WO2021109837A1 - 高压输出变换器 - Google Patents

高压输出变换器 Download PDF

Info

Publication number
WO2021109837A1
WO2021109837A1 PCT/CN2020/128672 CN2020128672W WO2021109837A1 WO 2021109837 A1 WO2021109837 A1 WO 2021109837A1 CN 2020128672 W CN2020128672 W CN 2020128672W WO 2021109837 A1 WO2021109837 A1 WO 2021109837A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrically connected
terminal
transformer
diode
Prior art date
Application number
PCT/CN2020/128672
Other languages
English (en)
French (fr)
Inventor
尹向阳
刘晓旭
王志燊
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2021109837A1 publication Critical patent/WO2021109837A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a converter circuit, in particular to a high-voltage output converter.
  • a high-voltage output power supply is required in many occasions: in high-voltage direct current transmission, the power supply terminal needs to increase the voltage; in medical X-ray machines, the ray tube needs to work under a high-voltage electric field; in industrial electrostatic dust removal applications High voltage direct current needs to be applied between the discharge electrode and the dust collecting electrode... If the basic topology of flyback is used in the field of high output voltage, the voltage can be increased by multi-winding or multi-stage voltage doubling rectification formed by capacitors and diodes. To achieve the purpose of high output voltage, but the above methods have certain limitations.
  • flyback and forward circuits have their own advantages: the flyback circuit only needs one power tube, no output inductor is needed, and the structure is simple; the forward circuit can directly transmit energy with high efficiency. Since the polarity of the forward circuit and the flyback circuit on the secondary side of the transformer are opposite, you cannot simply combine the two directly. It is necessary to add devices on the secondary side to make the final output polarity of the two consistent to make the output normal work.
  • FIG. 1 A specific circuit topology of a forward and flyback circuit in the prior art in this field is shown in FIG. 1. This scheme uses two working processes of forward and flyback. Compared with the separate flyback scheme, this scheme increases the forward working process and improves work efficiency to a certain extent, but it still does not solve the leakage inductance energy problem and The problem with ZVS.
  • the technical problem solved by the present invention is to overcome the shortcomings of the existing methods, and propose a high-voltage output converter, which can improve the energy transmission efficiency of the switching power supply circuit during high-voltage output, and provides related control schemes, so that different High efficiency can be maintained under load.
  • the high-voltage output converter of the present invention includes an input positive terminal, an input negative terminal, a transformer TX1, a MOS tube Q1, a MOS tube Q2, a diode D1, a diode D2, a diode D3, a capacitor C1, a capacitor C2, a capacitor C3, a capacitor C4, and an output positive terminal
  • the output negative terminal its connection relationship is:
  • the positive input terminal is electrically connected to the end of the same name of the primary winding P1 of the transformer TX1
  • the synonymous terminal of the primary winding P1 of the transformer TX1 is electrically connected to the drain of the MOS tube Q1
  • the source of the MOS tube Q1 is electrically connected to the negative input terminal.
  • the drain of the transistor Q1 is also electrically connected to the source of the MOS transistor Q2, the drain of the MOS transistor Q2 is electrically connected to the positive terminal of the capacitor C4, the negative terminal of the capacitor C4 is electrically connected to the positive input terminal, and the secondary winding S1 of the transformer TX1
  • the opposite end is electrically connected to the anode of diode D1
  • the cathode of diode D1 is electrically connected to the positive end of capacitor C1
  • the negative end of capacitor C1 is electrically connected to the same end of transformer TX1 secondary winding S1.
  • the name terminal is also electrically connected to the positive terminal of the capacitor C2, the negative terminal of the capacitor C2 is electrically connected to the anode of the diode D2, the cathode of the diode D2 is electrically connected to the terminal of the same name of the transformer TX1 secondary winding S1, and the positive terminal of the capacitor C1 is also connected to the diode
  • the anode of D3 is electrically connected, the cathode of diode D3 is electrically connected to the positive terminal of capacitor C3, the negative terminal of capacitor C3 is electrically connected to the negative terminal of capacitor C2, the positive terminal of capacitor C3 is also electrically connected to the positive output terminal, and the negative terminal of capacitor C3 is electrically connected.
  • the terminal is also electrically connected to the negative output terminal.
  • the high-voltage output converter adds a MOS tube Q2 and a capacitor C4 to absorb leakage inductance energy.
  • the high-voltage output converter circuit has two control methods.
  • MOS tube complementary control is adopted, which is simple to control and can realize ZVS, and complementary control can reduce the parasitic diode conduction time of the MOS tube, thereby reducing loss;
  • non-complementary control is adopted. Under the condition of ensuring the realization of ZVS, the amplitude of the reverse excitation can be reduced, the magnetic swing can be reduced, and the iron loss of the transformer can be reduced.
