WO2021109685A1 - 具有垂直孔道结构的锂离子电池极片的制备方法及产品 - Google Patents

具有垂直孔道结构的锂离子电池极片的制备方法及产品 Download PDF

Info

Publication number
WO2021109685A1
WO2021109685A1 PCT/CN2020/116951 CN2020116951W WO2021109685A1 WO 2021109685 A1 WO2021109685 A1 WO 2021109685A1 CN 2020116951 W CN2020116951 W CN 2020116951W WO 2021109685 A1 WO2021109685 A1 WO 2021109685A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal decomposition
ion battery
lithium ion
pole piece
preparation
Prior art date
Application number
PCT/CN2020/116951
Other languages
English (en)
French (fr)
Inventor
周华民
张云
王云明
熊若愚
黄志高
李茂源
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US17/211,846 priority Critical patent/US11183677B2/en
Publication of WO2021109685A1 publication Critical patent/WO2021109685A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and more specifically, relates to a preparation method and product of a lithium ion battery pole piece with a vertical pore structure.
  • the present invention provides a method and product for preparing lithium-ion battery pole pieces with a vertical pore structure, which combines the characteristics of the lithium-ion battery pole piece itself and its lithium ion transmission process Characteristics, correspondingly use the thermal decomposition additive with a specific ratio content and a specified particle size as the composition of the electrode slurry, and at the same time, it is necessary to control the evaporation rate of the solvent and the decomposition rate of the thermal decomposition additive, so that the thermal decomposition additive is in place. The solvent is completely evaporated and decomposed and consumed.
  • the lithium ion battery pole piece of the present invention has a plurality of vertical pore structures, and the multiple vertical pore structures are uniformly arranged.
  • a method for preparing a lithium-ion battery pole piece with a vertical pore structure which includes the following steps:
  • Step 1 Add the powdered thermal decomposition additive, active material, binder, and conductive agent into the solvent in a predetermined proportion and in a certain order, and continuously stir until uniformly mixed to obtain electrode slurry, wherein the quality of the thermal decomposition additive 10wt% ⁇ 30wt% of the total solid matter mass;
  • Step 2 Coating the electrode slurry prepared in Step 1 on the current collector to obtain a wet electrode sheet of a lithium ion battery;
  • Step 3 Heat and dry the pole pieces of the lithium ion battery, wherein during the heating and drying process, the side coated with the electrode slurry needs to be placed vertically upwards, and at the same time, the evaporation rate of the solvent needs to be controlled and
  • the decomposition rate of the thermal decomposition additive is such that the thermal decomposition additive is completely decomposed and consumed after the solvent is completely evaporated. In this way, the electrode slurry is filled with the thermal decomposition additive because it cannot flow autonomously.
  • a plurality of vertical pores are formed by decomposition, thereby preparing a lithium ion battery pole piece with a vertical pore structure.
  • the decomposition temperature of the thermal decomposition additive is between room temperature and the drying temperature after coating the lithium ion battery pole piece, and the thermal decomposition additive is completely decomposed during the heating and drying process, resulting in Gas, the gas escapes along the thickness direction of the lithium-ion battery pole piece, forming a vertical channel.
  • the thermal decomposition additive is one or more of NH 4 HCO 3 , urea and NaHCO 3 , which can be prepared by grinding or saturated solution precipitation method to obtain a uniform and fine powdery thermal decomposition additive It is also possible to grind the particles of the thermal decomposition additive under the irradiation of an infrared lamp to obtain the powdery thermal decomposition additive.
  • step one specifically includes the following steps: adding the thermal decomposition additive to the colloidal solution made by mixing the solvent and the binder, stir, and after the dispersion is uniform, add the active material and the conductive agent for mixing to improve the The dispersion uniformity of the thermal decomposition additive in the electrode slurry; wherein the thickness of the electrode slurry coating is 100 ⁇ m to 2000 ⁇ m.
  • the process of mixing the solvent and the binder magnetic stirring is performed at a rotational speed of 300-500r/min for 20-40min to obtain a uniform colloidal solution, and then the thermal decomposition additive is added to the colloidal solution Magnetic stirring at 400r/min ⁇ 800r/min for 10min ⁇ 40min, the pyrolysis additive can also be added to the colloidal solution and dispersed by ultrasound; when the active material and conductive agent are added for mixing, 400r/min ⁇ 600r /min Magnetic stirring for 4h ⁇ 8h.
  • the method of heating and drying is vacuum drying, the temperature of heating and drying is 60° C. to 100° C., and the time of heating and drying is 5 hours to 8 hours.
  • the active material is lithium nickel cobalt manganate, lithium iron phosphate, lithium cobaltate, lithium manganate or graphite
  • the binder is polyvinylidene fluoride
  • the conductive agent is conductive carbon black
  • the solvent is N-methylpyrrolidone.
  • the equivalent diameter of the vertical pore structure is less than 100 microns.
  • a lithium-ion battery pole piece with a vertical pore structure which includes a current collector, an electrode coating provided on the current collector, and a plurality of electrodes uniformly distributed in the electrode coating.
  • a vertical pore structure, the vertical pore structure is obtained by thermal decomposition of the decomposition additive.
  • the thickness of the electrode slurry layer is 50 ⁇ m to 500 ⁇ m, and the equivalent diameter of the vertical pore structure is less than 100 ⁇ m.
  • the thermal decomposition additive with a specific ratio content and a specified particle size is used as the composition of the electrode slurry.
  • the evaporation rate of the solvent and the decomposition rate of the thermal decomposition additive need to be controlled, so that the thermal decomposition additive is in the The solvent is completely evaporated and decomposed and consumed.
  • the electrode slurry is unable to flow autonomously and fills up the multiple vertical pores formed by the decomposition of the thermal decomposition additive, thereby preparing a vertical pore channel.
