい。物体検出部51によりフォークリフト10が停止しているか否かを判定する場合、ステレオカメラ52によって撮像される画像に、連続するフレーム間で変化が生じたか否かを判定することで行うことができる。フォークリフト10が走行している場合、連続するフレーム間でステレオカメラ52によって撮像される画像の画素に変化が生じる。このため、連続するフレーム間で画像に変化が生じたか否かを判定することで、フォークリフト10が停止しているか否かを判定することができる。また、アクセルペダル16が所定時間以上操作されていない等、種々の要素からフォークリフト10が停止しているか否かは判定することができる。
 ○発進制限状態S2では、警報装置58による操作者への警報を行わなくてもよい。
 ○発進禁止状態S3では、警報装置58による警報を強めなくてもよく、発進制限状態S2と同様の警報が行われるようにしてもよい。また、発進禁止状態S3では、警報装置58による警報を行わなくてもよい。
 ○強制動作状態S4では、発進禁止状態S3よりも警報装置58による警報を弱くしなくてもよく、発進禁止状態S3と同様の警報が行われるようにしてもよい。また、強制動作状態S4では、警報装置58による警報を行わなくてもよい。
 ○走行制限制御では、プレ走行制限状態S11を省略してもよい。この場合、警報エリアは設定されなくてもよい。
 ○プレ走行制限状態S11及びプレ制限開始状態S22での警報は、フォークリフト10のスイッチバック時にも行われるようにしてもよい。
 ○走行制限状態S12では、警報装置58による警報が行われなくてもよい。
 ○人に対する車速制限制御、及び障害物に対する車速制限制御の少なくともいずれかで、プレ制限開始状態S22を省略してもよい。この場合、事前警報エリアは設定されなくてもよい。
 ○発進制限制御、走行制限制御、人に対する車速制限制御、及び障害物に対する車速制限制御の全ての状態で、警報装置58による警報を行わなくしてもよい。この場合、フォークリフト10は警報装置58を備えていなくてもよい。
 ○発進制限エリアAA1は、4つ以上の領域に分割されていてもよい。
 ○中央領域Nの左右方向の寸法は、フォークリフト10の車幅方向の寸法より若干長くてもよいし、短くてもよい。
 ○操舵輪14の操舵角は、ハンドル角センサの検出結果を用いてもよい。ハンドル角センサは、ハンドルの角度を検出して、検出結果を主制御装置31に出力する。操舵角は、ハンドル角センサの検出結果に応じて制御されるため、ハンドル角センサの検出結果から操舵角を検出することができる。
 ○物体検出部51は、フォークリフト10の進行方向のうち前進方向に存在する物体の位置を検出するものであってもよい。この場合、ステレオカメラ52は、フォークリフト10の前方を向いて配置される。物体検出部51によりフォークリフト10の前進方向に存在する物体の位置を検出する場合、自動減速エリアAA2及び発進制限エリアAA1はフォークリフト10から前方に拡がるエリアとなる。また、フォークリフト10が前進している場合に、発進制限制御、走行制限制御、人に対する車速制限制御、及び障害物に対する車速制限制御は機能することになる。詳細にいえば、発進制限制御、走行制限制御、人に対する車速制限制御、及び障害物に対する車速制限制御の各制御で、実施形態に記載した「後」と「前」を反転させることで、フォークリフト10が前進している場合に、物体の位置に応じて車速制限を課すことができる。物体検出部51によりフォークリフト10の進行方向のうち前進方向に存在する物体の位置を検出する場合、主制御装置31は前進方向に延びる予想軌跡Tを導出する。
 物体検出部51としては、フォークリフト10の進行方向のうち後進方向及び前進方向のいずれの方向に存在する物体の位置を検出できるものであってもよい。この場合、1つの物体検出部51によりフォークリフト10の進行方向のうち後進方向及び前進方向のいずれの方向に存在する物体を検出可能にしてもよいし、前進方向用の物体検出部51と、後進方向用の物体検出部51を設けてもよい。フォークリフト10の進行方向のうち後進方向及び前進方向のいずれの方向に存在する物体の位置を検出する場合、フォークリフト10が前進している場合には、前進方向に存在する物体によって車速制限が課されるようにする。フォークリフト10が後進している場合には、後進方向に存在する物体によって車速制限が課されるようにする。即ち、主制御装置31は、フォークリフト10の進行方向が物体検出部51により検出された物体に近づく方向の場合に車速上限値を設定するといえる。
 なお、フォークリフト10の進行方向が前進方向であっても後進方向であっても車速制限が課されるようにする場合、強制動作本解除条件の成立は、条件G1,G2,G12,G13のうちいずれかが成立することにするのが好ましい。この場合、条件G23は、以下のように変更してもよい。
