CN109507552A - 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置 - Google Patents

基于塔顶反射波的杆塔冲击波阻抗检测方法及装置 Download PDF

Info

Publication number
CN109507552A
CN109507552A CN201811447253.8A CN201811447253A CN109507552A CN 109507552 A CN109507552 A CN 109507552A CN 201811447253 A CN201811447253 A CN 201811447253A CN 109507552 A CN109507552 A CN 109507552A
Authority
CN
China
Prior art keywords
wave
voltage
current feed
shaft tower
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811447253.8A
Other languages
English (en)
Inventor
张波
再木然·乌斯曼
黄海鲲
谢文炳
王森
李志忠
康鹏
何金良
曾嵘
余占清
胡军
庄池杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Original Assignee
Tsinghua University
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, China Electric Power Research Institute Co Ltd CEPRI, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd, Electric Power Research Institute of State Grid Shaanxi Electric Power Co Ltd filed Critical Tsinghua University
Priority to CN201811447253.8A priority Critical patent/CN109507552A/zh
Publication of CN109507552A publication Critical patent/CN109507552A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种基于塔顶反射波的杆塔冲击波阻抗检测方法及装置,其中,方法包括以下步骤:将电流引线的一端与冲击发生器的正极相连,并将电流引线的另一端与杆塔顶部相连,其中,冲击发生器的负极接地;将电压测量探头一端与连接在杆塔顶部的电流引线相连,并将电压测量探头的输出端与示波器相连,其中,电压测量探头另一端接地;根据冲击发生器得到冲击阶跃波,以根据冲击阶跃波得到塔顶的电压波形,其中,电压波形包括入射电压波与反射电压波;根据入射电压波的幅值、反射电压波的幅值和电流引线的波阻抗得到杆塔的冲击波阻抗。该方法可以实现杆塔冲击波阻抗的测量,有效提高了检测的准确性和可靠性,误差小,简单易实现。

