WO2021109896A1 - 洗涤设备的进水方法及使用该进水方法的洗涤设备 - Google Patents

洗涤设备的进水方法及使用该进水方法的洗涤设备 Download PDF

Info

Publication number
WO2021109896A1
WO2021109896A1 PCT/CN2020/131033 CN2020131033W WO2021109896A1 WO 2021109896 A1 WO2021109896 A1 WO 2021109896A1 CN 2020131033 W CN2020131033 W CN 2020131033W WO 2021109896 A1 WO2021109896 A1 WO 2021109896A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
microbubble
washing device
water inlet
washing
Prior art date
Application number
PCT/CN2020/131033
Other languages
English (en)
French (fr)
Inventor
赵志强
许升
Original Assignee
青岛海尔洗衣机有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to EP20896234.0A priority Critical patent/EP4083299A4/en
Publication of WO2021109896A1 publication Critical patent/WO2021109896A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for
    • D06F35/002Washing machines, apparatus, or methods not otherwise provided for using bubbles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/08Liquid supply or discharge arrangements
    • D06F39/088Liquid supply arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/34Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of water filling
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/04Quantity, e.g. weight or variation of weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/02Water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to washing equipment, in particular to a water intake method of the washing equipment and a washing equipment using the water intake method.
  • Micro-bubble generally refers to tiny bubbles with a diameter of less than fifty microns ( ⁇ m) when the bubbles occur.
  • Micro-bubbles can also be called micro-/nano-bubble, micro-bubble or nano-bubble according to their diameter range.
  • Microbubbles can make the atomic clusters of water molecules smaller. Therefore, the gas molecules in the microbubbles are easier to dissolve into the gaps of the atomic clusters. At the same time, the gas molecules break the water interface and dissolve into the water more easily. Water molecules can always maintain Brownian motion and continue to collide. At the same time, the microbubbles are also settling and rupturing, and the gas stored in the microbubbles will rise. This causes the rising speed of the microbubbles to be greatly reduced.
  • microbubbles Since the rising speed of the microbubbles is slow, the meeting period of the microbubbles (ie, the lifespan of the microbubbles) is greatly extended. In this process, micro-bubbles gather and move in the liquid, resulting in high melting efficiency. A large number of microbubbles rupture in the water will also release a large amount of blasting force, forming negative ion water in the water, so it is easy to absorb the positively charged foreign objects floating in the liquid. The result is that the foreign matter will be absorbed by the microbubbles after it is destroyed by the breakage of the microbubbles, and then slowly float to the surface of the liquid. These characteristics make the microbubbles have strong cleaning and purification capabilities. In addition, the microbubbles can form a certain frequency of ultrasonic waves when they explode, so they have a sterilizing effect. At present, microbubbles have been widely used in washing machines such as washing machines.
  • the Chinese Published Invention Patent Application CN110073050A discloses a washing machine and a cleaning method.
  • the washing machine is provided with a water injection device, and the water injection device includes a first, a second, and a third water supply valve, wherein a fine bubble generator is provided downstream of the first water supply valve and upstream of the detergent box.
  • the fine bubble generator has a throttle part, a through part and a protrusion part.
  • the protruding part is arranged downstream of the throttling part and positioned in the middle of the through part, and generates microbubbles in the water by locally shrinking the cross section of the flow passage.
  • the fine-bubble water can be provided to the detergent box for dissolving the detergent through the fine-bubble generator.
  • the second water supply valve is used to supply tap water to the detergent box.
  • the mixing ratio of the fine bubble water and the tap water in the washing liquid can be controlled.
  • the drawback of the washing machine disclosed in CN110073050A is that the generation of the microbubbles of its microbubble generator all depends on the air dissolved in the tap water itself, so it is impossible to generate enough microbubbles in the water, and the protrusions are used to form the microbubbles. Bubbles are not efficient enough.
  • CN110073050A does not involve how to inject microbubble water and tap water. The main consequence of these defects to the washing machine is that the detergent cannot be dissolved efficiently enough, and the water saving effect of the washing machine is not good enough.
  • the present invention provides a water inlet method for washing equipment.
  • a microbubble spray head that generates microbubble water includes: after the washing device is started, determining a total set value of the water intake of the washing device based on the object to be washed; turning on the first water intake of the washing device Valve to inject the microbubble water; when the water intake of the microbubble water reaches a first set value, open the second water inlet valve of the washing device to inject non-microbubble water; and when the washing device When the water inlet volume reaches the total set value, the water inlet process of the washing equipment is completed.
  • the first water inlet valve is closed.
  • the first water inlet valve is kept open.
  • the method further includes: after the washing device is started, determining the amount of detergent to be added based on the objects to be washed.
  • the water intake method of a washing device with a microbubble nozzle capable of generating microbubble water includes that after the washing device is started, the washing device needs to be determined according to the items to be washed.
  • the water intake of microbubble water reaches the first set value
  • open the second water inlet valve of the washing equipment to inject non-microbubble water into the washing equipment until the water intake of the washing equipment reaches the total set value to complete the washing equipment
  • the water intake process is described in the water intake process.
  • Injecting microbubble water into the washing equipment first can realize the efficient dissolution of the detergent in the microbubble water, and because there are a large number of microbubbles in the water, it can also save water consumption, while the washing liquid level in the washing equipment remains unchanged. Since the amount of microbubble water produced is small, using the second water inlet valve to inject non-microbubble water, such as tap water, into the washing device can help quickly complete the water intake process of the washing device.
  • the present invention also provides a washing device, which uses the water inlet method of the washing device as described above, and the washing device has A microbubble spray head for producing microbubble water
  • the microbubble spray head includes an integrated nozzle and a microbubble bubbler fixed on the outlet end of the integrated nozzle, and a diameter changer is provided in the integrated nozzle
  • a small tapered passage part in which at least one stage of a reduced diameter tapered passage is formed along the water flow direction in the reduced diameter tapered passage part, and a spray hole is formed on the downstream end of the reduced diameter tapered passage part,
  • the nozzle hole is configured such that the water stream pressurized through the at least one-stage diameter tapered channel expands and is ejected from the nozzle hole to generate a negative pressure in the integrated nozzle;
  • An intake passage is provided on the upper part, and the intake passage is positioned so that air can be sucked into the integrated nozzle
  • a spoiler is formed on the inner wall of the tapered channel with a reduced diameter.
  • the spoiler is at least one radial protrusion provided on the inner wall of the tapered channel portion with a reduced diameter or is along the tapered channel with a reduced diameter. At least one spoiler rib extends longitudinally of the inner wall.
  • the microbubble bubbler includes a mesh and a mesh skeleton, and the mesh is attached to the outlet end of the integrated nozzle through the mesh skeleton.
  • At least one overflow hole is arranged on the perforated net framework, and the at least one overflow hole is positioned close to the perforated net.
  • the mesh has at least one pore with a diameter of micrometers.
  • the washing device has a microbubble spray head that generates microbubble water.
  • the microbubble spray head includes an integrated nozzle and a microbubble bubbler fixed on the outlet end of the integrated nozzle.
  • a tapered channel with a reduced diameter is provided in the integrated nozzle, and at least one level of tapered channel with a reduced diameter is formed in the tapered channel with a reduced diameter along the water flow direction for pressurizing water flow.
  • a nozzle hole is formed on the downstream end of the tapered passage portion with a reduced diameter, and the nozzle hole is arranged so that the water flow pressurized through at least one stage of the tapered passage with a reduced diameter is expanded and sprayed from the nozzle hole to generate a negative effect in the integrated nozzle. Pressure is used to suck in air.
  • An air intake passage is provided on the integrated nozzle, and the air intake passage is positioned so that a large amount of air can be sucked into the integrated nozzle through the intake passage by negative pressure and mixed with the water flow to produce bubble water, and the bubble water passes through the micro The bubble bubbler forms micro-bubbly water.
  • the micro-bubble spray head with this design can produce bubble water containing a large number of micro-bubbles in the washing equipment. Inject this kind of microbubble water into the washing equipment first, which not only can efficiently dissolve detergent or washing powder and avoid the deposition of detergent or washing powder, but also because of the large number of microbubbles in the water, it can not lower the washing liquid level. , Can reduce water consumption.
  • the washing device of the present invention not only improves the health care of the user by reducing the residue of washing products, but also effectively improves the user's satisfaction by meeting the needs of the user.
  • the turbulence part formed on the inner wall of the tapered channel part with a reduced diameter can help the water flow to mix the sucked air more effectively downstream by increasing the turbulence of the water.
  • the bubbler includes a mesh and a mesh skeleton, and the mesh is attached to the outlet end of the integrated nozzle through the mesh skeleton.
  • At least one overflow hole is arranged on the hole net skeleton, and the at least one overflow hole is positioned close to the hole net. The overflow hole can prevent the excess water from flooding the air inlet hole, thereby preventing air from being sucked into the integrated nozzle due to the blocking of the air inlet hole, and thus micro-bubble water cannot be generated.