  • the lithium-ion battery pole piece of the present invention has multiple vertical pore structures, and the multiple vertical pore structures are evenly arranged.
  • lithium ions in the electrolyte When lithium ions in the electrolyte are transmitted, they can pass through the oriented straight holes with low tortuosity and efficiently It is transmitted to the inside of the electrode, and then further penetrates into the active particles through the vertical pore structure on the side, thereby achieving an improvement in the overall transmission efficiency of liquid ions in the porous electrode.
  • the preparation method of the invention has low cost, simple process, and good compatibility with current industrial methods, so the large-scale manufacturing of the electrode with this special structure can be realized without replacing the existing process and equipment.
  • the decomposition temperature of the thermal decomposition additive of the present invention is between room temperature and the drying temperature after coating the lithium ion battery pole pieces, and gas is generated during the thermal decomposition process. In this way, the electrode slurry is filled because it cannot flow autonomously. A plurality of vertical pores formed by the decomposition of the thermal decomposition additive are removed, thereby preparing a lithium ion battery pole piece with a vertical pore structure.
  • the thermal decomposition additive of the present invention is a uniform and fine powder, which can be more uniformly mixed in the electrode slurry, and at the same time, thermal decomposition is performed between room temperature and the drying temperature after the coating of the lithium ion battery pole piece to generate gas. It can form a uniformly arranged vertical pore structure in the electrode slurry.
  • lithium ions in the electrolyte When transported, they can be efficiently transported to the inside of the electrode through the directional straight holes with low tortuosity, and then further penetrate into the electrode through the vertical pore structure on the side. Between the active particles, the overall transmission efficiency of liquid ions in the porous electrode is improved.
  • the invention specifically designs the proportions of powdered thermal decomposition additives, active materials, binders, and conductive agents and the mixing process, correspondingly, so that the decomposition additives in the prepared electrode slurry can be uniformly distributed.
  • the heating and drying method of the present invention is far-infrared radiation drying, double-sided air supply suspension drying or hot air convection drying.
  • the temperature of heating and drying is 60°C ⁇ 100°C, and the time of heating and drying is 5h ⁇ 8h.
  • the side coated with the electrode slurry needs to be placed vertically upwards. In this way, the electrode slurry cannot flow autonomously and fills up the multiple vertical pores formed by the decomposition of the thermal decomposition additive.
  • FIG. 1 is a flow chart of a method for manufacturing a pole piece of a lithium ion battery with a vertical hole structure according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a lithium ion battery pole piece with a vertical pore structure prepared by an embodiment of the present invention
  • FIG. 3 is a plane scanning electron microscope diagram of a lithium ion battery pole piece with a vertical hole structure provided by an embodiment of the technical solution;
  • FIG. 4 is a partial enlarged plan view of a lithium ion battery pole piece with a vertical hole structure provided by an embodiment of the technical solution;
  • FIG. 5 is a scanning electron microscope view of a cross-section of a pole piece of a lithium ion battery with a vertical hole structure provided by an embodiment of the technical solution.
  • the embodiment of the present technical solution provides a method for manufacturing a lithium-ion battery pole piece with a vertical pore structure.
  • the lithium-ion battery pole piece 1 includes a current collector 2 and an electrode slurry coated on the current collector 2 Layer 3, a thermal decomposition additive 4 is added to the slurry. In the pole piece drying stage, the thermal decomposition additive 4 is thermally decomposed, and the generated gas escapes upward along the thickness direction of the pole piece, forming a vertical pore structure 5.
  • the thermal decomposition additive 4 is uniformly distributed in the slurry, so the pore structure obtained after decomposition is also uniformly distributed on the plane of the pole piece, and the equivalent diameter of the pores is about tens of micrometers, not more than 100 micrometers.
  • Step 1 Provide thermal decomposition additive 4 and make it into powder form.
  • the decomposition temperature range of the thermal decomposition additive 4 should be higher than normal temperature and lower than the drying temperature (generally 100°C to 120°C) after coating the lithium ion battery pole pieces in the current prior art.
  • the decomposition additive 4 uses one or more of NH 4 HCO 3 , urea, and NaHCO 3.
  • the thermal decomposition additive 4 can be made into a uniform and fine powder by grinding or a saturated solution precipitation method, or the ammonium bicarbonate particles can be ground into a fine powder under infrared light irradiation. By controlling the grinding time, ammonium bicarbonate powders with different particle sizes can be prepared.
  • Step 2 Add the powdered thermal decomposition additive 4, the active material, the binder, and the conductive agent into the solvent according to a preset ratio and a certain order, and continuously stir until uniformly mixed to obtain an electrode slurry.
  • the quality of the thermal decomposition additive 4 It is 10wt%-30wt% of the total solid matter mass.
  • the thermal decomposition additive 4 can be first added to the colloidal solution made by mixing the solvent and the binder, and then mixed with the active material and the conductive agent after the dispersion is uniform, so as to improve the thermal decomposition additive 4 in the electrode slurry.
  • the uniformity of dispersion In this embodiment, the binder and the solvent are first mixed, and magnetically stirred at a rotational speed of 300r/min-500r/min for 20min-40min to obtain a uniform gel solution, and then the thermal decomposition additive 4 is added to the gel solution Magnetic stirring at 400r/min-800r/min 10 min-40min, it can also be dispersed by ultrasound. Then add the active material and the conductive agent, and magnetically stir at 400r/min-600r/min for 4-8h.