Description

基于塔顶反射波的杆塔冲击波阻抗检测方法及装置
技术领域
本发明涉及高电压技术领域,特别涉及一种基于塔顶反射波的杆塔冲击波阻抗检测方法及装置。
背景技术
输电线路的雷电防护一直是困扰线路运行的难题。长期以来国内外采用了大量防护措施,如降低杆塔接地装置的冲击接地电阻、采用差异化绝缘、加装屏蔽线、以及加装避雷器等,但由于雷电的随机性、各种防护措施的技术经济性、以及运行维护问题等因素的制约,据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占40%~70%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高。
当输电线路发生雷击时,雷电冲击电流注入杆塔顶部,电流沿着塔身和接地装置散流入地,并且部分电流由于波的反射作用回到杆塔。当杆塔的冲击波阻抗较大时,会引起塔顶电压的急剧升高,从而导致绝缘子闪络等危害,使得输电线路出现故障,无法正常运行。因此有必要对杆塔的冲击波阻抗特性进行测量,从而评估输电线路的雷电耐受水平。
然而,传统的杆塔冲击波阻抗的测量方法大多采用简单的电压电流比值的测量方法,然而通常情况下电压与电流不是同步变化,因此使用同时刻的电压与电流比值无法准确的反映杆塔的冲击波阻抗。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种基于塔顶反射波的杆塔冲击波阻抗检测方法,该方法有效提高了检测的准确性和可靠性,误差小,简单易实现。
本发明的另一个目的在于提出一种基于塔顶反射波的杆塔冲击波阻抗检测装置。
为达到上述目的,本发明一方面实施例提出了一种基于塔顶反射波的杆塔冲击波阻抗检测方法,包括以下步骤:将电流引线的一端与冲击发生器的正极相连,并将所述电流引线的另一端与杆塔顶部相连,其中,所述冲击发生器的负极接地;将电压测量探头一端与连接在所述杆塔顶部的电流引线相连,并将所述电压测量探头的输出端与示波器相连,其中,所述电压测量探头另一端接地;根据所述冲击发生器得到冲击阶跃波,以根据所述冲击阶跃波得到塔顶的电压波形,其中,电压波形包括入射电压波与反射电压波;根据所述入射电压波的幅值、所述反射电压波的幅值和所述电流引线的波阻抗得到杆塔的冲击波阻抗。
本发明实施例的基于塔顶反射波的杆塔冲击波阻抗检测方法,可以实现杆塔冲击波阻抗的测量,电流引线与电压引线间距离较远且在空间呈垂直关系,相互耦合很小,测量结果更准,电流引线的波阻抗容易计算得到,因此通过公式计算得到的杆塔波阻抗更准确,只需测量一次电压,操作简单,且不存在电压电流不同步而引入的计算误差,从而有效提高了检测的准确性和可靠性,误差小,简单易实现。
另外,根据本发明上述实施例的基于塔顶反射波的杆塔冲击波阻抗检测方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所示杆塔的冲击波阻抗为:
其中,β为反射系数,Z1为所述电流引线的波阻抗;
所述反射系数β为:
其中,U1为所述入射电压波的幅值,U2为所述反射电压波的幅值。
进一步地,在本发明的一个实施例中,所述电流引线和所述杆塔垂直设置。
进一步地,在本发明的一个实施例中,所述冲击阶跃波的波头上升时间小于10ns。
进一步地,在本发明的一个实施例中,所述电流引线和电压引线在空间上呈垂直关系设置。
为达到上述目的,本发明另一方面实施例提出了一种基于塔顶反射波的杆塔冲击波阻抗检测装置,包括:第一连接模块,用于将电流引线的一端与冲击发生器的正极相连,并将所述电流引线的另一端与杆塔顶部相连,其中,所述冲击发生器的负极接地;第二连接模块,用于将电压测量探头一端与连接在所述杆塔顶部的电流引线相连,并将所述电压测量探头的输出端与示波器相连,其中,所述电压测量探头另一端接地;波形获取模块,用于根据所述冲击发生器得到冲击阶跃波,以根据所述冲击阶跃波得到塔顶的电压波形,其中,电压波形包括入射电压波与反射电压波;检测模块,用于根据所述入射电压波的幅值、所述反射电压波的幅值和所述电流引线的波阻抗得到杆塔的冲击波阻抗。
本发明实施例的基于塔顶反射波的杆塔冲击波阻抗检测装置,可以实现杆塔冲击波阻抗的测量,电流引线与电压引线间距离较远且在空间呈垂直关系,相互耦合很小,测量结果更准,电流引线的波阻抗容易计算得到,因此通过公式计算得到的杆塔波阻抗更准确,只需测量一次电压,操作简单,且不存在电压电流不同步而引入的计算误差,从而有效提高了检测的准确性和可靠性,误差小,简单易实现。
另外,根据本发明上述实施例的基于塔顶反射波的杆塔冲击波阻抗检测装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述杆塔的冲击波阻抗为:
其中,β为反射系数,Z1为所述电流引线的波阻抗;
所述反射系数β为:
其中,U1为所述入射电压波的幅值,U2为所述反射电压波的幅值。