  • Figure 1 is a schematic diagram of the structure of the first embodiment of the washing device of the present invention.
  • Figure 2 is a schematic structural diagram of a second embodiment of the washing device of the present invention.
  • Figure 3 is a perspective schematic view of an embodiment of the microbubble spray head of the washing device of the present invention.
  • FIG. 4 is a top view of the embodiment of the microbubble spray head of the washing device of the present invention shown in FIG. 3;
  • Figure 5 is a left side view of the embodiment of the microbubble spray head of the washing device of the present invention shown in Figure 3;
  • Figure 6 is a front view of the embodiment of the microbubble spray head of the washing device of the present invention shown in Figure 3;
  • Figure 7 is a cross-sectional view of an embodiment of the microbubble spray head of the washing device of the present invention taken along the section line A-A of Figure 6;
  • Figure 8 is a flowchart of a first embodiment of the water inlet method of the washing device of the present invention.
  • Fig. 9 is a flow chart of the second embodiment of the water inlet method of the washing device of the present invention.
  • Pulsator washing machine 11. Box body; 12. Pan seat; 13; Upper cover; 14. Foot of the pulsator washing machine; 21. Outer barrel; 31. Inner barrel; 311. Dehydration hole; 32. Pulsator; 33 , The drive shaft of the pulsator washing machine; 34, the motor of the pulsator washing machine; 35, the balance ring; 41, the drain valve; 42, the drain pipe; 51, the water inlet valve; 52, the micro bubble nozzle; 521, the integrated nozzle; 522.
  • Micro-bubble bubbler 211, inlet end; 212, outlet end; 213, stop part; 214A, first fixed installation part; 214B, second fixed installation part; 215, positioning part; 216, air inlet 217, nozzle hole; 218, spoiler portion; 219, tapered channel with reduced diameter; 219A, tapered channel with reduced diameter of the first stage; 219B, tapered channel with reduced diameter of second stage; 221, hole mesh 222; Hole net skeleton; 223, overflow hole; 224; the connecting part of the hole net; 225, pressure ring; 226, pressure ring hole; 300, annular gap; 9, drum washing machine; 91, shell; 92, outer tube 93. Inner tube; 931. Motor of drum washing machine; 932. Drive shaft of drum washing machine; 933. Bearing; 94. Upper panel; 95. Control panel; 96. Observation window; 97. Door body; 98. Footing.
  • the terms “installation”, “setting”, and “connection” should be understood in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the present invention provides a water intake method for washing equipment, which has a microbubble spray nozzle that generates microbubble water.
  • the water intake method includes: after the washing device is started, determining the total set value of the water intake of the washing device based on the objects to be washed; opening the first water inlet valve of the washing device to inject microbubble water; when the microbubble water enters When the water volume reaches the first set value, the second water inlet valve of the washing device is opened to inject non-microbubble water; and when the water intake of the washing device reaches the total set value, the water intake process of the washing device is completed.
  • the laundry is, for example, clothes that need to be washed or other washable daily necessities.
  • the present invention also provides a washing device that has a microbubble spray head 52 that generates microbubble water and uses the water inlet method as described above.
  • the microbubble spray head 52 includes an integrated nozzle 521 and a microbubble bubbler 522 fixed on the outlet end 212 of the integrated nozzle 521.
  • a tapered channel portion 219 with a reduced diameter is provided in the integrated nozzle 521.
  • at least one stage of a tapered channel with a reduced diameter is formed along the water flow direction C for pressurized water flow.
  • a nozzle hole 217 is formed on the downstream end of the tapered passage portion 219 with a reduced diameter.
  • the nozzle hole is arranged so that the water stream pressurized by at least one stage of the tapered passage with a reduced diameter is expanded and sprayed from the nozzle hole in the integrated nozzle. Negative pressure is generated in 521 for inhaling air.
  • the integrated nozzle 521 is provided with an intake passage, which is positioned so that a large amount of air can be sucked into the integrated nozzle 521 through the intake passage by negative pressure and mixed with the water flow to produce bubble water.
  • the bubble water passes through the micro When the bubbler 522 is formed, microbubble water is formed. Therefore, the microbubble spray head with this design can produce bubble water containing a large number of microbubbles in the washing equipment.
  • tapeered channel portion with reduced diameter refers to a structure in which the diameter or cross section of the channel formed inside the portion gradually becomes smaller along the water flow direction, so that the channel has a substantially tapered shape.
  • Fig. 1 is a schematic structural diagram of a first embodiment of a washing device of the present invention.
  • the washing device is a pulsator washing machine 1.
  • the washing device of the present invention may be an all-in-one dryer.
  • the pulsator washing machine 1 (hereinafter referred to as the washing machine) includes a cabinet 11.
  • a foot 14 is provided at the bottom of the box 11.
  • the upper part of the box body 11 is provided with a disk seat 12, and the disk seat 12 is pivotally connected with an upper cover 13.
  • An outer tub 21 as a tub is provided in the box 11.
  • the inner tub 31 is provided in the outer tub 21, the bottom of the inner tub 31 is provided with a pulsator 32, and the lower part of the outer tub 21 is fixed with a motor 34.
  • the motor 34 is drivingly connected to the pulsator 32 through a transmission shaft 33 and is close to the side wall of the inner tub 31.
  • a dehydration hole 311 is provided at the top.
  • the drain valve 41 is provided on the drain pipe 42, and the upstream end of the drain pipe 42 communicates with the bottom of the outer tub 21.
  • the washing machine also includes a water inlet valve 51 and a micro-bubble spray head 52 communicating with the water inlet valve 51, and the micro-bubble spray head 52 is installed on the top of the outer tub 21. Water enters the microbubble spray head 52 through the water inlet valve 51 to produce microbubble water containing a large number of microbubbles. The microbubble spray head 52 sprays the microbubble water into the detergent box to mix with the detergent, and then enters the inner tub 31 through the detergent box. Used for laundry washing.
  • the micro-bubbles in the inner tub 31 will also hit the stains on the clothes, and will absorb the foreign matter that generates the stains. Therefore, the microbubbles also enhance the decontamination performance of the washing machine.
  • the microbubble spray head can also directly spray microbubble water carrying a large number of microbubbles into the outer tub 21 or the inner tub 31 of the washing machine to further reduce the amount of detergent and enhance the cleaning ability of the washing machine.
  • FIG 2 is a schematic structural view of a second embodiment of the washing device of the present invention.
  • the washing device is a drum washing machine 9.
  • the drum washing machine 9 includes a housing 91 and a foot 98 located at the bottom of the housing.
  • An upper deck 94 is provided on the top of the housing 91.
  • the front side of the housing 91 (the side facing the user) is provided with a door body 97 that allows the user to load laundry into the drum washing machine, and the door body 97 is also provided with an observation window 96 that can see the inside of the washing machine.
  • a sealing window gasket 961 is also provided between the observation window 96 and the housing 91, and the sealing window gasket 961 is fixed on the housing 91.
  • the control panel 95 of the drum washing machine 9 is arranged on the upper part of the front side of the housing 91 to facilitate the user's operation.
  • An outer tube 92 and an inner tube 93 are arranged inside the housing 91.
  • the inner tube 93 is positioned inside the outer tube 92.
  • the inner cylinder 93 is connected to a motor 931 (for example, a direct drive motor) through a transmission shaft 932 and a bearing 933.
  • a water inlet valve 51 is provided on the upper part of the rear side of the housing 91, and the water inlet valve 51 is connected to the microbubble spray head 52 through a water pipe. As shown in FIG. 2, the microbubble spray head 52 is positioned close to the upper part of the front side of the housing 91 and is located below the control panel 95.
  • the microbubble spray head 52 first sprays the microbubble water into the detergent box to mix with the detergent, and then It enters the inner tube 93 through the detergent box and is used for laundry washing.
  • the microbubble spray head 52 can also directly spray microbubble water carrying a large number of microbubbles into the outer tube 92 or the inner tube 93 of the washing machine to further reduce the amount of detergent and enhance the cleaning ability of the washing machine.
  • Figures 3-7 are schematic diagrams of an embodiment of the microbubble spray head 52 of the washing device of the present invention, wherein Figure 3 is a three-dimensional schematic diagram of the embodiment of the microbubble spray head of the washing device of the present invention.
  • 4 is a top view of the embodiment of the microbubble spray head of the washing device of the present invention shown in FIG. 3
  • FIG. 5 is a left side view of the embodiment of the microbubble spray head of the washing device of the present invention shown in FIG. 3
  • FIG. 6 is shown in FIG. 3.
  • the front view of the embodiment of the microbubble spray head of the washing device of the present invention is shown, and FIG.
  • the microbubble spray head 52 of the washing device of the present invention includes an integrated spray pipe 521.
  • a microbubble bubbler 522 is installed on the outlet end 212 of the integrated nozzle 521.
  • the microbubble bubbler 522 is configured to cut and mix the bubbled water when the bubbled water flows through it to produce microbubble water containing a large number of microbubbles. .
  • the integrated nozzle 521 has an inlet end 211 and an outlet end 212.
  • a microbubble bubbler 522 is fixed on the outlet end 212, and the inlet end 211 is used to connect to an external water source.
  • an anti-drop portion 213 may be provided on the inlet end 211, such as an anti-drop rib that bulges radially outward around the outer wall of the inlet end 211 or an annular groove structure in which the outer wall of the inlet end 211 is recessed inward, which can prevent The integrated nozzle falls off the water supply pipe to which it is connected.
  • a first fixed mounting portion 214A, a second fixed mounting portion 214B, and a positioning portion 215 are provided on the outer wall of the integrated nozzle 521 for removing microbubbles
  • the spray head 52 is positioned and fixed to a predetermined position.
  • the first fixed mounting portion 214A and the second fixed mounting portion 214B are symmetrically positioned on the outer wall of the integrated nozzle 521, and are located in the middle of the integrated nozzle 521.