  • the scheme proposed by the high-voltage output converter of the present invention not only realizes the basic function of high-voltage output, but also overcomes the shortcomings of the existing scheme. Compared with the existing scheme, the advantages are as follows:
  • the provided scheme can absorb the energy of leakage inductance and improve the transmission efficiency
  • the solution provided can realize the ZVS of the primary side main MOS transistor, reduce the switching loss, and is conducive to high frequency;
  • the solution provided can reduce the reverse current at half load and light load while maintaining the ZVS of the main MOS transistor, which is beneficial to reduce the power consumption of light load.
  • Figure 1 is a schematic diagram of an existing forward and flyback circuit
  • FIG. 2 is a schematic diagram of an active clamp forward and flyback circuit of a high-voltage output converter according to the first embodiment of the present invention
  • Figure 3 is a working curve of the first embodiment of the present invention during complementary control of the high-voltage output converter
  • Figure 4 is a working curve of the first embodiment of the present invention during non-complementary control of the high-voltage output converter
  • Fig. 5 is a schematic circuit diagram of a high-voltage output converter according to a second embodiment of the present invention.
  • the invention provides a voltage output converter, which can realize ZVS in a full load range and improve the energy transmission efficiency of a switching power supply circuit under the condition of ensuring high-voltage output.
  • FIG. 2 is a schematic diagram of the first embodiment of the switching converter power stage of the high-voltage output converter of the present invention.
  • the connection relationship of this embodiment is as follows:
  • the positive input terminal is electrically connected to the end of the same name of the primary winding P1 of the transformer TX1
  • the synonymous terminal of the primary winding P1 of the transformer TX1 is electrically connected to the drain of the MOS tube Q1
  • the source of the MOS tube Q1 is electrically connected to the negative input terminal.
  • the drain of the transistor Q1 is also electrically connected to the source of the MOS transistor Q2, the drain of the MOS transistor Q2 is electrically connected to the positive terminal of the capacitor C4, the negative terminal of the capacitor C4 is electrically connected to the positive input terminal, and the secondary winding S1 of the transformer TX1
  • the opposite end is electrically connected to the anode of diode D1
  • the cathode of diode D1 is electrically connected to the positive end of capacitor C1
  • the negative end of capacitor C1 is electrically connected to the same end of transformer TX1 secondary winding S1.
  • the name terminal is also electrically connected to the positive terminal of the capacitor C2, the negative terminal of the capacitor C2 is electrically connected to the anode of the diode D2, the cathode of the diode D2 is electrically connected to the terminal of the same name of the transformer TX1 secondary winding S1, and the positive terminal of the capacitor C1 is also connected to the diode
  • the anode of D3 is electrically connected, the cathode of diode D3 is electrically connected to the positive terminal of capacitor C3, the negative terminal of capacitor C3 is electrically connected to the negative terminal of capacitor C2, the positive terminal of capacitor C3 is also electrically connected to the positive output terminal, and the negative terminal of capacitor C3 is electrically connected.
  • the terminal is also electrically connected to the negative output terminal.
  • the resistor R1 represents the load, the upper end of the resistor R1 is the positive output end, and the lower end of the resistor R1 is the negative output end.
  • Phase 1 In the t0-t1 period, the MOS transistor Q1 is turned on, the MOS transistor Q2 is turned off, the diode D1 is turned off, the diode D2 is turned off, and the diode D3 is turned on.
  • the transformer is energized and the primary current rises, which provides the basis for the ZVS of the MOS transistor Q2.
  • the voltage at the same name terminal of the transformer is positive, and the voltage at the different name terminal is negative.
  • the capacitor C1, the transformer TX1 secondary winding S2, and the capacitor C2 are connected in series to provide current for the output load.
  • This stage is the flyback energy storage stage.
  • the input terminal stores energy in the transformer. At the same time, this stage is also the forward energy transmission stage.
  • the input terminal transmits energy directly to the output through the transformer. Since the energy is directly transmitted, there is no intermediate Energy storage link, thus greatly reducing losses;
  • Phase 2 In the t1-t2 phase, the MOS transistor Q1 is turned off, the MOS transistor Q2 is turned on, the diode D1 is turned on, the diode D2 is turned on, and the diode D3 is turned off.
  • the transformer is demagnetized, the voltage at the transformer's alias terminal is positive, the capacitor C4 and the transformer leakage inductance resonate, the primary current of the transformer changes from positive to negative, which provides the basis for the ZVS of the MOS transistor Q1, and the transformer excitation current is the capacitor C1 and the capacitor C2 Recharge.
  • This stage is the flyback energy release stage. The transformer releases the energy stored in the previous stage to the output terminal to provide energy for the output. At the same time, this stage is the forward demagnetization stage. The magnetic flux of the transformer is reduced to make the transformer not saturated.
