WO2021109634A1 - 计及线路土壤电阻率差异化的雷击跳闸率试验方法 - Google Patents

计及线路土壤电阻率差异化的雷击跳闸率试验方法 Download PDF

Info

Publication number
WO2021109634A1
WO2021109634A1 PCT/CN2020/111683 CN2020111683W WO2021109634A1 WO 2021109634 A1 WO2021109634 A1 WO 2021109634A1 CN 2020111683 W CN2020111683 W CN 2020111683W WO 2021109634 A1 WO2021109634 A1 WO 2021109634A1
Authority
WO
WIPO (PCT)
Prior art keywords
lightning
phase
insulator string
line
tower
Prior art date
Application number
PCT/CN2020/111683
Other languages
English (en)
French (fr)
Inventor
陈斯翔
周华敏
任欣元
李恒真
詹清华
李洪涛
陈邦发
宋安琪
何子兰
邹浩
Original Assignee
广东电网有限责任公司
广东电网有限责任公司佛山供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司, 广东电网有限责任公司佛山供电局 filed Critical 广东电网有限责任公司
Publication of WO2021109634A1 publication Critical patent/WO2021109634A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Definitions

  • the invention belongs to the field of analysis of lightning resistance performance of power systems, and particularly relates to a lightning trip rate test method that takes into account the difference in electrical resistivity of the soil of the line.
  • Lightning strikes and transmission line faults are the main problem that affects the safe transportation of power systems. Lightning strikes cause frequent tripping of transmission and distribution networks. With the increasing complexity of the transmission line topology, lightning strikes are becoming more and more important to ignore. According to statistics, power transmission Line lightning trip accidents account for more than 60% of transmission line accidents. Regarding the influence of different soil resistivities on the lightning resistance level of the entire system, the research work on the lightning trip rate of transmission lines is difficult. At present, solving the shielding failure of transmission lines is still a world-class problem.
  • the object of the present invention is to provide a lightning trip rate test method that takes account of the difference in soil resistivity of the line, including a more accurate lightning trip rate test platform that takes into account the difference of the soil resistivity of the line.
  • a lightning trip rate test platform that takes into account the difference in soil resistivity of the line, including impulse voltage generator, data measurement and analysis control module, wireless current sensor, coaxial cable 1, coaxial cable 2, coaxial cable three, two-way contact Point, first base tower, second base tower, third base tower, lightning protection line, A-phase line, B-phase line, C-phase line;
  • the output end of the impulse voltage generator is connected to the bidirectional contact through the coaxial cable 1, and the bidirectional contact output ends are respectively connected to the coaxial cable 2 and the coaxial cable 3, wherein the coaxial cable 2 is connected to the first base tower On the top of the tower, the third coaxial cable is connected to the C-phase line of the first base tower, and the wireless current sensor is sleeved on the first coaxial cable;
  • the first lightning protection line and the second lightning protection line respectively connect the first base tower, the second base tower, and the third base tower in series.
  • the first base tower includes a tower main body, a phase A insulator string, a B phase insulator string, a C phase insulator string, a ground down conductor, a grounding device, and a sand pond; and a phase A insulator string.
  • the two ends are connected to the tower main body 1 and the phase A line, the two ends of the B-phase insulator string connect the tower main body 1 and the B phase line respectively, and the two ends of the C-phase insulator string connect the tower main body 1 and the phase C line respectively; the tower main body one bottom
  • the grounding down conductor is connected to the grounding device, and the grounding device is buried in the sand pond, and the sand pond is equipped with soil with variable soil resistivity.
  • the second base pole tower includes two pole tower main bodies, two A-phase insulator strings, two B-phase insulator strings, two C-phase insulator strings, two grounding down conductors, and two grounding devices; the two ends of the two phase A insulator strings are respectively Connect the tower main body 2 with the phase A line, the two ends of the B-phase insulator string connect the tower main body 2 and the phase B line respectively, and the two ends of the C-phase insulator string connect the tower main body 2 and the phase C line respectively; the bottom of the tower main body 2 is connected by grounding The second line is connected to the second grounding device, and the second grounding device is buried in the soil.
  • the third base tower includes a tower main body three, A-phase insulator string three, B-phase insulator string three, C-phase insulator string three, grounding down conductor three, and grounding device three; the three ends of the A-phase insulator string are respectively Connect the tower main body 3 with the phase A line, the three ends of the B-phase insulator string connect the tower main body 3 and the B-phase line respectively, and the three ends of the C-phase insulator string connect the tower main body 3 and the C-phase line respectively; the bottom of the tower main body 3 is guided by grounding The lower line 3 is connected to the grounding device 3, and the grounding device 3 is buried in the soil.
  • the data measurement analysis control module includes a high-voltage differential probe one, a high-voltage differential probe two, a high-voltage differential probe three, a data collector, a wireless receiving module, a host computer, and a signal controller; wherein the high-voltage differential probe one, the high-voltage differential probe 2.
  • High-voltage differential probe 3 is connected to the two ends of A-phase insulator string 1, B-phase insulator string 1, and C-phase insulator string 1, and connected to the upper computer through the data collector; the wireless receiving module collects the current collected by the wireless current sensor Transmitted to the upper computer; the upper computer changes the output voltage of the impulse voltage generator through the control signal controller.
  • a lightning trip rate test method that takes account of the difference in soil resistivity of the line, including the following steps:
  • step S2 For the high soil resistivity area, change the soil resistivity of the soil in the sand pond, starting from 550 ⁇ m, take a soil resistivity every 50 ⁇ m, and repeat step S1 to measure the soil resistivity under different soil resistivities. Lightning resistance level of counterattack;
  • L is the total length of the grounding device conductor
  • h is the buried depth of the grounding device
  • d is the diameter of the grounding device conductor
  • B is the shape factor
  • l is the geometric size
  • L gt is the equivalent inductance of the tower
  • h d is the power transmission
  • U 50% is the flashover voltage of the insulator string
  • is the shunt coefficient
  • K is the coupling coefficient after corona correction
  • m is the error coefficient
  • is the integral variable
  • S4 Use the particle swarm optimization algorithm to optimize the modeling of the theoretical calculation formula of the lightning resistance level of the counterattack, and calculate the value of m that minimizes the error between the measured value of the lightning resistance level of the counterattack and the theoretical value;
  • step S5 Repeat step S4, and finally obtain the optimal value of the error coefficient m in the high soil resistivity area, the higher soil resistivity area, and the extremely high soil resistivity area, which are respectively m 0 , m 1 , and m 2 , which are substituted in The following formulas (2), (3), (4), get the optimized theoretical formula:
  • I y is the theoretically calculated value of the optimized lightning protection level of the counterattack
  • I y is the theoretically calculated value of the optimized lightning protection level of the counterattack
  • G is the stroke rate
  • h arc is the sag of the lightning conductor
  • H b is the height of the connection between the lightning conductor and the tower
  • L xj is the insulator string flash Network distance
  • U 1 is the rated voltage of the line
  • M is the number of lightning days per year;
  • Z 0 is the wave impedance of the lightning channel
  • h b is the height of the side-phase wire
  • r is the wire radius
  • l j is the length of the insulator string
  • ⁇ 0 is the magnetic permeability in vacuum
  • ⁇ 0 is the dielectric constant of the vacuum
  • m is the error coefficient
  • R is the shielding tripping rate
  • is the protection angle of the lightning protection wire to the side-phase conductor
  • h g is the height of the tower
  • I r is the optimized lightning protection level
  • D is the lightning protection wire spacing
  • L j is the optimized lightning trip rate
  • G is the stroke rate
  • step S1 is:
  • step S4 is:
  • g(m) represents the objective function
  • I i is the theoretical calculation value of the lightning resistance level of the counter strike under the condition of the i-th soil resistivity
  • I ci is the measured value of the lightning resistance level of the counter strike under the condition of the i-th soil resistivity
  • n is The number of measured data sets corresponding to the lightning resistance level of the counterattack in the soil resistivity area
  • step 5 If the stop condition is met, stop the search and output the search result, otherwise return to step 2);
  • step S7 is:
  • the overvoltage at both ends is transmitted to the upper computer through the data collector, and the upper computer controls the signal controller to turn off the impulse voltage generator, and judges whether the A-phase insulator string 1, B-phase insulator string 1, and C-phase insulator string 1 flash Network
  • step S9 is:
  • g(m) represents the objective function
  • I rj is the theoretical calculation value of the lightning resistance level of shielding under the condition of the jth wire radius
  • I rcj is the measured value of the lightning resistance level of the shielding strike under the condition of the jth soil resistivity
  • s The number of measured data sets for the lightning protection level of the shielding strike
  • step (2) If the stop condition is met, stop the search and output the search result, otherwise return to step (2);
  • m 3 is the error coefficient after optimization.
  • the technical solution of the present invention has the following beneficial effects: taking into account the influence of different soil resistivity on the lightning resistance level of the line; the lightning trip rate of the line can be directly obtained through the method of actual measurement and calculation; Operation and control, easy to operate, intelligent, safe and reliable, and universally applicable to lightning resistance level testing.
  • Figure 1 is a structural diagram of the platform of the present invention.
  • the test platform is first built, as shown in Figure 1.
  • the platform includes an impulse voltage generator 11, a data measurement and analysis control module 17, a wireless current sensor 7, a coaxial Cable one 24, coaxial cable two 9, coaxial cable three 10, two-way contact 8, first base tower 21, second base tower 22, third base tower 23, lightning protection line 81, phase A line 91, phase B Line 92, C-phase line 93;