 条件G23…ディレクションセンサ35の検出結果が前進であって物体が存在する領域と予想軌跡の方向とが一致していない状態が規定時間継続している。
 主制御装置31は、フォークリフト10の前方に延びる予想軌跡と、フォークリフト10の前方の物体が存在する領域とが一致していない状態が規定時間継続しているか否かを判定するといえる。
 ○物体検出部51は、ステレオカメラ52に代えて、ToF:Time of Flightカメラ、LIDAR:Laser Imaging Detection and Ranging、ミリ波レーダー等を用いてもよい。ToFカメラは、カメラと、光を照射する光源と、を備え、光源から照射された光の反射光を受光するまでの時間からカメラによって撮像された画像の画素毎に奥行き方向の距離を導出するものである。LIDARは、照射角度を変更しながらレーザーを照射し、レーザーが当たった部分から反射された反射光を受光することで周辺環境を認識可能な距離計である。ミリ波レーダーとは、所定の周波数帯域の電波を周囲に照射することで周辺環境を認識可能なものである。ステレオカメラ52、ToFカメラ、LIDAR、及びミリ波レーダーは、ワールド座標系における3次元座標を計測することができるセンサである。物体検出部51としては、3次元座標を計測することができるセンサを備えることが好ましい。物体検出部51が3次元座標を計測できるセンサを備える場合、障害物検出装置55は、予め機械学習を行った人判定器を用いることで、物体が人か障害物かの判定を行うことができる。なお、物体検出部51は、ステレオカメラ52とLIDAR等、複数のセンサを組み合わせたものを備えていてもよい。
 また、物体検出部51は、ステレオカメラ52に代えて、水平面を表す座表面であるXY平面での物体の座標を計測することができるセンサを備えていてもよい。即ち、センサとしては、物体の2次元座標を計測することができるものを用いてもよい。この種のセンサとしては、例えば、水平方向への照射角度を変更しながらレーザーの照射を行う2次元のLIDAR等を用いることができる。
 ○ステレオカメラ52は、3つ以上のカメラを備えていてもよい。
 ○障害物検出装置55は、ステレオカメラ52によって撮像された画像のうち比較画像を用いて、物体が人か障害物かの判定を行うようにしてもよい。物体の座標は、基準画像から導出されているため、物体の座標から比較画像上での物体の座標を導出すると、基線長に応じたずれが生じる。このため、障害物検出装置55は、基線長に応じて比較画像上での物体の座標を補正し、補正した座標に対して人検出処理を行う。
 ○警報装置58は、物体検出部51以外が備えていてもよい。
 ○警報装置58は、主制御装置31が直接作動させるようにしてもよい。
 ○フォークリフト10は、駆動装置であるエンジンの駆動によって走行するものでもよい。この場合、走行制御装置43は、エンジンへの燃料噴射量などを制御する装置となる。
 ○フォークリフト10は、四輪式のフォークリフト10であってもよい。この場合、主制御装置31は、四輪式のフォークリフト10の予想軌跡Tを導出する式やマップから予想軌跡Tを導出する。即ち、予想軌跡Tを導出する式やマップは、産業車両の種類によって変更される。
 ○フォークリフト10は、自動での操作と手動での操作とを切り替えられるものでもよい。
 ○フォークリフト10は、フォークリフト10に搭乗していない操作者により遠隔操作されるものであってもよい。
 ○フォークリフト10は、1つの走行用モータで2つの駆動輪12,13を回転させるものであってもよい。
 ○予想軌跡導出部及び車速上限設定部は、主制御装置31とは異なる装置であってもよい。この場合、予想軌跡導出部及び車速上限設定部と主制御装置31とをバス60によって接続し、主制御装置31、予想軌跡導出部及び車速上限設定部で互いの情報を取得可能に構成する。
 ○主制御装置31、走行制御装置43及び物体検出部51は、無線機によって互いの情報を取得可能に構成されていてもよい。
 ○産業車両としては、荷等の搬送に用いられる牽引車、ピッキング作業に用いられるオーダーピッカー等、限られた領域での作業に用いられるものであればどのようなものであってもよい。即ち、産業車両としては、荷下ろしや荷積みを行う荷役装置20を備えていないものであってもよい。
 AA1  発進制限エリア
 AA2  自動減速エリア
 10  産業車両としてのフォークリフト
 20  荷役装置
 31  予想軌跡導出部及び車速上限設定部としての主制御装置
 37  揚高センサ
 38  重量センサ
 41  駆動装置としての走行用モータ
 43  走行制御装置
 51  物体検出部
 55  判定部としての障害物検出装置