  • the positioning portion 215 is a long rib that protrudes radially outward from the outer wall of the integrated nozzle 521 and extends along the longitudinal direction of the integrated nozzle 521.
  • the first fixed installation portion 214A and the second fixed installation portion 214B are distributed on both sides of the positioning portion 215.
  • only one fixed installation part is provided on the integrated nozzle 521, and the positioning part 215 may also take other suitable forms.
  • the first and second fixed mounting portions 214A, 214B have a screw hole structure to fix the spray head 52 to the target position by screws.
  • the fixed installation part can adopt any suitable connection structure, such as a snap connection structure, a welding connection structure, and the like.
  • a tapered channel portion 219 with a reduced diameter is provided in the integrated nozzle 521.
  • the tapered channel portion 219 with a reduced diameter along the water flow direction C, there are a first-stage reduced-diameter tapered channel 219A and a second-stage reduced-diameter tapered channel 219B.
  • the minimum diameter of the first-stage reduced diameter tapered passage 219A is larger than the maximum diameter of the second-stage reduced diameter tapered passage 219B.
  • a nozzle hole 217 is formed at the downstream end of the tapered passage portion with a reduced diameter.
  • the nozzle hole 217 connects the first-stage reduced diameter tapered passage 219A and the second-stage reduced diameter tapered passage 219B with the downstream passage of the integrated nozzle 521 together.
  • only one-stage diameter-reduced tapered passage may be formed in the tapered passage portion 219 with a reduced diameter, or more than two-stage diameter-reduced tapered passages may be formed.
  • a spoiler 218 is formed on the inner wall of the second-stage diameter-reduced tapered passage 219B.
  • the spoiler 218 is at least one spoiler rib, such as a plurality of spoiler ribs, extending longitudinally along the inner wall of the tapered channel with a reduced diameter.
  • the spoiler 218 may be at least one radial protrusion on the inner wall of the tapered channel with the reduced diameter, for example, one or more cylindrical protrusions.
  • the spoiler 218 may also be formed on the inner wall of the first-stage reduced-diameter tapered channel 219A, or the inner wall of each stage of the reduced-diameter tapered channel may have a spoiler formed on the inner wall.
  • the outer wall of the portion of the tapered passage portion 219 corresponding to the second-stage reduced diameter tapered passage 219B is separated from the inner wall of the integrated nozzle 521, so that the outer wall is separated from the integrated nozzle 521
  • An annular gap 300 is formed between the inner walls. The annular gap 300 facilitates the mixing of air and water, thereby generating more microbubbles.
  • the pipe wall of the integrated nozzle 521 is formed with two rows of multiple air inlet holes 216 arranged in a ring shape, and these air inlet holes together constitute the air inlet passage on the integrated nozzle 521. These air inlet holes 216 are all located close to the nozzle holes 217.
  • the water flow enters from the inlet end 211 of the integrated nozzle 521, and first flows through the first and second stages of the tapered channels 219A, 219B with reduced diameters to pressurize (accelerate) the water flow, while the spoiler 218 increases the water flow.
  • the pressurized water flow is rapidly expanded from the nozzle hole 217 into the downstream channel of the integrated nozzle 521, and negative pressure is generated therein; under the action of the negative pressure, a large amount of external air flows along the air inlet hole 216 In the direction E, it is sucked into the integrated nozzle 521 and mixed with the water flow therein to generate bubble water.
  • more or fewer air intake holes may be provided as required, and they may be arranged in other ways, for example in a staggered manner.
  • the microbubble bubbler 522 includes a mesh 221 and a mesh skeleton 222.
  • the mesh 221 is attached to the outlet end 212 of the integrated nozzle 521 through the mesh skeleton 222.
  • the mesh 221 has at least one pore with a diameter of micrometers.
  • the diameter of the pores is between 0 and 1000 microns; more preferably, the diameter of the pores is between 5 and 500 microns.
  • the mesh 221 may be a plastic fence, a metal mesh, a polymer material mesh, or other suitable mesh structures.
  • a plastic fence usually refers to a polymer fence, which is integrally injection-molded from a polymer material, or a polymer material is first made into a plate, and then a microporous structure is generated on the plate by machining to form a plastic fence.
  • the polymer material net usually refers to a net with a microporous structure that is made by first making a polymer material into a wire, and then weaving the wire into a microporous structure.
  • the polymer material net may include nylon net, cotton fiber net, polyester net, polypropylene net and so on.
  • the mesh 221 may be another mesh structure capable of generating microbubbles, for example, a mesh structure composed of two non-micron-sized honeycomb structures. When the bubble water flows through the hole net 221, the hole net 221 has the effect of mixing and cutting the bubble water, thereby generating micro-bubble water.
  • the mesh frame 222 is cylindrical so as to be able to be sleeved on the outlet end 212 of the integrated nozzle 521.
  • the inner wall of the mesh skeleton 222 is provided with internal threads to engage with the external threads on the outer wall of the outlet end 212.
  • a set gap may be reserved between the engaged external thread and the internal thread to allow air to be sucked into the integrated nozzle through the gap.
  • the mesh frame 222 may be connected to the outlet end of the integrated nozzle 521 by other connection methods, such as welding.
  • the hole mesh skeleton 222 is provided with a plurality of overflow holes 223 along its outer periphery, and these overflow holes are positioned close to the hole mesh 221.
  • the overflow hole 223 can prevent a situation in which air cannot be sucked into the integrated nozzle due to the blockage of the air inlet hole, and therefore microbubble water cannot be generated.
  • more or fewer overflow holes 223 may be provided as required.
  • a pressure ring 225 is further provided between the hole mesh frame 222 and the outlet end 212 of the integrated nozzle 521.
  • a connecting portion 224 is provided on the periphery of the hole mesh 221.
  • the pressing ring 225 presses the connecting portion 224 on the inner wall of the end of the hole mesh frame 222, so that the hole mesh 221 can be firmly fixed, so that the hole mesh 221 will not escape from the outlet of the integrated nozzle 521 when subjected to the impact of high-pressure water flow.
  • the end 212 falls off.
  • the mesh 221 can also be fixed by other structures, for example, the mesh is clamped by a circlip.
  • the pressure ring 225 is also provided with a plurality of pressure ring holes 226.
  • the pressure ring holes 226 can be used to suck in air and mix with the water flow.
  • part of the water is allowed to overflow from the pressure ring holes 226, which not only helps to clean the hole mesh, but also prevents the excess water from flowing back through the intake passages and making it impossible to suck in air through these intake passages. .
  • the following describes the water inlet method of the washing device of the present invention based on the above-mentioned pulsator washing machine and drum washing machine embodiments of the present invention.
  • Fig. 8 is a flow chart of the first embodiment of the water inlet method of the washing device of the present invention.
  • the pulsator or drum washing machine is first energized to start the washing machine (step S1).
  • the laundry in the washing machine is weighed, and based on the obtained weight of the laundry, the total set value of the water intake of the washing machine is determined (step S2).
  • the amount of detergent or washing powder can also be determined.
  • the first water inlet valve (not shown in the figure) of the washing machine is first opened to inject microbubble water into the detergent box of the washing machine.
  • the microbubble water is produced by the microbubble spray head 52 of the washing machine.
  • the control system of the washing machine is responsible for detecting the water intake (also the microbubble water intake) in the washing machine (step S4) and determine whether the microbubble water intake reaches the first set value predetermined by the system (step S4). S5).
  • the water inlet amount may be obtained based on the water inlet level in the washing machine, or may be obtained based on the flow rate of the microbubble nozzle and the time for injecting the microbubble water.
  • the first water inlet valve remains open to continue to inject the microbubble water.
  • step S6 When the microbubble water intake reaches the first set value, close the first water inlet valve (so stop the microbubble water injection), and open the second water inlet valve (not shown in the figure) of the washing machine at the same time to inject non-volatile water into the washing machine.
  • Microbubble water for example, tap water or well water or other water sources (step S6).
  • the control system of the washing machine continues to detect the water intake (including microbubble water and non-microbubble water) in the washing machine and determines whether the water intake in the washing machine reaches a preset total set value (step S7). When the amount of water in the washing machine does not reach the preset total set value, the second water inlet valve remains open to continue to inject non-microbubble water.
  • the second water intake valve is closed, and the water intake process of the washing machine is completed (step S8). The washing machine can then enter the washing and other processes set by the user.
  • Fig. 9 is a flow chart of the second embodiment of the water inlet method of the washing device of the present invention.
  • steps S1, S2, S3, S4, and S5 are the same as steps S1, S2, S3, S4, and S5 in the foregoing embodiment, respectively.
  • step S5 when the microbubble water intake is judged to reach the first set value, the second water inlet valve is opened to inject non-microbubble water into the washing machine, while the first water inlet valve remains open to continue to inject microbubble water (Step S6').
  • Step S6' after the microbubble water intake reaches the first set value, the washing machine is injected with microbubble water and non-microbubble water at the same time.
  • the control system of the washing machine also continues to detect the amount of water (including microbubble water and non-microbubble water) in the washing machine and determines whether the amount of water in the washing machine reaches a preset total set value (step S7). When the amount of water in the washing machine does not reach the preset total set value, both the first and second water inlet valves remain open. When the water intake in the washing machine reaches the preset total set value, the first and second water intake valves are closed, and the water intake process of the washing machine is completed (step S8). The washing machine can then enter the washing and other processes set by the user.