  • the stirring method can also directly adopt the current industrial mechanical stirring method and its stirring equipment.
  • Step 3 Coating the electrode slurry prepared in step 1 on the current collector to obtain a wet electrode sheet of a lithium ion battery, wherein the coating thickness of the electrode slurry is 100 ⁇ m to 2000 ⁇ m.
  • the process and equipment can directly adopt the current industrial slit coating or transfer coating and its coating machine, and the current collector 2 is copper foil (negative electrode) or aluminum foil (positive electrode).
  • the current collector 2 is copper foil (negative electrode) or aluminum foil (positive electrode).
  • a laboratory doctor blade is used for slurry coating, and the thickness of the coating is 500 ⁇ m to 1000 ⁇ m.
  • Step 4 Heating and drying the wet pole piece of the lithium ion battery, wherein during the heating and drying process, the side coated with the electrode slurry needs to be placed vertically upward, and the evaporation rate of the solvent needs to be controlled at the same time And the decomposition rate of the thermal decomposition additive 4, so that the thermal decomposition additive 4 is completely decomposed and exhausted after the solvent is completely evaporated.
  • the pole piece 1 to be dried must face up during drying, and the drying process parameters (such as temperature, wind speed) should control the solvent evaporation rate and the decomposition of the thermal decomposition additive 4
  • the speed is such that the thermal decomposition additive 4 is completely decomposed and consumed after the solvent has evaporated to a certain amount or completely evaporated.
  • the evaporation of the solvent to a certain amount means that the solid content of the slurry or the viscosity of the slurry rises to a certain value, so that the slurry cannot flow autonomously and is filled with the vertical pores 5 formed by the thermal decomposition additive 4.
  • the process and equipment can directly adopt the current mainstream drying technology in the industry, such as far-infrared radiation drying, double-sided air supply suspension drying, conventional hot air convection drying, and the like.
  • a vacuum drying oven is used for drying at 60°C-100°C for 5h-8h.
  • thermal decomposition material proposed by the present invention is not limited to ammonium bicarbonate, and the method used in the embodiment is only one of the feasible solutions.
  • the method for preparing lithium ion battery pole pieces with vertical pores provided by the present invention can be used for the preparation of lithium iron phosphate, ternary materials, lithium manganate or lithium cobalt oxide positive pole pieces, or graphite negative pole pieces, which can improve lithium The transmission of ions improves ion conductivity.
  • This embodiment adopts a material system commonly used in the manufacture of lithium ion battery cathodes.
  • the active material is lithium nickel cobalt manganese (NMC)
  • the binder is polyvinylidene fluoride (PVDF)
  • the conductive agent is conductive carbon black (Super-P).
  • the solvent is N-methylpyrrolidone (NMP).
  • FIG. 2, FIG. 3, FIG. 4, and FIG. 5 Please refer to FIG. 2, FIG. 3, FIG. 4, and FIG. 5.
  • the pole piece prepared in this embodiment is observed under a scanning electron microscope, and it can be seen that the vertical holes with evenly distributed electrode planes have an equivalent diameter of about tens of microns.
  • Pole piece drying Place the coated pole piece in a vacuum dryer for drying.
  • the drying temperature is selected as 80°C, and the drying time is 5h, so that the solvent is completely evaporated and the ammonium bicarbonate completely decomposes and escapes, forming vertical channels. .
  • Preparation of ammonium bicarbonate fine powder prepare a saturated aqueous solution of ammonium bicarbonate, stir thoroughly, and then slowly add isopropanol to the saturated aqueous solution to gradually precipitate the ammonium bicarbonate crystals, and obtain a uniform dispersion without agglomeration and adhesion. Fine powder of ammonium bicarbonate.
  • Step (2) Preparation of slurry: add 0.1g PVDF to 2g NMP, stir at 400rpm for 20min until PVDF is fully dissolved and form a colloidal solution. Take 0.8g of the ammonium bicarbonate powder precipitated in step (1), add it to the obtained PVDF and NMP mixed colloidal solution, stir at 700rpm for 30min to make the ammonium bicarbonate mixed uniformly, and then add 0.1g of Super-P to Stir at 600rpm for 30min, after fully dispersed, finally add 2g NMC and stir at 500rpm for 7h.
  • Pole piece drying Put the coated pole piece in a vacuum dryer for drying, the drying temperature is 60°C, and the drying time is 6h.
  • the method provided by the present invention is not limited to the preparation of the positive pole piece of a lithium ion battery.
  • the negative pole piece the following examples are provided.
  • This embodiment uses a material system commonly used for manufacturing lithium ion battery negative electrodes, the active material is graphite, the water-based adhesive LA133 is selected as the binder, Super-P is selected as the conductive agent, and the solvent is water.
  • Preparation of ammonium bicarbonate fine powder prepare a saturated aqueous solution of ammonium bicarbonate, stir thoroughly, and then slowly add isopropanol to the saturated aqueous solution to gradually precipitate the ammonium bicarbonate crystals, and obtain a uniform dispersion without agglomeration and adhesion. Fine powder of ammonium bicarbonate.
  • Step (2) Preparation of slurry: add 0.12g LA133 to 3g saturated aqueous ammonium bicarbonate solution, stir at 400rpm for 20min until LA133 is fully dissolved. Take 0.6g of ammonium bicarbonate powder precipitated in step (1), add it to the obtained LA133 and saturated ammonium bicarbonate aqueous solution mixed solution, stir at 600rpm for 30min to make the ammonium bicarbonate mixed uniformly, and then add 0.12g of Super-P , Continue to stir at 600 rpm for 30 minutes, after fully dispersed, finally add 1 g of graphite, and stir at 500 rpm for 8 hours.
  • Pole piece drying Put the coated pole piece in a dryer for drying, the drying temperature is selected as 100 °C, and the drying time is 8 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于锂离子电池技术领域,并具体公开了一种具有垂直孔道结构的锂离子电池极片的制备方法及产品。所述包括:将粉末状热分解添加剂、活性材料、粘结剂、导电剂按照预设比例和一定顺序加入溶剂中,连续搅拌至均匀混合,得到电极浆料,将制备得到的电极浆料涂覆到集流体上得到锂离子电池湿极片,对所述锂离子电池湿极片进行加热干燥,从而制备得到具有垂直孔道结构的锂离子电池极片。所述产品包括集流体、电极浆料层以及均匀分布的多个垂直孔道结构。本发明电池极片具有多个垂直孔道结构,实现了提高液相离子在多孔电极中的总体传输效率,具有成本低廉、工艺简单,且与现有工业方法兼容性好的特点。

