WO2021109630A1 - 高土壤电阻率地区雷击输电线路耐雷水平测评方法 - Google Patents

高土壤电阻率地区雷击输电线路耐雷水平测评方法 Download PDF

Info

Publication number
WO2021109630A1
WO2021109630A1 PCT/CN2020/111678 CN2020111678W WO2021109630A1 WO 2021109630 A1 WO2021109630 A1 WO 2021109630A1 CN 2020111678 W CN2020111678 W CN 2020111678W WO 2021109630 A1 WO2021109630 A1 WO 2021109630A1
Authority
WO
WIPO (PCT)
Prior art keywords
lightning
insulator string
phase
soil resistivity
tower
Prior art date
Application number
PCT/CN2020/111678
Other languages
English (en)
French (fr)
Inventor
陈斯翔
武利会
陈道品
彭涛
吴江一
刘益军
张鸣
何子兰
李恒真
黎小龙
Original Assignee
广东电网有限责任公司
广东电网有限责任公司佛山供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司, 广东电网有限责任公司佛山供电局 filed Critical 广东电网有限责任公司
Publication of WO2021109630A1 publication Critical patent/WO2021109630A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Definitions

  • the invention relates to the technical field of lightning protection for power transmission lines, and more specifically, to a method for evaluating the lightning resistance level of power transmission lines struck by lightning in areas with high soil resistivity.
  • a method for evaluating the lightning resistance level of lightning-struck transmission lines in areas with high soil resistivity, and building a test platform provides a solid foundation for improving the lightning resistance performance of transmission lines and line lightning protection design, and is also important for improving the safe operation and stability of distribution network lines in the future Guaranteed.
  • the invention provides a method for evaluating the lightning resistance level of a lightning strike transmission line in a high soil resistivity area, which includes a relatively accurate lightning resistance level test platform for a lightning strike transmission line in a high soil resistivity area.
  • a method for evaluating the lightning resistance level of a lightning-struck transmission line in a high soil resistivity area First, a test platform is established.
  • the test platform includes an impulse voltage generator, a data measurement and analysis control module, a wireless current sensor, a coaxial cable, the first base tower, and the second Second base tower, third base tower, lightning line 1, lightning line 2, A-phase line, B-phase line, C-phase line;
  • the output end of the impulse voltage generator is connected to the top of the first base pole tower through a coaxial cable, and the wireless current sensor is sleeved on the coaxial cable;
  • the first lightning protection line and the second lightning protection line respectively connect the first base tower, the second base tower, and the third base tower in series.
  • the first base tower includes a tower main body, a phase A insulator string, a B phase insulator string, a C phase insulator string, a ground down conductor, a grounding device, and a sand pond; and a phase A insulator string.
  • the two ends are connected to the tower main body 1 and the phase A line, the two ends of the B-phase insulator string connect the tower main body 1 and the B phase line respectively, and the two ends of the C-phase insulator string connect the tower main body 1 and the phase C line respectively; the tower main body one bottom Connect the grounding device to the grounding device through the grounding down conductor, which is buried in the sand pond, and the sand pond is filled with soil with high soil resistivity.
  • the second base pole tower includes two pole tower main bodies, two A-phase insulator strings, two B-phase insulator strings, two C-phase insulator strings, two grounding down conductors, and two grounding devices; the two ends of the two phase A insulator strings are respectively Connect the tower main body 2 with the phase A line, the two ends of the B-phase insulator string connect the tower main body 2 and the phase B line respectively, and the two ends of the C-phase insulator string connect the tower main body 2 and the phase C line respectively; the bottom of the tower main body 2 is connected by grounding The second line is connected to the second grounding device.
  • the third base tower includes a tower main body three, A-phase insulator string three, B-phase insulator string three, C-phase insulator string three, grounding down conductor three, and grounding device three; the three ends of the A-phase insulator string are respectively Connect the tower main body 3 with the phase A line, the three ends of the B-phase insulator string connect the tower main body 3 and the B-phase line respectively, and the three ends of the C-phase insulator string connect the tower main body 3 and the C-phase line respectively; the bottom of the tower main body 3 is guided by grounding Downline three is connected to grounding device three.
  • the data measurement analysis control module includes a high-voltage differential probe one, a high-voltage differential probe two, a high-voltage differential probe three, a data collector, a wireless receiving module, a host computer, and a signal controller; wherein the high-voltage differential probe one, the high-voltage differential probe 2.
  • High-voltage differential probe 3 is connected to the two ends of A-phase insulator string 1, B-phase insulator string 1, and C-phase insulator string 1, and connected to the upper computer through the data collector; the wireless receiving module collects the current collected by the wireless current sensor Transmitted to the upper computer; the upper computer changes the output voltage of the impulse voltage generator through the control signal controller.
  • test steps include:
  • L is the total length of the grounding device conductor
  • h is the buried depth of the grounding device
  • d is the diameter of the grounding device conductor
  • B is the shape factor
  • l is the geometric size
  • L gt is the equivalent inductance of the tower
  • h d is the power transmission
  • U 50% is the flashover voltage of the insulator string
  • is the shunt coefficient
  • K is the coupling coefficient after corona correction
  • m is the error coefficient
  • is the integral variable
  • S4 Use the particle swarm optimization algorithm to optimize the modeling of the theoretical calculation formula of the lightning resistance level, and calculate the value of m that minimizes the error between the actual measured value and the theoretical value of the lightning resistance level;
  • I y is the theoretically calculated value of the optimized lightning resistance level
  • step S7 In the ultra-high soil resistivity area, start from 2050 ⁇ m, take a soil resistivity every 50 ⁇ m, and repeat step S1 to measure the lightning resistance level under the soil resistivity, and measure 20 groups in total; repeat In step S4, the optimal value m 2 is obtained by optimization, and then the calculation formula for the lightning resistance level of the transmission line for the area with ultra-high soil rate is obtained:
  • step S1 is:
  • the wireless current sensor records the lightning current injected into the top of the first base tower, and wirelessly transmits it to the wireless receiving module, and then Transmit to the host computer; at the same time, the high-voltage differential probe 1, the high-voltage differential probe two, and the high-voltage differential probe three respectively measure the overvoltage at both ends of the A-phase insulator string, B-phase insulator string, and C-phase insulator string, and transmit them through the data collector.
  • the host computer controls the signal controller to turn off the impulse voltage generator, and judges whether the A-phase insulator string one, the B-phase insulator string one, and the C-phase insulator string one have flashover;
  • step S4 is:
  • g(m) represents the objective function
  • I i is the theoretically calculated value of the lightning resistance level in the case of the i-th soil resistivity
  • I ci is the measured value of the lightning resistance level in the i-th soil resistivity case
  • n is the corresponding soil The number of data sets of the actual measured value of the lightning resistance level in the resistivity area
  • step 5 If the stop condition is met, stop the search and output the search result, otherwise return to step 2);