Claims (9)

  1.  駆動装置と、
     前記駆動装置を制御する走行制御装置と、
     前記走行制御装置に指令を与える主制御装置と、を備え、前記主制御装置の指令に応じて前記走行制御装置が前記駆動装置を制御することで走行する産業車両であって、
     前記産業車両の進行方向に存在する物体の位置を検出する物体検出部と、
     前記産業車両が通過すると予想される軌跡である予想軌跡を導出する予想軌跡導出部と、
     前記物体検出部により検出された前記物体が前記予想軌跡内に位置している場合であって前記産業車両の進行方向が前記物体に近づく方向の場合に車速上限値を設定することで、前記産業車両に車速制限を課す車速上限設定部と、を備え、
     前記主制御装置は、前記産業車両の車速が前記車速上限値を上回らないように前記走行制御装置に前記指令を与える、産業車両。
  2.  前記物体検出部による物体の検出可能範囲内には自動減速エリアが設定されており、
     前記車速上限設定部は、前記自動減速エリア内、かつ、前記予想軌跡内に前記物体が存在している場合、前記自動減速エリア内、かつ、前記予想軌跡外に前記物体が存在している場合に比べて前記車速上限値を低く設定する、請求項1に記載の産業車両。
  3.  前記物体検出部は、前記物体が人か、人以外の障害物かを判定する判定部を備え、
     前記車速上限設定部は、前記物体が人と判定された場合、前記物体が障害物と判定された場合に比べて前記車速上限値を低く設定する、請求項2に記載の産業車両。
  4.  前記物体検出部による物体の検出可能範囲内には発進制限エリアが設定されており、
     前記車速上限設定部は、前記産業車両が停止している状態で、前記発進制限エリア内、かつ、前記予想軌跡内に前記物体が存在している場合、前記車速上限値を0に設定する、請求項1~請求項3のうちいずれか一項に記載の産業車両。
  5.  前記予想軌跡導出部は、前記車速が高いほど、前記進行方向に対する前記予想軌跡の寸法を長くする、請求項1~請求項4のうちいずれか一項に記載の産業車両。
  6.  前記予想軌跡導出部は、前記産業車両の操舵角から前記予想軌跡を導出する、請求項1~請求項5のうちいずれか一項に記載の産業車両。
  7.  荷が積載される荷役装置を備える、請求項1~請求項6のうちいずれか一項に記載の産業車両。
  8.  前記荷役装置に積載された荷の重量を検出する重量センサを備え、
     前記車速上限設定部は、前記荷の重量が重いほど前記車速上限値を低くする、請求項7に記載の産業車両。
  9.  前記荷役装置の揚高を検出する揚高センサを備え、
     前記車速上限設定部は、前記荷役装置の揚高が高いほど前記車速上限値を低くする、請求項7又は請求項8に記載の産業車両。
PCT/JP2020/042232 2019-12-03 2020-11-12 産業車両 WO2021111839A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227018205A KR20220086689A (ko) 2019-12-03 2020-11-12 산업 차량
CN202080082919.3A CN114787073A (zh) 2019-12-03 2020-11-12 工业车辆
CA3159403A CA3159403A1 (en) 2019-12-03 2020-11-12 Industrial vehicle
EP20896652.3A EP4071102A4 (en) 2019-12-03 2020-11-12 INDUSTRIAL VEHICLE
AU2020394957A AU2020394957B2 (en) 2019-12-03 2020-11-12 Industrial vehicle
US17/781,443 US20220411246A1 (en) 2019-12-03 2020-11-12 Industrial vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-219036 2019-12-03
JP2019219036 2019-12-03
JP2020-132987 2020-08-05
JP2020132987A JP7459716B2 (ja) 2019-12-03 2020-08-05 産業車両

Publications (1)

Publication Number Publication Date
WO2021111839A1 true WO2021111839A1 (ja) 2021-06-10