  • the method of reducing the switching frequency is usually used to improve the light load efficiency. Therefore, for the switching converter, the method people generally think of is to improve the efficiency by changing the control frequency. For example, now The popular control chip improves the efficiency of half load by changing the frequency.
  • the present invention does not use the conventional method of changing the frequency, but by changing the control mode of the two tubes, from the complementary control at full load to the non-complementary control at half load or light load, by turning on the main power tube before turning on Click the clamp tube to reduce the on-time of the clamp tube, thereby reducing the magnitude of the reverse current, and improving the efficiency of half load or light load. If non-complementary control is used, the operating curve is shown in Figure 4.
  • MOS transistor Q2 The driving of MOS transistor Q2 and MOS transistor Q1 are not complementary. MOS transistor Q2 is turned on for a short period of time before MOS transistor Q1 is turned on, and then MOS transistor Q1 is turned on.
  • the working process of the high-voltage output converter of this embodiment is as follows:
  • Phase 1 In the t0-t1 period, the MOS transistor Q1 is turned on, the MOS transistor Q2 is turned off, the diode D1 is turned off, the diode D2 is turned off, and the diode D3 is turned on.
  • the transformer is energized and the primary current rises.
  • the voltage at the same name terminal of the transformer is positive and the voltage at the different terminal is negative.
  • the capacitor C1, the secondary winding S2 of the transformer TX1 and the capacitor C2 are connected in series to provide current for the output load;
  • Stage 2 In the t1-t2 stage, the MOS tube Q1 is turned off, the MOS tube Q2 is turned off, the diode D1 is turned on, the diode D2 is turned on, and the diode D3 is turned off.
  • the excitation current at this stage decreases, the Vds of the MOS transistor Q1 is clamped by the capacitor C4, and the excitation current charges the capacitor C1 and the capacitor C2.
  • the secondary diodes are all cut off, and this phase ends.
  • Stage 3 In the t2-t3 stage, the MOS tube Q1 is turned off, the MOS tube Q2 is turned off, the diode D1 is turned off, the diode D2 is turned off, and the diode D3 is turned off.
  • the magnetizing inductance and the parasitic capacitance of the MOS tube oscillate, and the Vds of the MOS tube Q1 is in an oscillating state.
  • the primary current maintains a small amplitude oscillation near zero.
  • Stage 4 In the t3-t4 stage, the MOS transistor Q1 is turned off, the MOS transistor Q2 is turned on, the diode D1 is turned off, the diode D2 is turned off, and the diode D3 is turned off.
  • the transformer is reversely excited, the voltage at the transformer end is positive, and the primary current of the transformer changes from 0 to negative, which provides the basis for the ZVS of the MOS transistor Q1.
  • the high-voltage output converter of the present invention can achieve high-voltage output, and can absorb the energy of transformer leakage inductance, and ensure that the main power achieves ZVS within the full load range, which is beneficial to achieve high-frequency, and it can pass non-transmission at half load and light load.
  • Complementary control effectively reduces the reverse current to reduce the loss of the converter and keep the converter in a low power consumption state.
  • Fig. 5 is a schematic circuit diagram of a high-voltage output converter according to a second embodiment of the present invention.
  • the clamp circuit composed of the MOS tube and the capacitor is not connected to the primary winding of the transformer, but is connected to the auxiliary winding. Since the clamp tube is connected to the auxiliary winding, its source voltage can be fixed, no bootstrap driving circuit is needed, and conventional circuits (such as totem pole circuits) can be used for driving, simplifying the driving circuit.
  • the positive input terminal is electrically connected to the end of the same name of the primary winding P1 of the transformer TX1
  • the synonymous terminal of the primary winding P1 of the transformer TX1 is electrically connected to the drain of the MOS tube Q1
  • the source of the MOS tube Q1 is electrically connected to the negative input terminal.
  • the synonymous end of the TX1 secondary winding S1 is electrically connected to the anode of the diode D1, the cathode of the diode D1 is electrically connected to the positive end of the capacitor C1, the negative end of the capacitor C1 is electrically connected to the same end of the transformer TX1 secondary winding S1, and the transformer TX1
  • the synonymous end of the secondary winding S1 is also electrically connected to the positive end of the capacitor C2
  • the negative end of the capacitor C2 is electrically connected to the anode of the diode D2
  • the cathode of the diode D2 is electrically connected to the end of the same name of the transformer TX1 secondary winding S1, and the capacitor C1
  • the positive terminal of the diode D3 is also electrically connected to the anode of the diode D3, the cathode of the diode D3 is electrically connected to the positive terminal of the capacitor C3, the negative terminal of the capacitor C3 is electrically connected to the negative terminal of the capacitor C
  • the negative terminal of the capacitor C3 is also electrically connected with the negative output terminal
  • the end of the auxiliary winding S2 of the transformer TX1 with the same name is electrically connected with the negative terminal of the capacitor C24
  • the positive terminal of the capacitor C24 is electrically connected with the drain of the MOS transistor Q22
  • the MOS transistor Q22 The source of the transformer TX1 is electrically connected to the synonymous end of the auxiliary winding S2 of the transformer TX1.