  • the present invention proposes a method for evaluating the lightning resistance level of a lightning strike transmission line, builds a test platform, and performs a simulation test on the top of a lightning strike transmission tower based on the test platform; uses a particle swarm algorithm to evaluate the lightning resistance level of a lightning strike transmission line
  • the test results of the system are theoretically optimized, and a theoretical calculation formula suitable for the lightning resistance level of transmission lines in areas with high soil resistivity is obtained; it provides a solid foundation for improving the lightning resistance of transmission lines and the design of line lightning protection, and will improve the distribution network lines in the future The important guarantee provided by the safe operation of the company.
  • Figure 1 is a diagram of the system structure of the present invention.
  • a method for evaluating the lightning resistance level of lightning-struck transmission lines in areas with high soil resistivity First, a test platform is built, as shown in Figure 1.
  • the platform includes an impulse voltage generator 11, a data measurement and analysis control module 17, a wireless current sensor 7, a coaxial Cable 24, first base tower 21, second base tower 22, third base tower 23, lightning line one 81, lightning line two 82, phase A line 91, phase B line 92, phase C line 93;
  • the output end of the impulse voltage generator 11 is connected to the top of the first base pole tower 21 through a coaxial cable 24, and the wireless current sensor 7 is sleeved on the coaxial cable 24;
  • the first lightning protection line 81 and the second lightning protection line 82 respectively connect the first base tower 21, the second base tower 22, and the third base tower 23 in series.
  • the first base tower 21 includes a tower main body 101, a phase A insulator string 131, a B phase insulator string 132, a C phase insulator string 133, a ground down conductor 161, a grounding device 61, and a sand pond 5;
  • the ends of the insulator string one 131 are respectively connected to the tower main body 101 and the phase A line 91, the two ends of the B phase insulator string one 132 are connected to the tower main body 101 and the B phase line 92 respectively, and the ends of the C phase insulator string one 133 are respectively connected to the tower main body One 101 and phase C line 93;
  • the bottom of the tower main body 101 is connected to the grounding device 61 through the ground down conductor 161, the grounding device 61 is buried in the sand pond 5, and the sand pond 5 is equipped with high soil resistivity The soil 18.
  • the second base tower 22 includes the second tower main body 102, the second A-phase insulator string 141, the B-phase insulator string two 142, the C-phase insulator string two 143, the ground down conductor two 162, the grounding device two 62; the A-phase insulator string two 141 Two ends of the tower main body 102 and A phase line 91 are respectively connected at both ends, the two ends of the B-phase insulator string two 142 are respectively connected to the tower main body 102 and the B phase line 92, and the C-phase insulator string two 143 are respectively connected to the tower main body 102 and C. Phase line 93; the bottom of the second tower body 102 is connected to the second grounding device 62 through the second grounding down conductor 162.
  • the third base tower 23 includes the tower main body three 103, the A-phase insulator string three 151, the B-phase insulator string three 152, the C-phase insulator string three 153, the ground down conductor three 163, the grounding device three 63; A phase insulator string three 151
  • the two ends are respectively connected to the tower main body 3 103 and the phase A line 91
  • the two ends of the B phase insulator string 3 152 are respectively connected to the tower main body 3 103 and the B phase line 92
  • the two ends of the C phase insulator string 3 153 are respectively connected to the tower main body 103 and C Phase line 93
  • the bottom of the tower main body three 103 is connected to the grounding device three 63 through the grounding down conductor three 163.
  • the data measurement analysis control module 17 includes high-voltage differential probe one 41, high-voltage differential probe two 42, high-voltage differential probe three 43, data collector 3, wireless receiving module 2, host computer 1, signal controller 12; among them, high-voltage differential probe one 41 , High-voltage differential probe two 42 and high-voltage differential probe three 43 are respectively connected to the two ends of the A-phase insulator string one 131, the B-phase insulator string one 132, and the C-phase insulator string one 133, and are connected to the upper computer 1 through the data collector 3.
  • the wireless receiving module 2 transmits the current collected by the wireless current sensor 7 to the upper computer 1; the upper computer 1 changes the output voltage of the impulse voltage generator 11 through the control signal controller 12.
  • a method for evaluating the lightning resistance level of transmission lines struck by lightning in areas with high soil resistivity, based on the built test platform, and the test steps include:
  • L is the total length of the grounding device conductor
  • h is the buried depth of the grounding device
  • d is the diameter of the grounding device conductor
  • B is the shape factor
  • l is the geometric size
  • L gt is the equivalent inductance of the tower
  • h d is the power transmission
  • U 50% is the flashover voltage of the insulator string
  • is the shunt coefficient
  • K is the coupling coefficient after corona correction
  • m is the error coefficient
  • is the integral variable
  • S4 Use the particle swarm optimization algorithm to optimize the modeling of the theoretical calculation formula of the lightning resistance level, and calculate the value of m that minimizes the error between the actual measured value and the theoretical value of the lightning resistance level;
  • I y is the theoretically calculated value of the optimized lightning resistance level
  • step S1 The specific process of step S1 is:
  • the wireless current sensor 7 records the lightning current injected into the top of the first base tower 21, and wirelessly transmits it to the wireless Receive module 2, and then transmit to host computer 1.
  • high-voltage differential probe one 41, high-voltage differential probe two 42 and high-voltage differential probe three 43 measure A-phase insulator string one 131, B-phase insulator string one 132, and C-phase insulator string one.
  • the overvoltage at both ends of 133 is transmitted to the upper computer 1 through the data collector 3.
  • the upper computer 1 controls the signal controller 12 to turn off the impulse voltage generator 11, and judges the A-phase insulator string 131, the B-phase insulator string 132, Whether flashover occurs in C-phase insulator string 133;
  • the signal controller 12 reduces the amplitude of the lightning voltage output by the impulse voltage generator 11 by ⁇ U, then turns on the impulse voltage generator 11 again, and repeats the above method until the insulator string is just all If no flashover occurs, the lightning current amplitude I c measured last time is taken as the lightning withstand level; if no flashover is found in the insulator string, the signal controller 12 increases the lightning voltage amplitude output by the impulse voltage generator 11 ⁇ U, turn on the impulse voltage generator 11 again, repeat the above method, until a flashover occurs in a certain insulator string, then use the lightning current amplitude I c measured this time as the lightning withstand level;
  • step S4 The specific process of step S4 is:
  • g(m) represents the objective function
  • I i is the theoretically calculated value of the lightning resistance level in the case of the i-th soil resistivity
  • I ci is the measured value of the lightning resistance level in the i-th soil resistivity case
  • n is the corresponding soil The number of data sets of the actual measured value of the lightning resistance level in the resistivity area
  • step 5 If the stop condition is met, stop the search and output the search result, otherwise return to step 2);