Description

具有垂直孔道结构的锂离子电池极片的制备方法及产品 技术领域
本发明属于锂离子电池技术领域,更具体地,涉及一种具有垂直孔道结构的锂离子电池极片的制备方法及产品。
背景技术
快速充电和大功率输出等应用场景对锂离子电池的倍率性能做出了更高要求。然而在大电流工况下,电池电解液中的锂离子在当前高迂曲度的多孔电极中传输成了整个动力学过程效率最低的短板环节。尤其对于高负载量极片,其厚度或压实密度较大,即具有更长的传输路径或更小的传输空间(孔隙率低),导致此问题更为突出。此外,由于传输速率低会形成较大的锂离子浓度梯度,这使得负极隔膜侧更易发生析锂,增大了电池内短路的风险。因此,开发具有低迂曲度结构的高性能电极是至关重要的工作。
近年来,一种新型结构的锂离子电池电极在学术界被研究者提出,该种电极除了有常规的无序小孔(1nm~10um)外,还具有通过特定方法制备出的垂直于电极平面的直孔(孔径约几十微米)。电解液中的锂离子传输时,可通过低曲折度的定向直孔高效传输到电极内部,然后再通过侧边的无序孔进一步渗透到活性颗粒间。这样,液相离子在多孔电极中的总体传输效率大大提高。然而,现有的一些制备方法还仅停留于实验室阶段,如已提出的采用共挤出法、凝胶冷冻法、磁性物质导向、冷冻浇注法等手段,均存在能耗大、耗时长、工艺难度大的问题,无法在工业上普及。
因此,本领域需要提出一种简单、高效、低成本的制备具有垂直孔道结构的锂离子电池极片的方法,以满足工业应用。
技术问题
针对现有技术的以上缺陷或改进需求,本发明提供了一种具有垂直孔道结构的锂离子电池极片的制备方法及产品,其中结合锂离子电池极片自身的特征及其锂离子传输的工艺特点,相应将特定比例含量以及指定粒径的热分解添加剂用作电极浆料的组成,同时还需控制所述溶剂的蒸发速度以及热分解添加剂的分解速率,以使得所述热分解添加剂在所述溶剂蒸完全蒸发后才完全分解耗尽,以此方式,使得所述电极浆料由于无法自主流动而填充掉由所述热分解添加剂分解而形成的多个竖直气孔,从而制备得到具有垂直孔道结构的锂离子电池极片,本发明锂离子电池极片具有多个垂直孔道结构,且多个垂直孔道结构布置均匀,电解液中的锂离子传输时,可通过低曲折度的定向直孔高效传输到电极内部,然后再通过侧边的垂直孔道结构进一步渗透到活性颗粒间,从而实现了提高液相离子在多孔电极中的总体传输效率。
技术解决方案
为实现上述目的,按照本发明的一个方面,提出了一种具有垂直孔道结构的锂离子电池极片的制备方法,包括以下步骤:
步骤一:将粉末状热分解添加剂、活性材料、粘结剂、导电剂按照预设比例和一定顺序加入溶剂中,连续搅拌至均匀混合,得到电极浆料,其中,所述热分解添加剂的质量为总体固体物质质量的10wt%~30wt%;
步骤二:将步骤一制备得到的电极浆料涂覆到集流体上得到锂离子电池湿极片;
步骤三:对所述锂离子电池极片进行加热干燥,其中,在加热干燥过程中,涂覆有电极浆料的一侧需竖直向上摆放,同时还需控制所述溶剂的蒸发速度以及热分解添加剂的分解速率,以使得所述热分解添加剂在所述溶剂蒸完全蒸发后完全分解耗尽,以此方式,使得所述电极浆料由于无法自主流动而填充掉由所述热分解添加剂分解而形成的多个竖直气孔,从而制备得到具有垂直孔道结构的锂离子电池极片。
作为进一步优选的,步骤一中,所述热分解添加剂的分解温度在室温以及锂离子电池极片涂布后的干燥温度之间,且所述热分解添加剂在在加热干燥过程中完全分解,产生气体,气体沿锂离子电池极片厚度方向逸出,形成竖直孔道。
作为进一步优选的,步骤一中,所述热分解添加剂为NH 4HCO 3、尿素以及NaHCO 3中的一种或多种,可通过研磨或饱和溶液析出法制备得到均匀细腻的粉末状热分解添加剂,也可将所述热分解添加剂的颗粒在红外灯照射下研磨,以获取粉末状热分解添加剂。
作为进一步优选的,步骤一具体包括以下步骤:将热分解添加剂加入至溶剂和粘结剂混合制成的胶状溶液中搅拌,分散均匀后再加入活性材料和导电剂进行混合,以提高所述热分解添加剂在所述电极浆料中的分散均匀性;其中,所述电极浆料涂覆的厚度为100μm~2000μm。
作为进一步优选的,在溶剂和粘结剂混合的过程中,以300~500r/min的转速磁力搅拌20 min~40min,制得均匀的胶状溶液,再将所述热分解添加剂加入胶状溶液中以400r/min~800r/min磁力搅拌10min~40min,也可将所述热分解添加剂加入胶状溶液中利用超声进行分散;在添加活性材料和导电剂进行混合时,以400r/min~600r/min磁力搅拌4h~8h。
作为进一步优选的,所述加热干燥的方式为真空干燥,加热干燥的温度为60℃~100℃,加热干燥的时间为5h~8h。
作为进一步优选的,所述活性材料为镍钴锰酸锂、磷酸铁锂、钴酸锂、锰酸锂或石墨,所述粘结剂为聚偏氟乙烯,所述导电剂为导电碳黑,所述溶剂为N-甲基吡咯烷酮。
作为进一步优选的,所述垂直孔道结构的等效直径小于100微米。
按照本发明的另一方面,提供了一种具有垂直孔道结构的锂离子电池极片,包括集流体、设于所述集流体上的电极涂层以及均匀分布于所述电极涂层中的多个垂直孔道结构,所述垂直孔道结构由分解添加剂热分解得到。
作为进一步优选的,所述电极浆料层的厚度为50μm~500μm,所述垂直孔道结构的等效直径小于100微米。
有益效果