Abstract

本发明提供一种高压输出变换器,采用正反激电路,包含输入正端、输入负端、变压器TX1、MOS管Q1、MOS管Q2、二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3、电容C4、输出正端以及输出负端,其连接关系是输入正端、变压器TX1原边绕组同名端、MOS管Q1漏极与输入负端依次连接;电容C2与MOS管Q2串联后并联在原边绕组两端;变压器TX1副边绕组异名端、二极管D1、D3与输出正端串联,输出负端、二极管D2与变压器TX1副边绕组同名端依次串联,电容C1并联在二极管D1的阴极及变压器TX1副边绕组同名端之间,电容C2并联在变压器TX1副边绕组异名端与二极管D2阳极之间,电容C3并联在输出正端与输出负端之间。本发明可实现高压输出,在全负载范围内保证主功率实现ZVS。

Description

高压输出变换器 技术领域
本发明涉及一种变换器电路,特别涉及一种高压输出变换器。
背景技术
在开关电源应用领域中,很多场合需要高压输出的电源:在高压直流输电时,需要供电端将电压升高;在医学X射线机中,射线管需要在高压电场下工作;在工业静电除尘应用中,放电极与集尘极之间需要施加高压直流电……若采用反激的基本拓扑应用于输出高压的领域,通过多绕组方式升高电压或者通过电容、二极管组成多级倍压整流,可以达到高输出电压的目的,但以上方法都存在一定的局限性。
采用多绕组整流然后再进行串联输出的方式,相当于多个反激输出串联,输出电压越高需要的绕组就越多,对于变压器体积的要求是一个挑战,另外由于绕组多,耦合不好,漏感能量全都消耗掉,效率不高;此外,该变换器原边的MOS管没有实现ZVS,不利于高频化。
反激和正激两种电路都有各自的优点:反激电路只需一个功率管,无需输出电感,结构简单;正激电路可以直接传输能量,效率高。由于正激电路以及反激电路在变压器副边的极性相反,因此不能简单地直接将两者结合在一起,需要在副边添加器件,使得两者的最终的输出极性一致,才能使输出正常工作。本领域现有技术一种正反激电路的具体电路拓扑结构,如图1所示。该方案采用了正激和反激两个工作过程,与单独的反激方案相比,该方案增加了正激的工作过程,一定程度上提高了工作效率,但依然没有解决漏感能量问题以及ZVS的问题。
发明内容
有鉴于此,本发明解决的技术问题是克服现有方法的不足,提出一种高压输出变换器,可以在高压输出时提高开关电源电路的能量传输效率,并且提供相关的控制方案,使得在不同负载的情况下都可以保持高效率。
本发明高压输出变换器包含输入正端、输入负端、变压器TX1、MOS管Q1、MOS管Q2、二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3、电容C4、输出正端以及输出负端,其连接关系为:
输入正端与变压器TX1原边绕组P1的同名端电连接,变压器TX1原边绕组P1的异名端与MOS管Q1的漏极电连接,MOS管Q1的源极与输入负端电连接,MOS管Q1的漏极还与MOS管Q2的源极电连接,MOS管Q2的漏极与电容C4的正端电连接,电容C4的负端与输入正端电连接,变压器TX1副边绕组S1的异名端与二极管D1的阳极电连接,二极管D1的阴极与电容C1的正端电连接,电容C1的负端与变压器TX1副边绕组S1的同名端电连接,变压器TX1副边绕组S1的异名端还与电容C2的正端电连接,电容C2的负端与二极管D2的阳极电连接,二极管D2的阴极与变压器TX1副边绕组S1的同名端电连接,电容C1的正端还与二极管D3的阳极电连接,二极管D3的阴极与电容C3的正端电连接,电容C3的负端与电容C2的负端电连接,电容C3的正端还与输出正端电连接,电容C3的负端还与输出负端电连接。
与传统方案相比,该高压输出变换器增加了MOS管Q2以及电容C4,用于吸收漏感能量。
该高压输出变换器电路有两种控制方式,在负载比较重时,采用MOS管互补控制,控制简单,可以实现ZVS,而且互补控制可以降低MOS管的寄生二极管导通时间,从而降低损耗;在半载以下时,采用非互补控制,在保证实现ZVS的情况下,可以降低反向激磁的幅度,降低磁摆幅,从而降低变压器铁损。