Abstract

一种洗涤设备的进水方法和使用该进水方法的洗涤设备,洗涤设备具有产生微气泡水的微气泡喷头(52),洗涤设备的进水方法包括:在洗涤设备启动后,基于待洗物,确定洗涤设备的进水量的总设定值;打开洗涤设备的第一进水阀以注入微气泡水;当微气泡水的进水量达到第一设定值时,打开洗涤设备的第二进水阀以注入非微气泡水;以及当洗涤设备的进水量达到所述总设定值时,洗涤设备的进水过程完成。先在洗涤设备内注入微气泡水,能够实现洗涤剂在微气泡水中的高效溶解,并且由于水中存在大量微气泡,还能够节省用水量,同时洗涤设备内的洗涤液面保持不变。

Description

洗涤设备的进水方法及使用该进水方法的洗涤设备 技术领域
本发明涉及洗涤设备,具体地涉及洗涤设备的进水方法和使用该进水方法的洗涤设备。
背景技术
微气泡(micro-bubble)通常是指气泡发生时直径在五十微米(μm)以下的微小气泡。微气泡根据其直径范围也可以称为微纳气泡(micro-/nano-bubble)、微米气泡或纳米气泡(nano-bubble)。微气泡能使使水分子的原子团变的更小,因此,微气泡中的气体分子更容易溶入原子团的间隙中,同时,气体分子打破了水的界面,也更容易溶入水中。水分子能够始终保持布朗运动,不断进行冲撞,同时微气泡也在沉降、破裂,微气泡内储存的气体会上升。这导致微气泡的上升速度大大降低。由于微气泡的上升速度缓慢,微气泡的会合期(即微气泡的寿命)因此被大大延长。在这个过程中,微气泡在液体中聚集和运动,导致融化效率高。大量微气泡在水中破裂还会放出大量的爆破力量,在水中形成负离子水,因此容易吸附漂浮在液体中的带正电荷的异物。结果就是异物在其由于微气泡的破碎而被破坏之后会被微气泡吸附,然后慢慢浮到液体表面。这些特性使得微气泡具备很强的清洗和净化能力。另外,微气泡在爆炸时能够形成一定频率的超声波,因此具有杀菌的作用。目前,微气泡已经被广泛应用于洗衣机等洗涤设备中。
例如,中国公开发明专利申请CN110073050A公开了洗衣机和清洁方法。具体地,该洗衣机设有注水装置,而该注水装置包括第一、第二和第三供水阀,其中,在第一供水阀的下游并且在洗涤剂盒的上游设有细微气泡产生器。该细微气泡产生器具有节流部、直通部和突出部。突出部布置在节流部的下游,并且定位在直通部的中部,通过局部地收缩流道截面而在水中产生微气泡。当第一供水阀打开时,通过细微气泡产生器可以向洗涤剂盒提供细微气泡水用于溶解洗涤剂。第二供水阀用于向洗涤剂盒提供自来水。通过控制第一供水阀和第二供水阀的开闭时间或定时时间,可以控制洗涤液中细微气泡水与自来水的混合比例。然而,CN110073050A所公开的洗衣机 存在的缺陷是其细微气泡产生器的微气泡的产生全部依赖于自来水自身中所溶解的空气,因此在水中无法产生足够多的细微气泡,并且利用突出部来形成细微气泡,效率也不够高。另外,在CN110073050A中也没有涉及如何注入微气泡水和自来水。这些缺陷给洗衣机带来的主要后果就是洗涤剂不能得到足够高效的溶解,洗衣机的节水效果也不够好。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有洗衣机的洗涤剂溶解效率不够高、节水效果不够好的技术问题,本发明提供了一种洗涤设备的进水方法,所述洗涤设备具有产生微气泡水的微气泡喷头,所述进水方法包括:在所述洗涤设备启动后,基于待洗物,确定洗涤设备的进水量的总设定值;打开洗涤设备的第一进水阀以注入所述微气泡水;当所述微气泡水的进水量达到第一设定值时,打开所述洗涤设备的第二进水阀以注入非微气泡水;以及当所述洗涤设备的进水量达到所述总设定值时,洗涤设备的进水过程完成。
在上述洗涤设备的进水方法的优选技术方案中,当所述微气泡水的进水量达到所述第一设定值时,所述第一进水阀关闭。
在上述洗涤设备的进水方法的优选技术方案中,在所述微气泡水的进水量达到所述第一设定值后,所述第一进水阀保持打开。
在上述洗涤设备的进水方法的优选技术方案中,所述方法还包括:在所述洗涤设备启动后,基于待洗物,确定洗涤剂的投放量。
本领域技术人员能够理解的是,在本发明的技术方案中,具有能够产生微气泡水的微气泡喷头的洗涤设备的进水方法包括在洗涤设备启动后,需要根据待洗物确定洗涤设备的进水量的总设定值,并且打开洗涤设备的第一进水阀以首先注入微气泡水。当微气泡水的进水量达到第一设定值时,再打开洗涤设备的第二进水阀以向洗涤设备注入非微气泡水,直到洗涤设备的进水量达到总设定值以完成洗涤设备的进水过程。先在洗涤设备内注入微气泡水,能够实现洗涤剂在微气泡水中的高效溶解,并且由于水中存在大量微气泡,还能够节省用水量,同时洗涤设备内的洗涤液面保持不变。由于微气泡水的产生量较小,因此利用第二进水阀在洗涤设备内注入非微气泡水,例如自来水,能够帮助快速完成洗涤设备的进水过程。
为了解决现有洗衣机的洗涤剂溶解效率不够高、节水效果不够好的技术问题,本发明还提供一种洗涤设备,其使用根据如上所述的洗涤设 备的进水方法,所述洗涤设备具有产生微气泡水的微气泡喷头,所述微气泡喷头包括一体式喷管和固定在所述一体式喷管的出口端上的微气泡起泡器,在所述一体式喷管内设有直径变小锥形通道部,在所述直径变小锥形通道部内沿着水流方向形成至少一级直径变小锥形通道,并且在所述直径变小锥形通道部下游端上形成有喷孔,所述喷孔配置成使得通过所述至少一级直径变小锥形通道加压的水流从所述喷孔膨胀喷出后在所述一体式喷管内产生负压;在所述一体式喷管上设有进气通道,所述进气通道定位成使得空气借助所述负压能够通过所述进气通道被吸入所述一体式喷管并且与所述水流混合产生气泡水,所述气泡水通过所述微气泡起泡器时形成微气泡水。
在上述洗涤设备的优选技术方案中,在直径变小锥形通道部的内壁上形成扰流部。
在上述洗涤设备的优选技术方案中,所述扰流部是设置在所述直径变小锥形通道部的内壁上的至少一个径向突起部或者是沿着所述直径变小锥形通道部的内壁纵向延伸的至少一个扰流筋。
在上述洗涤设备的优选技术方案中,所述微气泡起泡器包括孔网和孔网骨架,所述孔网通过所述孔网骨架附接到所述一体式喷管的出口端上。
在上述洗涤设备的优选技术方案中,所述孔网骨架上配置有至少一个溢流孔,所述至少一个溢流孔定位靠近所述孔网。
在上述洗涤设备的优选技术方案中,所述孔网具有至少一道细孔的直径达微米级。
本领域技术人员能够理解的是,在本发明的技术方案中,洗涤设备具有产生微气泡水的微气泡喷头。该微气泡喷头包括一体式喷管和固定在一体式喷管的出口端上的微气泡起泡器。在一体式喷管内设有直径变小锥形通道部,在直径变小锥形通道部内沿着水流方向形成至少一级直径变小锥形通道用于加压水流。在直径变小锥形通道部下游端上形成有喷孔,该喷孔配置成使得通过至少一级直径变小锥形通道加压的水流从喷孔膨胀喷出后在一体式喷管内产生负压用于吸入空气。在一体式喷管上设有进气通道,该进气通道定位成使得大量空气借助负压能够通过进气通道被吸入一体式喷管并且与水流混合产生气泡水,该气泡水通过所述微气泡起泡器时形成微气泡水。因此,通过该设计的微气泡喷头可以在洗涤设备内产生含有大量微气 泡的气泡水。首先向洗涤设备内注入这种微气泡水,不仅能够高效地溶解洗涤剂或洗衣粉,避免洗涤剂或洗衣粉的沉积,而且由于水中的大量微气泡,能够在不降低洗涤液面的情况下,就能减少用水量。另外,本发明的洗涤设备不仅通过减少洗涤用品的残留提高了对用户的健康呵护,而且通过满足用户的需求有效提高用户的满意度。