进一步地,在本发明的一个实施例中,所述电流引线和所述杆塔垂直设置。
进一步地,在本发明的一个实施例中,所述冲击阶跃波的波头上升时间小于10ns。
进一步地,在本发明的一个实施例中,所述电流引线和电压引线在空间上呈垂直关系设置。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明一个实施例的基于塔顶反射波的杆塔冲击波阻抗检测方法的流程图;
图2为根据本发明一个具体实施例的基于塔顶反射波的杆塔冲击波阻抗检测方法的流程图;
图3为根据本发明一个实施例的杆塔冲击波阻抗测量示意图;
图4为根据本发明一个实施例的基于塔顶反射波的杆塔冲击波阻抗检测装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的基于塔顶反射波的杆塔冲击波阻抗检测方法及装置,首先将参照附图描述根据本发明实施例提出的基于塔顶反射波的杆塔冲击波阻抗检测方法。
图1是本发明一个实施例的基于塔顶反射波的杆塔冲击波阻抗检测方法的流程图。
如图1所示,该基于塔顶反射波的杆塔冲击波阻抗检测方法包括以下步骤:
在步骤S101中,将电流引线的一端与冲击发生器的正极相连,并将电流引线的另一端与杆塔顶部相连,其中,冲击发生器的负极接地。
其中,在本发明的一个实施例中,电流引线和杆塔垂直设置。
举例而言,如图2,冲击发生器正极与电流引线相连,冲击发生器负极接地。将电流引线另一端连接至杆塔顶部,且保持电流引线垂直于杆塔。
在步骤S102中,将电压测量探头一端与连接在杆塔顶部的电流引线相连,并将电压测量探头的输出端与示波器相连,其中,电压测量探头另一端接地。
举例而言,如图2,将电压测量探头一端接于塔顶的电流引线上,另一端接地,输出端接在示波器上。
在步骤S103中,根据冲击发生器得到冲击阶跃波,以根据冲击阶跃波得到塔顶的电压波形,其中,电压波形包括入射电压波与反射电压波。
其中,在本发明的一个实施例中,冲击阶跃波的波头上升时间小于10ns。
可以理解的是,确保人员与设备安全后,用冲击发生器注入冲击阶跃波,并测量塔顶的电压波形。测量波形中需要明显区分入射电压波与反射电压波,因此注入阶跃波的波头上升时间需要很短,最好在10ns以内。
在步骤S104中,根据入射电压波的幅值、反射电压波的幅值和电流引线的波阻抗得到杆塔的冲击波阻抗。
可以理解的是,本发明实施例通过入射波与反射波的幅值以及电流引线的波阻抗来推算杆塔的波阻抗大小。
进一步地,在本发明的一个实施例中,电流引线和电压引线在空间上呈垂直关系设置。
可以理解的是,电流引线与电压引线间距离较远且在空间呈垂直关系,相互耦合很小,测量结果更准。
下面将通过具体实施例对基于塔顶反射波的杆塔冲击波阻抗检测方法进行进一步阐述。
进一步地,在本发明的一个实施例中,杆塔的冲击波阻抗为:
其中,β为反射系数,Z1为电流引线的波阻抗;
反射系数β为:
其中,U1为入射电压波的幅值,U2为反射电压波的幅值。
本发明实施例使用PSCAD软件进行仿真,假设经过计算后得到电流引线的波阻抗为Z1=300Ω,被测杆塔的波阻抗Z2未知,从塔顶注入阶跃波的幅值为U1=5810kV,电压波经过引线到达杆塔顶部,部分电压由于引线与杆塔的波阻抗不相等而反射回到引线,引线电压如图3所示,测得反射波的大小为U2=1453kV。
经过如下公式1可以得到反射系数β:
由波的折反射定律公式可以得到被测杆塔的波阻抗Z2
带入U1,U2,和Z1可以得到:
Z2=500.1Ω
计算得到的Z2值与仿真中定义的Z20=500Ω一致。
根据本发明实施例提出的基于塔顶反射波的杆塔冲击波阻抗检测方法,可以实现杆塔冲击波阻抗的测量,电流引线与电压引线间距离较远且在空间呈垂直关系,相互耦合很小,测量结果更准,电流引线的波阻抗容易计算得到,因此通过公式计算得到的杆塔波阻抗更准确,只需测量一次电压,操作简单,且不存在电压电流不同步而引入的计算误差,从而有效提高了检测的准确性和可靠性,误差小,简单易实现。
其次参照附图描述根据本发明实施例提出的基于塔顶反射波的杆塔冲击波阻抗检测装置。
图4是本发明一个实施例的基于塔顶反射波的杆塔冲击波阻抗检测装置的结构示意图。
如图4所示,该基于塔顶反射波的杆塔冲击波阻抗检测装置10包括:第一连接模块100、第二连接模块200、波形获取模块300和检测模块400。
其中,第一连接模块100用于将电流引线的一端与冲击发生器的正极相连,并将电流引线的另一端与杆塔顶部相连,其中,冲击发生器的负极接地。第二连接模块200用于将电压测量探头一端与连接在杆塔顶部的电流引线相连,并将电压测量探头的输出端与示波器相连,其中,电压测量探头另一端接地。波形获取模块300用于根据冲击发生器得到冲击阶跃波,以根据冲击阶跃波得到塔顶的电压波形,其中,电压波形包括入射电压波与反射电压波。检测模块400用于根据入射电压波的幅值、反射电压波的幅值和电流引线的波阻抗得到杆塔的冲击波阻抗。本发明实施例的装置10可以实现杆塔冲击波阻抗的测量,有效提高检测的准确性和可靠性,误差小,简单易实现。
