WO2021111538A1 - Electronic member removal method and device therefor - Google Patents

Electronic member removal method and device therefor Download PDF

Info

Publication number
WO2021111538A1
WO2021111538A1 PCT/JP2019/047349 JP2019047349W WO2021111538A1 WO 2021111538 A1 WO2021111538 A1 WO 2021111538A1 JP 2019047349 W JP2019047349 W JP 2019047349W WO 2021111538 A1 WO2021111538 A1 WO 2021111538A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
nozzle
heating element
heating
suction
Prior art date
Application number
PCT/JP2019/047349
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 和弘
佐藤 彰
光樹 福田
Original Assignee
株式会社ワンダーフューチャーコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワンダーフューチャーコーポレーション filed Critical 株式会社ワンダーフューチャーコーポレーション
Priority to PCT/JP2019/047349 priority Critical patent/WO2021111538A1/en
Priority to JP2021562245A priority patent/JP7128994B2/en
Priority to CN201980102763.8A priority patent/CN114762466A/en
Priority to KR1020227013988A priority patent/KR102498034B1/en
Priority to TW109140291A priority patent/TWI808356B/en
Publication of WO2021111538A1 publication Critical patent/WO2021111538A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0486Replacement and removal of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a technique for removing an electronic component mounted on a substrate by electromagnetic induction heating.
  • solder joining is performed by arranging the solder between the objects to be joined and then heating and melting the solder.
  • the removal technology by supplying hot air can be applied to a substrate made of heat-resistant resin such as polyamide-imide or polyimide, but it is difficult to apply it to a substrate made of non-heat-resistant material such as thermoplastic resin or paper or cloth.
  • heat-resistant resin such as polyamide-imide or polyimide
  • non-heat-resistant material such as thermoplastic resin or paper or cloth.
  • non-heat resistant thermoplastic resins include ABS resin, acrylic, polycarbonate, polyester, polybutylene, polyurethane, and PET (polyethylene terephthalate).
  • electromagnetic induction heating as a technology for spot heating.
  • the electronic components mounted on the substrate can also be removed by electromagnetic induction heating (for example, Patent Document 2).
  • FIG. 7 is a conceptual diagram relating to the basic principle of electromagnetic induction heating.
  • the electromagnetic induction heating device is composed of an induction coil, a power supply, and a control device.
  • induction heating When an alternating current is passed through the induction coil, magnetic field lines with varying strength are generated. When a substance that conducts electricity (specifically, it is a bonding object and is usually formed of metal) is placed near it, eddy currents flow in the metal under the influence of these changing magnetic field lines. Since metals usually have electrical resistance, when an electric current flows through the metal, Joule heat is generated and the metal self-heats. This phenomenon is called induction heating.
  • the calorific value Q due to electromagnetic induction is expressed by the following formula.
  • a predetermined Joule heat can be obtained within a uniform magnetic field, so that the bonding accuracy is high. Further, if it is in a uniform magnetic field, a plurality of bonds can be formed at one time.
  • the metal terminals on the circuit board side generate heat, the heat is transferred to the solder, and the solder melts. When removing, the solder is melted in the same way as when joining.
  • the method of removing the electronic components mounted on the circuit board by electromagnetic induction heating can cope with the miniaturization of the electronic components. It can also be applied to a substrate made of a non-heat resistant material.
  • the area of the metal terminal that is the target of heat generation will also become smaller.
  • the metal terminal area is It becomes even narrower.
  • the resistance R becomes large, and a sufficient amount of heat generation cannot be secured (the denominator of the above theoretical formula becomes large).
  • the calorific value Q can be secured by increasing the applied voltage V or increasing the applied time t.
  • solder there are several types of solder, and generally, high-temperature solder (for example, SnAgCu-based solder, melting point of about 220 ° C.) to low-temperature solder (for example, SnBi solder, melting point of about 140 ° C.) are used. .. Even if the target is solder bonding with low-temperature solder, the above-mentioned problems occur.
  • high-temperature solder for example, SnAgCu-based solder, melting point of about 220 ° C.
  • low-temperature solder for example, SnBi solder, melting point of about 140 ° C.
  • the size of the circuit side terminal corresponding to the micro LED is about 25 ⁇ m ⁇ 25 ⁇ m to 50 ⁇ m ⁇ 50 ⁇ m, and a method of removing only the defective micro LED has not been established.
  • the inventor of the present application is considering application to the removal of electronic components of this size in the future, and there is a high possibility that the above-mentioned defects will become apparent.
  • the present invention solves the above problems, and an object of the present invention is to provide a technique for removing an electronic member that can be used even when the metal terminal area is small.
  • the present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board by solder bonding from the circuit board.
  • the device includes a suction nozzle having a hollow shape, includes a suction means for sucking the electronic member at the tip of the suction nozzle, and a heating element provided under the suction nozzle, and heats the heating element by electromagnetic induction heating.
  • a heating means and a conduction means for conducting the heat generated by the heating element to the tip of the suction nozzle are provided.
  • the heat generated by the heating means is transferred to the electronic parts and the solder via the conduction means, and the solder melts. During that time, the suction means maintains the suction state of the nozzle and the electronic component. Even if the metal terminal area is small and the amount of heat generated is insufficient, the heating element generates heat. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
  • the heating element is preferably larger than the terminal of the circuit board.
  • the terminal size of the circuit board is preferably 500 ⁇ 500 ⁇ m or less. It is more preferably 250 ⁇ m ⁇ 250 ⁇ m or less, and further preferably 100 ⁇ m ⁇ 100 ⁇ m or less.
  • the terminal size is 1 mm ⁇ 1 mm or less, problems such as insufficient calorific value in electromagnetic induction heating are occasionally seen, and when it is 500 ⁇ 500 ⁇ m or less, the problems become remarkable.
  • a ferrite core outer to the heating element is further provided.
  • the amount of heat generated by the heating element increases, and the amount of heat generated by the metal terminals also increases.
  • the synergistic effect ensures that the solder melts.
  • the present invention that solves the above problems is a method of removing an electronic member mounted on a circuit board by solder bonding from the circuit board.
  • the heating element is heated by the heating means, the heat generated by the heating element is conducted to the tip of the suction nozzle by the conduction means, the solder is melted, and the solder is melted at the tip of the suction nozzle by the suction means.
  • the electronic member is attracted and the electronic member mounted on the circuit board by solder bonding is removed from the circuit board.
  • the heating element generates heat even when the metal terminal area is small and the amount of heat generated is insufficient. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
  • the present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board by solder bonding from the circuit board.
  • the device includes a suction nozzle having a hollow shape and formed of metal, and a suction means for sucking the electronic member at the tip of the suction nozzle, a heating means for heating the tip of the suction nozzle by electromagnetic induction heating, and the like. To be equipped.
  • the present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board by solder bonding from the circuit board.
  • the device includes a suction nozzle having a hollow shape and formed of ferrite, and includes a suction means for sucking the electronic member at the tip of the suction nozzle and a heating element attached to the tip of the suction nozzle to generate heat. It is provided with a heating means for heating the body by electromagnetic induction heating.
  • the heating element generates heat even when the metal terminal area is small and the amount of heat generated is insufficient. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
  • the present invention that solves the above problems is a method of removing an electronic member mounted on a circuit board by solder bonding from the circuit board.
  • the tip of the suction nozzle is heated by the heating means to melt the solder, the electronic member is sucked by the tip of the suction nozzle by the suction means, and the electrons mounted on the circuit board by solder bonding. The member is removed from the circuit board.
  • the present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board from the circuit board by means capable of melting by heat.
  • the device includes a suction nozzle having a hollow shape, includes a suction means for sucking the electronic member at the tip of the suction nozzle, and a heating element provided under the suction nozzle, and heats the heating element by electromagnetic induction heating.
  • a heating means and a conduction means for conducting the heat generated by the heating element to the tip of the suction nozzle are provided.
  • the present application can be applied not only to solder bonding but also to release bonding by means capable of hot melting.
  • the electronic member can be removed from the circuit board by releasing the AFC (conductive conductive film) bonding or the bonding with the conductive adhesive.
  • the electronic member can be removed from the circuit board even when the metal terminal area is small.
  • FIG. 1 is a perspective view of an outline of the device according to the first embodiment
  • FIG. 2 is a cross-sectional view.