本发明高压输出变换器所提的方案,除了实现高压输出的基本功能,还克服了现有方案的不足,与现有方案相比,优势如下:
1.所提供的方案可以吸收漏感的能量,提高传输效率;
2.所提供的方案可以实现原边主MOS管的ZVS,降低开关损耗,有利于高频化;
3.所提供的方案,可以保持主MOS管实现ZVS的情况下,在半载轻载降低反向电流,有利于降低轻负载的功耗。
附图说明
图1为现有正反激电路原理图;
图2为本发明第一实施例高压输出变换器有源箝位正反激电路原理图;
图3为本发明第一实施例高压输出变换器互补控制时的工作曲线;
图4为本发明第一实施例高压输出变换器非互补控制时的工作曲线;
图5为本发明第二实施例高压输出变换器的电路原理图。
具体实施方式
本发明提供一种电压输出变换器,可以保证高压输出的情况下,全负载范围内实现ZVS以及提高开关电源电路的能量传输效率。
第一实施例
图2为本发明高压输出变换器的开关变换器功率级第一实施例原理图,该实施例的连接关系如下:
输入正端与变压器TX1原边绕组P1的同名端电连接,变压器TX1原边绕组P1的异名端与MOS管Q1的漏极电连接,MOS管Q1的源极与输入负端电连接,MOS管Q1的漏极还与MOS管Q2的源极电连接,MOS管Q2的漏极与电容C4的正端电连接,电容C4的负端与输入正端电连接,变压器TX1副边绕组S1的异名端与二极管D1的阳极电连接,二极管D1的阴极与电容C1的正端电连接,电容C1的负端与变压器TX1副边绕组S1的同名端电连接,变压器TX1副边绕组S1的异名端还与电容C2的正端电连接,电容C2的负端与二极管D2的阳极电连接,二极管D2的阴极与变压器TX1副边绕组S1的同名端电连接,电容C1的正端还与二极管D3的阳极电连接,二极管D3的阴极与电容C3的正端电连接,电容C3的负端与电容C2的负端电连接,电容C3的正端还与输出正端电连接,电容C3的负端还与输出负端电连接。在本实施例中,电阻R1代表负载,电阻R1的上端为输出正端,电阻R1的下端为输出负端。
对以下功率级参数进行仿真:输入电压5V,电容C4为1.22uF,变压器励磁电感为5uH,漏感为100nH,匝比1:1,电容C1、电容C2以及电容C3都为10uF,MOS管的驱动频率为300kHz,MOS管Q1的占空比为50%,负载电阻为500Ω,分别采用互补控制以及非互补控制,得到的工作曲线如图3和图4,其中,Vg1代表MOS管Q1的驱动,Vg2代表MOS管Q2的驱动,Vds1代表MOS管Q1的漏源极电压,Vcr代表电容C4的电压,Ir代表变压器原边的电流,Vo代表输出电压。
若采用互补控制,本发明高压输出变换器的工作曲线如图3所示,该实施例的工作过程:
阶段一:在t0-t1阶段,MOS管Q1导通,MOS管Q2截止,二极管D1截止,二极管D2截止,二极管D3导通。该阶段变压器激磁,原边电流上升,为MOS管Q2的ZVS提供基础。变压器同名端电压为正,异名端电压为负,电容C1、变压器TX1副边绕组S2以及电容C2串联为输出负载提供电流。此阶段为反激储能阶段,输入端将能量储存到变压器中,同时,该阶段也是正激的传输能量阶段,输入端将能量通过变压器直接传输到输出,由于能量是直接传输的,没有中间储能环节,因此大大降低了损耗;
阶段二:在t1-t2阶段,MOS管Q1截止,MOS管Q2导通,二极管D1导通,二极管D2导通,二极管D3截止。该阶段变压器去磁,变压器异名端电压为正,电容C4与变压器漏感谐振,变压器原边电流由正变为负,为MOS管Q1的ZVS提供基础,变压器励磁电流为电容C1和电容C2充电。此阶段是反激释放能量阶段,变压器将上一阶段储存的能量释放到输出端,为输出提供能量,同时,该阶段是正激的去磁阶段,变压器的磁通降低,以使得变压器不饱和。