进一步地,在本发明的一个实施例中,杆塔的冲击波阻抗为:
其中,β为反射系数,Z1为电流引线的波阻抗;
反射系数β为:
其中,U1为入射电压波的幅值,U2为反射电压波的幅值。。
进一步地,在本发明的一个实施例中,电流引线和杆塔垂直设置。
进一步地,在本发明的一个实施例中,冲击阶跃波的波头上升时间小于10ns。
进一步地,在本发明的一个实施例中,电流引线和电压引线在空间上呈垂直关系设置。
需要说明的是,前述对基于塔顶反射波的杆塔冲击波阻抗检测方法实施例的解释说明也适用于该实施例的基于塔顶反射波的杆塔冲击波阻抗检测装置,此处不再赘述。
根据本发明实施例提出的基于塔顶反射波的杆塔冲击波阻抗检测装置,可以实现杆塔冲击波阻抗的测量,电流引线与电压引线间距离较远且在空间呈垂直关系,相互耦合很小,测量结果更准,电流引线的波阻抗容易计算得到,因此通过公式计算得到的杆塔波阻抗更准确,只需测量一次电压,操作简单,且不存在电压电流不同步而引入的计算误差,从而有效提高了检测的准确性和可靠性,误差小,简单易实现。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种基于塔顶反射波的杆塔冲击波阻抗检测方法,其特征在于,包括以下步骤:
将电流引线的一端与冲击发生器的正极相连,并将所述电流引线的另一端与杆塔顶部相连,其中,所述冲击发生器的负极接地;
将电压测量探头一端与连接在所述杆塔顶部的电流引线相连,并将所述电压测量探头的输出端与示波器相连,其中,所述电压测量探头另一端接地;
根据所述冲击发生器得到冲击阶跃波,以根据所述冲击阶跃波得到塔顶的电压波形,其中,电压波形包括入射电压波与反射电压波;以及
根据所述入射电压波的幅值、所述反射电压波的幅值和所述电流引线的波阻抗得到杆塔的冲击波阻抗。
2.根据权利要求1所述的基于塔顶反射波的杆塔冲击波阻抗检测方法,其特征在于,所述杆塔的冲击波阻抗为:
其中,β为反射系数,Z1为所述电流引线的波阻抗;
所述反射系数β为:
其中,U1为所述入射电压波的幅值,U2为所述反射电压波的幅值。
3.根据权利要求1所述的基于塔顶反射波的杆塔冲击波阻抗检测方法,其特征在于,所述电流引线和所述杆塔垂直设置。
4.根据权利要求1所述的基于塔顶反射波的杆塔冲击波阻抗检测方法,其特征在于,所述冲击阶跃波的波头上升时间小于10ns。
5.根据权利要求1所述的基于塔顶反射波的杆塔冲击波阻抗检测方法,其特征在于,所述电流引线和电压引线在空间上呈垂直关系设置。
6.一种基于塔顶反射波的杆塔冲击波阻抗检测装置,其特征在于,包括:
第一连接模块,用于将电流引线的一端与冲击发生器的正极相连,并将所述电流引线的另一端与杆塔顶部相连,其中,所述冲击发生器的负极接地;
第二连接模块,用于将电压测量探头一端与连接在所述杆塔顶部的电流引线相连,并将所述电压测量探头的输出端与示波器相连,其中,所述电压测量探头另一端接地;
波形获取模块,用于根据所述冲击发生器得到冲击阶跃波,以根据所述冲击阶跃波得到塔顶的电压波形,其中,电压波形包括入射电压波与反射电压波;以及
检测模块,用于根据所述入射电压波的幅值、所述反射电压波的幅值和所述电流引线的波阻抗得到杆塔的冲击波阻抗。
7.根据权利要求6所述的基于塔顶反射波的杆塔冲击波阻抗检测装置,其特征在于,所述杆塔的冲击波阻抗为:
其中,β为反射系数,Z1为所述电流引线的波阻抗;
所述反射系数β为:
其中,U1为所述入射电压波的幅值,U2为所述反射电压波的幅值。
8.根据权利要求6所述的基于塔顶反射波的杆塔冲击波阻抗检测装置,其特征在于,所述电流引线和所述杆塔垂直设置。
9.根据权利要求6所述的基于塔顶反射波的杆塔冲击波阻抗检测装置,其特征在于,所述冲击阶跃波的波头上升时间小于10ns。
10.根据权利要求6所述的基于塔顶反射波的杆塔冲击波阻抗检测装置,其特征在于,所述电流引线和电压引线在空间上呈垂直关系设置。
CN201811447253.8A 2018-11-29 2018-11-29 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置 Pending CN109507552A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811447253.8A CN109507552A (zh) 2018-11-29 2018-11-29 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811447253.8A CN109507552A (zh) 2018-11-29 2018-11-29 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置