  • the device includes a nozzle 50, a suction device 60, a heating device 70, and a control device 80 (see FIG. 3).
  • the main part (or all) of the nozzle 50 is made of a material having high heat resistance and high thermal conductivity.
  • a material having high heat resistance and high thermal conductivity For example, ceramics, ruby, sapphire, diamond and the like can be mentioned.
  • 2019, in ceramics there is a ceramic processing accuracy of a minimum pore diameter of 10 ⁇ m, and the present invention can be sufficiently realized.
  • the nozzle 50 has a hollow 51. Electronic components are attracted at one end of the hollow 51, and the other end of the hollow 51 is continuous with the suction device 60. As a result, the nozzle 50 can be sucked through the hollow 51. It is preferable that the tip of the nozzle 50 is tapered like a weight so as to correspond to a minute electronic component.
  • a heating element 71 is provided at the bottom of the nozzle 50 so as to wind around the nozzle 50.
  • the heating element 71 is generally made of a metal material. Metal materials include gold, silver, copper, aluminum, nickel and chromium. Examples of the method of arranging the heating element 71 below the nozzle 50 include those by vapor deposition and plating, and those in which the nozzle 50 is fitted to the tubular heating element 71.
  • a coil 72 is arranged on the outer circumference of the nozzle 50. Conversely, the nozzle 50 is arranged in the coil internal space.
  • the heating element 71, the coil 72, and the power supply (see FIG. 7) constitute a heating device (heating means) 70. When a current is supplied to the coil 72 from the power source, a magnetic field is generated, and the heating element 71 in the magnetic field range generates heat.
  • FIG. 3 is an operation explanatory view according to the first embodiment.
  • the heating element 71 is provided in the nozzle trunk portion
  • the heating element 71 is provided in the nozzle weight portion, which is slightly changed. It is preferable that the heating element 71 is provided on the nozzle weight so as to be closer to the solder, but if it is difficult to provide the heating element 71 on the nozzle weight, the heating element 71 may be provided on the nozzle trunk.
  • the operating principle is common.
  • a plurality of electronic components (for example, LEDs) 20 are mounted on the circuit board 10. Specifically, a wiring circuit 11 (not shown) and a circuit-side terminal 12 are formed on the circuit board 10.
  • the electronic component 20 has an electronic component side terminal 22.
  • the circuit side terminal 12 and the electronic component side terminal 22 are joined via solder 30.
  • the suction device 60 and the heating device 70 are interlocked by the control device 80.
  • the suction device 60 When the suction device 60 is activated, a negative pressure is generated in the nozzle hollow 51. When the nozzle 50 is brought close to the electronic component 20 in this state, the tip of the nozzle 50 adheres to the surface of the electronic component 20. Here, the suction device 60, the hollow nozzle 51, and the tip of the nozzle 50 form a suction means.
  • the heat generated by the heating device 70 is conducted from the heating element 71 to the electronic component 20 and the solder 30 via the nozzle 50 having excellent thermal conductivity.
  • the nozzle 50 itself constitutes the conduction means.
  • the solder 30 is melted, and the connection between the circuit side terminal 12 and the electronic component side terminal 21 is released.
  • the suction state between the electronic component 20 and the nozzle 50 is maintained, and when the nozzle 50 is moved away from the circuit board 10, the electronic member 20 can be removed from the circuit board 10. Further, when the suction device 60 is stopped, the suction state between the electronic component 20 and the nozzle 50 is released, and the electronic component 20 can be recovered.
  • the problem of the present application is that the area of the terminal 12 is small and it is not possible to secure a sufficient amount of heat generated by the terminal 12.
  • electromagnetic induction heating does not mean that the terminal 12 does not generate heat at all.
  • the heat generated at the terminal 12 is also conducted to the solder 30. Therefore, it is preferable that the terminal 12 is also made of metal.
  • the terminal 12 itself is not expected to generate heat at all, a conductive polymer, conductive carbon, or the like may be used. Further, the wiring is thinner than the size of the terminal 12, and does not contribute to electromagnetic induction heating, so it is not considered.
  • the wiring and the terminal 12 are made of a conductive material. Generally, it is a metal-based material containing gold, silver, copper, aluminum, nickel, chromium and the like.
  • the wiring and the terminal 12 are formed by a general conventional method (printing, etching, metal deposition, plating, silver salt, etc.).
  • the metal terminal area is 1 mm ⁇ 1 mm or less, preferably 500 ⁇ m ⁇ 500 ⁇ m or less, more preferably 250 ⁇ m ⁇ 250 ⁇ m or less, and further preferably 100 ⁇ m ⁇ 100 ⁇ m or less.
  • a plurality of electronic components 20 are mounted on the circuit board 10.
  • the electronic component spacing is equivalent to the electronic component size. In the above example, the interval is 1 mm.
  • the nozzle diameter is 3 mm or more ( ⁇ electronic component size + spacing between adjacent electronic components), there is a risk of affecting adjacent electronic components. Therefore, it is preferable that the nozzle diameter is less than 3 mm ( ⁇ electronic component size + spacing between both sides).
  • the nozzle diameter is preferably about 1 mm (corresponding to the size of the electronic component) or larger.
  • the diameter of the suction hole (hollow 51) is preferably about 100 to 200 ⁇ m.
  • the circumferential length of the heating element 71 is about 3 mm. If the axial length of the heating element 71 is 2.5 mm (about 10 times the metal terminal size), the area of the heating element is 120 times the metal terminal area, and a sufficient area can be secured. That is, the heating element 71 is sufficiently larger than the metal terminal 12.
  • a plurality of electronic components 20 are mounted on the circuit board 10.
  • the electronic component spacing is equivalent to the electronic component size. In the above example, the interval is 200 ⁇ m.
  • the nozzle diameter is 600 ⁇ m ( ⁇ electronic component size + spacing between adjacent electronic components) or more, there is a risk that the adjacent electronic components will be affected. Therefore, it is preferable that the nozzle diameter is less than 600 ⁇ m ( ⁇ electronic component size + spacing between both sides).
  • the nozzle diameter is preferably about 200 ⁇ m (corresponding to the size of the electronic component) or larger.
  • the diameter of the suction hole (hollow 51) is preferably about 20 to 40 ⁇ m. As of 2019, in ceramics, there is a ceramic processing accuracy of a minimum pore diameter of 10 ⁇ m, and the present invention can be sufficiently realized.
  • the circumferential length of the heating element 71 is about 0.9 mm. If the axial length of the heating element 71 is 1.2 mm (about 24 times the metal terminal size), the area of the heating element is 432 times the metal terminal area, and a sufficient area can be secured. That is, the heating element 71 is sufficiently larger than the metal terminal 12.
  • FIG. 4 is an operation explanatory view according to the second embodiment. At the same time, the outline configuration will be described.
  • the second embodiment is a modification of the first embodiment.
  • the ferrite core 73 is exteriorized around the nozzle 50 and the heating element 71.
  • the heating element 71, the coil 72, the ferrite core 73, and the power supply constitute a heating device (heating means) 70.
  • FIG. 5 is a cross-sectional view of an outline of the device according to the third embodiment.
  • the first and second embodiments in order to secure the hollow 51 of the micropores, ceramics or the like having high processing accuracy was used for the main portion of the nozzle.
  • the main part (or all) of the nozzle 55 is made of metal.
  • the third embodiment can be applied when the same level of metal processing accuracy as that of ceramics can be obtained, or when micropores as small as those of the first and second embodiments cannot be obtained.
  • the metal nozzle 55, the coil 72, and the power supply constitute a heating device (heating means) 70.
  • a current is supplied to the coil 72 from the power source, a magnetic field is generated, and the metal nozzle 55 in the magnetic field range generates heat.
  • the heat generated by the nozzle 55 is conducted to the electronic component 20 and the solder 30 via the tip of the nozzle 55. As a result, the solder 30 is melted.
  • FIG. 6 is a cross-sectional view of an outline of the device according to the fourth embodiment. It is a combination of the technical idea according to the second embodiment and the technical idea according to the third embodiment.
  • the main part of the nozzle 56 is composed of a ferrite core.
  • a metal heat generating attachment 74 is fitted to the tip of the nozzle 56.
  • the heat generation attachment 74 has an insertion portion and a contact portion.
  • the heat generation attachment 74 insertion portion is inserted into the hollow 51.
  • the heat generation attachment 74 contact portion can come into contact with an electronic component at the nozzle tip position.
  • the ferrite core nozzle 56, the coil 72, the heat generating attachment 74, and the power supply constitute a heating device (heating means) 70.
  • a current is supplied to the coil 72 from the power source, a magnetic field is generated, and the magnetic field is focused along the ferrite core 56.
  • the heat generation attachment 74 in the magnetic field range generates heat.
  • the heat generated by the heat generation attachment 74 is conducted to the electronic component 20 and the solder 30. As a result, the solder 30 is melted.
  • the present application can be applied to release bonding by means that can be melted by heat.
  • the electronic member can be removed from the circuit board by releasing the AFC (conductive conductive film) bonding or the bonding with the conductive adhesive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