Family

ID=76222394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042232 WO2021111839A1 (ja) 2019-12-03 2020-11-12 産業車両

Country Status (7)

Country Link
US (1) US20220411246A1 (ja)
EP (1) EP4071102A4 (ja)
KR (1) KR20220086689A (ja)
CN (1) CN114787073A (ja)
AU (1) AU2020394957B2 (ja)
CA (1) CA3159403A1 (ja)
WO (1) WO2021111839A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610428A (en) * 2021-09-06 2023-03-08 Bamford Excavators Ltd A working machine
EP4242168A1 (en) * 2022-03-09 2023-09-13 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
EP4253307A1 (en) * 2022-03-29 2023-10-04 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
WO2023232500A1 (de) * 2022-06-02 2023-12-07 Zf Friedrichshafen Ag Verfahren und steuereinrichtung zum steuern eines flurförderzeugs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022094177A (ja) * 2020-12-14 2022-06-24 株式会社豊田自動織機 エンジン式産業車両
JP2024068910A (ja) * 2022-11-09 2024-05-21 株式会社豊田自動織機 産業車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256401A (ja) 1995-03-17 1996-10-01 Nippon Yusoki Co Ltd 電気式車両の速度制御装置
JP2006096457A (ja) * 2004-09-28 2006-04-13 Toyota Industries Corp フォークリフトの作業支援装置
JP2015081022A (ja) * 2013-10-23 2015-04-27 クラリオン株式会社 自動駐車制御装置および駐車支援装置
US20180057049A1 (en) * 2016-08-26 2018-03-01 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
JP2019143484A (ja) * 2018-02-16 2019-08-29 マツダ株式会社 車両の制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305671A1 (de) * 2003-02-12 2004-08-26 Jungheinrich Aktiengesellschaft Verfahren zum Betrieb eines Staplers
US8965561B2 (en) * 2013-03-15 2015-02-24 Cybernet Systems Corporation Automated warehousing using robotic forklifts
JP6537251B2 (ja) * 2014-11-14 2019-07-03 シャープ株式会社 自律走行装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256401A (ja) 1995-03-17 1996-10-01 Nippon Yusoki Co Ltd 電気式車両の速度制御装置
JP2006096457A (ja) * 2004-09-28 2006-04-13 Toyota Industries Corp フォークリフトの作業支援装置
JP2015081022A (ja) * 2013-10-23 2015-04-27 クラリオン株式会社 自動駐車制御装置および駐車支援装置
US20180057049A1 (en) * 2016-08-26 2018-03-01 Crown Equipment Corporation Materials handling vehicle obstacle scanning tools
JP2019143484A (ja) * 2018-02-16 2019-08-29 マツダ株式会社 車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071102A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610428A (en) * 2021-09-06 2023-03-08 Bamford Excavators Ltd A working machine
EP4242168A1 (en) * 2022-03-09 2023-09-13 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
EP4253307A1 (en) * 2022-03-29 2023-10-04 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
WO2023232500A1 (de) * 2022-06-02 2023-12-07 Zf Friedrichshafen Ag Verfahren und steuereinrichtung zum steuern eines flurförderzeugs

Also Published As

Publication number Publication date
CA3159403A1 (en) 2020-11-12
AU2020394957B2 (en) 2024-05-23
CN114787073A (zh) 2022-07-22
EP4071102A4 (en) 2023-03-08
KR20220086689A (ko) 2022-06-23
US20220411246A1 (en) 2022-12-29
EP4071102A1 (en) 2022-10-12
AU2020394957A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2021111839A1 (ja) 産業車両
JP6613795B2 (ja) 表示制御装置および車両制御装置
JP6174644B2 (ja) 画像処理装置
JP7459716B2 (ja) 産業車両
JP5858446B2 (ja) 荷役車両
JP7127597B2 (ja) 監視装置
KR20200014885A (ko) 주차 지원 방법 및 주차 지원 장치
WO2022004494A1 (ja) 産業車両
WO2022050036A1 (ja) 産業車両
JP7396227B2 (ja) フォークリフトの通知装置
US20230382704A1 (en) Obstacle notification device for industrial vehicle and industrial vehicle
US20230312315A1 (en) Industrial vehicle
JP7488991B2 (ja) 産業車両
JP2022094177A (ja) エンジン式産業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3159403

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227018205

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020394957

Country of ref document: AU

Date of ref document: 20201112

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020896652

Country of ref document: EP

Effective date: 20220704