优选地,在直径变小锥形通道部的内壁上形成的扰流部通过加大水的紊流能够帮助水流在下游更加有效地混合被吸入的空气。
优选地,起泡器包括孔网和孔网骨架,所述孔网通过所述孔网骨架附接到所述一体式喷管的出口端上。在所述孔网骨架上配置有至少一个溢流孔,所述至少一个溢流孔定位靠近所述孔网。溢流孔能够防止多余的水淹没进气孔,从而阻止因进气孔被堵而使空气无法被吸入一体式喷管因此无法产生微气泡水的情形。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是本发明洗涤设备的第一种实施例的结构示意图;
图2是本发明洗涤设备的第二种实施例的结构示意图;
图3是本发明洗涤设备的微气泡喷头的实施例的立体示意图;
图4是图3所示的本发明洗涤设备的微气泡喷头的实施例的俯视图;
图5是图3所示的本发明洗涤设备的微气泡喷头的实施例的左视图;
图6是图3所示的本发明洗涤设备的微气泡喷头的实施例的正视图;
图7是沿着图6的剖面线A-A截取的本发明洗涤设备的微气泡喷头的实施例的剖视图;
图8是本发明洗涤设备的进水方法的第一种实施例的流程图;
图9是本发明洗涤设备的进水方法的第二种实施例的流程图。
附图标记列表:
1、波轮洗衣机;11、箱体;12、盘座;13;上盖;14、波轮洗衣机的地脚;21、外桶;31、内桶;311、脱水孔;32、波轮;33、波轮洗 衣机的传动轴;34、波轮洗衣机的电机;35、平衡环;41、排水阀;42、排水管;51、进水阀;52、微气泡喷头;521、一体式喷管;522、微气泡起泡器;211、进口端;212、出口端;213、止脱部;214A、第一固定安装部;214B、第二固定安装部;215、定位部;216、进气孔;217、喷孔;218、扰流部;219、直径变小锥形通道部;219A、第一级直径变小锥形通道;219B、第二级直径变小锥形通道;221、孔网;222;孔网骨架;223、溢流孔;224;孔网的连接部;225、压环;226、压环孔;300、环形间隙;9、滚筒洗衣机;91、外壳;92、外筒;93、内筒;931、滚筒洗衣机的电机;932、滚筒洗衣机的传动轴;933、轴承;94、上台面板;95、控制面板;96、观察窗;97、门体;98、滚筒洗衣机的地脚。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决现有洗衣机的洗涤剂溶解效率不够高、节水效果不够好的技术问题,本发明提供了一种洗涤设备的进水方法,该洗涤设备具有产生微气泡水的微气泡喷头。该进水方法包括:在洗涤设备启动后,基于待洗物,确定洗涤设备的进水量的总设定值;打开洗涤设备的第一进水阀以注入微气泡水;当微气泡水的进水量达到第一设定值时,打开洗涤设备的第二进水阀 以注入非微气泡水;以及当洗涤设备的进水量达到总设定值时,洗涤设备的进水过程完成。待洗物例如是需要洗涤的衣物或其它可洗涤的生活用品。
本发明还提供一种洗涤设备,该洗涤设备具有产生微气泡水的微气泡喷头52并且使用如上所述的进水方法。该微气泡喷头52包括一体式喷管521和固定在一体式喷管521的出口端212上的微气泡起泡器522。在一体式喷管521内设有直径变小锥形通道部219。在直径变小锥形通道部219内沿着水流方向C形成至少一级直径变小锥形通道用于加压水流。在直径变小锥形通道部219下游端上形成有喷孔217,该喷孔配置成使得通过至少一级直径变小锥形通道加压的水流从喷孔膨胀喷出后在一体式喷管521内产生负压用于吸入空气。在一体式喷管521上设有进气通道,该进气通道定位成使得大量空气借助负压能够通过进气通道被吸入一体式喷管521并且与水流混合产生气泡水,该气泡水通过微气泡起泡器522时形成微气泡水。因此,通过该设计的微气泡喷头可以在洗涤设备内产生含有大量微气泡的气泡水。首先向洗涤设备内注入这种微气泡水,不仅能够高效地溶解洗涤剂或洗衣粉,避免洗涤剂或洗衣粉的沉积,而且由于水中的大量微气泡,能够在不降低洗涤液面的情况下,就能减少用水量,从而不仅有利于用户的健康,而且还能改善用户的体验。
在本文中所说的“直径变小锥形通道部”是指形成在该部分内部的通道直径或通道横截面沿着水流方向逐渐变小从而使该通道呈大致锥形的结构。
参照图1,图1是本发明洗涤设备的第一种实施例的结构示意图。在该实施例中,洗涤设备为一种波轮洗衣机1。替代地,本发明的洗涤设备可以是烘干一体机。
如图1所示,波轮洗衣机1(以下简称洗衣机)包括箱体11。在箱体11的底部设有地脚14。箱体11的上部设置有盘座12,盘座12枢转连接有上盖13。在箱体11内设置有作为盛水桶的外桶21。在外桶21内设置有内桶31,内桶31的底部设置有波轮32,外桶21的下部固定有电机34,电机34通过传动轴33与波轮32驱动连接,在内桶31的侧壁上靠近顶端设有脱水孔311。排水阀41设置在排水管42上,排水管42的上游端与外桶21的底部连通。该洗衣机还包括进水阀51和与进水阀51连通的微气泡喷头52,微气泡喷头52被安装在外桶21的顶部上。水经由进水阀51进入微气泡喷头52以产生包含大量微气泡 的微气泡水,微气泡喷头52将微气泡水先喷入洗涤剂盒以与洗涤剂混合,然后经由洗涤剂盒进入内桶31,用于衣物清洗。水中的微气泡在破碎过程中对洗涤剂产生撞击,并且微气泡通过携带的负电荷也能够吸附洗涤剂,因此微气泡能够增加洗涤剂与水的混合程度,从而降低洗涤剂的用量并减少洗涤剂在衣物上的残留量。另外,微气泡在内桶31内也会撞击衣物上的污渍,并且会吸附产生污渍的异物。因此,微气泡还增强了洗衣机的去污性能。可选地,微气泡喷头还可以直接将携带大量微气泡的微气泡水喷入洗衣机的外桶21或内桶31,以进一步降低洗涤剂的用量并增强洗衣机的清洁能力。
参照图2,图2是本发明洗涤设备的第二种实施例的结构示意图。在该实施例中,洗涤设备为一种滚筒洗衣机9。
如图2所示,滚筒洗衣机9包括外壳91和位于外壳底部的地脚98。在外壳91的顶部设有上台面板94。外壳91的前侧(面对用户的操作侧)上设有允许用户向滚筒洗衣机内装填衣物等的门体97,而门体97上还设有能够看到洗衣机内部的观察窗96。在观察窗96与外壳91之间还设置密封窗垫961,并且该密封窗垫961固定在外壳91上。滚筒洗衣机9的控制面板95布置在外壳91的前侧的上部,以便于用户的操作。在外壳91的内部则布置有外筒92和内筒93。内筒93定位在外筒92的内部。内筒93通过传动轴932和轴承933连接到电机931(例如直驱电机)。在外壳91的后侧的上部上设有进水阀51,该进水阀51通过水管连接到微气泡喷头52。如图2所示,微气泡喷头52定位靠近外壳91的前侧上部,并且位于控制面板95的下方。类似于上述实施例,水经由进水阀51通过水管进入微气泡喷头52以产生包含大量微气泡的微气泡水,微气泡喷头52将微气泡水先喷入洗涤剂盒以与洗涤剂混合,然后经由洗涤剂盒进入内筒93,用于衣物清洗。可选地,微气泡喷头52还可以直接将携带大量微气泡的微气泡水喷入洗衣机的外筒92或内筒93,以进一步降低洗涤剂的用量并增强洗衣机的清洁能力