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,搭建了一个测试平台,平台包括了冲击电压发生器(11)、数据测量分析控制模块(17)、无线电流传感器(7)、同轴电缆(24)、第一基杆塔(21)、第二基杆塔(22)、第三基杆塔(23)、避雷线一(81)、避雷线二(82)、A相线路(91)、B相线路(92)、C相线路(93),并模拟雷击输电杆塔塔顶的工况,测得线路耐雷水平,更改土壤电阻率,得到高土壤电阻率地区的线路耐雷水平,将实测值结合粒子群算法对耐雷水平理论公式进行优化。提供了一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,并搭建了测试平台,为输电线路防雷设计提供坚实基础,更是为电网线路的安全运行提供重要保障。

Description

高土壤电阻率地区雷击输电线路耐雷水平测评方法 技术领域
本发明涉及输电线路雷电防护技术领域,更具体地,涉及一种高土壤电阻率地区雷击输电线路耐雷水平测评方法。
背景技术
随着电网建设的飞速发展,规模日益扩大,但是安全可靠稳定运行的电力系统是电网研究人员追求的目标。而高土壤电阻率地区的输电线路由于杆塔的接地电阻难以降到较低水平,导致输电线路绝缘子闪络,耐雷水平低,雷击跳闸率较高,严重危及到供电系统的安全稳定性。因此,开发一套高土壤电阻率地区雷击输电线路耐雷水平测评系统与方法显得尤为重要。
现有针对于输电线路系统防雷的研究主要依靠于仿真,而缺乏对输电线路系统耐雷性能的模拟测试系统,更没有针对高土壤电阻率地区,较高雷击跳闸率的研究,因此提出一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,并搭建测试平台,为提高输电线路的耐雷性能以及线路防雷设计提供坚实基础,更是为今后提高配电网线路的安全运行稳定性提供重要保障。
发明内容
本发明提供了一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,包含一种较为精确的高土壤电阻率地区雷击输电线路耐雷水平测试平台。
为了达到上述技术效果,本发明的技术方案如下:
一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,首先建立了测试平台,该测试平台包括冲击电压发生器、数据测量分析控制模块、无线电流传感器、同轴电缆、第一基杆塔、第二基杆塔、第三基杆塔、避雷线一、避雷线二、A相线路、B相线路、C相线路;
所述冲击电压发生器的输出端通过同轴电缆连接至第一基杆塔的塔顶,无线电流传感器套接在同轴电缆上;
所述避雷线一、避雷线二分别将第一基杆塔、第二基杆塔、第三基杆塔串接起来。
进一步地,所述第一基杆塔包括杆塔主体一、A相绝缘子串一、B相绝缘子串一、C相绝缘子串一、接地引下线一、接地装置一以及沙池;A相绝缘子串一两端分别连接杆塔主体一与A相线路,B相绝缘子串一两端分别连接杆塔主体一与B相线路,C相绝缘子串一两端分别连接杆塔主体一与C相线路;杆塔主体一底部通过接地引下线一连接到接地装置一上,接地装置一埋设在沙池中,并且沙池中装有高土壤电阻率的土壤。
进一步地,所述第二基杆塔包括杆塔主体二、A相绝缘子串二、B相绝缘子串二、C相绝缘子串二、接地引下线二、接地装置二;A相绝缘子串二两端分别连接杆塔主体二与A相线路,B相绝缘子串二两端分别连接杆塔主体二与B相线路,C相绝缘子串二两端分别连接杆塔主体二与C相线路;杆塔主体二底部通过接地引下线二连接到接地装置二上。
进一步地,所述第三基杆塔包括杆塔主体三、A相绝缘子串三、B相绝缘子串三、C相绝缘子串三、接地引下线三、接地装置三;A相绝缘子串三两端分别连接杆塔主体三与A相线路,B相绝缘子串三两端分别连接杆塔主体三与B相线路,C相绝缘子串三两端分别连接杆塔主体三与C相线路;杆塔主体三底部通过接地引下线三连接到接地装置三上。
进一步地,所述数据测量分析控制模块包含高压差分探头一、高压差分探头二、高压差分探头三、数据采集器、无线接收模块、上位机、信号控制器;其中高压差分探头一、高压差分探头二、高压差分探头三分别接在A相绝缘子串一、B相绝缘子串一、C相绝缘子串一的两端,并通过数据采集器连接到上位机上;无线接收模块将无线电流传感器采集的电流传输至上位机;上位机通过控制信号控制器改变冲击电压发生器的输出电压。
一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,基于所建立的测试平台,测试步骤包括:
S1:模拟雷击输电线路杆塔塔顶,并进行耐雷水平测试;
S2:针对高土壤电阻率区域,改变沙池中土壤的土壤电阻率,从550Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平;
S3:由下式计算不同土壤电阻率下,耐雷水平理论值I:
Figure PCTCN2020111678-appb-000001
式中,L为接地装置导体的总长度,h为接地装置埋深,d为接地装置导体的直径,B为形状系数,l为几何尺寸,L gt为杆塔的等效电感,h d为输电导线的平均高度,U 50%为绝缘子串的闪络电压,α为分流系数,K为经电晕校正后的耦合系数,m为误差系数,η为积分变量;
S4:采用粒子群优化算法对耐雷水平理论计算公式进行优化建模,计算出使耐雷水平实测值与理论值误差最小的m值;
S5:针对高土壤电阻率区域,根据步骤S4优化得出的最优值m 0代入以下公式(2),为优化后的理论公式:
Figure PCTCN2020111678-appb-000002
式(5)中,I y为优化后的耐雷水平理论计算值;
S6:在较高土壤电阻率地区,改变沙池中土壤的土壤电阻率,从1050Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平;重复步骤S4,优化得出最优值m 1,进而得到针对较高土壤率地区,输电线路耐雷水平的计算公式:
Figure PCTCN2020111678-appb-000003
S7:在超高土壤电阻率地区,从2050Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平,共测20组;重复步骤S4,优化得出最优值m 2,进而得到针对超高土壤率地区,输电线路耐雷水平的计算公式:
Figure PCTCN2020111678-appb-000004
进一步地,所述步骤S1的具体过程是:
1)、打开冲击电压发生器,输出幅值为U的雷电压至第一基杆塔的塔顶,无线电流传感器记录注入第一基杆塔塔顶的雷电流,并无线传输至无线接收模块,进而传输至上位机;同时高压差分探头一、高压差分探头二、高压差分探头三分别测量A相绝缘子串一、B相绝缘子串一、C相绝缘子串一两端的过电压,并通过数据采集器传输至上位机上,上位机控制信号控制器关闭冲击电压发生器,并判断A相绝缘子串一、B相绝缘子串一、C相绝缘子串一是否发生闪络;
2)、若有绝缘子串发生闪络,则通过信号控制器使冲击电压发生器输出的雷电压幅值减小ΔU,再次打开冲击电压发生器,重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I c作为耐雷水平;若发现绝缘子串均未闪络,则通过信号控制器使冲击电压发生器输出的雷电压幅值增加ΔU,再次打开冲击电压发生器,重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I c作为耐雷水平;
进一步地,所述步骤S4的具体过程是:
1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
2)、按照式(4)计算目标函数值:
Figure PCTCN2020111678-appb-000005
式中,g(m)表示目标函数,I i为第i个土壤电阻率情况下的耐雷水平理论计算值,I ci为第i个土壤电阻率情况下的耐雷水平实测值,n为对应土壤电阻率区域的耐雷水平的实测值数据组数;
3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
4)、更新每个粒子的速度和位置;
5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
6)、得出使耐雷水平实测值与理论值误差最小的m值。
其中,高土壤电阻率区域是:500Ω·m<ρ<=1000Ω·m;较高土壤电阻率地区是:1000Ω·m<ρ<=2000Ω·m;超高土壤电阻率地区是:2000Ω·m<ρ,其中ρ为土壤电阻率。
与现有技术相比,本发明技术方案的有益效果是:
本发明针对高电阻率地区,提出了一种雷击输电线路耐雷水平测评方法,搭建了测试平台,并基于测试平台进行模拟雷击输电杆塔塔顶的测试;利用粒子群 算法结合雷击输电线路耐雷水平测评系统的测试结果进行理论优化,得出了适用于高土壤电阻率地区输电线路耐雷水平的理论计算公式;为提高输电线路的耐雷性能、线路防雷设计提供坚实基础,并今后提高配电网线路的安全运行提供的重要保障。
附图说明
图1为本发明系统结构图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,首先搭建了测试平台,如图1所示,该平台包括冲击电压发生器11、数据测量分析控制模块17、无线电流传感器7、同轴电缆24、第一基杆塔21、第二基杆塔22、第三基杆塔23、避雷线一81、避雷线二82、A相线路91、B相线路92、C相线路93;
冲击电压发生器11的输出端通过同轴电缆24连接至第一基杆塔21的塔顶,无线电流传感器7套接在同轴电缆24上;
避雷线一81、避雷线二82分别将第一基杆塔21、第二基杆塔22、第三基杆塔23串接起来。
第一基杆塔21包括杆塔主体一101、A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133、接地引下线一161、接地装置一61以及沙池5;A相绝缘子串一131两端分别连接杆塔主体一101与A相线路91,B相绝缘子串一132两端分别连接杆塔主体一101与B相线路92,C相绝缘子串一133两端分别连接杆塔主体一101与C相线路93;杆塔主体一101底部通过接地引下线一161连接到接地装置一61上,接地装置一61埋设在沙池5中,并且沙池5中装有高土壤电阻率的土壤18。
第二基杆塔22包括杆塔主体二102、A相绝缘子串二141、B相绝缘子串二 142、C相绝缘子串二143、接地引下线二162、接地装置二62;A相绝缘子串二141两端分别连接杆塔主体二102与A相线路91,B相绝缘子串二142两端分别连接杆塔主体二102与B相线路92,C相绝缘子串二143两端分别连接杆塔主体二102与C相线路93;杆塔主体二102底部通过接地引下线二162连接到接地装置二62上。