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明将特定比例含量以及指定粒径的热分解添加剂用作电极浆料的组成,同时还需控制所述溶剂的蒸发速度以及热分解添加剂的分解速率,以使得所述热分解添加剂在所述溶剂蒸完全蒸发后才完全分解耗尽,以此方式,使得所述电极浆料由于无法自主流动而填充掉由所述热分解添加剂分解而形成的多个竖直气孔,从而制备得到具有垂直孔道结构的锂离子电池极片,本发明锂离子电池极片具有多个垂直孔道结构,且多个垂直孔道结构布置均匀,电解液中的锂离子传输时,可通过低曲折度的定向直孔高效传输到电极内部,然后再通过侧边的垂直孔道结构进一步渗透到活性颗粒间,从而实现了提高液相离子在多孔电极中的总体传输效率。本发明制备方法成本低廉、工艺简单,且与当前工业方法兼容性好,故无须更换现有工艺及装备即可实现这种特殊结构电极的大规模制造。
2.本发明热分解添加剂的分解温度在室温以及锂离子电池极片涂布后的干燥温度之间,且热分解过程中会产生气体,以此方式,使得所述电极浆料由于无法自主流动而填充掉由所述热分解添加剂分解而形成的多个竖直气孔,从而制备得到具有垂直孔道结构的锂离子电池极片。
3.本发明所述热分解添加剂为均匀细腻的粉末,其可在电极浆料中混合更加均匀,同时,在室温以及锂离子电池极片涂布后的干燥温度之间进行热分解产生气体,该气体能够在电极浆料中形成均匀布置的垂直孔道结构,电解液中的锂离子传输时,可通过低曲折度的定向直孔高效传输到电极内部,然后再通过侧边的垂直孔道结构进一步渗透到活性颗粒间,从而实现了提高液相离子在多孔电极中的总体传输效率。
4.本发明对粉末状热分解添加剂、活性材料、粘结剂、导电剂的配比以及混合的工艺进行特定性的设计,相应的,使得所制备得到的电极浆料中的分解添加剂能均匀分布。
5.本发明加热干燥的方式为远红外辐射干燥、双面送风悬浮干燥或者热风对流干燥,加热干燥的温度为60℃~100℃,加热干燥的时间为5h~8h,同时,在加热干燥过程中,涂覆有电极浆料的一侧需竖直向上摆放,以此方式,使得所述电极浆料由于无法自主流动而填充掉由所述热分解添加剂分解而形成的多个竖直气孔。
附图说明
图1为本发明实施例涉及的一种制造具有垂直孔道结构锂离子电池极片的制备方法流程图;
图2为本发明实施例制备的一种具有垂直孔道结构的锂离子电池极片的结构示意图;
图3为本技术方案实施例提供的具有垂直孔道结构的锂离子电池极片平面扫描电镜图;
图4为本技术方案实施例提供的具有垂直孔道结构的锂离子电池极片平面局部放大图;
图5为本技术方案实施例提供的具有垂直孔道结构的锂离子电池极片截面扫描电镜图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-锂离子电池极片,2-集流体,3-电极涂层,4-热分解添加剂,5-垂直孔道结构。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1,本技术方案实施例提供了一种制造具有垂直孔道结构锂离子电池极片的方法,该锂离子电池极片1包括集流体2和涂覆在集流体2上的电极浆料层3,该浆料中添加了热分解添加剂4。在极片干燥阶段,所述热分解添加剂4受热分解,生成的气体沿极片厚度方向向上逸出,形成垂直的孔道结构5。
进一步地,所述热分解添加剂4均匀的分布在浆料中,故分解后制得的孔道结构在极片平面上也呈均匀分布,孔道等效直径约几十微米,不超过100微米。
本技术方案实施例主要包括以下几个步骤:
步骤一:提供热分解添加剂4并将其制成粉末状。
优选地,所述热分解添加剂4的分解温度区间应高于常温且低于当前现有技术中锂离子电池极片涂布后的干燥温度(一般为100℃~120℃),本发明中热分解添加剂4采用NH 4HCO 3、尿素以及NaHCO 3中的一种或多种。
优选地,在一个实施例中,所述热分解添加剂4可通过研磨或饱和溶液析出法等方式制得均匀细腻的粉末,也可将碳酸氢铵颗粒在红外灯照射下研磨成细粉,通过控制研磨时间可制得不同粒径大小的碳酸氢铵粉末。
步骤二:将粉末状热分解添加剂4、活性材料、粘结剂、导电剂按照预设比例和一定顺序加入溶剂中,连续搅拌至均匀混合,得到电极浆料,所述热分解添加剂4的质量为总体固体物质质量的10wt%~30wt%。
优选地,可将热分解添加剂4先加至溶剂和粘结剂混合制成的胶状溶液中搅拌,分散均匀后再与活性材料、导电剂混合,以提高热分解添加剂4在电极浆料中的分散均匀性。本实施例中,先将粘结剂与溶剂混合,以300r/min-500r/min的转速磁力搅拌20min-40min,制得均匀的胶状溶液,再将所述热分解添加剂4加入胶状溶液中以400r/min-800r/min磁力搅拌10 min-40min,也可利用超声进行分散。然后再加入活性材料和导电剂,以400r/min-600r/min磁力搅拌4-8h。
优选地,所述搅拌方式也可直接采用当前工业上的机械搅拌方式及其搅拌装备。
步骤三:将步骤一制备得到的电极浆料涂覆到集流体上得到锂离子电池湿极片,其中,所述电极浆料涂覆的厚度为100μm~2000μm。
优选地,所述工艺及装备可直接采用当前工业上的狭缝摸涂布或转移式涂布及其涂布机,所述集流体2为铜箔(负极)或铝箔(正极)。本实施例中,采用实验室刮刀进行浆料涂覆,涂覆的厚度为500μm~1000μm。