Provided is technology capable of removing an electronic member from a circuit board even when the area of a metal terminal is small. A plurality of electronic components 20 are joined to a circuit board 10 by means of solder 30. This device comprises: a suction means 60 that includes a suction nozzle 50 having a hollow 51 and that suctions an electronic component 20 to the tip end of the suction nozzle; a heating means 70 that includes a heating element 71 provided to the lower part of the suction nozzle and that heats the heating element 71 by electromagnetic induction heating; and a conduction means 50 that conducts the heat generated by the heating element 71 to the tip end of the suction nozzle 50. The heat is conducted from the heating element 71, through the nozzle 50, and to the electronic component 20 and the solder 30. This melts the solder 30 and releases the bond between a circuit-side terminal 12 and an electronic component-side terminal 21. Meanwhile, the suction state between the electronic component 20 and the nozzle 50 is maintained, and the electronic component 20 can be removed from the circuit board 10 when the nozzle 50 is separated from the circuit board 10.

Description

電子部材の取外し方法及びその装置How to remove electronic members and their devices
 本発明は電磁誘導加熱により基板に実装された電子部品を取り外す技術に関する。 The present invention relates to a technique for removing an electronic component mounted on a substrate by electromagnetic induction heating.
 電子機器において、半導体等電子部品を回路基板に実装する際に、はんだ接合される。はんだ接合は、接合対象間にはんだが配置された後、はんだが加熱され溶融することによって、行われている。 In electronic devices, when electronic components such as semiconductors are mounted on a circuit board, they are solder-bonded. Solder joining is performed by arranging the solder between the objects to be joined and then heating and melting the solder.
 基板には複数の電子部品が実装されている。異常があったり、故障した場合、正常な電子部品への影響を避けながら、当該電子部品のみを取外す。 Multiple electronic components are mounted on the board. If there is an abnormality or a failure, remove only the electronic component while avoiding the influence on the normal electronic component.
 たとえば、当該電子部品に熱風を供給し、はんだを溶融し、当該電子部品を基板より取外す(たとえば特許文献1)。 For example, hot air is supplied to the electronic component, the solder is melted, and the electronic component is removed from the substrate (for example, Patent Document 1).
 ところで、近年、電子部品の小型化が進んでいる。例えば、モニターの高画素化に伴い、100μm以下のマイクロLEDが用いられる。隣接する小型電子部品への影響を避けながら、取外し対象の小型電子部品のみに充分な熱風を与えることは困難である。 By the way, in recent years, the miniaturization of electronic components has progressed. For example, as the number of pixels of a monitor increases, micro LEDs of 100 μm or less are used. It is difficult to give sufficient hot air only to the small electronic component to be removed while avoiding the influence on the adjacent small electronic component.
 また、熱風供給による取外し技術は、ポリアミドイミドやポリイミドなどの耐熱性樹脂からなる基板への適用は可能であるが、熱可塑性樹脂や紙や布など非耐熱性材料からなる基板への適用が困難である。なお、非耐熱性の熱可塑性樹脂の例として、ABS樹脂、アクリル、ポリカーボ、ポリエステル、ポリブチレン、ポリウレタン、PET(ポリエチレンテレフタレート)などがある。 In addition, the removal technology by supplying hot air can be applied to a substrate made of heat-resistant resin such as polyamide-imide or polyimide, but it is difficult to apply it to a substrate made of non-heat-resistant material such as thermoplastic resin or paper or cloth. Is. Examples of non-heat resistant thermoplastic resins include ABS resin, acrylic, polycarbonate, polyester, polybutylene, polyurethane, and PET (polyethylene terephthalate).
 一方、スポット的に加熱する技術として、電磁誘導加熱がある。電磁誘導加熱により基板に実装された電子部品を取り外すこともできる(たとえば特許文献2)。 On the other hand, there is electromagnetic induction heating as a technology for spot heating. The electronic components mounted on the substrate can also be removed by electromagnetic induction heating (for example, Patent Document 2).
 図7は、電磁誘導加熱の基本原理に係る概念図である。電磁誘導加熱装置は、誘導コイルと電源と制御装置とから構成される。 FIG. 7 is a conceptual diagram relating to the basic principle of electromagnetic induction heating. The electromagnetic induction heating device is composed of an induction coil, a power supply, and a control device.
 誘導コイルに交流電流を流すと、強度の変化する磁力線が発生する。その近くに電気を通す物質(具体的には接合対象であり、通常は金属より形成される)を置くとこの変化する磁力線の影響を受けて、金属の中に渦電流が流れる。金属には通常電気抵抗があるため、金属に電流が流れると、ジュール熱が発生して、金属が自己発熱する。この現象を誘導加熱という。 When an alternating current is passed through the induction coil, magnetic field lines with varying strength are generated. When a substance that conducts electricity (specifically, it is a bonding object and is usually formed of metal) is placed near it, eddy currents flow in the metal under the influence of these changing magnetic field lines. Since metals usually have electrical resistance, when an electric current flows through the metal, Joule heat is generated and the metal self-heats. This phenomenon is called induction heating.
 電磁誘導による発熱量Qは次の式で表される。Q=(V2/R)×t[V=印加電圧:R=抵抗:t=時間] The calorific value Q due to electromagnetic induction is expressed by the following formula. Q = (V2 / R) x t [V = applied voltage: R = resistance: t = time]
 電磁誘導加熱では、金属のみ発熱するため、周辺の樹脂部分が熱損傷を受けるおそれは少ない。また、電子部品への熱影響もほぼなく、電子部品が熱損傷を受けるおそれは少ない。 In electromagnetic induction heating, only the metal generates heat, so there is little risk of thermal damage to the surrounding resin part. In addition, there is almost no thermal effect on the electronic components, and there is little risk of the electronic components being thermally damaged.
 電磁誘導加熱では、金属のみ発熱するため、少ないエネルギーでかつ短時間で接合できる。一回の接合に要する時間は数~十数秒である。 In electromagnetic induction heating, only metal generates heat, so bonding can be done with less energy and in a short time. The time required for one joining is several to ten and several seconds.
 電磁誘導加熱では、一様磁場内であれば、所定のジュール熱が得られるため、接合精度が高い。また、一様磁場内であれば、複数の接合が一度にできる。 In electromagnetic induction heating, a predetermined Joule heat can be obtained within a uniform magnetic field, so that the bonding accuracy is high. Further, if it is in a uniform magnetic field, a plurality of bonds can be formed at one time.
 電磁誘導加熱では、制御装置により電源出力量および出力時間の制御が容易である。その結果、加熱温度および加熱時間の制御も容易である。所望の温度プロファイルを設定できる。 In electromagnetic induction heating, it is easy to control the power output amount and output time by the control device. As a result, it is easy to control the heating temperature and the heating time. The desired temperature profile can be set.
 回路基板側の金属端子が発熱し、熱がはんだに伝達され、はんだが溶融する。取外し時も接合時と同様にはんだを溶融させる。 The metal terminals on the circuit board side generate heat, the heat is transferred to the solder, and the solder melts. When removing, the solder is melted in the same way as when joining.
 電磁誘導加熱では、電源出力を調整することにより磁力制御も容易である。これにより、隣接する電子部品への影響を避けながら、取外し対象の電子部品に対応する回路基板側の金属端子のみを加熱できる。 In electromagnetic induction heating, magnetic force control is easy by adjusting the power output. As a result, only the metal terminal on the circuit board side corresponding to the electronic component to be removed can be heated while avoiding the influence on the adjacent electronic component.
 以上により、電磁誘導加熱により回路基板に実装された電子部品を取り外す方法では、電子部品の小型化に対応できる。また、非耐熱性材料からなる基板への適用も可能である。 From the above, the method of removing the electronic components mounted on the circuit board by electromagnetic induction heating can cope with the miniaturization of the electronic components. It can also be applied to a substrate made of a non-heat resistant material.
特開2004-186491号公報Japanese Unexamined Patent Publication No. 2004-186491 特開2001-044616号公報Japanese Unexamined Patent Publication No. 2001-04461
 上記の通り、電磁誘導加熱により基板に実装された電子部品を取り外す方法によれば、電子部品の小型化に対応できる。 As described above, according to the method of removing the electronic component mounted on the substrate by electromagnetic induction heating, it is possible to cope with the miniaturization of the electronic component.
 しかしながら、電子部品の小型化を更に進めると、発熱対象である金属端子の面積も狭小となる。とくに、所定のエリアに多数の電子部品が配列される場合や、電子部品が多数の端子を有する場合(たとえば、ボールグリットアレイ(BGA)やチップサイズパッケージ(CSP))には、金属端子面積はさらに狭小となる。その結果、抵抗Rが大きくなり、充分な発熱量を確保できなくなる(上記理論式の分母が大きくなる)。 However, if the electronic components are further miniaturized, the area of the metal terminal that is the target of heat generation will also become smaller. In particular, when a large number of electronic components are arranged in a predetermined area, or when the electronic components have a large number of terminals (for example, a ball grit array (BGA) or a chip size package (CSP)), the metal terminal area is It becomes even narrower. As a result, the resistance R becomes large, and a sufficient amount of heat generation cannot be secured (the denominator of the above theoretical formula becomes large).
 上記理論式に基づけば、印加電圧Vを増加させるか、印加時間tを増加させることにより、発熱量Qを確保できる。 Based on the above theoretical formula, the calorific value Q can be secured by increasing the applied voltage V or increasing the applied time t.
 一方で、実際に試作モデルにて検証してみると、金属端子面積が1mm×1mm程度以下になると、はんだの種類によっては、発熱不良等の不具合が散見され、金属端子面積が500μm×500μm程度以下では不具合が顕著になった。電磁誘導加熱では、印加電圧や印加時間を精度よく調整できるにもかかわらず、印加電圧や印加時間を調整しても不具合解消に限界があった。 On the other hand, when actually verifying with a prototype model, when the metal terminal area is about 1 mm × 1 mm or less, problems such as heat generation failure are scattered depending on the type of solder, and the metal terminal area is about 500 μm × 500 μm. In the following, the problem became noticeable. In electromagnetic induction heating, although the applied voltage and the applied time can be adjusted accurately, there is a limit to solving the problem even if the applied voltage and the applied time are adjusted.
 ところで、はんだの種類にはいくつかあり、一般的には、高温はんだ(たとえば、SnAgCu系はんだ、融点220℃程度)から低温はんだ(たとえば、SnBiはんだ、融点140℃程度)までが用いられている。仮に、低温はんだによるはんだ接合を対象としたとしても、上記不具合は発生する。 By the way, there are several types of solder, and generally, high-temperature solder (for example, SnAgCu-based solder, melting point of about 220 ° C.) to low-temperature solder (for example, SnBi solder, melting point of about 140 ° C.) are used. .. Even if the target is solder bonding with low-temperature solder, the above-mentioned problems occur.