  • the output end of the impulse voltage generator 11 is connected to the bidirectional contact 8 through the coaxial cable 24, and the bidirectional contact output ends are respectively connected to the coaxial cable 2 9 and the coaxial cable 3 10, in which the coaxial cable 2 9 is connected To the top of the first base pole tower 21, the coaxial cable three 10 is connected to the C-phase line 93 of the first base pole tower 21, and the wireless current sensor 7 is sleeved on the coaxial cable one 24;
  • the lightning protection wire 81 connects the first base tower 21, the second base tower 22, and the third base tower 23 in series;
  • the first base tower 21 includes a tower main body 101, a phase A insulator string 131, a B phase insulator string 132, a C phase insulator string 133, a ground down conductor 161, a grounding device 61, and a sand pool 5;
  • the two ends of the A-phase insulator string one 131 are respectively connected to the tower main body 101 and the A-phase line 91, the B-phase insulator string one 132 two ends are respectively connected to the tower main body 101 and the B-phase line 92, and the C-phase insulator string one 133 is connected to both ends.
  • the main body 101 of the tower is connected to the phase C line 93; the bottom of the main body 101 of the tower is connected to the grounding device 61 through the ground down conductor 161.
  • the grounding device 61 is buried in the sand pond 5, and the sand pond 5 is equipped with variable Soil resistivity of soil 18;
  • the second base tower 22 includes a tower main body two 102, a phase A insulator string two 141, a B phase insulator string two 142, a C phase insulator string two 143, a ground down conductor two 162, a grounding device two 62;
  • a phase insulator string Two ends of the two 141 are connected to the tower main body two 102 and the A phase line 91 respectively.
  • the two ends of the B-phase insulator string two 142 are connected to the tower main body two 102 and the B phase line 92 respectively.
  • the two ends of the C phase insulator string two 143 are connected to the tower main body two 102 respectively.
  • With the phase C line 93; the bottom of the second pole 102 of the tower is connected to the second grounding device 62 through the second ground down conductor 162, and the second grounding device 62 is buried in the soil;
  • the third base tower 23 includes a tower main body three 103, A-phase insulator string three 151, B-phase insulator string three 152, C-phase insulator string three 153, ground down conductor three 163, grounding device three 63; A-phase insulator string
  • the two ends of the three 151 are connected to the tower main body three 103 and the phase A line 91 respectively
  • the two ends of the B phase insulator string three 152 are connected to the tower main body three 103 and the B phase line 92 respectively
  • the two ends of the C-phase insulator string three 153 are respectively connected to the tower main body three 103 With the C-phase line 93
  • the bottom of the tower main body three 103 is connected to the grounding device three 63 through the grounding down conductor three 163, and the grounding device three 63 is buried in the soil;
  • the data measurement analysis control module 17 includes high-voltage differential probe one 41, high-voltage differential probe two 42, high-voltage differential probe three 43, data collector 3, wireless receiving module 2, host computer 1, signal controller 12; among them, the high-voltage differential probe One 41.
  • High-voltage differential probe two 42 and high-voltage differential probe three 43 are respectively connected to the two ends of A-phase insulator string one 131, B-phase insulator string one 132, and C-phase insulator string one 133, and connected to the upper position through data collector 3.
  • the wireless receiving module 2 transmits the current collected by the wireless current sensor 7 to the upper computer 1; the upper computer 1 changes the output voltage of the impulse voltage generator 11 through the control signal controller 12.
  • a lightning trip rate test method that takes account of the difference in soil resistivity of the line, including the following steps:
  • L is the total length of the grounding device conductor
  • h is the buried depth of the grounding device
  • d is the diameter of the grounding device conductor
  • B is the shape factor
  • l is the geometric size
  • L gt is the equivalent inductance of the tower
  • h d is the power transmission
  • U 50% is the flashover voltage of the insulator string
  • is the shunt coefficient
  • K is the coupling coefficient after corona correction
  • m is the error coefficient
  • is the integral variable
  • S4 Use the particle swarm optimization algorithm to optimize the modeling of the theoretical calculation formula of the lightning resistance level of the counterattack, and calculate the value of m that minimizes the error between the measured value of the lightning resistance level of the counterattack and the theoretical value;
  • step S5 Repeat step S4, and finally obtain the optimal value of the error coefficient m in the high soil resistivity area, the higher soil resistivity area, and the extremely high soil resistivity area, which are respectively m 0 , m 1 , and m 2 , which are substituted in The following formulas (2), (3), (4), get the optimized theoretical formula:
  • I y is the theoretically calculated value of the optimized lightning protection level of the counterattack
  • I y is the theoretically calculated value of the optimized lightning protection level of the counterattack
  • G is the stroke rate
  • h arc is the sag of the lightning conductor
  • H b is the height of the connection between the lightning conductor and the tower
  • L xj is the insulator string flash Network distance
  • U 1 is the rated voltage of the line
  • M is the number of lightning days per year;
  • Z 0 is the wave impedance of the lightning channel
  • h b is the height of the side-phase wire
  • r is the wire radius
  • l j is the length of the insulator string
  • ⁇ 0 is the magnetic permeability in vacuum
  • ⁇ 0 is the dielectric constant of the vacuum
  • m is the error coefficient
  • R is the shielding tripping rate
  • is the protection angle of the lightning protection wire to the side-phase conductor
  • h g is the height of the tower
  • I r is the optimized lightning protection level
  • D is the lightning protection wire spacing
  • L j is the optimized lightning trip rate
  • G is the stroke rate
  • step S1 The specific process of step S1 is:
  • the lightning current at the top of the first base pole tower 21 is wirelessly transmitted to the wireless receiving module 2 and then to the host computer 1.
  • the high-voltage differential probe 41, the high-voltage differential probe two 42, and the high-voltage differential probe three 43 respectively measure the phase A insulators.
  • the overvoltage at both ends of string one 131, B-phase insulator string one 132, and C-phase insulator string one 133 are transmitted to the upper computer 1 through the data collector 3.
  • the upper computer 1 controls the signal controller 12 to turn off the impulse voltage generator 11. And judge whether the A-phase insulator string one 131, the B-phase insulator string one 132, and the C-phase insulator string one 133 have flashover;
  • the signal controller 12 If flashover occurs in the insulator string, the signal controller 12 reduces the amplitude of the lightning voltage output by the impulse voltage generator 11 by ⁇ U, then turns on the impulse voltage generator 11 again, and repeats the above method until the insulator string is just all If no flashover occurs, the lightning current amplitude I c measured last time is used as the lightning resistance level of the counterattack; if no flashover is found in the insulator string, the signal controller 12 makes the lightning voltage amplitude output by the impulse voltage generator 11 Increase ⁇ U, turn on the impulse voltage generator 11 again, and repeat the above method until a flashover occurs in a certain insulator string, and the lightning current amplitude I c measured this time is used as the lightning resistance level of the counterattack.
  • step S4 The specific process of step S4 is:
  • g(m) represents the objective function
  • I i is the theoretical calculation value of the lightning resistance level of the counter strike under the condition of the i-th soil resistivity
  • I ci is the measured value of the lightning resistance level of the counter strike under the condition of the i-th soil resistivity
  • n is The number of measured data sets corresponding to the lightning resistance level of the counterattack in the soil resistivity area
  • step 5 If the stop condition is met, stop the search and output the search result, otherwise return to step 2);
  • step S7 The specific process of step S7 is:
  • the high-voltage differential probe one 41, the high-voltage differential probe two 42, and the high-voltage differential probe three 43 respectively measure the A-phase insulator string One 131, B-phase insulator string one 132, C-phase insulator string one 133 overvoltage at both ends, and transmitted to the upper computer 1 through the data collector 3, the upper computer 1 controls the signal controller 12 to turn off the impulse voltage generator 11, and Judge whether A-phase insulator string one 131, B-phase insulator string one 132, and C-phase insulator string one 133 have flashover;
  • the signal controller 12 If flashover occurs in the insulator string, the signal controller 12 reduces the amplitude of the lightning voltage output by the impulse voltage generator 11 by ⁇ U, then turns on the impulse voltage generator 11 again, and repeats the above method until the insulator string is just all If no flashover occurs, the lightning current amplitude I rc measured last time is used as the lightning protection level of shielding strike; if no flashover is found in the insulator string, the signal controller 12 makes the lightning voltage amplitude output by the impulse voltage generator 11 Increase the value by ⁇ U, turn on the impulse voltage generator 11 again, and repeat the above method until a flashover occurs in a certain insulator string, then the lightning current amplitude I rc measured this time is used as the lightning protection level of the shielding strike.
  • step S9 The specific process of step S9 is:
  • g(m) represents the objective function
  • I rj is the theoretical calculation value of the lightning resistance level of shielding under the condition of the jth wire radius
  • I rcj is the measured value of the lightning resistance level of the shielding strike under the condition of the jth soil resistivity
  • s The number of measured data sets for the lightning protection level of the shielding strike
  • step (2) If the stop condition is met, stop the search and output the search result, otherwise return to step (2);
  • m 3 is the error coefficient after optimization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Environmental & Geological Engineering (AREA)
  • Elimination Of Static Electricity (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