Publications (1)

Publication Number Publication Date
CN109507552A true CN109507552A (zh) 2019-03-22

Family

ID=65751394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811447253.8A Pending CN109507552A (zh) 2018-11-29 2018-11-29 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置

Country Status (1)

Country Link
CN (1) CN109507552A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501549A (zh) * 2019-07-19 2019-11-26 武汉大学 一种塔身冲击高电压的测量方法
CN110865267A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种110kV输电线路绕击跳闸率的评估方法
CN110865266A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种十字型接地装置的输电线路耐雷水平试验方法
CN110865268A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 低土壤电阻率地区输电杆塔雷击跳闸率测试方法
CN110865265A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种山地地区输电线路反击跳闸率测试方法
CN110865270A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 雷击下220kV输电线路反击跳闸率测试方法
CN110865269A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种基于粒子群算法的输电线路绕击跳闸率测评方法
CN110865271A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN110907773A (zh) * 2019-12-03 2020-03-24 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法
CN112505423A (zh) * 2020-11-30 2021-03-16 广东电网有限责任公司佛山供电局 一种水平接地极冲击阻抗畸变率评测系统及方法
CN112505424A (zh) * 2020-11-30 2021-03-16 广东电网有限责任公司佛山供电局 一种垂直接地极冲击阻抗畸变率评测系统及方法
CN112526266A (zh) * 2020-11-30 2021-03-19 广东电网有限责任公司佛山供电局 一种线路杆塔档距与接地体阻抗匹配程度评估平台及方法
CN112821095A (zh) * 2021-01-06 2021-05-18 广东电网有限责任公司惠州供电局 一种降低冲击接地阻抗的方法及非等径接地装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154751A (zh) * 2010-10-01 2013-06-12 希尔莱特有限责任公司 用于测试架空电力传输线路的隔绝能力的系统和方法
CN103278709A (zh) * 2013-04-27 2013-09-04 国家电网公司 一种输电线路雷电行波特性测试系统
CN103324788A (zh) * 2013-06-03 2013-09-25 华南理工大学 一种雷击特性评估方法
CN103412995A (zh) * 2013-08-08 2013-11-27 深圳供电局有限公司 一种输电线路雷害防护风险自动评估方法
CN203595743U (zh) * 2013-12-03 2014-05-14 国家电网公司 用于雷击杆塔在线监测系统电流采集传感器
CN105740500A (zh) * 2015-11-19 2016-07-06 南方电网科学研究院有限责任公司 一种复合杆塔过电压仿真模型设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103154751A (zh) * 2010-10-01 2013-06-12 希尔莱特有限责任公司 用于测试架空电力传输线路的隔绝能力的系统和方法
CN103278709A (zh) * 2013-04-27 2013-09-04 国家电网公司 一种输电线路雷电行波特性测试系统
CN103324788A (zh) * 2013-06-03 2013-09-25 华南理工大学 一种雷击特性评估方法
CN103412995A (zh) * 2013-08-08 2013-11-27 深圳供电局有限公司 一种输电线路雷害防护风险自动评估方法
CN203595743U (zh) * 2013-12-03 2014-05-14 国家电网公司 用于雷击杆塔在线监测系统电流采集传感器
CN105740500A (zh) * 2015-11-19 2016-07-06 南方电网科学研究院有限责任公司 一种复合杆塔过电压仿真模型设计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
常美生: "《高电压技术》", 30 October 2006, 中国电力出版社 *
徐义亨: "《控制工程中的电磁兼容》", 31 January 2017 *
牧原 等: "杆塔波阻抗的研究", 《高电压技术》 *