 なお、マイクロLEDに対応する回路側端子のサイズは、25μm×25μm~50μm×50μm程度であり、不具合あるマイクロLEDのみを取り外す方法は確立されていない。本願発明者は、将来的にこの程度のサイズの電子部品の取外しへの適用を視野に入れており、上記不具合が顕在化する可能性が高い。 The size of the circuit side terminal corresponding to the micro LED is about 25 μm × 25 μm to 50 μm × 50 μm, and a method of removing only the defective micro LED has not been established. The inventor of the present application is considering application to the removal of electronic components of this size in the future, and there is a high possibility that the above-mentioned defects will become apparent.
 本発明は上記課題を解決するものであり、金属端子面積が狭小な場合でも対応可能な電子部材の取外し技術を提供することを目的とする。 The present invention solves the above problems, and an object of the present invention is to provide a technique for removing an electronic member that can be used even when the metal terminal area is small.
 上記課題を解決する本発明は、はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す装置である。当該装置は、中空を有する吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、前記吸着ノズル下部に設けられる発熱体を含み、前記発熱体を電磁誘導加熱により加熱する加熱手段と、前記発熱体が発する熱を前記吸着ノズル先端に伝導させる伝導手段とを備える。 The present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board by solder bonding from the circuit board. The device includes a suction nozzle having a hollow shape, includes a suction means for sucking the electronic member at the tip of the suction nozzle, and a heating element provided under the suction nozzle, and heats the heating element by electromagnetic induction heating. A heating means and a conduction means for conducting the heat generated by the heating element to the tip of the suction nozzle are provided.
 加熱手段により発生した熱は伝導手段を介して電子部品およびはんだに伝わり、はんだが溶融する。その間、吸着手段によりノズルと電子部品の吸着状態が維持される。金属端子面積が狭小であり発熱量不足な場合でも、発熱体が発熱する。これにより、はんだ接合により回路基板に実装された電子部材を回路基板より取外すことができる。 The heat generated by the heating means is transferred to the electronic parts and the solder via the conduction means, and the solder melts. During that time, the suction means maintains the suction state of the nozzle and the electronic component. Even if the metal terminal area is small and the amount of heat generated is insufficient, the heating element generates heat. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
 上発明において好ましくは、前記発熱体は、前記回路基板の端子より大きい。 In the above invention, the heating element is preferably larger than the terminal of the circuit board.
 これにより、金属端子面積が狭小であり発熱量不足な場合でも、発熱体が確実に発熱する。 This ensures that the heating element generates heat even when the metal terminal area is small and the amount of heat generated is insufficient.
 上発明において好ましくは、前記回路基板の端子サイズは、500×500μm以下である。より好ましくは250μm×250μm以下、更に好ましくは100μm×100μm以下である。 In the above invention, the terminal size of the circuit board is preferably 500 × 500 μm or less. It is more preferably 250 μm × 250 μm or less, and further preferably 100 μm × 100 μm or less.
 端子サイズが1mm×1mm以下となる場合、電磁誘導加熱における発熱量不足等の不具合が散見され、500×500μm以下となると不具合が顕著となる。狭小なるほど発熱量不足となる。本発明によれば、金属端子面積が狭小な場合でも取外し可能である。 When the terminal size is 1 mm × 1 mm or less, problems such as insufficient calorific value in electromagnetic induction heating are occasionally seen, and when it is 500 × 500 μm or less, the problems become remarkable. The narrower it is, the insufficient the amount of heat generated. According to the present invention, it can be removed even when the metal terminal area is small.
 上発明において好ましくは、前記発熱体に外装されるフェライトコアを更に備える。 In the above invention, preferably, a ferrite core outer to the heating element is further provided.
 これにより、発熱体の発熱量が増加するとともに、金属端子の発熱量も増加する。相乗効果により、確実にはんだは溶融する。 As a result, the amount of heat generated by the heating element increases, and the amount of heat generated by the metal terminals also increases. The synergistic effect ensures that the solder melts.
 上記課題を解決する本発明は、はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す方法である。上記装置を用い、前記加熱手段により前記発熱体を加熱し、前記伝導手段により前記発熱体が発する熱を前記吸着ノズル先端に伝導させ、はんだを溶融し、前記吸着手段により前記吸着ノズル先端にて前記電子部材を吸着して、回路基板にはんだ接合により実装された電子部材を前記回路基板より取外す。 The present invention that solves the above problems is a method of removing an electronic member mounted on a circuit board by solder bonding from the circuit board. Using the above device, the heating element is heated by the heating means, the heat generated by the heating element is conducted to the tip of the suction nozzle by the conduction means, the solder is melted, and the solder is melted at the tip of the suction nozzle by the suction means. The electronic member is attracted and the electronic member mounted on the circuit board by solder bonding is removed from the circuit board.
 金属端子面積が狭小であり発熱量不足な場合でも、発熱体が発熱する。これにより、はんだ接合により回路基板に実装された電子部材を回路基板より取外すことができる。 The heating element generates heat even when the metal terminal area is small and the amount of heat generated is insufficient. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
 上記課題を解決する本発明は、はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す装置である。当該装置は、中空を有し、金属より形成される吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、前記吸着ノズル先端を電磁誘導加熱により加熱する加熱手段と、を備える。 The present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board by solder bonding from the circuit board. The device includes a suction nozzle having a hollow shape and formed of metal, and a suction means for sucking the electronic member at the tip of the suction nozzle, a heating means for heating the tip of the suction nozzle by electromagnetic induction heating, and the like. To be equipped.
 金属端子面積が狭小であり発熱量不足な場合でも、金属製ノズルが発熱する。これにより、はんだ接合により回路基板に実装された電子部材を回路基板より取外すことができる。 Even if the metal terminal area is small and the amount of heat generated is insufficient, the metal nozzle will generate heat. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
 上記課題を解決する本発明は、はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す装置である。当該装置は、中空を有し、フェライトにより形成される吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、前記吸着ノズル先端に装着される発熱体を含み、前記発熱体を電磁誘導加熱により加熱する加熱手段と、を備える。 The present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board by solder bonding from the circuit board. The device includes a suction nozzle having a hollow shape and formed of ferrite, and includes a suction means for sucking the electronic member at the tip of the suction nozzle and a heating element attached to the tip of the suction nozzle to generate heat. It is provided with a heating means for heating the body by electromagnetic induction heating.
 金属端子面積が狭小であり発熱量不足な場合でも、発熱体が発熱する。これにより、はんだ接合により回路基板に実装された電子部材を回路基板より取外すことができる。 The heating element generates heat even when the metal terminal area is small and the amount of heat generated is insufficient. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
 上記課題を解決する本発明は、はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す方法である。上記装置を用い、前記加熱手段により前記吸着ノズル先端を加熱し、はんだを溶融し、前記吸着手段により前記吸着ノズル先端にて前記電子部材を吸着して、回路基板にはんだ接合により実装された電子部材を前記回路基板より取外す。 The present invention that solves the above problems is a method of removing an electronic member mounted on a circuit board by solder bonding from the circuit board. Using the above device, the tip of the suction nozzle is heated by the heating means to melt the solder, the electronic member is sucked by the tip of the suction nozzle by the suction means, and the electrons mounted on the circuit board by solder bonding. The member is removed from the circuit board.
 金属端子面積が狭小であり発熱量不足な場合でも、ノズル先端が発熱する。これにより、はんだ接合により回路基板に実装された電子部材を回路基板より取外すことができる。 Even if the metal terminal area is small and the amount of heat generated is insufficient, the tip of the nozzle will generate heat. As a result, the electronic member mounted on the circuit board by solder bonding can be removed from the circuit board.
 上記課題を解決する本発明は、熱溶融可能な手段により回路基板に実装された電子部材を前記回路基板より取外す装置である。当該装置は、中空を有する吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、前記吸着ノズル下部に設けられる発熱体を含み、前記発熱体を電磁誘導加熱により加熱する加熱手段と、前記発熱体が発する熱を前記吸着ノズル先端に伝導させる伝導手段とを備える。 The present invention that solves the above problems is a device that removes an electronic member mounted on a circuit board from the circuit board by means capable of melting by heat. The device includes a suction nozzle having a hollow shape, includes a suction means for sucking the electronic member at the tip of the suction nozzle, and a heating element provided under the suction nozzle, and heats the heating element by electromagnetic induction heating. A heating means and a conduction means for conducting the heat generated by the heating element to the tip of the suction nozzle are provided.
 本願は、はんだ接合以外にも、熱溶融可能な手段による接合を解除するのに適用できる。例えば、AFC(異方導電膜)接合や導電接着剤での接合を解除して、電子部材を回路基板より取外すことができる。 The present application can be applied not only to solder bonding but also to release bonding by means capable of hot melting. For example, the electronic member can be removed from the circuit board by releasing the AFC (conductive conductive film) bonding or the bonding with the conductive adhesive.
 本発明によれば、金属端子面積が狭小な場合でも、電子部材を回路基板より取外すことができる。 According to the present invention, the electronic member can be removed from the circuit board even when the metal terminal area is small.
第1実施形態に係る装置概要(斜視図)Outline of the device according to the first embodiment (perspective view) 第1実施形態に係る装置概要(断面図)Outline of the device according to the first embodiment (cross-sectional view) 第1実施形態に係る動作説明図Operation explanatory diagram according to the first embodiment 第2実施形態に係る動作説明図Operation explanatory diagram according to the second embodiment 第3実施形態に係る装置概要(断面図)Outline of the device according to the third embodiment (cross-sectional view) 第4実施形態に係る装置概要(断面図)Outline of the device according to the fourth embodiment (cross-sectional view) 電磁誘導の基本原理Basic principle of electromagnetic induction
 <第1実施形態 構成>
 図1は第1実施形態に係る装置概要の斜視図であり、図2は断面図である。
<Structure of the first embodiment>
FIG. 1 is a perspective view of an outline of the device according to the first embodiment, and FIG. 2 is a cross-sectional view.