第三基杆塔23包括杆塔主体三103、A相绝缘子串三151、B相绝缘子串三152、C相绝缘子串三153、接地引下线三163、接地装置三63;A相绝缘子串三151两端分别连接杆塔主体三103与A相线路91,B相绝缘子串三152两端分别连接杆塔主体三103与B相线路92,C相绝缘子串三153两端分别连接杆塔主体三103与C相线路93;杆塔主体三103底部通过接地引下线三163连接到接地装置三63上。
数据测量分析控制模块17包含高压差分探头一41、高压差分探头二42、高压差分探头三43、数据采集器3、无线接收模块2、上位机1、信号控制器12;其中高压差分探头一41、高压差分探头二42、高压差分探头三43分别接在A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133的两端,并通过数据采集器3连接到上位机1上;无线接收模块2将无线电流传感器7采集的电流传输至上位机1;上位机1通过控制信号控制器12改变冲击电压发生器11的输出电压。
实施例2
一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,基于所建测试平台,测试步骤包括:
S1:模拟雷击输电线路杆塔塔顶,并进行耐雷水平测试;
S2:针对高土壤电阻率区域,500Ω·m<ρ<=1000Ω·m,其中ρ为土壤电阻率,改变沙池5中土壤18的土壤电阻率,从550Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平;
S3:由下式计算不同土壤电阻率下,耐雷水平理论值I:
Figure PCTCN2020111678-appb-000006
式中,L为接地装置导体的总长度,h为接地装置埋深,d为接地装置导体的直径,B为形状系数,l为几何尺寸,L gt为杆塔的等效电感,h d为输电导线的平均高度,U 50%为绝缘子串的闪络电压,α为分流系数,K为经电晕校正后的耦合系数,m为误差系数,η为积分变量;
S4:采用粒子群优化算法对耐雷水平理论计算公式进行优化建模,计算出使耐雷水平实测值与理论值误差最小的m值;
S5:针对高土壤电阻率区域,根据步骤S4优化得出的最优值m 0代入以下公式(2),为优化后的理论公式:
Figure PCTCN2020111678-appb-000007
式(7)中,I y为优化后的耐雷水平理论计算值;
S6:在较高土壤电阻率地区,1000Ω·m<ρ<=2000Ω·m,其中ρ为土壤电阻率,改变沙池5中土壤18的土壤电阻率,从1050Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平;重复步骤S4,优化得出最优值m 1,进而得到针对较高土壤率地区,输电线路耐雷水平优化后的计算公式:
Figure PCTCN2020111678-appb-000008
S7:在超高土壤电阻率地区,2000Ω·m<ρ,其中ρ为土壤电阻率,改变沙池5中土壤18的土壤电阻率,从2050Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平,共测20组;重复步骤S4,优化得出最优值m 2,进而得到针对超高土壤率地区,输电线路耐雷水平优化后的计算公式:
Figure PCTCN2020111678-appb-000009
步骤S1的具体过程是:
1)、打开冲击电压发生器11,输出幅值为U的雷电压至第一基杆塔21的塔 顶,无线电流传感器7记录注入第一基杆塔21塔顶的雷电流,并无线传输至无线接收模块2,进而传输至上位机1;同时高压差分探头一41、高压差分探头二42、高压差分探头三43分别测量A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133两端的过电压,并通过数据采集器3传输至上位机1上,上位机1控制信号控制器12关闭冲击电压发生器11,并判断A相绝缘子串一131、B相绝缘子串一132、C相绝缘子串一133是否发生闪络;
2)、若有绝缘子串发生闪络,则通过信号控制器12使冲击电压发生器11输出的雷电压幅值减小ΔU,再次打开冲击电压发生器11,重复上述方法,直到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I c作为耐雷水平;若发现绝缘子串均未闪络,则通过信号控制器12使冲击电压发生器11输出的雷电压幅值增加ΔU,再次打开冲击电压发生器11,重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I c作为耐雷水平;
步骤S4的具体过程是:
1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
2)、按照式(9)计算目标函数值:
Figure PCTCN2020111678-appb-000010
式中,g(m)表示目标函数,I i为第i个土壤电阻率情况下的耐雷水平理论计算值,I ci为第i个土壤电阻率情况下的耐雷水平实测值,n为对应土壤电阻率区域的耐雷水平的实测值数据组数;
3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
4)、更新每个粒子的速度和位置;
5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
6)、得出使耐雷水平实测值与理论值误差最小的m值。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施 方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (6)