一种计及线路土壤电阻率差异化的雷击跳闸率试验方法,搭建了一个测试平台,包括冲击电压发生器(11)、数据测量分析控制模块(17)、无线电流传感器(7)、同轴电缆一(24)、同轴电缆二(9)、同轴电缆三(10)、第一基杆塔(21)、第二基杆塔(22)、第三基杆塔(23)、避雷线(81)、A相线路(91)、B相线路(92)、C相线路(93)。试验方法为:同轴电缆一(24)连接冲击电压发生器(11)与双向触点(8),双向触点(8)另一端分别连接C相线路(93)与杆塔顶部,同轴电缆一(24)上环绕无线电流传感器(7),将测量数据由无线电流传感器(7)反馈给数据测量分析控制模块(17),计算得到雷击跳闸率。本方法能有效计算不同土壤电阻率条件下输电线路的雷击跳闸率,从而实现对于输电线路与杆塔结构的雷击安全测评。

Description

计及线路土壤电阻率差异化的雷击跳闸率试验方法 技术领域
本发明属于电力系统耐雷性能分析领域,特别是一种计及线路土壤电阻率差异化的雷击跳闸率试验方法。
背景技术
雷击输电线路故障是影响电力系统安全运输中的主要问题,雷击引起的输配电网跳闸事故频繁发生,随着输电线路拓补结构日趋复杂,雷击跳闸事故变得愈发不可忽视,据统计,输电线路的雷击跳闸事故占输电线路事故的60%以上。对于不同土壤电阻率对于整个系统的耐雷水平的影响,输电线路雷击跳闸率的研究工作艰难进行,目前而言,解决输电线路绕击跳闸故障仍是一项世界级难题。
为了确定应该从哪一方面对输电线路及杆塔进行改造,降低线路跳闸率,提升电力系统安全稳定性,迫切的需要一种雷击跳闸率的实验方法,以此获得影响线路跳闸率的因素,便于进一步优化杆塔与输电线路的安全设计。
发明内容
本发明的目的在于提供一种计及线路土壤电阻率差异化的雷击跳闸率试验方法,包含一种较为精确的计及线路土壤电阻率差异化的雷击跳闸率试验平台。
为了达到上述技术效果,本发明的技术方案如下:
一种计及线路土壤电阻率差异化的雷击跳闸率试验平台,包括冲击电压发生器、数据测量分析控制模块、无线电流传感器、同轴电缆一、同轴电缆二、同轴电缆三、双向触点、第一基杆塔、第二基杆塔、第三基杆塔、避雷线、A相线路、B相线路、C相线路;
所述冲击电压发生器的输出端通过同轴电缆一连接至双向触点,双向触点输出端分别连接着同轴电缆二、同轴电缆三,其中同轴电缆二连接着第一基杆塔的塔顶,同轴电缆三连接着第一基杆塔的C相线路,无线电流传感器套接在同轴电缆一上;
所述避雷线一、避雷线二分别将第一基杆塔、第二基杆塔、第三基杆塔串接起来。
进一步地,所述第一基杆塔包括杆塔主体一、A相绝缘子串一、B相绝缘子串一、C相绝缘子串一、接地引下线一、接地装置一以及沙池;A相绝缘子串一两端分别连接杆塔主体一与A相线路,B相绝缘子串一两端分别连接杆塔主体一与B相线路,C相绝缘子串一两端分别连接杆塔主体一与C相线路;杆塔主体一底部通过接地引下线一连接到接地装置一上,接地装置一埋设在沙池中,并且沙池中装有可变土壤电阻率的土壤。
进一步地,所述第二基杆塔包括杆塔主体二、A相绝缘子串二、B相绝缘子串二、C相绝缘子串二、接地引下线二、接地装置二;A相绝缘子串二两端分别连接杆塔主体二与A相线路,B相绝缘子串二两端分别连接杆塔主体二与B相线路,C相绝缘子串二两端分别连接杆塔主体二与C相线路;杆塔主体二底部通过接地引下线二连接到接地装置二上,接地装置二埋设在土壤中。
进一步地,所述第三基杆塔包括杆塔主体三、A相绝缘子串三、B相绝缘子串三、C相绝缘子串三、接地引下线三、接地装置三;A相绝缘子串三两端分别连接杆塔主体三与A相线路,B相绝缘子串三两端分别连接杆塔主体三与B相线路,C相绝缘子串三两端分别连接杆塔主体三与C相线路;杆塔主体三底部通过接地引下线三连接到接地装置三上,接地装置三埋设在土壤中。
进一步地,所述数据测量分析控制模块包含高压差分探头一、高压差分探头二、高压差分探头三、数据采集器、无线接收模块、上位机、信号控制器;其中高压差分探头一、高压差分探头二、高压差分探头三分别接在A相绝缘子串一、B相绝缘子串一、C相绝缘子串一的两端,并通过数据采集器连接到上位机上;无线接收模块将无线电流传感器采集的电流传输至上位机;上位机通过控制信号控制器改变冲击电压发生器的输出电压。
一种计及线路土壤电阻率差异化的雷击跳闸率试验方法,包括以下步骤:
S1:模拟雷击输电线路杆塔塔顶,并进行反击耐雷水平测试;
S2:针对高土壤电阻率区域,改变沙池中土壤的土壤电阻率,从550Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得不同土壤电阻率下的反击耐雷水平;
S3:由下式计算不同土壤电阻率下,反击耐雷水平理论值I:
Figure PCTCN2020111683-appb-000001
式中,L为接地装置导体的总长度,h为接地装置埋深,d为接地装置导体的直径,B为形状系数,l为几何尺寸,L gt为杆塔的等效电感,h d为输电导线的平均高度,U 50%为绝缘子串的闪络电压,α为分流系数,K为经电晕校正后的耦合系数,m为误差系数,η为积分变量;
S4:采用粒子群优化算法对反击耐雷水平理论计算公式进行优化建模,计算出使反击耐雷水平实测值与理论值误差最小的m值;
S5:重复步骤S4,最终得出在高土壤电阻率区域、较高土壤电阻率区域、特高土壤电阻率区域,误差系数m的最优值,分别为m 0、m 1、m 2,代入以下公式(2)、(3)、(4),得到优化后的理论公式:
Figure PCTCN2020111683-appb-000002
Figure PCTCN2020111683-appb-000003
Figure PCTCN2020111683-appb-000004
式中,I y为优化后的反击耐雷水平理论计算值;
S6:将得到的反击耐雷水平I y带入下式,由此得到反击跳闸率:
Figure PCTCN2020111683-appb-000005
式中,I y为优化后的反击耐雷水平理论计算值,G为击杆率,h arc为避雷线弧垂,H b为避雷线与杆塔连接处的离地高度,L xj为绝缘子串闪络距离,U 1为线路额定电压,M为年落雷日数;
S7:模拟雷击C相线路,并进行绕击耐雷水平测试;
S8:针对不同的导线半径,改变输电线路的导线半径,从8mm开始,每间 隔0.5mm取一个导线半径,并重复进行S7,测得该输电导线半径下的的绕击耐雷水平,进而得到不同输电线宽度下,绕击耐雷水平理论值I 1
Figure PCTCN2020111683-appb-000006
Z 0为雷电通道波阻抗,h b为边相导线高度,r为导线半径,l j为绝缘子串长度,μ 0为真空中的磁导率,ε 0为真空的介电常数,m为误差系数;
S9:采用粒子群优化算法对绕击耐雷水平理论计算公式进行优化建模,计算出使绕击耐雷水平实测值与理论值误差最小的m 3值;
S10:将得到的绕击耐雷水平带入如下公式计算绕击跳闸率:
Figure PCTCN2020111683-appb-000007
R为绕击跳闸率,θ为避雷线对边相导线的保护角,h g为杆塔高度,I r为优化后的绕击耐雷水平,D为避雷线间距;
S11:将步骤S4优化后的反击耐雷水平I y和步骤S9优化后的绕击耐雷水平I r代入,可得出优化的雷击跳闸率理论公式:
Figure PCTCN2020111683-appb-000008
式中,L j为优化的雷击跳闸率,G为击杆率。
进一步地,所述步骤S1的具体过程是:
1)、将双向触点的触头接至同轴电缆二,打开冲击电压发生器,输出幅值为U的雷电压至第一基杆塔的塔顶,无线电流传感器记录注入第一基杆塔塔顶的雷电流,并无线传输至无线接收模块,进而传输至上位机;同时高压差分探头一、高压差分探头二、高压差分探头三分别测量A相绝缘子串一、B相绝缘子串一、C相绝缘子串一两端的过电压,并通过数据采集器传输至上位机上,上位机控制信号控制器关闭冲击电压发生器,并判断A相绝缘子串一、B相绝缘子串一、C相绝缘子串一是否发生闪络;