对于半载或者轻载,在传统反激电路中,通常采用降低开关频率的方法提升轻载效率,因此,对于开关变换器,人们一般想到的方法是通过改变控制频率的方法提升效率,例如现在流行的控制芯片,就是通过改变频率提升半载的效率的。本发明不采用常规的改变频率的方法,而通过改变对两个管的控制方式,从满载的互补控制,变成半载或轻载时的非互补控制,通过在主功率管开通前,开通一下箝位管,降低箝位管的导通时间,从而降低反向电流的幅度,提升半载或轻载的效率。若采用非互补控制,工作曲线如图4,MOS管Q2与MOS管Q1的驱动不是互补的,MOS管Q2在MOS管Q1导通前开通一小段时间,然后再开通MOS管Q1。该实施例高压输出变换器的工作过程如下:
阶段一:在t0-t1阶段,MOS管Q1导通,MOS管Q2截止,二极管D1截止,二极管D2截止,二极管D3导通。该阶段变压器激磁,原边电流上升,变压器同名端电压为正,异名端电压为负,电容C1、变压器TX1副边绕组S2以及电容C2串联为输出负载提供电流;
阶段二:在t1-t2阶段,MOS管Q1截止,MOS管Q2截止,二极管D1导通,二极管D2导通,二极管D3截止。该阶励磁电流下降,MOS管Q1的Vds被电容C4箝位,励磁电流为电容C1和电容C2充电。当励磁电流下降到0,副边二极管全部截止,该阶段结束。
阶段三:在t2-t3阶段,MOS管Q1截止,MOS管Q2截止,二极管D1截止,二极管D2截止,二极管D3截止。在该阶段,励磁电感与MOS管的寄生电容发送振荡,MOS管Q1的Vds为振荡状态。在该阶段,原边电流维持在0附近小幅度振荡。
阶段四:在t3-t4阶段,MOS管Q1截止,MOS管Q2导通,二极管D1截止,二极管D2截止,二极管D3截止。该阶段变压器反向激磁,变压器异名端电压为正,变压器原边电流由0变为负,为MOS管Q1的ZVS提供基础。
从上面的工作过程可知,在MOS管Q1关断后,原边的电流没有一直下降,而是在第三阶段保持在0附近,因此可以有效降低变压器原边的电流有效值以及峰峰值,因此可以降低变压器的绕组损耗以及磁芯的损耗,使得在负载较轻时可以保持较低的功耗。
因此,本发明高压输出变换器,可实现高压输出,并且可以吸收变压器漏感的能量,在全负载范围内保证主功率实现ZVS,有利于实现高频化,并且在半载轻载时通过非互补控制有效降低反向电流,以降低变换器损耗,使变换器一直处于低功耗状态。
第二实施例
图5为本发明第二实施例高压输出变换器的电路原理图。其中,与第一实施例相比,由MOS管和电容构成的箝位电路不是连接到变压器的原边绕组上,而是连接在辅助绕组上。由于箝位管连接在了辅助绕组上,因此,它的源极电压就可以是固定的,不再需要自举驱动电路,可以采用常规的电路(例如图腾柱电路)进行驱动,简化驱动电路。
该实施例的连接关系如下:
输入正端与变压器TX1原边绕组P1的同名端电连接,变压器TX1原边绕组P1的异名端与MOS管Q1的漏极电连接,MOS管Q1的源极与输入负端电连接,变压器TX1副边绕组S1的异名端与二极管D1的阳极电连接,二极管D1的阴极 与电容C1的正端电连接,电容C1的负端与变压器TX1副边绕组S1的同名端电连接,变压器TX1副边绕组S1的异名端还与电容C2的正端电连接,电容C2的负端与二极管D2的阳极电连接,二极管D2的阴极与变压器TX1副边绕组S1的同名端电连接,电容C1的正端还与二极管D3的阳极电连接,二极管D3的阴极与电容C3的正端电连接,电容C3的负端与电容C2的负端电连接,电容C3的正端与输出正端电连接,电容C3的负端还与输出负端电连接,变压器TX1的辅助绕组S2的同名端与电容C24的负端电连接,电容C24的正端与MOS管Q22的漏极电连接,MOS管Q22的源极与变压器TX1的辅助绕组S2的异名端电连接。
该实施例高压输出变换器的工作过程与第一实施例相同,在此不再赘述。
以上仅是本发明优选的实施方式,本发明所属领域的技术人员还可以对上述具体实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体控制方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (4)