  1. 一种高土壤电阻率地区雷击输电线路耐雷水平测评方法,其特征在于,首先建立了测试平台,该测试平台包括冲击电压发生器(11)、数据测量分析控制模块(17)、无线电流传感器(7)、同轴电缆(24)、第一基杆塔(21)、第二基杆塔(22)、第三基杆塔(23)、避雷线一(81)、避雷线二(82)、A相线路(91)、B相线路(92)、C相线路(93);
    所述冲击电压发生器(11)的输出端通过同轴电缆(24)连接至第一基杆塔(21)的塔顶,无线电流传感器(7)套接在同轴电缆(24)上;
    所述避雷线一(81)、避雷线二(82)分别将第一基杆塔(21)、第二基杆塔(22)、第三基杆塔(23)串接起来;
    所述的测试平台中第一基杆塔(21)包括杆塔主体一(101)、A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)、接地引下线一(161)、接地装置一(61)以及沙池(5);A相绝缘子串一(131)两端分别连接杆塔主体一(101)与A相线路(91),B相绝缘子串一(132)两端分别连接杆塔主体一(101)与B相线路(92),C相绝缘子串一(133)两端分别连接杆塔主体一(101)与C相线路(93);杆塔主体一(101)底部通过接地引下线一(161)连接到接地装置一(61)上,接地装置一(61)埋设在沙池(5)中,并且沙池(5)中装有土壤(18);
    所述的测试平台中第二基杆塔(22)包括杆塔主体二(102)、A相绝缘子串二(141)、B相绝缘子串二(142)、C相绝缘子串二(143)、接地引下线二(162)、接地装置二(62);A相绝缘子串二(141)两端分别连接杆塔主体二(102)与A相线路(91),B相绝缘子串二(142)两端分别连接杆塔主体二(102)与B相线路(92),C相绝缘子串二(143)两端分别连接杆塔主体二(102)与C相线路(93);杆塔主体二(102)底部通过接地引下线二(162)连接到接地装置二(62)上;
    所述的测试平台中第三基杆塔(23)包括杆塔主体三(103)、A相绝缘子串三(151)、B相绝缘子串三(152)、C相绝缘子串三(153)、接地引下线三(163)、接地装置三(63);A相绝缘子串三(151)两端分别连接杆塔主体三(103)与A相线路(91),B相绝缘子串三(152)两端分别连接杆塔主体三(103)与B 相线路(92),C相绝缘子串三(153)两端分别连接杆塔主体三(103)与C相线路(93);杆塔主体三(103)底部通过接地引下线三(163)连接到接地装置三(63)上;
    所述的测试平台中数据测量分析控制模块(17)包含高压差分探头一(41)、高压差分探头二(42)、高压差分探头三(43)、数据采集器(3)、无线接收模块(2)、上位机(1)、信号控制器(12);其中高压差分探头一(41)、高压差分探头二(42)、高压差分探头三(43)分别接在A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)的两端,并通过数据采集器(3)连接到上位机(1)上;无线接收模块(2)将无线电流传感器(7)采集的电流传输至上位机(1);上位机(1)通过控制信号控制器(12)改变冲击电压发生器(11)的输出电压。
  2. 根据权利要求1所述的高土壤电阻率地区雷击输电线路耐雷水平测评方法,其特征在于,步骤包括:
    S1:模拟雷击输电线路杆塔塔顶,并进行耐雷水平测试;
    S2:针对高土壤电阻率区域,改变沙池(5)中土壤(18)的土壤电阻率,从550Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平;
    S3:由下式计算不同土壤电阻率下,耐雷水平理论值I:
    Figure PCTCN2020111678-appb-100001
    式中,L为接地装置导体的总长度,h为接地装置埋深,d为接地装置导体的直径,B为形状系数,l为几何尺寸,L gt为杆塔的等效电感,h d为输电导线的平均高度,U 50%为绝缘子串的闪络电压,α为分流系数,K为经电晕校正后的耦合系数,m为误差系数,η为积分变量;
    S4:采用粒子群优化算法对耐雷水平理论计算公式进行优化建模,计算出使耐雷水平实测值与理论值误差最小的m值;
    S5:针对高土壤电阻率区域,根据步骤S4优化得出的最优值m 0代入以下公式(2),为优化后的理论公式:
    Figure PCTCN2020111678-appb-100002
    式(2)中,I y为优化后的耐雷水平理论计算值;
    S6:在较高土壤电阻率地区,改变沙池(5)中土壤(18)的土壤电阻率,从1050Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平;重复步骤S4,优化得出最优值m 1,进而得到针对较高土壤率地区,输电线路耐雷水平的计算公式:
    Figure PCTCN2020111678-appb-100003
    S7:在超高土壤电阻率地区,改变沙池(5)中土壤(18)的土壤电阻率,从2050Ω·m开始,每间隔50Ω·m取一个土壤电阻率,并重复进行步骤S1,测得该土壤电阻率下的耐雷水平,共测20组;重复步骤S4,优化得出最优值m 2,进而得到针对超高土壤率地区,输电线路耐雷水平的计算公式:
    Figure PCTCN2020111678-appb-100004
  3. 根据权利要求2所述的高土壤电阻率地区雷击输电线路耐雷水平测评方法,其特征在于,所述步骤S1的具体过程是:
    1)、打开冲击电压发生器(11),输出幅值为U的雷电压至第一基杆塔(21)的塔顶,无线电流传感器(7)记录注入第一基杆塔(21)塔顶的雷电流,并无线传输至无线接收模块(2),进而传输至上位机(1);同时高压差分探头一(41)、高压差分探头二(42)、高压差分探头三(43)分别测量A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)两端的过电压,并通过数据采集器(3)传输至上位机(1)上,上位机(1)控制信号控制器(12)关闭冲击电压发生器(11),并判断A相绝缘子串一(131)、B相绝缘子串一(132)、C相绝缘子串一(133)是否发生闪络;
    2)、若有绝缘子串发生闪络,则通过信号控制器(12)使冲击电压发生器(11)输出的雷电压幅值减小ΔU,再次打开冲击电压发生器(11),重复上述方法,直 到绝缘子串刚好都不发生闪络,则将前一次测得的雷电流幅值I c作为耐雷水平;若发现绝缘子串均未闪络,则通过信号控制器(12)使冲击电压发生器(11)输出的雷电压幅值增加ΔU,再次打开冲击电压发生器(11),重复上述方法,直到发现某一个绝缘子串刚好发生闪络,则将这一次测得的雷电流幅值I c作为耐雷水平;
  4. 根据权利要求2所述的高土壤电阻率地区雷击输电线路耐雷水平测评方法,其特征在于,所述步骤S4的具体过程是:
    1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
    2)、按照式(4)计算目标函数值:
    Figure PCTCN2020111678-appb-100005
    式中,g(m)表示目标函数,I i为第i个土壤电阻率情况下的耐雷水平理论计算值,I ci为第i个土壤电阻率情况下的耐雷水平实测值,n为对应土壤电阻率区域的耐雷水平的实测值数据组数;
    3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
    4)、更新每个粒子的速度和位置;
    5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
    6)、得出使耐雷水平实测值与理论值误差最小的m值。
  5. 根据权利要求2所述的高土壤电阻率地区雷击输电线路耐雷水平测评方法,其特征在于,步骤S2中,高土壤电阻率区域是:500Ω·m<ρ<=1000Ω·m,其中ρ为土壤电阻率。
  6. 根据权利要求2所述的高土壤电阻率地区雷击输电线路耐雷水平测评方法,其特征在于,步骤S6中,较高土壤电阻率地区是:1000Ω·m<ρ<=2000Ω·m;步骤S7中,超高土壤电阻率地区是:2000Ω·m<ρ,其中ρ为土壤电阻率。
PCT/CN2020/111678 2019-12-03 2020-08-27 高土壤电阻率地区雷击输电线路耐雷水平测评方法 WO2021109630A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911222183.0A CN110907773B (zh) 2019-12-03 2019-12-03 高土壤电阻率地区雷击输电线路耐雷水平测评方法
CN201911222183.0 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021109630A1 true WO2021109630A1 (zh) 2021-06-10