2)、若有绝缘子串发生闪络,则通过信号控制器使冲击电压发生器输出的雷电压幅值减小ΔU,再次打开冲击电压发生器,重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I c作为反击耐雷水平;若发现绝 缘子串均未闪络,则通过信号控制器使冲击电压发生器输出的雷电压幅值增加ΔU,再次打开冲击电压发生器,重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I c作为反击耐雷水平。
进一步地,所述步骤S4的具体过程是:
1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
2)、按照式(9)计算目标函数值:
Figure PCTCN2020111683-appb-000009
式中,g(m)表示目标函数,I i为第i个土壤电阻率情况下的反击耐雷水平理论计算值,I ci为第i个土壤电阻率情况下的反击耐雷水平实测值,n为对应土壤电阻率区域的反击耐雷水平的实测数据组数;
3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
4)、更新每个粒子的速度和位置;
5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
6)、得出使反击耐雷水平实测值与理论值误差最小的m值。
其中,高土壤电阻率区域是:500Ω·m<ρ<=1000Ω·m;较高土壤电阻率地区是:1000Ω·m<ρ<=2000Ω·m;超高土壤电阻率地区是:2000Ω·m<ρ,其中ρ为土壤电阻率。
进一步地,所述步骤S7的具体过程是:
1)、将双向触点的触头接至同轴电缆三,打开冲击电压发生器,输出幅值为U的雷电压至第一基杆塔的C相线路,无线电流传感器记录注入C相线路的雷电流,并无线传输至无线接收模块,进而传输至上位机;同时高压差分探头一、高压差分探头二、高压差分探头三分别测量A相绝缘子串一、B相绝缘子串一、C相绝缘子串一两端的过电压,并通过数据采集器传输至上位机上,上位机控制信号控制器关闭冲击电压发生器,并判断A相绝缘子串一、B相绝缘子串一、C相绝缘子串一是否发生闪络;
2)、若有绝缘子串发生闪络,则通过信号控制器使冲击电压发生器输出的雷电压幅值减小ΔU,再次打开冲击电压发生器,重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I rc作为绕击耐雷水平;若发现绝缘子串均未闪络,则通过信号控制器使冲击电压发生器输出的雷电压幅值增加 ΔU,再次打开冲击电压发生器,重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I rc作为绕击耐雷水平。
进一步地,所述步骤S9的具体过程是:
(1)生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
(2)按照式(10)计算目标函数值:
Figure PCTCN2020111683-appb-000010
式中,g(m)表示目标函数,I rj为第j个导线半径情况下的绕击耐雷水平理论计算值,I rcj为第j个土壤电阻率情况下的绕击耐雷水平实测值,s为绕击耐雷水平的实测数据组数;
(3)更新每个粒子的个体历史最优位置与整个群体的最优位置;
(4)更新每个粒子的速度和位置;
(5)若满足停止条件,则停止搜索,输出搜索结果,否则返回第(2)步;
(6)根据优化得出最优值m 3代入以下公式(11),为优化后的理论公式:
Figure PCTCN2020111683-appb-000011
m 3为优化过后的误差系数。
其中,不同输电线路导线半径是:8mm<r<=15mm,其中r为导线半径。
与现有技术相比,本发明技术方案的有益效果是:考虑到了土壤电阻率不同对线路耐雷水平的影响;可通过实测结合计算的方法直接得到线路的雷击跳闸率;通过上位机完成主要的操作与控制,操作方便智能,安全可靠,对耐雷水平的测试具有普适性。
附图说明
图1为本发明平台的结构图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理 解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
计及线路土壤电阻率差异化的雷击跳闸率试验方法,首先搭建了试验平台,如图1所示,该平台包括冲击电压发生器11、数据测量分析控制模块17、无线电流传感器7、同轴电缆一24、同轴电缆二9、同轴电缆三10、双向触点8、第一基杆塔21、第二基杆塔22、第三基杆塔23、避雷线81、A相线路91、B相线路92、C相线路93;
所述冲击电压发生器11的输出端通过同轴电缆一24连接至双向触点8,双向触点输出端分别连接着同轴电缆二9、同轴电缆三10,其中同轴电缆二9连接着第一基杆塔21的塔顶,同轴电缆三10连接着第一基杆塔21的C相线路93,无线电流传感器7套接在同轴电缆一24上;
所述避雷线81将第一基杆塔21、第二基杆塔22、第三基杆塔23串接起来;
所述第一基杆塔21包括杆塔主体一101、A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133、接地引下线一161、接地装置一61以及沙池5;A相绝缘子串一131两端分别连接杆塔主体一101与A相线路91,B相绝缘子串一132两端分别连接杆塔主体一101与B相线路92,C相绝缘子串一133两端分别连接杆塔主体一101与C相线路93;杆塔主体一101底部通过接地引下线一161连接到接地装置一61上,接地装置一61埋设在沙池5中,并且沙池5中装有可变土壤电阻率的土壤18;
所述第二基杆塔22包括杆塔主体二102、A相绝缘子串二141、B相绝缘子串二142、C相绝缘子串二143、接地引下线二162、接地装置二62;A相绝缘子串二141两端分别连接杆塔主体二102与A相线路91,B相绝缘子串二142两端分别连接杆塔主体二102与B相线路92,C相绝缘子串二143两端分别连接杆塔主体二102与C相线路93;杆塔主体二102底部通过接地引下线二162连接到接地装置二62上,接地装置二62埋设在土壤中;
所述第三基杆塔23包括杆塔主体三103、A相绝缘子串三151、B相绝缘子串三152、C相绝缘子串三153、接地引下线三163、接地装置三63;A相绝缘子串三151两端分别连接杆塔主体三103与A相线路91,B相绝缘子串三152两端分别连接杆塔主体三103与B相线路92,C相绝缘子串三153两端分别连 接杆塔主体三103与C相线路93;杆塔主体三103底部通过接地引下线三163连接到接地装置三63上,接地装置三63埋设在土壤中;
所述数据测量分析控制模块17包含高压差分探头一41、高压差分探头二42、高压差分探头三43、数据采集器3、无线接收模块2、上位机1、信号控制器12;其中高压差分探头一41、高压差分探头二42、高压差分探头三43分别接在A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133的两端,并通过数据采集器3连接到上位机1上;无线接收模块2将无线电流传感器7采集的电流传输至上位机1;上位机1通过控制信号控制器12改变冲击电压发生器11的输出电压。
实施例2
一种计及线路土壤电阻率差异化的雷击跳闸率试验方法,包括以下步骤:
S1:模拟雷击输电线路杆塔塔顶,并进行反击耐雷水平测试;
S2:针对高土壤电阻率区域,改变沙池5中土壤18的土壤电阻率,从550Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得不同土壤电阻率下的反击耐雷水平;
S3:由下式计算不同土壤电阻率下,反击耐雷水平理论值I:
Figure PCTCN2020111683-appb-000012
式中,L为接地装置导体的总长度,h为接地装置埋深,d为接地装置导体的直径,B为形状系数,l为几何尺寸,L gt为杆塔的等效电感,h d为输电导线的平均高度,U 50%为绝缘子串的闪络电压,α为分流系数,K为经电晕校正后的耦合系数,m为误差系数,η为积分变量;
S4:采用粒子群优化算法对反击耐雷水平理论计算公式进行优化建模,计算出使反击耐雷水平实测值与理论值误差最小的m值;
S5:重复步骤S4,最终得出在高土壤电阻率区域、较高土壤电阻率区域、特高土壤电阻率区域,误差系数m的最优值,分别为m 0、m 1、m 2,代入以下公式(2)、(3)、(4),得到优化后的理论公式:
Figure PCTCN2020111683-appb-000013
Figure PCTCN2020111683-appb-000014
Figure PCTCN2020111683-appb-000015
式中,I y为优化后的反击耐雷水平理论计算值;
S6:将得到的反击耐雷水平I y带入下式,由此得到反击跳闸率:
Figure PCTCN2020111683-appb-000016
式中,I y为优化后的反击耐雷水平理论计算值,G为击杆率,h arc为避雷线弧垂,H b为避雷线与杆塔连接处的离地高度,L xj为绝缘子串闪络距离,U 1为线路额定电压,M为年落雷日数;
S7:模拟雷击C相线路93,并进行绕击耐雷水平测试;
S8:针对不同的导线半径,改变输电线路的导线半径,从8mm开始,每间隔0.5mm取一个导线半径,并重复进行S7,测得该输电导线半径下的的绕击耐雷水平,进而得到不同输电线宽度下,绕击耐雷水平理论值I 1
Figure PCTCN2020111683-appb-000017
Z 0为雷电通道波阻抗,h b为边相导线高度,r为导线半径,l j为绝缘子串长度,μ 0为真空中的磁导率,ε 0为真空的介电常数,m为误差系数;
S9:采用粒子群优化算法对绕击耐雷水平理论计算公式进行优化建模,计算出使绕击耐雷水平实测值与理论值误差最小的m 3值;
S10:将得到的绕击耐雷水平带入如下公式计算绕击跳闸率:
Figure PCTCN2020111683-appb-000018
R为绕击跳闸率,θ为避雷线对边相导线的保护角,h g为杆塔高度,I r为优化后的绕击耐雷水平,D为避雷线间距;
S11:将步骤S4优化后的反击耐雷水平I y和步骤S9优化后的绕击耐雷水平I r代入,可得出优化的雷击跳闸率理论公式:
Figure PCTCN2020111683-appb-000019
式中,L j为优化的雷击跳闸率,G为击杆率。
步骤S1的具体过程是:
1)、将双向触点8的触头接至同轴电缆二9,打开冲击电压发生器11,输出幅值为U的雷电压至第一基杆塔21的塔顶,无线电流传感器7记录注入第一基杆塔21塔顶的雷电流,并无线传输至无线接收模块2,进而传输至上位机1;同时高压差分探头一41、高压差分探头二42、高压差分探头三43分别测量A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133两端的过电压,并通过数据采集器3传输至上位机1上,上位机1控制信号控制器12关闭冲击电压发生器11,并判断A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133是否发生闪络;
2)、若有绝缘子串发生闪络,则通过信号控制器12使冲击电压发生器11输出的雷电压幅值减小ΔU,再次打开冲击电压发生器11,重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I c作为反击耐雷水平;若发现绝缘子串均未闪络,则通过信号控制器12使冲击电压发生器11输出的雷电压幅值增加ΔU,再次打开冲击电压发生器11,重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I c作为反击耐雷水平。
步骤S4的具体过程是:
1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
2)、按照式(9)计算目标函数值:
Figure PCTCN2020111683-appb-000020
式中,g(m)表示目标函数,I i为第i个土壤电阻率情况下的反击耐雷水平理论计算值,I ci为第i个土壤电阻率情况下的反击耐雷水平实测值,n为对应土壤电阻率区域的反击耐雷水平的实测数据组数;
3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
4)、更新每个粒子的速度和位置;
5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
6)、得出使反击耐雷水平实测值与理论值误差最小的m值。
步骤S7的具体过程是:
1)、将双向触点8的触头接至同轴电缆三10,打开冲击电压发生器11,输出幅值为U的雷电压至第一基杆塔21的C相线路93,无线电流传感器7记录注入C相线路93的雷电流,并无线传输至无线接收模块2,进而传输至上位机1;同时高压差分探头一41、高压差分探头二42、高压差分探头三43分别测量A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133两端的过电压,并通过数据采集器3传输至上位机1上,上位机1控制信号控制器12关闭冲击电压发生器11,并判断A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133是否发生闪络;
2)、若有绝缘子串发生闪络,则通过信号控制器12使冲击电压发生器11输出的雷电压幅值减小ΔU,再次打开冲击电压发生器11,重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I rc作为绕击耐雷水平;若发现绝缘子串均未闪络,则通过信号控制器12使冲击电压发生器11输出的雷电压幅值增加ΔU,再次打开冲击电压发生器11,重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I rc作为绕击耐雷水平。
步骤S9的具体过程是:
(1)生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
(2)按照式(10)计算目标函数值:
Figure PCTCN2020111683-appb-000021
式中,g(m)表示目标函数,I rj为第j个导线半径情况下的绕击耐雷水平理论计算值,I rcj为第j个土壤电阻率情况下的绕击耐雷水平实测值,s为绕击耐雷水平的实测数据组数;
(3)更新每个粒子的个体历史最优位置与整个群体的最优位置;
(4)更新每个粒子的速度和位置;
(5)若满足停止条件,则停止搜索,输出搜索结果,否则返回第(2)步;
(6)根据优化得出最优值m 3代入以下公式(11),为优化后的理论公式:
Figure PCTCN2020111683-appb-000022
m 3为优化过后的误差系数。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