步骤四:对所述锂离子电池湿极片进行加热干燥,其中,在加热干燥过程中,涂覆有电极浆料的一侧需竖直向上摆放,同时还需控制所述溶剂的蒸发速度以及热分解添加剂4的分解速率,以使得所述热分解添加剂4在所述溶剂蒸完全蒸发后才完全分解耗尽,以此方式,使得所述电极浆料由于无法自主流动而填充掉由所述热分解添加剂4分解而形成的多个竖直气孔5,从而制备得到具有垂直孔道结构的锂离子电池极片。
其中,需要特别注意的是,无论采用何种干燥工艺,干燥时须满足极片1待干燥面朝上,其干燥工艺参数(如温度、风速)应控制溶剂蒸发速率和热分解添加剂4的分解速率,使得热分解添加剂4在溶剂蒸发到一定量或完全蒸发后才完全分解耗尽。所述溶剂蒸发到一定量是指浆料固含量或浆料粘度上升到一定值,使得浆料无法自主流动而填充掉有热分解添加剂4形成的竖直气孔5。
优选地,所述工艺及装备可直接采用当前工业主流的干燥技术,如远红外辐射干燥、双面送风悬浮干燥、常规热风对流干燥等。在本实施例中,采用真空干燥箱真空60℃~100℃干燥5h~8h。
可以理解,本发明所提出的热分解物质不限于碳酸氢铵,实施例中所采用的方法也仅为可行方案的其中一种。
本发明所提供的具有垂直孔道的锂离子电池极片的制备方法可用于磷酸铁锂、三元材料、锰酸锂或钴酸锂正极极片,或石墨负极极片的制备,均可改善锂离子的传输,提高离子导电能力。
本实施例采用制造锂离子电池正极常用的材料体系,活性材料为镍钴锰酸锂(NMC),粘结剂为聚偏氟乙烯(PVDF),导电剂为导电碳黑(Super-P),溶剂为N-甲基吡咯烷酮(NMP)。
请参阅图2、图3、图4以及图5,本实施例制得的极片在扫描电子显微镜下进行观察,可见电极平面均匀分布的垂直孔道,等效直径约为几十微米。
为了更清楚详细地介绍本发明实施例所提供的具有垂直孔道的锂离子电池极片的制备方法,下面将结合更具体的实施例进行描述。
实施例 1
(1)制备碳酸氢铵细粉:将所需碳酸氢铵置于研钵中,在红外灯照射下进行充分的研磨,研磨至碳酸氢铵粉末细腻干燥,呈分散均匀且无团聚粘附的状态。
(2)制备浆料:将0.1g PVDF加入到2g NMP中,以300rmp转速低速搅拌30min至PVDF充分溶解,形成胶状溶液。然后取1g经步骤(1)研磨后的细粉,加入到所得PVDF和NMP混合胶状溶液中,以500rmp转速搅拌30min,使碳酸氢铵混合均匀,随后再加入0.1g的导电剂Super-P,以500rmp继续搅拌30min,充分分散后,最后再继续加入2g NMC,以500rmp转速搅拌6h。
(3)浆料涂布:将所选用的20μm厚的集流体铝箔平整的置于玻璃板上,提前在玻璃板上涂少许酒精以提高玻璃板与铝箔的粘附力,将制备获得的浆料转移到铝箔上,采用500μm厚的刮刀进行涂布。
(4)极片干燥:将涂布完成的极片置于真空干燥机中进行干燥,干燥温度选为80℃,干燥时间5h,使溶剂完全蒸发,碳酸氢铵完全分解逸出,形成垂直孔道。
实施例 2
(1)制备碳酸氢铵细粉:制备碳酸氢铵饱和水溶液,充分进行搅拌,然后向饱和水溶液中缓慢加入异丙醇,使碳酸氢铵晶体逐渐析出,制得分散均匀且无团聚粘附的碳酸氢铵细粉。
(2)制备浆料:将0.1g PVDF加入到2g NMP中,以400rmp转速搅拌20min至PVDF充分溶解,形成胶状溶液。取0.8g经步骤(1)析出的碳酸氢铵粉末,加入所得PVDF和NMP混合胶状溶液中,以700rmp转速搅拌30min,使碳酸氢铵混合均匀,随后再加入0.1g的Super-P,以600rmp继续搅拌30min,充分分散后,最后再加入2g NMC,以500rmp转速搅拌7h。
(3)浆料涂布:将所选用的20μm厚的集流体铝箔平整的置于玻璃板上,提前在玻璃板上涂少许酒精以提高玻璃板与铝箔的粘附力,将制备获得的浆料转移到铝箔上,采用800μm厚的刮刀进行涂布。
(4)极片干燥:将涂布完成的极片置于真空干燥机中进行干燥,干燥温度选为60℃,干燥时间6h。
本发明所提供的方法不限于锂离子电池正极极片的制备,对于负极极片,提供以下实施例。
实施例 3
本实施例采用制造锂离子电池负极常用的材料体系,活性材料为石墨,粘结剂选用水型粘接剂LA133,导电剂为选用Super-P,溶剂为水。
(1)制备碳酸氢铵细粉:制备碳酸氢铵饱和水溶液,充分进行搅拌,然后向饱和水溶液中缓慢加入异丙醇,使碳酸氢铵晶体逐渐析出,制得分散均匀且无团聚粘附的碳酸氢铵细粉。
(2)制备浆料:将0.12g LA133加入到3g碳酸氢铵饱和水溶液中,以400rmp转速搅拌20min至LA133充分溶解。取0.6g经步骤(1)析出的碳酸氢铵粉末,加入所得LA133和碳酸氢铵饱和水溶液混合溶液中,以600rmp转速搅拌30min,使碳酸氢铵混合均匀,随后再加入0.12g的Super-P,以600rmp继续搅拌30min,充分分散后,最后再加入1g石墨,以500rmp转速搅拌8h。
(3)浆料涂布:将所选用9μm厚的集流体铜箔平整的置于玻璃板上,提前在玻璃板上涂少许酒精以提高玻璃板与铜箔的粘附力,将制备获得的浆料转移到铜箔上,采用800μm厚的刮刀进行涂布。