参照图3-图7,图3-图7是本发明洗涤设备的微气泡喷头52的实施例的示意图,其中,图3是是本发明洗涤设备的微气泡喷头的实施例的立体示意图,图4是图3所示的本发明洗涤设备的微气泡喷头的实施例的俯视图,图5是图3所示的本发明洗涤设备的微气泡喷头的实施例的左视图,图6是图3所示的本发明洗涤设备的微气泡喷头的实施例的正视图,以及图7是沿着图6的剖面线A-A截取的本发明洗涤设备的微气泡喷头的实施例的剖视图。如图 3-7所示,在一种或多种实施例中,本发明洗涤设备的微气泡喷头52包括一体式喷管521。在一体式喷管521的出口端212上安装有微气泡起泡器522,微气泡起泡器522配置成能够在气泡水流过其时切割和混合气泡水而产生含有大量微气泡的微气泡水。
参照图3,在一种或多种实施例中,一体式喷管521具有进口端211和出口端212。在出口端212上固定有微气泡起泡器522,而进口端211则用于连接到外部水源。可选地,在进口端211上可设置止脱部213,例如围绕进口端211的外壁径向向外隆起的止脱筋或者进口端211的外壁向内凹进的环形沟槽结构,能够防止一体式喷管从其所连接的提供水源的管道上脱落。
继续参照图3,在一种或多种实施例中,在一体式喷管521的外壁上设有第一固定安装部214A,第二固定安装部214B,以及定位部215,用于将微气泡喷头52定位和固定到预定位置。
参照图4-6,第一固定安装部214A和第二固定安装部214B对称地定位在一体式喷管521的外壁上,并且位于一体式喷管521的中部。定位部215则为长条肋,从一体式喷管521的外壁径向向外突出,并且沿着一体式喷管521的纵向延伸。第一固定安装部214A和第二固定安装部214B分布在定位部215的两侧。可选地,在一体式喷管521上只设置一个固定安装部,而定位部215也可以采用其它合适的形式。
在一种或多种实施例中,第一和第二固定安装部214A,214B为螺钉孔结构,以通过螺钉将喷头52固定到目标位置。然而,固定安装部可采用任何合适的连接结构,例如卡扣连接结构、焊接连接结构等。
参照图7,在一体式喷管521内,设有直径变小锥形通道部219。在直径变小锥形通道部219内,沿着水流方向C具有第一级直径变小锥形通道219A和第二级直径变小锥形通道219B。第一级直径变小锥形通道219A的最小直径大于第二级直径变小锥形通道219B的最大直径。在直径变小锥形通道部的下游端上形成有喷孔217。该喷孔217将第一级直径变小锥形通道219A和第二级直径变小锥形通道219B与一体式喷管521的下游通道连通在一起。在替代的一种或多种实施例中,在直径变小锥形通道部219内可以只形成一级直径变小锥形通道,也可以形成多于两级的直径变小锥形通道。
继续参照图7,在第二级直径变小锥形通道219B的内壁上形成有扰流部218。在一种或多种实施例中,扰流部218是沿着该级直径变小锥形 通道的内壁纵向延伸的至少一个扰流筋,例如多个扰流筋。在替代的实施例中,扰流部218可以是在该级直径变小锥形通道的内壁上的至少一个径向突起部,例如一个或多个的柱状突起。在替代的实施例中,扰流部218也可以形成在第一级直径变小锥形通道219A的内壁上,或者每一级直径变小锥形通道的内壁上都形成有扰流部。
如图7所示,直径变小锥形通道部219的对应第二级直径变小锥形通道219B的部分的外壁与一体式喷管521的内壁分离,从而在该外壁与一体式喷管521的内壁之间形成环形间隙300。该环形间隙300有助于空气与水流的混合,进而产生更多的微气泡。
如图7所示,一体式喷管521的管壁上形成有两排布置成环形的多个进气孔216,这些进气孔一起构成一体式喷管521上的进气通道。这些进气孔216定位都靠近喷孔217。水流从一体式喷管521的进口端211进入,先流过第一级和第二级直径变小锥形通道219A、219B以加压(加速)水流,而扰流部218则加大水流的涡流;加压后的水流从喷孔217被快速膨胀地喷入到一体式喷管521的下游通道,并且在其中产生负压;在负压的作用下,大量外部空气从进气孔216沿着方向E被吸入一体式喷管521并且与其中的水流混合而产生气泡水。在替代的实施例中,根据需要,可以设置更多或更少的进气孔,并且能够以其它方式排布,例如以交错方式排列。
继续参照图3-7,微气泡起泡器522包括孔网221和孔网骨架222。孔网221通过孔网骨架222附接到一体式喷管521的出口端212上。
在一种或多种实施例中,孔网221具有至少一道细孔的直径达微米级。优选地,细孔的直径在0~1000微米之间;更优选地,细孔的直径在5~500微米之间。孔网221可以是塑料栅栏,金属网,高分子材料网,或者其它合适的孔网结构。塑料栅栏通常是指高分子栅栏,其由高分子材料一体注塑成型,或者先将高分子材料制成板,再在该板上通过机加工产生微孔结构而形成塑料栅栏。高分子材料网通常是指通过先将高分子材料制成丝,再用这丝编织成的具有微孔结构的网。高分子材料网可以包括尼龙网,棉纶网,涤纶网,丙纶网等。替代地,孔网221可以是能够产生微气泡的其它孔网结构,例如由两个非微米级的蜂窝状结构组成的孔网结构。当气泡水流过孔网221时,孔网221对气泡水产生混合和切割的作用,从而产生微气泡水。
参照图7,孔网骨架222呈圆筒状以便能够套在一体式喷管521的出口端212上。在一种或多种实施例中,孔网骨架222的内壁上设置有内螺纹以与出口端212的外壁上的外螺纹啮合。可选地,在啮合的外螺纹与内螺纹之间可以预留设定的间隙以允许空气通过该间隙被吸入一体式喷管内。在替代的实施例中,孔网骨架222可以通过其它连接方式与一体式喷管521的出口端连接,例如焊接的方式。
如图7所示,在一种或多种实施例中,孔网骨架222沿着其外周设有多个溢流孔223,并且这些溢流孔定位靠近孔网221。当气泡水不能及时从孔网221通过时,多余的气泡水能够从溢流孔223流出,从而能够防止多余的水回流而淹没进气孔216。因此,溢流孔223能够阻止因进气孔被堵而使空气无法被吸入一体式喷管因此无法产生微气泡水的情形。在替代的实施例中,根据需要,可以设置更多或更少的溢流孔223。
进一步参照图7,在一种或多种实施例中,在孔网骨架222与一体式喷管521的出口端212之间还设置压环225。相应地,孔网221的周边上设有连接部224。压环225将该连接部224压在孔网骨架222的端部内壁上,从而能够牢固地固定孔网221,使得孔网221在经受高压水流冲击的时候不会从一体式喷管521的出口端212上脱落。在替代的实施例中,孔网221也可以利用其它结构进行固定,例如用卡簧卡住孔网。在一种或多种实施例中,压环225上也设有多个压环孔226。在喷射水流流量不大的情况下,这些压环孔226可以用于将空气吸入并与水流混合。在喷射水流流量比较大时,允许部分水从这些压环孔226溢出,由此不仅能够帮助清洁孔网,而且还能阻止多余的水逆流通过进气通道而导致无法通过这些进气通道吸入空气。