 装置は、ノズル50と、吸引装置60と、加熱装置70と、制御装置80とから構成されている(図3参照)。 The device includes a nozzle 50, a suction device 60, a heating device 70, and a control device 80 (see FIG. 3).
 ノズル50の主要部(または全部)は、高耐熱性かつ高熱伝導性の材質により構成される。たとえば、セラミックス、ルビー、サファイア、ダイアモンドなどが挙げられる。なお、2019年現在、セラミックスにおいて、最小孔直径10μmのセラミックス加工精度があり、本願発明は十分実現可能である。 The main part (or all) of the nozzle 50 is made of a material having high heat resistance and high thermal conductivity. For example, ceramics, ruby, sapphire, diamond and the like can be mentioned. As of 2019, in ceramics, there is a ceramic processing accuracy of a minimum pore diameter of 10 μm, and the present invention can be sufficiently realized.
 ノズル50は中空51を有する。中空51一端にて電子部品を吸着し、中空51他端は吸引装置60に連続している。これにより、ノズル50は中空51を介して吸着可能となる。なお、微小電子部品に対応するように、ノズル50の先端は錘状に先細っていることが好ましい。 The nozzle 50 has a hollow 51. Electronic components are attracted at one end of the hollow 51, and the other end of the hollow 51 is continuous with the suction device 60. As a result, the nozzle 50 can be sucked through the hollow 51. It is preferable that the tip of the nozzle 50 is tapered like a weight so as to correspond to a minute electronic component.
 ノズル50下部には発熱体71がノズル50に巻きつくように設けられている。発熱体71は一般に金属材料からなる。金属材料として金、銀、銅、アルミニュウム、ニッケル、クロムなどがある。発熱体71のノズル50下部への配置方法としては、蒸着やメッキによるもの、筒状の発熱体71にノズル50を嵌合させるものが例示できる。 A heating element 71 is provided at the bottom of the nozzle 50 so as to wind around the nozzle 50. The heating element 71 is generally made of a metal material. Metal materials include gold, silver, copper, aluminum, nickel and chromium. Examples of the method of arranging the heating element 71 below the nozzle 50 include those by vapor deposition and plating, and those in which the nozzle 50 is fitted to the tubular heating element 71.
 ノズル50の外周にはコイル72が配置される。逆に言うと、コイル内部空間にノズル50が配置される。発熱体71とコイル72と電源(図7参照)は加熱装置(加熱手段)70を構成する。電源よりコイル72に電流を供給すると、磁界が発生し、磁界範囲にある発熱体71が発熱する。 A coil 72 is arranged on the outer circumference of the nozzle 50. Conversely, the nozzle 50 is arranged in the coil internal space. The heating element 71, the coil 72, and the power supply (see FIG. 7) constitute a heating device (heating means) 70. When a current is supplied to the coil 72 from the power source, a magnetic field is generated, and the heating element 71 in the magnetic field range generates heat.
 <第1実施形態 動作>
 図3は第1実施形態に係る動作説明図である。ただし、図1、図2においては、ノズル幹部に発熱体71が設けられているのに対し、図3においては、ノズル錘部に発熱体71が設けられてい点で、若干変更されている。はんだにより近くなるようにノズル錘部に発熱体71が設けられていることが好ましいが、ノズル錘部に発熱体71を設ける加工が難しい場合はノズル幹部に発熱体71を設けてもよい。動作原理は共通である。
<Operation of the first embodiment>
FIG. 3 is an operation explanatory view according to the first embodiment. However, in FIGS. 1 and 2, the heating element 71 is provided in the nozzle trunk portion, whereas in FIG. 3, the heating element 71 is provided in the nozzle weight portion, which is slightly changed. It is preferable that the heating element 71 is provided on the nozzle weight so as to be closer to the solder, but if it is difficult to provide the heating element 71 on the nozzle weight, the heating element 71 may be provided on the nozzle trunk. The operating principle is common.
 回路基板10に電子部品(例えばLED)20が複数実装される。具体的には、回路基板10には配線回路11(図示省略)と回路側端子12が形成されている。電子部品20は電子部品側端子22を有する。回路側端子12と電子部品側端子22とは、はんだ30を介して接合されている。 A plurality of electronic components (for example, LEDs) 20 are mounted on the circuit board 10. Specifically, a wiring circuit 11 (not shown) and a circuit-side terminal 12 are formed on the circuit board 10. The electronic component 20 has an electronic component side terminal 22. The circuit side terminal 12 and the electronic component side terminal 22 are joined via solder 30.
 複数の電子部品のうち一の電子部品に異常があったり故障した場合、隣り合う正常な電子部品への影響を避けながら、当該電子部品のみを取外す動作について説明する。 Explain the operation of removing only the electronic component while avoiding the influence on the adjacent normal electronic component when an abnormality or failure occurs in one of the plurality of electronic components.
 本装置では、制御装置80により、吸引装置60と加熱装置70とが連動する。 In this device, the suction device 60 and the heating device 70 are interlocked by the control device 80.
 吸引装置60が作動すると、ノズル中空51内に陰圧が発生する。この状態でノズル50を電子部品20に近づけると、ノズル50先端が電子部品20表面に接着する。ここで吸引装置60とノズル中空51とノズル50先端は吸着手段を構成する。 When the suction device 60 is activated, a negative pressure is generated in the nozzle hollow 51. When the nozzle 50 is brought close to the electronic component 20 in this state, the tip of the nozzle 50 adheres to the surface of the electronic component 20. Here, the suction device 60, the hollow nozzle 51, and the tip of the nozzle 50 form a suction means.
 一方、コイル72に交流電流を流すと、強度の変化する磁力線が発生する。その近くに電気を通す物質(本願では金属製発熱体71)を置くとこの変化する磁力線の影響を受けて、金属の中に渦電流が流れる。金属には通常電気抵抗があるため、金属に電流が流れると、ジュール熱が発生して、金属(発熱体71)が自己発熱する。この現象を電磁誘導加熱という。 On the other hand, when an alternating current is passed through the coil 72, magnetic field lines whose strength changes are generated. When a substance that conducts electricity (metal heating element 71 in the present application) is placed near it, eddy currents flow in the metal under the influence of these changing magnetic field lines. Since metal usually has electrical resistance, when an electric current flows through the metal, Joule heat is generated and the metal (heating element 71) self-heats. This phenomenon is called electromagnetic induction heating.
 加熱装置70により発生した熱は、発熱体71から熱伝導性に優れるノズル50を介して、電子部品20およびはんだ30に伝導される。ノズル50自体が伝導手段を構成する。 The heat generated by the heating device 70 is conducted from the heating element 71 to the electronic component 20 and the solder 30 via the nozzle 50 having excellent thermal conductivity. The nozzle 50 itself constitutes the conduction means.
 これにより、はんだ30が溶融し、回路側端子12と電子部品側端子21との接合は解除される。一方、電子部品20とノズル50との吸着状態は維持されており、ノズル50を回路基板10から遠ざけると、電子部材20を回路基板10より取外すことができる。さらに、吸引装置60が作動停止すると、電子部品20とノズル50との吸着状態は解除され、電子部品20を回収できる。 As a result, the solder 30 is melted, and the connection between the circuit side terminal 12 and the electronic component side terminal 21 is released. On the other hand, the suction state between the electronic component 20 and the nozzle 50 is maintained, and when the nozzle 50 is moved away from the circuit board 10, the electronic member 20 can be removed from the circuit board 10. Further, when the suction device 60 is stopped, the suction state between the electronic component 20 and the nozzle 50 is released, and the electronic component 20 can be recovered.
 <備考>
 ところで、本願課題は、端子12面積が狭小であり、端子12による充分な発熱量を確保できないことである。しかしながら、電磁誘導加熱により端子12が全く自己発熱しないわけではない。端子12における発熱もはんだ30に伝導される。したがって、端子12も金属からなることが好ましい。
<Remarks>
By the way, the problem of the present application is that the area of the terminal 12 is small and it is not possible to secure a sufficient amount of heat generated by the terminal 12. However, electromagnetic induction heating does not mean that the terminal 12 does not generate heat at all. The heat generated at the terminal 12 is also conducted to the solder 30. Therefore, it is preferable that the terminal 12 is also made of metal.
 一方で、端子12自身の発熱を全く期待しない場合は、導電性ポリマー、導電性カーボン等でも良い。また、端子12のサイズに比べて配線は更に細く、電磁誘導加熱に寄与しないため、考慮しない。 On the other hand, if the terminal 12 itself is not expected to generate heat at all, a conductive polymer, conductive carbon, or the like may be used. Further, the wiring is thinner than the size of the terminal 12, and does not contribute to electromagnetic induction heating, so it is not considered.
 なお、配線および端子12は導電性材料により形成されている。一般的には、金、銀、銅、アルミニュウム、ニッケル、クロム等を含む金属系材料である。配線および端子12は、一般的な従来手法(印刷、エッチング、金属蒸着、メッキ、銀塩等)によって、形成される。 The wiring and the terminal 12 are made of a conductive material. Generally, it is a metal-based material containing gold, silver, copper, aluminum, nickel, chromium and the like. The wiring and the terminal 12 are formed by a general conventional method (printing, etching, metal deposition, plating, silver salt, etc.).
 <第1実施形態 サイズの検討>
 本願課題は、端子12面積が狭小の場合、端子12による充分な発熱量を確保できないことである。したがって、各サイズの相互関係は非常に重要である。以下、第1実施形態における各サイズについて概説する。
<Examination of size in the first embodiment>
The problem of the present application is that when the area of the terminal 12 is small, it is not possible to secure a sufficient amount of heat generated by the terminal 12. Therefore, the interrelationship of each size is very important. Hereinafter, each size in the first embodiment will be outlined.
 実際に試作モデルにて検証してみると、金属端子面積が1mm×1mm程度以下になると、はんだの種類によっては、発熱不良等の不具合が散見され、金属端子面積が500μm×500μm程度以下では不具合が顕著になった。また、本願発明者は、将来的に金属端子面積25μm×25μm~50μm×50μm程度の電子部品(たとえばマイクロLED)の取り外しを検討している。 When actually verifying with a prototype model, when the metal terminal area is about 1 mm x 1 mm or less, problems such as heat generation failure are scattered depending on the type of solder, and when the metal terminal area is about 500 μm x 500 μm or less, there are problems. Became prominent. Further, the inventor of the present application is considering removing an electronic component (for example, a micro LED) having a metal terminal area of about 25 μm × 25 μm to 50 μm × 50 μm in the future.
 したがって、金属端子面積は1mm×1mm以下、好ましくは500μm×500μm以下、より好ましくは250μm×250μm以下、更に好ましくは100μm×100μm以下である。 Therefore, the metal terminal area is 1 mm × 1 mm or less, preferably 500 μm × 500 μm or less, more preferably 250 μm × 250 μm or less, and further preferably 100 μm × 100 μm or less.
 一例として、金属端子面積250μm×250μm、4つの端子を有する1mm×1mm程度の電子部品について、各サイズの相互関係について説明する。 As an example, the interrelationship of each size of an electronic component having a metal terminal area of 250 μm × 250 μm and four terminals of about 1 mm × 1 mm will be described.
 回路基板10には複数の電子部品20が実装されている。電子部品間隔は、電子部品サイズ相当である。上記例では1mm間隔とする。 A plurality of electronic components 20 are mounted on the circuit board 10. The electronic component spacing is equivalent to the electronic component size. In the above example, the interval is 1 mm.