  1. 一种计及线路土壤电阻率差异化的雷击跳闸率试验方法,其特征在于,首先建立计及线路土壤电阻率差异化的雷击跳闸率试验平台,该试验平台包括冲击电压发生器(11)、数据测量分析控制模块(17)、无线电流传感器(7)、同轴电缆一(24)、同轴电缆二(9)、同轴电缆三(10)、双向触点(8)、第一基杆塔(21)、第二基杆塔(22)、第三基杆塔(23)、避雷线(81)、A相线路(91)、B相线路(92)、C相线路(93);
    所述冲击电压发生器(11)的输出端通过同轴电缆一(24)连接至双向触点(8),双向触点输出端分别连接着同轴电缆二(9)、同轴电缆三(10),其中同轴电缆二(9)连接着第一基杆塔(21)的塔顶,同轴电缆三(10)连接着第一基杆塔(21)的C相线路(93),无线电流传感器(7)套接在同轴电缆一(24)上;
    所述避雷线(81)将第一基杆塔(21)、第二基杆塔(22)、第三基杆塔(23)串接起来;
    所述的试验平台第一基杆塔(21)包括杆塔主体一(101)、A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)、接地引下线一(161)、接地装置一(61)以及沙池(5);A相绝缘子串一(131)两端分别连接杆塔主体一(101)与A相线路(91),B相绝缘子串一(132)两端分别连接杆塔主体一(101)与B相线路(92),C相绝缘子串一(133)两端分别连接杆塔主体一(101)与C相线路(93);杆塔主体一(101)底部通过接地引下线一(161)连接到接地装置一(61)上,接地装置一(61)埋设在沙池(5)中,并且沙池(5)中装有可变土壤电阻率的土壤(18);
    所述的试验平台第二基杆塔(22)包括杆塔主体二(102)、A相绝缘子串二(141)、B相绝缘子串二(142)、C相绝缘子串二(143)、接地引下线二(162)、接地装置二(62);A相绝缘子串二(141)两端分别连接杆塔主体二(102)与A相线路(91),B相绝缘子串二(142)两端分别连接杆塔主体二(102)与B相线路(92),C相绝缘子串二(143)两端分别连接杆塔主体二(102)与C相线路(93);杆塔主体二(102)底部通过接地引下线二(162)连接到接地装置二(62)上,接地装置二(62)埋设在土壤中;
    所述的试验平台第三基杆塔(23)包括杆塔主体三(103)、A相绝缘子串三(151)、B相绝缘子串三(152)、C相绝缘子串三(153)、接地引下线三(163)、接地装置三(63);A相绝缘子串三(151)两端分别连接杆塔主体三(103)与A相线路(91),B相绝缘子串三(152)两端分别连接杆塔主体三(103)与B相线路(92),C相绝缘子串三(153)两端分别连接杆塔主体三(103)与C相线路(93);杆塔主体三(103)底部通过接地引下线三(163)连接到接地装置三(63)上,接地装置三(63)埋设在土壤中;
    所述的测试平台中数据测量分析控制模块(17)包含高压差分探头一(41)、高压差分探头二(42)、高压差分探头三(43)、数据采集器(3)、无线接收模块(2)、上位机(1)、信号控制器(12);其中高压差分探头一(41)、高压差分探头二(42)、高压差分探头三(43)分别接在A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)的两端,并通过数据采集器(3)连接到上位机(1)上;无线接收模块(2)将无线电流传感器(7)采集的电流传输至上位机(1);上位机(1)通过控制信号控制器(12)改变冲击电压发生器(11)的输出电压。
  2. 根据权利要求1所述的计及线路土壤电阻率差异化的雷击跳闸率试验方法,其特征在于,步骤包括:
    S1:模拟雷击输电线路杆塔塔顶,并进行反击耐雷水平测试;
    S2:针对高土壤电阻率区域,改变沙池(5)中土壤(18)的土壤电阻率,从550Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得不同土壤电阻率下的反击耐雷水平;
    S3:由下式计算不同土壤电阻率下,反击耐雷水平理论值I:
    Figure PCTCN2020111683-appb-100001
    式中,L为接地装置导体的总长度,h为接地装置埋深,d为接地装置导体的直径,B为形状系数,l为几何尺寸,L gt为杆塔的等效电感,h d为输电导线的平均高度,U 50%为绝缘子串的闪络电压,α为分流系数,K为经电晕校正后的耦合系数,m为误差系数,η为积分变量;
    S4:采用粒子群优化算法对反击耐雷水平理论计算公式进行优化建模,计算 出使反击耐雷水平实测值与理论值误差最小的m值;
    S5:重复步骤S4,最终得出在高土壤电阻率区域、较高土壤电阻率区域、特高土壤电阻率区域,误差系数m的最优值,分别为m 0、m 1、m 2,代入以下公式(2)、(3)、(4),得到优化后的理论公式:
    Figure PCTCN2020111683-appb-100002
    Figure PCTCN2020111683-appb-100003
    Figure PCTCN2020111683-appb-100004
    式中,I y为优化后的反击耐雷水平理论计算值;
    S6:将得到的反击耐雷水平I y带入下式,由此得到反击跳闸率:
    Figure PCTCN2020111683-appb-100005
    式中,I y为优化后的反击耐雷水平理论计算值,G为击杆率,h arc为避雷线弧垂,H b为避雷线与杆塔连接处的离地高度,L xj为绝缘子串闪络距离,U 1为线路额定电压,M为年落雷日数;
    S7:模拟雷击C相线路(93),并进行绕击耐雷水平测试;
    S8:针对不同的导线半径,改变输电线路的导线半径,从8mm开始,每间隔0.5mm取一个导线半径,并重复进行S7,测得该输电导线半径下的的绕击耐雷水平,进而得到不同输电线宽度下,绕击耐雷水平理论值I 1
    Figure PCTCN2020111683-appb-100006
    Z 0为雷电通道波阻抗,h b为边相导线高度,r为导线半径,l j为绝缘子串长度,μ 0为真空中的磁导率,ε 0为真空的介电常数,m为误差系数;
    S9:采用粒子群优化算法对绕击耐雷水平理论计算公式进行优化建模,计算 出使绕击耐雷水平实测值与理论值误差最小的m 3值;
    S10:将得到的绕击耐雷水平带入如下公式计算绕击跳闸率:
    Figure PCTCN2020111683-appb-100007
    R为绕击跳闸率,θ为避雷线对边相导线的保护角,h g为杆塔高度,I r为优化后的绕击耐雷水平,D为避雷线间距;
    S11:将步骤S4优化后的反击耐雷水平I y和步骤S9优化后的绕击耐雷水平I r代入,可得出优化的雷击跳闸率理论公式:
    Figure PCTCN2020111683-appb-100008