下面基于本发明的上述波轮洗衣机和滚筒洗衣机实施例描述本发明洗涤设备的进水方法。
图8是本发明洗涤设备的进水方法的第一种实施例的流程图。如图8所示,在该实施例中,首先给波轮或滚筒洗衣机通电以启动洗衣机(步骤S1)。然后,对洗衣机内的待洗衣物进行称重,并且基于获得的待洗衣物的重量,确定洗衣机的进水量的总设定值(步骤S2)。可选地,基于获得的待洗衣物的重量,还能够确定洗涤剂或洗衣粉的投放量。进一步地,在步骤S3中,首先打开洗衣机的第一进水阀(图中未示出)以向洗衣机的洗涤剂盒 注入微气泡水。该微气泡水通过洗衣机的微气泡喷头52产生。在开始注入微气泡水后,洗衣机的控制系统负责检测洗衣机内的进水量(也是微气泡水进水量)(步骤S4)并且判断微气泡的进水量是否达到系统预定的第一设定值(步骤S5)。可选地,该进水量可以基于洗衣机内的进水水位获得,也可以基于微气泡喷头的流量与注入微气泡水的时间获得。当微气泡水进水量未达到第一设定值时,第一进水阀保持打开以继续注入微气泡水。当微气泡水进水量达到第一设定值时,关闭第一进水阀(因此停止注入微气泡水),同时打开洗衣机的第二进水阀(图中未示出)以向洗衣机注入非微气泡水,例如自来水或井水等水源(步骤S6)。洗衣机的控制系统继续检测洗衣机内的进水量(包括微气泡水和非微气泡水)并且判断洗衣机内的进水量是否达到预设的总设定值(步骤S7)。当洗衣机内的进水量没有达到预设的总设定值时,第二进水阀保持打开状态以继续注入非微气泡水。当洗衣机内的进水量达到预设的总设定值时,关闭第二进水阀,洗衣机的进水过程完成(步骤S8)。洗衣机然后可以进入由用户设定的洗涤等过程。
图9是本发明洗涤设备的进水方法的第二种实施例的流程图。如图9所示,在该实施例中,步骤S1、S2、S3、S4、S5分别同上述实施例中的步骤S1、S2、S3、S4、S5。在步骤S5中,当微气泡水进水量被判断达到第一设定值时,打开第二进水阀以向洗衣机注入非微气泡水,同时第一进水阀保持打开以继续注入微气泡水(步骤S6’)。换言之,根据步骤S6’,在微气泡水进水量达到第一设定值后,洗衣机被同时注入微气泡水和非微气泡水。洗衣机的控制系统也继续检测洗衣机内的进水量(包括微气泡水和非微气泡水)并且判断洗衣机内的进水量是否达到预设的总设定值(步骤S7)。当洗衣机内的进水量没有达到预设的总设定值时,第一和第二进水阀均保持打开。当洗衣机内的进水量达到预设的总设定值时,关闭第一和第二进水阀,洗衣机的进水过程完成(步骤S8)。洗衣机然后可以进入由用户设定的洗涤等过程。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对来自不同实施例的技术特征进行组合,也可以对相关技术特征作出等同的 更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种洗涤设备的进水方法,其特征在于,所述洗涤设备具有产生微气泡水的微气泡喷头,所述进水方法包括:
    在所述洗涤设备启动后,基于待洗物,确定所述洗涤设备的进水量的总设定值;
    打开所述洗涤设备的第一进水阀以注入所述微气泡水;
    当所述微气泡水的进水量达到第一设定值时,打开所述洗涤设备的第二进水阀以注入非微气泡水;以及
    当所述洗涤设备的进水量达到所述总设定值时,所述洗涤设备的进水过程完成。
  2. 根据权利要求1所述的洗涤设备的进水方法,其特征在于,当所述微气泡水的进水量达到所述第一设定值时,所述第一进水阀关闭。
  3. 根据权利要求1所述的洗涤设备的进水方法,其特征在于,在所述微气泡水的进水量达到所述第一设定值后,所述第一进水阀保持打开。
  4. 根据权利要求1-3任一项所述的洗涤设备的进水方法,其特征在于,所述方法还包括:在所述洗涤设备启动后,基于待洗物,确定洗涤剂的投放量。
  5. 一种洗涤设备,其使用根据权利要求1-4任一项所述的洗涤设备的进水方法,其特征在于,所述洗涤设备具有产生微气泡水的微气泡喷头,所述微气泡喷头包括一体式喷管和固定在所述一体式喷管的出口端上的微气泡起泡器,
    在所述一体式喷管内设有直径变小锥形通道部,在所述直径锥形通道部内沿着水流方向形成至少一级直径变小锥形通道,并且在所述直径锥形通道部下游端上形成有喷孔,所述喷孔配置成使得通过所述至少一级直径变小锥形通道加压的水流从所述喷孔膨胀喷出后在所述一体式喷管内产生负压;
    在所述一体式喷管上设有进气通道,所述进气通道定位成使得空气借助所述负压能够通过所述进气通道被吸入所述一体式喷管并且与所述水流混合产生气泡水,所述气泡水通过所述微气泡起泡器时形成微气泡水。
  6. 根据权利要求5所述的洗涤设备,其特征在于,在直径变小锥形通道部的内壁上形成扰流部。
  7. 根据权利要求6所述的洗涤设备,其特征在于,所述扰流部是设置在所述直径变小锥形通道部的内壁上的至少一个径向突起部或者是沿着所述直径变小锥形通道部的内壁纵向延伸的至少一个扰流筋。
  8. 根据权利要求5所述的洗涤设备,其特征在于,所述微气泡起泡器包括孔网和孔网骨架,所述孔网通过所述孔网骨架附接到所述一体式喷管的出口端上。
  9. 根据权利要求8所述的洗涤设备,其特征在于,所述孔网骨架上配置有至少一个溢流孔,所述至少一个溢流孔定位靠近所述孔网。
  10. 根据权利要求8所述的洗涤设备,其特征在于,所述孔网具有至少一道细孔的直径达微米级。
PCT/CN2020/131033 2019-12-04 2020-11-24 洗涤设备的进水方法及使用该进水方法的洗涤设备 WO2021109896A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20896234.0A EP4083299A4 (en) 2019-12-04 2020-11-24 METHOD OF INTRODUCING WATER INTO A WASHING MACHINE AND WASHING MACHINE USING THE METHOD OF INTRODUCING WATER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911228517.5A CN112899990A (zh) 2019-12-04 2019-12-04 洗涤设备的进水方法及使用该进水方法的洗涤设备
CN201911228517.5 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021109896A1 true WO2021109896A1 (zh) 2021-06-10