 ここで、ノズル直径が3mm(≒電子部品サイズ+両隣間隔)以上になると、隣合う電子部品への影響が発生するおそれがある。したがってノズル直径が3mm(≒電子部品サイズ+両隣間隔)未満であることが好ましい。一方で、ノズル50先端と電子部品20との接触を介して熱伝導が発生するため、ノズル直径が1mm程度(電子部品サイズ相当)またはそれ以上であることが好ましい。吸引孔(中空51)の直径は100~200μm程度が好ましい。 Here, if the nozzle diameter is 3 mm or more (≈ electronic component size + spacing between adjacent electronic components), there is a risk of affecting adjacent electronic components. Therefore, it is preferable that the nozzle diameter is less than 3 mm (≈ electronic component size + spacing between both sides). On the other hand, since heat conduction occurs through the contact between the tip of the nozzle 50 and the electronic component 20, the nozzle diameter is preferably about 1 mm (corresponding to the size of the electronic component) or larger. The diameter of the suction hole (hollow 51) is preferably about 100 to 200 μm.
 ノズル直径を1mmとすると、発熱体71の周方向長さは3mm程度となる。発熱体71の軸方向長さ2.5mm(金属端子サイズの10倍程度)とすると、発熱体面積は金属端子面積の120倍となり、充分な面積を確保できる。すなわち、発熱体71は金属端子12より充分大きい。 Assuming that the nozzle diameter is 1 mm, the circumferential length of the heating element 71 is about 3 mm. If the axial length of the heating element 71 is 2.5 mm (about 10 times the metal terminal size), the area of the heating element is 120 times the metal terminal area, and a sufficient area can be secured. That is, the heating element 71 is sufficiently larger than the metal terminal 12.
 別例として、金属端子面積50μm×50μm、4つの端子を有する200μm×200μm程度の電子部品について、各サイズの相互関係について説明する。 As another example, the interrelationship of each size of an electronic component having a metal terminal area of 50 μm × 50 μm and four terminals of about 200 μm × 200 μm will be described.
 回路基板10には複数の電子部品20が実装されている。電子部品間隔は、電子部品サイズ相当である。上記例では200μm間隔とする。 A plurality of electronic components 20 are mounted on the circuit board 10. The electronic component spacing is equivalent to the electronic component size. In the above example, the interval is 200 μm.
 ここで、ノズル直径が600μm(≒電子部品サイズ+両隣間隔)以上になると、隣合う電子部品への影響が発生するおそれがある。したがってノズル直径が600μm(≒電子部品サイズ+両隣間隔)未満であることが好ましい。一方で、ノズル50先端と電子部品20との接触を介して熱伝導が発生するため、ノズル直径が200μm程度(電子部品サイズ相当)またはそれ以上であることが好ましい。吸引孔(中空51)の直径は20~40μm程度が好ましい。なお、2019年現在、セラミックスにおいて、最小孔直径10μmのセラミックス加工精度があり、本願発明は十分実現可能である。 Here, if the nozzle diameter is 600 μm (≈ electronic component size + spacing between adjacent electronic components) or more, there is a risk that the adjacent electronic components will be affected. Therefore, it is preferable that the nozzle diameter is less than 600 μm (≈ electronic component size + spacing between both sides). On the other hand, since heat conduction occurs through the contact between the tip of the nozzle 50 and the electronic component 20, the nozzle diameter is preferably about 200 μm (corresponding to the size of the electronic component) or larger. The diameter of the suction hole (hollow 51) is preferably about 20 to 40 μm. As of 2019, in ceramics, there is a ceramic processing accuracy of a minimum pore diameter of 10 μm, and the present invention can be sufficiently realized.
 ノズル直径を300μmとすると、発熱体71の周方向長さは0.9mm程度となる。発熱体71の軸方向長さ1.2mm(金属端子サイズの24倍程度)とすると、発熱体面積は金属端子面積の432倍となり、充分な面積を確保できる。すなわち、発熱体71は金属端子12より充分大きい。 Assuming that the nozzle diameter is 300 μm, the circumferential length of the heating element 71 is about 0.9 mm. If the axial length of the heating element 71 is 1.2 mm (about 24 times the metal terminal size), the area of the heating element is 432 times the metal terminal area, and a sufficient area can be secured. That is, the heating element 71 is sufficiently larger than the metal terminal 12.
 <第1実施形態 効果>
 吸着ノズル50にも設けられた発熱体71による加熱により、回路側の金属端子12面積が狭小な場合でも、電子部材20を回路基板10より取外すことができる。その際、隣り合う電子部材に影響を与えない。
<Effect of the first embodiment>
By heating by the heating element 71 also provided in the suction nozzle 50, the electronic member 20 can be removed from the circuit board 10 even when the area of the metal terminal 12 on the circuit side is small. At that time, it does not affect the adjacent electronic members.
 <第2実施形態>
 図4は、第2実施形態に係る動作説明図である。あわせて、概略構成についても説明する。第2実施形態は第1実施形態の変形例である。
<Second Embodiment>
FIG. 4 is an operation explanatory view according to the second embodiment. At the same time, the outline configuration will be described. The second embodiment is a modification of the first embodiment.
 すなわち、ノズル50および発熱体71周りにフェライトコア73が外装されている。ここで、発熱体71と、コイル72と、フェライトコア73と、電源(図7参照)は加熱装置(加熱手段)70を構成する。 That is, the ferrite core 73 is exteriorized around the nozzle 50 and the heating element 71. Here, the heating element 71, the coil 72, the ferrite core 73, and the power supply (see FIG. 7) constitute a heating device (heating means) 70.
 電源よりコイル72に電流を供給すると、磁界が発生し、フェライトコア73に沿って磁界は集束する。その結果、発熱体71による発熱量が増加する。また、金属端子12による発熱量も増加する。この相乗効果により、確実にはんだ30は溶融する。 When a current is supplied to the coil 72 from the power supply, a magnetic field is generated, and the magnetic field is focused along the ferrite core 73. As a result, the amount of heat generated by the heating element 71 increases. In addition, the amount of heat generated by the metal terminal 12 also increases. Due to this synergistic effect, the solder 30 is surely melted.
 吸引装置60と加熱装置70との連動により、電子部材20を回路基板10より取外す動作については、第1実施形態と同様である。 The operation of removing the electronic member 20 from the circuit board 10 by interlocking the suction device 60 and the heating device 70 is the same as that of the first embodiment.
 <第3実施形態>
 図5は、第3実施形態に係る装置概要の断面図である。第1および第2実施形態では、微小孔の中空51を確保するため、ノズル主要部に加工精度の高いセラミックス等を用いた。これに対し、第3実施形態では、ノズル55の主要部(または全部)が金属により構成される。
<Third Embodiment>
FIG. 5 is a cross-sectional view of an outline of the device according to the third embodiment. In the first and second embodiments, in order to secure the hollow 51 of the micropores, ceramics or the like having high processing accuracy was used for the main portion of the nozzle. On the other hand, in the third embodiment, the main part (or all) of the nozzle 55 is made of metal.
 セラミックスと同レベルの金属加工精度が得られる場合や、第1および第2実施形態ほどの微小孔を求められない場合は、第3実施形態の適用が可能である。 The third embodiment can be applied when the same level of metal processing accuracy as that of ceramics can be obtained, or when micropores as small as those of the first and second embodiments cannot be obtained.
 ここで、金属製ノズル55と、コイル72と電源(図7参照)は加熱装置(加熱手段)70を構成する。電源よりコイル72に電流を供給すると、磁界が発生し、磁界範囲にある金属製ノズル55が発熱する。ノズル55により発生した熱は、ノズル55先端を介して、電子部品20およびはんだ30に伝導される。これにより、はんだ30は溶融する。 Here, the metal nozzle 55, the coil 72, and the power supply (see FIG. 7) constitute a heating device (heating means) 70. When a current is supplied to the coil 72 from the power source, a magnetic field is generated, and the metal nozzle 55 in the magnetic field range generates heat. The heat generated by the nozzle 55 is conducted to the electronic component 20 and the solder 30 via the tip of the nozzle 55. As a result, the solder 30 is melted.
 吸引装置60と加熱装置70との連動により、電子部材20を回路基板10より取外す動作については、第1実施形態と同様である。 The operation of removing the electronic member 20 from the circuit board 10 by interlocking the suction device 60 and the heating device 70 is the same as that of the first embodiment.
 <第4実施形態>
 図6は、第4実施形態に係る装置概要の断面図である。第2実施形態に係る技術思想と第3実施形態に係る技術思想を組み合わせたものである。
<Fourth Embodiment>
FIG. 6 is a cross-sectional view of an outline of the device according to the fourth embodiment. It is a combination of the technical idea according to the second embodiment and the technical idea according to the third embodiment.
 すなわち、ノズル56の主要部はフェライトコアにより構成される。ノズル56の先端には、金属製の発熱アタッチメント74が嵌合されている。 That is, the main part of the nozzle 56 is composed of a ferrite core. A metal heat generating attachment 74 is fitted to the tip of the nozzle 56.
 発熱アタッチメント74は挿入部と接触部を有する。発熱アタッチメント74挿入部は中空51に挿入される。発熱アタッチメント74接触部はノズル先端位置において電子部品と接触可能である。 The heat generation attachment 74 has an insertion portion and a contact portion. The heat generation attachment 74 insertion portion is inserted into the hollow 51. The heat generation attachment 74 contact portion can come into contact with an electronic component at the nozzle tip position.
 ここで、フェライトコア製ノズル56と、コイル72と、発熱アタッチメント74と、電源(図7参照)は加熱装置(加熱手段)70を構成する。電源よりコイル72に電流を供給すると、磁界が発生し、フェライトコア56に沿って磁界は集束する。磁界範囲にある発熱アタッチメント74が発熱する。発熱アタッチメント74により発生した熱は、電子部品20およびはんだ30に伝導される。これにより、はんだ30は溶融する。 Here, the ferrite core nozzle 56, the coil 72, the heat generating attachment 74, and the power supply (see FIG. 7) constitute a heating device (heating means) 70. When a current is supplied to the coil 72 from the power source, a magnetic field is generated, and the magnetic field is focused along the ferrite core 56. The heat generation attachment 74 in the magnetic field range generates heat. The heat generated by the heat generation attachment 74 is conducted to the electronic component 20 and the solder 30. As a result, the solder 30 is melted.
 吸引装置60と加熱装置70との連動により、電子部材20を回路基板10より取外す動作については、第1実施形態と同様である。 The operation of removing the electronic member 20 from the circuit board 10 by interlocking the suction device 60 and the heating device 70 is the same as that of the first embodiment.
 <その他>
 本願は、はんだ接合以外にも、熱溶融可能な手段による接合を解除するのに適用できる。例えば、AFC(異方導電膜)接合や導電接着剤での接合を解除して、電子部材を回路基板より取外すことができる。
<Others>
In addition to solder bonding, the present application can be applied to release bonding by means that can be melted by heat. For example, the electronic member can be removed from the circuit board by releasing the AFC (conductive conductive film) bonding or the bonding with the conductive adhesive.
  10 回路基板
  11 配線回路
  12 回路側端子
  20 電子部品
  22 電子部品側端子
  30 はんだ
  50 ノズル(セラミックス製)
  51 中空
  55 ノズル(金属製)
  56 ノズル(フェライトコア製)
  60 吸引装置
  70 加熱装置
  71 発熱体
  72 コイル
  73 フェライトコア
  74 発熱アタッチメント
  80 制御装置
10 Circuit board 11 Wiring circuit 12 Circuit side terminal 20 Electronic component 22 Electronic component side terminal 30 Solder 50 Nozzle (made of ceramics)
51 Hollow 55 Nozzle (Metal)
56 nozzles (made of ferrite core)
60 Suction device 70 Heating device 71 Heating element 72 Coil 73 Ferrite core 74 Heating attachment 80 Control device