    式中,L j为优化的雷击跳闸率,G为击杆率。
  3. 根据权利要求2所述的计及线路土壤电阻率差异化的雷击跳闸率试验方法,其特征在于,所述步骤S1的具体过程是:
    1)、将双向触点(8)的触头接至同轴电缆二(9),打开冲击电压发生器(11),输出幅值为U的雷电压至第一基杆塔(21)的塔顶,无线电流传感器(7)记录注入第一基杆塔(21)塔顶的雷电流,并无线传输至无线接收模块(2),进而传输至上位机(1);同时高压差分探头一(41)、高压差分探头二(42)、高压差分探头三(43)分别测量A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)两端的过电压,并通过数据采集器(3)传输至上位机(1)上,上位机(1)控制信号控制器(12)关闭冲击电压发生器(11),并判断A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)是否发生闪络;
    2)、若有绝缘子串发生闪络,则通过信号控制器(12)使冲击电压发生器(11)输出的雷电压幅值减小ΔU,再次打开冲击电压发生器(11),重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I c作为反击耐雷水平;若发现绝缘子串均未闪络,则通过信号控制器(12)使冲击电压发生器(11)输出的雷电压幅值增加ΔU,再次打开冲击电压发生器(11),重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I c作为反击耐雷水平。
  4. 根据权利要求2所述的计及线路土壤电阻率差异化的雷击跳闸率试验方 法,其特征在于,所述步骤S4的具体过程是:
    1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
    2)、按照式(9)计算目标函数值:
    Figure PCTCN2020111683-appb-100009
    式中,g(m)表示目标函数,I i为第i个土壤电阻率情况下的反击耐雷水平理论计算值,I ci为第i个土壤电阻率情况下的反击耐雷水平实测值,n为对应土壤电阻率区域的反击耐雷水平的实测数据组数;
    3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
    4)、更新每个粒子的速度和位置;
    5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
    6)、得出使反击耐雷水平实测值与理论值误差最小的m值。
  5. 根据权利要求2所述的高土壤电阻率地区雷击输电线路耐雷水平测评方法,其特征在于,在步骤S2中,高土壤电阻率地区是:550Ω·m<ρ<=1000Ω·m步骤S5中,较高土壤电阻率地区是:1000Ω·m<ρ<=2000Ω·m;步骤S6中,超高土壤电阻率地区是:2000Ω·m<ρ,其中ρ为土壤电阻率。
  6. 根据权利要求2所述的计及线路土壤电阻率差异化的雷击跳闸率试验方法,其特征在于,所述步骤S7的具体过程是:
    1)、将双向触点(8)的触头接至同轴电缆三(10),打开冲击电压发生器(11),输出幅值为U的雷电压至第一基杆塔(21)的C相线路(93),无线电流传感器(7)记录注入C相线路(93)的雷电流,并无线传输至无线接收模块(2),进而传输至上位机(1);同时高压差分探头一(41)、高压差分探头二(42)、高压差分探头三(43)分别测量A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)两端的过电压,并通过数据采集器(3)传输至上位机(1)上,上位机(1)控制信号控制器(12)关闭冲击电压发生器(11),并判断A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)是否发生闪络;
    2)、若有绝缘子串发生闪络,则通过信号控制器(12)使冲击电压发生器(11)输出的雷电压幅值减小ΔU,再次打开冲击电压发生器(11),重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值
    Figure PCTCN2020111683-appb-100010
    作为绕击耐雷 水平;若发现绝缘子串均未闪络,则通过信号控制器(12)使冲击电压发生器(11)输出的雷电压幅值增加ΔU,再次打开冲击电压发生器(11),重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值
    Figure PCTCN2020111683-appb-100011
    作为绕击耐雷水平。
  7. 根据权利要求2所述的计及线路土壤电阻率差异化的雷击跳闸率试验方法,其特征在于,所述步骤S9的具体过程是:
    (1)生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
    (2)按照式(10)计算目标函数值:
    Figure PCTCN2020111683-appb-100012
    式中,g(m)表示目标函数,I rj为第j个导线半径情况下的绕击耐雷水平理论计算值,I rcj为第j个土壤电阻率情况下的绕击耐雷水平实测值,s为绕击耐雷水平的实测数据组数;
    (3)更新每个粒子的个体历史最优位置与整个群体的最优位置;
    (4)更新每个粒子的速度和位置;
    (5)若满足停止条件,则停止搜索,输出搜索结果,否则返回第(2)步;
    (6)根据优化得出最优值m 3代入以下公式(11),为优化后的理论公式:
    Figure PCTCN2020111683-appb-100013
    m 3为优化过后的误差系数。
  8. 根据权利要求2所述的计及线路土壤电阻率差异化的雷击跳闸率试验方法,其特征在于,步骤S8中,不同输电线路导线半径是:8mm<r<=15mm,其中r为导线半径。
PCT/CN2020/111683 2019-12-03 2020-08-27 计及线路土壤电阻率差异化的雷击跳闸率试验方法 WO2021109634A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911223237.5A CN110865271B (zh) 2019-12-03 2019-12-03 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN201911223237.5 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021109634A1 true WO2021109634A1 (zh) 2021-06-10