Family

ID=76111114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131033 WO2021109896A1 (zh) 2019-12-04 2020-11-24 洗涤设备的进水方法及使用该进水方法的洗涤设备

Country Status (3)

Country Link
EP (1) EP4083299A4 (zh)
CN (1) CN112899990A (zh)
WO (1) WO2021109896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622374A (zh) * 2022-03-21 2022-06-14 海信(山东)冰箱有限公司 清洗装置控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061079A (zh) * 2012-11-06 2013-04-24 南通芯迎设计服务有限公司 一种提高洗净率的洗衣机
JP2015093219A (ja) * 2013-11-11 2015-05-18 スプレーイングシステムスジャパン株式会社 マイクロバブル発生装置およびマイクロバブルスプレー装置
CN107583480A (zh) * 2017-10-17 2018-01-16 上海久田汽车零部件制造有限公司 微气泡产生器及其制作方法
CN107850236A (zh) * 2015-07-29 2018-03-27 东芝生活电器株式会社 液体用电磁阀、液体用电磁阀的制造方法及洗衣机
CN110073050A (zh) 2017-04-13 2019-07-30 东芝生活电器株式会社 清洁方法、洗衣机、餐具清洁机以及便器
CN110494606A (zh) * 2017-05-22 2019-11-22 东芝生活电器株式会社 洗衣机
CN110506140A (zh) * 2017-04-05 2019-11-26 东芝生活电器株式会社 洗衣机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224283A (ja) * 1995-02-21 1996-09-03 Ube Ind Ltd 気泡ノズル
CN102383292A (zh) * 2010-09-03 2012-03-21 苏州三星电子有限公司 洗衣机用泡沫发生器
KR101291238B1 (ko) * 2010-11-11 2013-08-01 주식회사 그린기술산업 역류방지 기능이 구비된 멤브레인 산기관
CN204429523U (zh) * 2015-01-21 2015-07-01 北京康之维科技有限公司 一种节水喷头及应用该喷头的洁具
CN205926427U (zh) * 2016-08-10 2017-02-08 郑松青 一种微泡清洗器
JP6419870B2 (ja) * 2017-02-06 2018-11-07 東芝ライフスタイル株式会社 洗濯機
KR102431999B1 (ko) * 2017-03-24 2022-08-16 삼성전자주식회사 세탁기
CN207137714U (zh) * 2017-08-21 2018-03-27 上海久田汽车零部件制造有限公司 微气泡产生器
CN207591642U (zh) * 2017-09-22 2018-07-10 乔登卫浴(江门)有限公司 一种微纳米气泡发生器及应用该发生器的喷淋装置
JP6799027B2 (ja) * 2018-05-15 2020-12-09 東芝ライフスタイル株式会社 洗濯機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061079A (zh) * 2012-11-06 2013-04-24 南通芯迎设计服务有限公司 一种提高洗净率的洗衣机
JP2015093219A (ja) * 2013-11-11 2015-05-18 スプレーイングシステムスジャパン株式会社 マイクロバブル発生装置およびマイクロバブルスプレー装置
CN107850236A (zh) * 2015-07-29 2018-03-27 东芝生活电器株式会社 液体用电磁阀、液体用电磁阀的制造方法及洗衣机
CN110506140A (zh) * 2017-04-05 2019-11-26 东芝生活电器株式会社 洗衣机
CN110073050A (zh) 2017-04-13 2019-07-30 东芝生活电器株式会社 清洁方法、洗衣机、餐具清洁机以及便器
CN110494606A (zh) * 2017-05-22 2019-11-22 东芝生活电器株式会社 洗衣机
CN107583480A (zh) * 2017-10-17 2018-01-16 上海久田汽车零部件制造有限公司 微气泡产生器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083299A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622374A (zh) * 2022-03-21 2022-06-14 海信(山东)冰箱有限公司 清洗装置控制方法

Also Published As

Publication number Publication date
EP4083299A1 (en) 2022-11-02
CN112899990A (zh) 2021-06-04
EP4083299A4 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
US10988887B2 (en) Washing machine
CN211368092U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
JP2007117315A (ja) 食器洗浄機
CN112831986B (zh) 微气泡处理剂盒组件及具有其的洗涤设备
WO2021109896A1 (zh) 洗涤设备的进水方法及使用该进水方法的洗涤设备
KR20180108031A (ko) 세탁기 및 세탁기의 미세 기포 생성기 및 세탁기의 미세 기포를 포함한 세탁수의 공급 방법
CN211772131U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN211395014U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN211368090U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN211395013U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
WO2021098833A1 (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
WO2021109938A1 (zh) 微气泡喷头、微气泡处理剂盒组件及洗涤设备
KR20180108030A (ko) 세탁기 및 세탁기의 미세 기포 생성기 및 세탁기의 미세 기포를 포함한 세탁수의 공급 방법
JP2005102852A (ja) 洗濯装置及び同装置に使用する気泡発生用ノズル
WO2021098838A1 (zh) 微气泡处理剂盒组件及具有其的洗涤设备
CN112647246A (zh) 微气泡发生器及具有该微气泡发生器的洗涤设备
CN211368091U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN112853688A (zh) 微气泡处理剂盒组件及具有其的洗涤设备
CN211395015U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN112899992A (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN113026298A (zh) 微气泡喷头、微气泡处理剂盒组件及洗涤设备
WO2021109971A1 (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
WO2021068774A1 (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN112831984A (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
CN112899991A (zh) 微气泡处理剂盒组件及具有其的洗涤设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020896234

Country of ref document: EP

Effective date: 20220704