(4)极片干燥:将涂布完成的极片置于干燥机中进行干燥,干燥温度选为100℃,干燥时间8h。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有垂直孔道结构的锂离子电池极片的制备方法,其特征在于,包括以下步骤:
    步骤一:将粉末状热分解添加剂(4)、活性材料、粘结剂、导电剂按照预设比例和一定顺序加入溶剂中,连续搅拌至均匀混合,得到电极浆料,其中,所述热分解添加剂(4)的质量为总体固体物质质量的10wt%~30wt%;
    步骤二:将步骤一制备得到的电极浆料涂覆到集流体上得到锂离子电池湿极片;
    步骤三:对所述锂离子电池湿极片进行加热干燥,其中,在加热干燥过程中,涂覆有电极浆料的一侧需竖直向上摆放,同时还需控制所述溶剂的蒸发速度以及热分解添加剂(4)的分解速率,以使得所述热分解添加剂(4)在所述溶剂蒸完全蒸发后完全分解耗尽,以此方式,使得所述电极浆料由于无法自主流动而填充掉由所述热分解添加剂(4)分解而形成的多个竖直气孔(5),从而制备得到具有垂直孔道结构的锂离子电池极片。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤一中,所述热分解添加剂(4)的分解温度在室温以及锂离子电池极片涂布后的干燥温度之间,且所述热分解添加剂(4)在在加热干燥过程中完全分解,产生气体,气体沿锂离子电池极片厚度方向逸出,形成竖直孔道。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤一中,所述热分解添加剂(4)为NH 4HCO 3、尿素以及NaHCO 3中的一种或多种,可通过研磨或饱和溶液析出法制备得到均匀细腻的粉末状热分解添加剂(4),也可将所述热分解添加剂(4)的颗粒在红外灯照射下研磨,以获取粉末状热分解添加剂(4)。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤一具体包括以下步骤:将热分解添加剂(4)加入至溶剂和粘结剂混合制成的胶状溶液中搅拌,分散均匀后再加入活性材料和导电剂进行混合,以提高所述热分解添加剂(4)在所述电极浆料中的分散均匀性;其中,所述电极浆料涂覆的厚度为100μm~2000μm。
  5. 根据权利要求4所述的制备方法,其特征在于,在溶剂和粘结剂混合的过程中,以300~500r/min的转速磁力搅拌20 min~40min,制得均匀的胶状溶液,再将所述热分解添加剂(4)加入胶状溶液中以400r/min~800r/min磁力搅拌10min~40min,也可将所述热分解添加剂(4)加入胶状溶液中利用超声进行分散;在添加活性材料和导电剂进行混合时,以400r/min~600r/min磁力搅拌4h~8h。
  6. 根据权利要求1所述的制备方法,其特征在于,所述加热干燥的方式为真空干燥,加热干燥的温度为60℃~100℃,加热干燥的时间为5h~8h。
  7. 根据权利要求1-6任一项所述的制备方法,其特征在于,所述活性材料为镍钴锰酸锂、磷酸铁锂、钴酸锂、锰酸锂或石墨,所述粘结剂为聚偏氟乙烯,所述导电剂为导电碳黑,所述溶剂为N-甲基吡咯烷酮。
  8. 根据权利要求1-6任一项所述的制备方法,其特征在于,所述垂直孔道结构的等效直径小于100微米。
  9. 一种采用权利要求1-8任一项所述的制备方法制备而成的具有垂直孔道结构的锂离子电池极片,其特征在于,包括集流体(2)、设于所述集流体(2)上的电极涂层(3)以及均匀分布于所述电极涂层(3)中的多个垂直孔道结构,所述垂直孔道结构由分解添加剂(4)热分解得到。
  10. 根据权利要求9所述的具有垂直孔道结构的锂离子电池极片,其特征在于,所述电极涂层的厚度为50μm~500μm,所述垂直孔道结构的等效直径小于100微米。
PCT/CN2020/116951 2019-12-06 2020-09-23 具有垂直孔道结构的锂离子电池极片的制备方法及产品 WO2021109685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/211,846 US11183677B2 (en) 2019-12-06 2021-03-25 Preparation method and product of lithium-ion battery electrode sheet with vertical vent structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911239819.2 2019-12-06
CN201911239819.2A CN110957470B (zh) 2019-12-06 2019-12-06 具有垂直孔道结构的锂离子电池极片的制备方法及产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/211,846 Continuation US11183677B2 (en) 2019-12-06 2021-03-25 Preparation method and product of lithium-ion battery electrode sheet with vertical vent structures