Family

ID=69658221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111683 WO2021109634A1 (zh) 2019-12-03 2020-08-27 计及线路土壤电阻率差异化的雷击跳闸率试验方法

Country Status (2)

Country Link
CN (1) CN110865271B (zh)
WO (1) WO2021109634A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777441A (zh) * 2021-08-20 2021-12-10 云南电网有限责任公司楚雄供电局 一种计及耦合地线高度的雷击同跳测评方法和平台

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865271B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN110865267B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 一种110kV输电线路绕击跳闸率的评估方法
CN112054459A (zh) * 2020-07-31 2020-12-08 广东电网有限责任公司广州供电局 一种配电线路的雷电防护方法
CN111983359B (zh) * 2020-08-24 2021-07-02 西南交通大学 一种雷击下的输电杆塔状态监测与评估方法
CN112083251B (zh) * 2020-09-18 2021-07-02 西南交通大学 一种计及多样身形的人体内脏电损风险评估方法
CN112505424B (zh) * 2020-11-30 2022-01-11 广东电网有限责任公司佛山供电局 一种垂直接地极冲击阻抗畸变率评测系统及方法
CN112505423B (zh) * 2020-11-30 2022-01-21 广东电网有限责任公司佛山供电局 一种水平接地极冲击阻抗畸变率评测系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279334A (zh) * 2011-08-30 2011-12-14 中国瑞林工程技术有限公司 一种输电线路杆塔耐雷水平动态监测方法
CN102435921A (zh) * 2011-09-26 2012-05-02 山西省电力公司忻州供电分公司 同塔双回输电线路绝缘及耐雷电冲击性能的判定方法
CN103048598A (zh) * 2012-12-21 2013-04-17 广州供电局有限公司 输电线路杆塔反击耐雷性能的评估方法及装置
CN205016965U (zh) * 2015-10-26 2016-02-03 厦门理工学院 一种架空输电线路防雷保护装置及其耐雷水平测试系统
JP2016146683A (ja) * 2015-02-06 2016-08-12 東京電力ホールディングス株式会社 接地系流入電流計算装置及び方法
CN110865271A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN110865265A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种山地地区输电线路反击跳闸率测试方法
CN110865270A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 雷击下220kV输电线路反击跳闸率测试方法
CN110865266A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种十字型接地装置的输电线路耐雷水平试验方法
CN110907773A (zh) * 2019-12-03 2020-03-24 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381869B2 (en) * 2010-10-29 2019-08-13 Verizon Patent And Licensing Inc. Remote power outage and restoration notification
US8593151B2 (en) * 2011-02-28 2013-11-26 Jeffrey M Drazan Inductive monitoring of a power transmission line of an electrical network
KR101192015B1 (ko) * 2012-01-31 2012-10-16 주식회사 케이에이치바텍 저손실 복수 방향 안테나의 선택적 통신 방식 스위칭을 적용하는 가공 송배전 선로 감시장치
CN103207340B (zh) * 2013-05-02 2015-04-08 深圳供电局有限公司 一种输电线路雷电绕击跳闸在线预警方法
CN103474940B (zh) * 2013-09-28 2016-01-13 成都星河科技产业有限公司 一种电网高塔输电线路综合防雷系统
CN103646148A (zh) * 2013-12-20 2014-03-19 国家电网公司 一种特高压输电线路雷电反击性能仿真计算方法
CN103823101B (zh) * 2014-03-14 2016-04-20 云南电力试验研究院(集团)有限公司电力研究院 一种测量带避雷线的输电线路杆塔冲击分流系数的方法
CN204347122U (zh) * 2015-01-07 2015-05-20 云南电网有限责任公司玉溪供电局 用于降低雷击跳闸率的输电线路改造的雷击检测系统
CN105137286A (zh) * 2015-09-01 2015-12-09 国网新疆电力公司经济技术研究院 输电线路雷击监测装置及防雷水平评估的方法
CN106918762A (zh) * 2015-12-25 2017-07-04 中国电力科学研究院 一种架空输电线路雷击电流监测方法和雷击故障识别方法
CN207623449U (zh) * 2017-11-14 2018-07-17 中国南方电网有限责任公司超高压输电公司检修试验中心 直流输电线路雷击跳闸故障杆塔快速查询装置
CN109507552A (zh) * 2018-11-29 2019-03-22 清华大学 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置
CN110361584B (zh) * 2019-08-04 2020-09-01 西南交通大学 雷击输电线路单相接地故障的风险评估实验平台及方法
CN110445082B (zh) * 2019-08-20 2020-12-01 长沙理工大学 10kV配电线路的并联间隙的单相安装结构及其测试方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279334A (zh) * 2011-08-30 2011-12-14 中国瑞林工程技术有限公司 一种输电线路杆塔耐雷水平动态监测方法
CN102435921A (zh) * 2011-09-26 2012-05-02 山西省电力公司忻州供电分公司 同塔双回输电线路绝缘及耐雷电冲击性能的判定方法
CN103048598A (zh) * 2012-12-21 2013-04-17 广州供电局有限公司 输电线路杆塔反击耐雷性能的评估方法及装置
JP2016146683A (ja) * 2015-02-06 2016-08-12 東京電力ホールディングス株式会社 接地系流入電流計算装置及び方法
CN205016965U (zh) * 2015-10-26 2016-02-03 厦门理工学院 一种架空输电线路防雷保护装置及其耐雷水平测试系统
CN110865271A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN110865265A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种山地地区输电线路反击跳闸率测试方法
CN110865270A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 雷击下220kV输电线路反击跳闸率测试方法
CN110865266A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种十字型接地装置的输电线路耐雷水平试验方法
CN110907773A (zh) * 2019-12-03 2020-03-24 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777441A (zh) * 2021-08-20 2021-12-10 云南电网有限责任公司楚雄供电局 一种计及耦合地线高度的雷击同跳测评方法和平台
CN113777441B (zh) * 2021-08-20 2024-04-09 云南电网有限责任公司楚雄供电局 一种计及耦合地线高度的雷击同跳测评方法和平台

Also Published As

Publication number Publication date
CN110865271B (zh) 2021-07-13
CN110865271A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2021109634A1 (zh) 计及线路土壤电阻率差异化的雷击跳闸率试验方法
WO2021109633A1 (zh) 一种基于粒子群算法的输电线路绕击跳闸率测评方法
WO2021109630A1 (zh) 高土壤电阻率地区雷击输电线路耐雷水平测评方法
WO2021109631A1 (zh) 一种十字型接地装置的输电线路耐雷水平试验方法
CN104898021B (zh) 一种基于k‑means聚类分析的配电网故障选线方法
CN110221180A (zh) 一种10kV配电线路雷击故障识别与定位方法
CN103488815A (zh) 一种输电线路雷电绕击风险评估方法
CN102662120B (zh) 低压配电线路雷击跳闸风险评估方法与装置
CN104850738A (zh) 架空电力线路杆塔处雷电感应电压计算方法
CN109541409B (zh) 基于电气几何模型的配电线路闪络率改进算法
CN110865268B (zh) 低土壤电阻率地区输电杆塔雷击跳闸率测试方法
CN110865270B (zh) 雷击下220kV输电线路反击跳闸率测试方法
WO2021109632A1 (zh) 一种110kV输电线路绕击跳闸率的评估方法
CN111931348B (zh) 一种10kV配网杆塔感应雷闪络风险自动评估方法及系统
CN105740500A (zh) 一种复合杆塔过电压仿真模型设计方法
CN113358979B (zh) 一种配电网单相断线故障的选相方法和选相装置
CN110865265B (zh) 一种山地地区输电线路反击跳闸率测试方法
CN109631987A (zh) 一种电缆多参量综合监测预警系统
CN103048513A (zh) 自保险宽频电压信号采集装置
CN215340151U (zh) 一种基于谐波谐振监测量的绝缘子闪络预警系统
CN110829613B (zh) 架空输电线路的地线取能方法
CN114859168A (zh) 一种基于双端非同步测量的三芯电缆故障测距方法
CN113255115A (zh) 非理想大地中存在非理想导体时电缆传输线模型的构建方法
Hong et al. Study on the BL Early Warning Model of Transmission Line Tower Based on KNN-SVM Algorithm
CN114184765B (zh) 一种计及土壤孔隙率的变电站接地网土壤特性评估方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895494

Country of ref document: EP

Kind code of ref document: A1