Claims (9)

  1.  はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す装置であって、
     中空を有する吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、
     前記吸着ノズル下部に設けられる発熱体を含み、前記発熱体を電磁誘導加熱により加熱する加熱手段と、
     前記発熱体が発する熱を前記吸着ノズル先端に伝導させる伝導手段と
     を備えることを特徴とする装置。
    A device for removing an electronic member mounted on a circuit board by solder bonding from the circuit board.
    A suction means that includes a suction nozzle having a hollow space and sucks the electronic member at the tip of the suction nozzle.
    A heating means that includes a heating element provided under the suction nozzle and heats the heating element by electromagnetic induction heating.
    A device including a conduction means for conducting heat generated by the heating element to the tip of the adsorption nozzle.
  2.  前記発熱体は、前記回路基板の端子より大きい
     ことを特徴とする請求項1記載の装置。
    The apparatus according to claim 1, wherein the heating element is larger than the terminals of the circuit board.
  3.  前記回路基板の端子サイズは、500×500μm以下である
     ことを特徴とする請求項1または2記載の装置。
    The device according to claim 1 or 2, wherein the terminal size of the circuit board is 500 × 500 μm or less.
  4.  前記発熱体に外装されるフェライトコア
     を更に備えることを特徴とする請求項1~3いずれか記載の装置。
    The apparatus according to any one of claims 1 to 3, further comprising a ferrite core to be mounted on the heating element.
  5.  請求項1~4いずれか記載の装置を用い、
     前記加熱手段により前記発熱体を加熱し、
     前記伝導手段により前記発熱体が発する熱を前記吸着ノズル先端に伝導させ、はんだを溶融し、
     前記吸着手段により前記吸着ノズル先端にて前記電子部材を吸着して、回路基板にはんだ接合により実装された電子部材を前記回路基板より取外す
     ことを特徴とする電子部材の取外し方法。
    Using the apparatus according to any one of claims 1 to 4,
    The heating element is heated by the heating means,
    The heat generated by the heating element is conducted to the tip of the adsorption nozzle by the conduction means to melt the solder.
    A method for removing an electronic member, which comprises sucking the electronic member at the tip of the suction nozzle by the suction means and removing the electronic member mounted on the circuit board by solder bonding from the circuit board.
  6.  はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す装置であって、
     中空を有し、金属より形成される吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、
     前記吸着ノズル先端を電磁誘導加熱により加熱する加熱手段と、
     を備えることを特徴とする装置。
    A device for removing an electronic member mounted on a circuit board by solder bonding from the circuit board.
    A suction means having a hollow shape, including a suction nozzle formed of metal, and sucking the electronic member at the tip of the suction nozzle.
    A heating means that heats the tip of the adsorption nozzle by electromagnetic induction heating,
    A device characterized by comprising.
  7.  はんだ接合により回路基板に実装された電子部材を前記回路基板より取外す装置であって、
     中空を有し、フェライトにより形成される吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、
     前記吸着ノズル先端に装着される発熱体を含み、前記発熱体を電磁誘導加熱により加熱する加熱手段と、
     を備えることを特徴とする装置。
    A device for removing an electronic member mounted on a circuit board by solder bonding from the circuit board.
    A suction means having a hollow shape, including a suction nozzle formed of ferrite, and sucking the electronic member at the tip of the suction nozzle.
    A heating means that includes a heating element attached to the tip of the suction nozzle and heats the heating element by electromagnetic induction heating.
    A device characterized by comprising.
  8.  請求項6または7記載の装置を用い、
     前記加熱手段により前記吸着ノズル先端を加熱し、はんだを溶融し、
     前記吸着手段により前記吸着ノズル先端にて前記電子部材を吸着して、回路基板にはんだ接合により実装された電子部材を前記回路基板より取外す
     ことを特徴とする電子部材の取外し方法。
    Using the apparatus according to claim 6 or 7,
    The tip of the suction nozzle is heated by the heating means to melt the solder, and the solder is melted.
    A method for removing an electronic member, which comprises sucking the electronic member at the tip of the suction nozzle by the suction means and removing the electronic member mounted on the circuit board by solder bonding from the circuit board.
  9.  熱溶融可能な手段により回路基板に実装された電子部材を前記回路基板より取外す装置であって、
     中空を有する吸着ノズルを含み、前記吸着ノズル先端にて前記電子部材を吸着する吸着手段と、
     前記吸着ノズル下部に設けられる発熱体を含み、前記発熱体を電磁誘導加熱により加熱する加熱手段と、
     前記発熱体が発する熱を前記吸着ノズル先端に伝導させる伝導手段と
     を備えることを特徴とする装置。
    A device for removing an electronic member mounted on a circuit board from the circuit board by means capable of hot melting.
    A suction means that includes a suction nozzle having a hollow space and sucks the electronic member at the tip of the suction nozzle.
    A heating means that includes a heating element provided under the suction nozzle and heats the heating element by electromagnetic induction heating.
    A device including a conduction means for conducting heat generated by the heating element to the tip of the adsorption nozzle.
PCT/JP2019/047349 2019-12-04 2019-12-04 Electronic member removal method and device therefor WO2021111538A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/047349 WO2021111538A1 (en) 2019-12-04 2019-12-04 Electronic member removal method and device therefor
JP2021562245A JP7128994B2 (en) 2019-12-04 2019-12-04 Electronic member removal method and device
CN201980102763.8A CN114762466A (en) 2019-12-04 2019-12-04 Method and apparatus for removing electronic component
KR1020227013988A KR102498034B1 (en) 2019-12-04 2019-12-04 Electronic member removal method and device therefor
TW109140291A TWI808356B (en) 2019-12-04 2020-11-18 Method and device for removing electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047349 WO2021111538A1 (en) 2019-12-04 2019-12-04 Electronic member removal method and device therefor