Publications (1)

Publication Number Publication Date
WO2021109685A1 true WO2021109685A1 (zh) 2021-06-10

Family

ID=69979991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116951 WO2021109685A1 (zh) 2019-12-06 2020-09-23 具有垂直孔道结构的锂离子电池极片的制备方法及产品

Country Status (3)

Country Link
US (1) US11183677B2 (zh)
CN (1) CN110957470B (zh)
WO (1) WO2021109685A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957470B (zh) 2019-12-06 2021-05-18 华中科技大学 具有垂直孔道结构的锂离子电池极片的制备方法及产品
CN113690447A (zh) * 2020-05-19 2021-11-23 华为技术有限公司 电池电极极片及其制备方法、电池和终端
DE102020124517A1 (de) * 2020-09-21 2022-03-24 Volkswagen Aktiengesellschaft Verfahren und Einrichtung zur Trocknung eines Folienmaterials
CN113424348B (zh) * 2020-11-30 2022-12-27 宁德新能源科技有限公司 一种电化学装置和电子装置
CN114267876A (zh) * 2021-12-20 2022-04-01 上海科技大学 一种一体化电极-电解质结构及其制备方法与全固态电池
CN114551811A (zh) * 2022-02-22 2022-05-27 北京航空航天大学 一种垂直MXene阵列极片的制备方法、垂直MXene阵列极片及应用
DE102022202213A1 (de) 2022-03-04 2023-09-07 Volkswagen Aktiengesellschaft Verfahren zum Herstellen einer Elektrode, Elektrode, Lithiumionenzelle
CN114400301B (zh) * 2022-03-09 2024-04-02 中南大学 一种高性能锂离子电池厚极片及其制备方法
CN114464816B (zh) 2022-04-12 2022-07-12 瑞浦兰钧能源股份有限公司 一种具有造孔功能涂层的集流体、极片以及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169109A (ja) * 2011-02-14 2012-09-06 Sumitomo Electric Ind Ltd 多孔質発熱体、多孔質発熱素子及びガス分解素子
CN105633350A (zh) * 2016-04-01 2016-06-01 深圳市沃特玛电池有限公司 一种多孔极片及其制备方法、锂离子电池
CN105845872A (zh) * 2016-05-04 2016-08-10 合肥国轩高科动力能源有限公司 一种用于粘结锂电池隔膜与极片的涂层浆料及其制备方法
CN108767195A (zh) * 2018-04-27 2018-11-06 国联汽车动力电池研究院有限责任公司 一种孔隙结构可调的硅基电极及其制备方法
CN109860513A (zh) * 2019-02-28 2019-06-07 中车青岛四方车辆研究所有限公司 锂离子电池极片及其制备方法和锂离子电池
CN110957470A (zh) * 2019-12-06 2020-04-03 华中科技大学 具有垂直孔道结构的锂离子电池极片的制备方法及产品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691435B2 (en) * 2009-09-18 2014-04-08 Daihatsu Motor Co., Ltd. Electrochemical cell and electrochemical capacitor
WO2015137041A1 (ja) * 2014-03-12 2015-09-17 三洋化成工業株式会社 リチウムイオン電池用被覆負極活物質、リチウムイオン電池用スラリー、リチウムイオン電池用負極、リチウムイオン電池、及び、リチウムイオン電池用被覆負極活物質の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169109A (ja) * 2011-02-14 2012-09-06 Sumitomo Electric Ind Ltd 多孔質発熱体、多孔質発熱素子及びガス分解素子
CN105633350A (zh) * 2016-04-01 2016-06-01 深圳市沃特玛电池有限公司 一种多孔极片及其制备方法、锂离子电池
CN105845872A (zh) * 2016-05-04 2016-08-10 合肥国轩高科动力能源有限公司 一种用于粘结锂电池隔膜与极片的涂层浆料及其制备方法
CN108767195A (zh) * 2018-04-27 2018-11-06 国联汽车动力电池研究院有限责任公司 一种孔隙结构可调的硅基电极及其制备方法
CN109860513A (zh) * 2019-02-28 2019-06-07 中车青岛四方车辆研究所有限公司 锂离子电池极片及其制备方法和锂离子电池
CN110957470A (zh) * 2019-12-06 2020-04-03 华中科技大学 具有垂直孔道结构的锂离子电池极片的制备方法及产品

Also Published As

Publication number Publication date
CN110957470A (zh) 2020-04-03
US20210210743A1 (en) 2021-07-08
CN110957470B (zh) 2021-05-18
US11183677B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2021109685A1 (zh) 具有垂直孔道结构的锂离子电池极片的制备方法及产品
JP6445585B2 (ja) 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
CN104332657B (zh) 锂离子电池富锂工艺及使用该工艺制备的锂离子电池
CN108269982B (zh) 一种复合材料、其制备方法及在锂离子电池中的应用
WO2013178059A1 (zh) 锂离子电池硅碳复合负极材料及其制备方法
WO2017024720A1 (zh) 一种高容量锂离子电池负极材料的制备方法
WO2022021933A1 (zh) 非水电解质二次电池用负极材料及其制备方法
CN101540398A (zh) 一种用于锂二次电池的介孔结构磷酸盐材料及其制备方法
CN101510625A (zh) 一种超高倍率锂离子电池
CN112331838B (zh) 一种锂离子电池高容量氧化亚硅复合负极材料及其制备方法
CN109309194A (zh) 改性无锂负极、其制备方法和含有其的锂离子电池
TWI622213B (zh) 鋰離子電池正極漿料的製備方法
US20220336789A1 (en) Preparation method for lithium-sulfur battery based on large-area thick- film controllable textured photonic crystal
CN104183834A (zh) 一种锂硫电池正极用硫/二氧化硅核壳纳米结构的制备方法
CN114975976B (zh) 一种纳米硅镶嵌三维蜂窝碳复合负极材料及其制备方法、应用
CN110707313A (zh) 一种v2o5-氟化碳混合正极材料及其制备方法
CN112271325A (zh) 一种三维固态锂电池及其制备方法
CN112768672A (zh) 一种以微硅粉为Si源制备石墨基Si@C负极材料的方法
CN113321198B (zh) 二元金属磷酸盐正极材料及其制备方法和应用
CN110048110A (zh) 一种石墨烯复合电极材料的制备方法及其应用
CN104752682A (zh) 一种锂硫电池的硫/碳复合正极材料制备方法
CN110600684A (zh) 一种锂离子电池用硅碳负极材料及其制备方法
Yuan et al. Facile synthesis of a sulfur/multiwalled carbon nanotube nanocomposite cathode with core–shell structure for lithium rechargeable batteries
CN108987746B (zh) 一种超小颗粒固定三维多孔纳米网状结构MoS2复合粉体及其制备方法和应用
CN115159527B (zh) 一种硬碳包覆硅纳米颗粒复合微球负极材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896570

Country of ref document: EP

Kind code of ref document: A1