Family

ID=69821880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111678 WO2021109630A1 (zh) 2019-12-03 2020-08-27 高土壤电阻率地区雷击输电线路耐雷水平测评方法

Country Status (2)

Country Link
CN (1) CN110907773B (zh)
WO (1) WO2021109630A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791125A (zh) * 2021-08-26 2021-12-14 国网福建省电力有限公司漳州供电公司 一种基于土壤湿度的接地装置优良特性评估系统
CN113884789A (zh) * 2021-09-13 2022-01-04 湖州电力设计院有限公司 一种钢结构变电站防雷接地性能评估方法
CN115744926A (zh) * 2022-11-14 2023-03-07 中国科学院大气物理研究所 人工生成闪电熔岩的系统
CN117993345A (zh) * 2024-04-07 2024-05-07 广东电网有限责任公司汕尾供电局 一种杆塔接地电阻阻值数据周期性监测及分析系统
CN118095670A (zh) * 2024-04-29 2024-05-28 广东电网有限责任公司中山供电局 一种变电站接地网埋地多参量传感检测系统、装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110907773B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法
CN110865271B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN111983360B (zh) * 2020-08-24 2021-07-02 西南交通大学 一种考虑多重雷击的输电杆塔安全风险测评系统
CN112083251B (zh) * 2020-09-18 2021-07-02 西南交通大学 一种计及多样身形的人体内脏电损风险评估方法
CN112505423B (zh) * 2020-11-30 2022-01-21 广东电网有限责任公司佛山供电局 一种水平接地极冲击阻抗畸变率评测系统及方法
CN113884825B (zh) * 2021-08-20 2024-03-15 云南电网有限责任公司楚雄供电局 一种110kV输电线路雷击同跳耐受性能测试方法和系统
CN113777441B (zh) * 2021-08-20 2024-04-09 云南电网有限责任公司楚雄供电局 一种计及耦合地线高度的雷击同跳测评方法和平台
CN114137288B (zh) * 2021-11-15 2022-09-20 西南交通大学 一种考虑能量提取的单重雷击下避雷器性能评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841280A (zh) * 2012-09-06 2012-12-26 中国能源建设集团广东省电力设计研究院 500kV同塔四回路输电线雷击跳闸率仿真方法
CN205016965U (zh) * 2015-10-26 2016-02-03 厦门理工学院 一种架空输电线路防雷保护装置及其耐雷水平测试系统
JP2016146683A (ja) * 2015-02-06 2016-08-12 東京電力ホールディングス株式会社 接地系流入電流計算装置及び方法
CN110865266A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种十字型接地装置的输电线路耐雷水平试验方法
CN110865270A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 雷击下220kV输电线路反击跳闸率测试方法
CN110907773A (zh) * 2019-12-03 2020-03-24 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381869B2 (en) * 2010-10-29 2019-08-13 Verizon Patent And Licensing Inc. Remote power outage and restoration notification
US8593151B2 (en) * 2011-02-28 2013-11-26 Jeffrey M Drazan Inductive monitoring of a power transmission line of an electrical network
CN102279334A (zh) * 2011-08-30 2011-12-14 中国瑞林工程技术有限公司 一种输电线路杆塔耐雷水平动态监测方法
KR101192015B1 (ko) * 2012-01-31 2012-10-16 주식회사 케이에이치바텍 저손실 복수 방향 안테나의 선택적 통신 방식 스위칭을 적용하는 가공 송배전 선로 감시장치
CN103207340B (zh) * 2013-05-02 2015-04-08 深圳供电局有限公司 一种输电线路雷电绕击跳闸在线预警方法
CN103474940B (zh) * 2013-09-28 2016-01-13 成都星河科技产业有限公司 一种电网高塔输电线路综合防雷系统
CN103646148A (zh) * 2013-12-20 2014-03-19 国家电网公司 一种特高压输电线路雷电反击性能仿真计算方法
CN103823101B (zh) * 2014-03-14 2016-04-20 云南电力试验研究院(集团)有限公司电力研究院 一种测量带避雷线的输电线路杆塔冲击分流系数的方法
CN204347122U (zh) * 2015-01-07 2015-05-20 云南电网有限责任公司玉溪供电局 用于降低雷击跳闸率的输电线路改造的雷击检测系统
CN105137286A (zh) * 2015-09-01 2015-12-09 国网新疆电力公司经济技术研究院 输电线路雷击监测装置及防雷水平评估的方法
CN106918762A (zh) * 2015-12-25 2017-07-04 中国电力科学研究院 一种架空输电线路雷击电流监测方法和雷击故障识别方法
CN207623449U (zh) * 2017-11-14 2018-07-17 中国南方电网有限责任公司超高压输电公司检修试验中心 直流输电线路雷击跳闸故障杆塔快速查询装置
CN109507552A (zh) * 2018-11-29 2019-03-22 清华大学 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置
CN110361584B (zh) * 2019-08-04 2020-09-01 西南交通大学 雷击输电线路单相接地故障的风险评估实验平台及方法
CN110445082B (zh) * 2019-08-20 2020-12-01 长沙理工大学 10kV配电线路的并联间隙的单相安装结构及其测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841280A (zh) * 2012-09-06 2012-12-26 中国能源建设集团广东省电力设计研究院 500kV同塔四回路输电线雷击跳闸率仿真方法
JP2016146683A (ja) * 2015-02-06 2016-08-12 東京電力ホールディングス株式会社 接地系流入電流計算装置及び方法
CN205016965U (zh) * 2015-10-26 2016-02-03 厦门理工学院 一种架空输电线路防雷保护装置及其耐雷水平测试系统
CN110865266A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种十字型接地装置的输电线路耐雷水平试验方法
CN110865270A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 雷击下220kV输电线路反击跳闸率测试方法
CN110907773A (zh) * 2019-12-03 2020-03-24 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791125A (zh) * 2021-08-26 2021-12-14 国网福建省电力有限公司漳州供电公司 一种基于土壤湿度的接地装置优良特性评估系统
CN113791125B (zh) * 2021-08-26 2023-10-10 国网福建省电力有限公司漳州供电公司 一种基于土壤湿度的接地装置优良特性评估系统
CN113884789A (zh) * 2021-09-13 2022-01-04 湖州电力设计院有限公司 一种钢结构变电站防雷接地性能评估方法
CN113884789B (zh) * 2021-09-13 2023-11-10 湖州电力设计院有限公司 一种钢结构变电站防雷接地性能评估方法
CN115744926A (zh) * 2022-11-14 2023-03-07 中国科学院大气物理研究所 人工生成闪电熔岩的系统
CN115744926B (zh) * 2022-11-14 2023-09-12 中国科学院大气物理研究所 人工生成闪电熔岩的系统
CN117993345A (zh) * 2024-04-07 2024-05-07 广东电网有限责任公司汕尾供电局 一种杆塔接地电阻阻值数据周期性监测及分析系统
CN118095670A (zh) * 2024-04-29 2024-05-28 广东电网有限责任公司中山供电局 一种变电站接地网埋地多参量传感检测系统、装置