  1. 一种高压输出变换器,其特征在于:采用正反激电路,包含输入正端、输入负端、变压器TX1、MOS管Q1、MOS管Q2、二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3、电容C4、输出正端以及输出负端,其连接关系为:输入正端与变压器TX1原边绕组P1的同名端电连接,变压器TX1原边绕组P1的异名端与MOS管Q1的漏极电连接,MOS管Q1的源极与输入负端电连接,MOS管Q1的漏极还与MOS管Q2的源极电连接,MOS管Q2的漏极与电容C4的正端电连接,电容C4的负端与输入正端电连接,变压器TX1副边绕组S1的异名端与二极管D1的阳极电连接,二极管D1的阴极与电容C1的正端电连接,电容C1的负端与变压器TX1副边绕组S1的同名端电连接,变压器TX1副边绕组S1的异名端还与电容C2的正端电连接,电容C2的负端与二极管D2的阳极电连接,二极管D2的阴极与变压器TX1副边绕组S1的同名端电连接,电容C1的正端还与二极管D3的阳极电连接,二极管D3的阴极与电容C3的正端电连接,电容C3的负端与电容C2的负端电连接,电容C3的正端还与输出正端电连接,电容C3的负端还与输出负端电连接。
  2. 根据权利要求1所述的高压输出变换器,其特征在于:所述高压输出变换器有两种控制方式,在负载比较重时,采用MOS管互补控制;在半载以下时,采用非互补控制。
  3. 一种高压输出变换器,其特征在于:采用正反激电路,包含输入正端、输入负端、变压器TX1、MOS管Q1、MOS管Q22、二极管D1、二极管D2、二极管D3、电容C1、电容C2、电容C3、电容C24、输出正端以及输出负端,其连接关系为:输入正端与变压器TX1原边绕组P1的同名端电连接,变压器TX1原边绕组P1的异名端与MOS管Q1的漏极电连接,MOS管Q1的源极与输入负端电连接,变压器TX1副边绕组S1的异名端与二极管D1的阳极电连接,二极管D1的阴极与电容C1的正端电连接,电容C1的负端与变压器TX1副边绕组S1的同名端电连接,变压器TX1副边绕组S1的异名端还与电容C2的正端电连接,电容C2的负端与二极管D2的阳极电连接,二极管D2的阴极与变压器TX1副边绕组S1的同名端电连接,电容C1的正端还与二极管D3的阳极电连接,二极管 D3的阴极与电容C3的正端电连接,电容C3的负端与电容C2的负端电连接,电容C3的正端还与输出正端电连接,电容C3的负端还与输出负端电连接,变压器TX1的辅助绕组S2的同名端与电容C24的负端电连接,电容C24的正端与MOS管Q22的漏极电连接,MOS管Q22的源极与变压器TX1的辅助绕组S2的异名端电连接。
  4. 根据权利要求3所述的高压输出变换器,其特征在于:所述高压输出变换器有两种控制方式,在负载比较重时,采用MOS管互补控制;在半载以下时,采用非互补控制。
PCT/CN2020/128672 2019-12-02 2020-11-13 高压输出变换器 WO2021109837A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911213203.8 2019-12-02
CN201911213203.8A CN111030460A (zh) 2019-12-02 2019-12-02 高压输出变换器