Publications (1)

Publication Number Publication Date
WO2021111538A1 true WO2021111538A1 (en) 2021-06-10

Family

ID=76222601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047349 WO2021111538A1 (en) 2019-12-04 2019-12-04 Electronic member removal method and device therefor

Country Status (5)

Country Link
JP (1) JP7128994B2 (en)
KR (1) KR102498034B1 (en)
CN (1) CN114762466A (en)
TW (1) TWI808356B (en)
WO (1) WO2021111538A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765771U (en) * 1980-09-30 1982-04-20
JPS5793175U (en) * 1980-11-28 1982-06-08
JPS6448669A (en) * 1987-06-08 1989-02-23 Metcal Inc Self-adjusting type heater
JPH09330956A (en) * 1996-06-13 1997-12-22 Nec Corp Method and device for repairing semiconductor device
JP2001298268A (en) * 2000-04-14 2001-10-26 Miyaden Co Ltd High frequency heating solder iron
JP2007510548A (en) * 2003-11-07 2007-04-26 デラウェア キャピタル フォーメーション インコーポレイテッド Temperature self-control type soldering iron with removable chip
JP2009164310A (en) * 2007-12-28 2009-07-23 Sharp Corp Electronic parts repair equipment and electronic parts repairing method
JP2009200170A (en) * 2008-02-20 2009-09-03 Fanuc Ltd Heating device for terminal
KR20160129570A (en) * 2015-04-30 2016-11-09 주식회사 다원시스 Induction heating desoldering device
WO2019108006A1 (en) * 2017-11-30 2019-06-06 Saint-Gobain Glass France An apparatus for soldering a terminal on window glass for a vehicle and a method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470953B2 (en) 1999-08-02 2003-11-25 アオイ電子株式会社 How to attach and detach electronic components to a printed wiring board
JP2004186491A (en) 2002-12-04 2004-07-02 Murata Mfg Co Ltd Suction nozzle for repairing electronic component, and repairing method
TW200850092A (en) * 2004-11-29 2008-12-16 Heetronix Platen for use with a thermal attach and detach system which holds components by vacuum suction

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765771U (en) * 1980-09-30 1982-04-20
JPS5793175U (en) * 1980-11-28 1982-06-08
JPS6448669A (en) * 1987-06-08 1989-02-23 Metcal Inc Self-adjusting type heater
JPH09330956A (en) * 1996-06-13 1997-12-22 Nec Corp Method and device for repairing semiconductor device
JP2001298268A (en) * 2000-04-14 2001-10-26 Miyaden Co Ltd High frequency heating solder iron
JP2007510548A (en) * 2003-11-07 2007-04-26 デラウェア キャピタル フォーメーション インコーポレイテッド Temperature self-control type soldering iron with removable chip
JP2009164310A (en) * 2007-12-28 2009-07-23 Sharp Corp Electronic parts repair equipment and electronic parts repairing method
JP2009200170A (en) * 2008-02-20 2009-09-03 Fanuc Ltd Heating device for terminal
KR20160129570A (en) * 2015-04-30 2016-11-09 주식회사 다원시스 Induction heating desoldering device
WO2019108006A1 (en) * 2017-11-30 2019-06-06 Saint-Gobain Glass France An apparatus for soldering a terminal on window glass for a vehicle and a method thereof

Also Published As

Publication number Publication date
KR102498034B1 (en) 2023-02-10
JPWO2021111538A1 (en) 2021-06-10
JP7128994B2 (en) 2022-09-01
TWI808356B (en) 2023-07-11
KR20220112748A (en) 2022-08-11
TW202139806A (en) 2021-10-16
CN114762466A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
US8931684B2 (en) Induction bonding
US6288376B1 (en) Method and apparatus for melting a bump by induction heating
US20040035840A1 (en) Component installation, removal, and replacement apparatus and method
JP6896369B2 (en) Solder joining device and solder joining method
JP6915843B2 (en) Solder joining device
JP6773331B2 (en) Solder bonding equipment
WO2021111538A1 (en) Electronic member removal method and device therefor
JP2006100454A (en) Bonding device employing solder
TWI528478B (en) Wire bonding device
TW201811129A (en) Metal wiring bonding structure and production method therefor
JP6738057B1 (en) Circuit board and mounting method
TWI711506B (en) Welding joining method and welding joining device
WO2017026286A1 (en) Solder bonding method for mounting component and solder bonding apparatus for mounting component
WO2014103370A1 (en) Component mounting apparatus, component mounting system, and component mounting method
JP2005123581A (en) Joining method and apparatus using solder
JP2006344871A (en) Method and apparatus of reflow soldering
JP2014120649A (en) Heating head, solder device using heating head, and solder method
JP2001257458A (en) Member for soldering, and method of soldering
JP2010162582A (en) Solder removing apparatus and nozzle therefor
JP2006339334A (en) Method and device for junction of fine electric/electronic element
JP2002232132A (en) Board connecting method
JP2008021840A (en) Circuit board, and circuit board mounting method
JP2022078929A (en) Substrate fixing device, electrostatic chuck, and manufacturing method of electrostatic chuck
JP2021053686A (en) Soldering device
JPH09246714A (en) Semiconductor manufacturing method and apparatus and semiconductor integrated circuit device manufactured by using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955353

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021562245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955353

Country of ref document: EP

Kind code of ref document: A1