Also Published As

Publication number Publication date
CN110907773A (zh) 2020-03-24
CN110907773B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2021109630A1 (zh) 高土壤电阻率地区雷击输电线路耐雷水平测评方法
WO2021109633A1 (zh) 一种基于粒子群算法的输电线路绕击跳闸率测评方法
WO2021109634A1 (zh) 计及线路土壤电阻率差异化的雷击跳闸率试验方法
WO2021109631A1 (zh) 一种十字型接地装置的输电线路耐雷水平试验方法
CN102156787B (zh) 区域输电线路雷击闪络风险评估方法
CN102435921B (zh) 同塔双回输电线路绝缘及耐雷电冲击性能的判定方法
CN105224797B (zh) 一种特高压大跨越线路反击跳闸率计算方法
CN104850738B (zh) 架空电力线路杆塔处雷电感应电压计算方法
CN102628913B (zh) 基于输电线路结构及地形的输电线路三维雷击计算方法
WO2021109632A1 (zh) 一种110kV输电线路绕击跳闸率的评估方法
CN110865270B (zh) 雷击下220kV输电线路反击跳闸率测试方法
CN110865268B (zh) 低土壤电阻率地区输电杆塔雷击跳闸率测试方法
CN106597114A (zh) 用于接地材料的模拟接地试验系统及方法
CN112345877B (zh) 一种高精度时基与距离权重结合的输电线路故障定位方法
CN110865265B (zh) 一种山地地区输电线路反击跳闸率测试方法
CN210038045U (zh) 一种引雷塔保护范围测试平台
CN114184766B (zh) 一种基于腐蚀离子的接地网土壤危害特性评估平台及方法
CN114184765B (zh) 一种计及土壤孔隙率的变电站接地网土壤特性评估方法
CN113777441B (zh) 一种计及耦合地线高度的雷击同跳测评方法和平台
Jin et al. Analysis and calculation of ground potential rise of electric vehicle charging station struck by lightning
Zhang et al. Study on overvoltage of signal line in wind turbine by lightning strike
CN113884825B (zh) 一种110kV输电线路雷击同跳耐受性能测试方法和系统
CN112505423B (zh) 一种水平接地极冲击阻抗畸变率评测系统及方法
CN109888711B (zh) 500kV输电线路杆塔接地状态的分析运维方法
CN117874395A (zh) 配电线路雷击跳闸率的计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896660

Country of ref document: EP

Kind code of ref document: A1