Publications (1)

Publication Number Publication Date
WO2021109837A1 true WO2021109837A1 (zh) 2021-06-10

Family

ID=70203840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128672 WO2021109837A1 (zh) 2019-12-02 2020-11-13 高压输出变换器

Country Status (2)

Country Link
CN (1) CN111030460A (zh)
WO (1) WO2021109837A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030460A (zh) * 2019-12-02 2020-04-17 广州金升阳科技有限公司 高压输出变换器
CN116054591B (zh) * 2023-03-06 2023-06-30 苏州锴威特半导体股份有限公司 一种正激输出可调的谐振电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547319A (zh) * 2003-12-03 2004-11-17 伊博电源(杭州)有限公司 将有源钳位和辅助电源电路合并的正激电路
US7859859B2 (en) * 2006-11-20 2010-12-28 Picor Corporation Primary side sampled feedback control in power converters
CN104300795A (zh) * 2014-10-11 2015-01-21 广州金升阳科技有限公司 一种反激变换器及其控制方法
CN105846682A (zh) * 2016-03-21 2016-08-10 南京航空航天大学 一种正反激变换器的新型混合控制方式
CN107769575A (zh) * 2017-11-28 2018-03-06 苏州汇川技术有限公司 反激式开关电源电路
CN108123626A (zh) * 2018-02-14 2018-06-05 中山长星光电科技有限公司 阻容升压高压电路
CN111030460A (zh) * 2019-12-02 2020-04-17 广州金升阳科技有限公司 高压输出变换器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100550587C (zh) * 2007-08-14 2009-10-14 伊博电源(杭州)有限公司 可变匝比的同步整流或二极管整流变换器
CN102891608B (zh) * 2011-07-21 2016-03-30 山特电子(深圳)有限公司 一种高效率低成本正反激dc-dc变换器拓扑
CN207399039U (zh) * 2017-11-21 2018-05-22 北京汽车研究总院有限公司 一种隔离电源电路、三相桥式igbt并联控制电路及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547319A (zh) * 2003-12-03 2004-11-17 伊博电源(杭州)有限公司 将有源钳位和辅助电源电路合并的正激电路
US7859859B2 (en) * 2006-11-20 2010-12-28 Picor Corporation Primary side sampled feedback control in power converters
CN104300795A (zh) * 2014-10-11 2015-01-21 广州金升阳科技有限公司 一种反激变换器及其控制方法
CN105846682A (zh) * 2016-03-21 2016-08-10 南京航空航天大学 一种正反激变换器的新型混合控制方式
CN107769575A (zh) * 2017-11-28 2018-03-06 苏州汇川技术有限公司 反激式开关电源电路
CN108123626A (zh) * 2018-02-14 2018-06-05 中山长星光电科技有限公司 阻容升压高压电路
CN111030460A (zh) * 2019-12-02 2020-04-17 广州金升阳科技有限公司 高压输出变换器

Also Published As

Publication number Publication date
CN111030460A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2020248472A1 (zh) 不对称半桥变换器及控制方法
CN204696926U (zh) 一种可调压定频llc谐振变换器
CN109217681A (zh) 一种双向谐振变换器
CN110677045B (zh) 一种有源钳位反激变换器的控制方法
WO2006076843A1 (fr) Alimentation novatrice a courant continu en haute frequence a correction de facteur de puissance
WO2021109837A1 (zh) 高压输出变换器
CN110460239B (zh) 一种有源钳位反激变换器
CN209805680U (zh) 一种反激变换器
CN113131746B (zh) 反激变换器控制方法及控制装置
CN108199579B (zh) 一种带耦合电感的高变比软开关dc-dc降压变换器
CN114070090B (zh) 一种串联型有源钳位的反激变换器电路
CN112491258B (zh) 一种有源钳位反激变换器的钳位电路及其控制方法
CN111884514B (zh) 正反激式开关电源电路及其控制方法
CN101557172B (zh) 一种输入交错串联正激直流变换器
WO2020143275A1 (zh) 一种改进型反激变换器
CN209692616U (zh) 一种辅助绕组供电电路
KR20170059390A (ko) 소프트 스위칭 풀브릿지 컨버터 및 그 구동방법
CN210444179U (zh) 一种buck电流馈电推挽拓扑串联谐振电路
CN211046771U (zh) 一种dc/dc变换电路
WO2011048680A1 (ja) スイッチング電源装置
CN108695995B (zh) 一种高效率谐振型无线电能传输系统
CN105811789A (zh) 一种高效率的大功率移相全桥零电压软开关电路
CN111555624A (zh) 双输出软开关电路
CN109951085B (zh) 一种新型带缓冲电路和耦合电感的全桥全软开关变换器
CN111092555B (zh) 一种三电平软开关高频谐振变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20897120

Country of ref document: EP

Kind code of ref document: A1