陈捷: "输电线路高杆塔波阻抗及反击特性的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技II辑》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501549A (zh) * 2019-07-19 2019-11-26 武汉大学 一种塔身冲击高电压的测量方法
CN110865266B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 一种十字型接地装置的输电线路耐雷水平试验方法
CN110865267B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 一种110kV输电线路绕击跳闸率的评估方法
CN110865268A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 低土壤电阻率地区输电杆塔雷击跳闸率测试方法
CN110865265A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种山地地区输电线路反击跳闸率测试方法
CN110865270A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 雷击下220kV输电线路反击跳闸率测试方法
CN110865269A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种基于粒子群算法的输电线路绕击跳闸率测评方法
CN110865271A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN110907773A (zh) * 2019-12-03 2020-03-24 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法
CN110865269B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 一种基于粒子群算法的输电线路绕击跳闸率测评方法
CN110865270B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 雷击下220kV输电线路反击跳闸率测试方法
CN110865267A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种110kV输电线路绕击跳闸率的评估方法
CN110865266A (zh) * 2019-12-03 2020-03-06 广东电网有限责任公司 一种十字型接地装置的输电线路耐雷水平试验方法
CN110865271B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 计及线路土壤电阻率差异化的雷击跳闸率试验方法
CN110865268B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 低土壤电阻率地区输电杆塔雷击跳闸率测试方法
CN110865265B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 一种山地地区输电线路反击跳闸率测试方法
CN110907773B (zh) * 2019-12-03 2021-07-13 广东电网有限责任公司 高土壤电阻率地区雷击输电线路耐雷水平测评方法
CN112505423B (zh) * 2020-11-30 2022-01-21 广东电网有限责任公司佛山供电局 一种水平接地极冲击阻抗畸变率评测系统及方法
CN112505424A (zh) * 2020-11-30 2021-03-16 广东电网有限责任公司佛山供电局 一种垂直接地极冲击阻抗畸变率评测系统及方法
CN112505423A (zh) * 2020-11-30 2021-03-16 广东电网有限责任公司佛山供电局 一种水平接地极冲击阻抗畸变率评测系统及方法
CN112505424B (zh) * 2020-11-30 2022-01-11 广东电网有限责任公司佛山供电局 一种垂直接地极冲击阻抗畸变率评测系统及方法
CN112526266B (zh) * 2020-11-30 2022-01-21 广东电网有限责任公司佛山供电局 一种线路杆塔档距与接地体阻抗匹配程度评估平台及方法
CN112526266A (zh) * 2020-11-30 2021-03-19 广东电网有限责任公司佛山供电局 一种线路杆塔档距与接地体阻抗匹配程度评估平台及方法
CN112821095B (zh) * 2021-01-06 2023-02-03 广东电网有限责任公司惠州供电局 一种降低冲击接地阻抗的方法及非等径接地装置
CN112821095A (zh) * 2021-01-06 2021-05-18 广东电网有限责任公司惠州供电局 一种降低冲击接地阻抗的方法及非等径接地装置

Similar Documents

Publication Publication Date Title
CN109507552A (zh) 基于塔顶反射波的杆塔冲击波阻抗检测方法及装置
CN109342822A (zh) 杆塔冲击接地电阻检测方法及装置
CN105242133B (zh) 一种改进配电线路雷电跳闸率计算方法
CN103675607B (zh) 架空输电线路雷电绕击与反击识别方法
CN109521326B (zh) 一种基于配电线路电压分布曲线的接地故障定位方法
CN108020725A (zh) 一种不同土壤酸碱度影响下的地网冲击接地电阻测量方法
CN104535842B (zh) 一种基于人工短路试验的换流站接地网冲击阻抗测试方法
CN108169628A (zh) 识别雷击故障性质和精确定位故障点的装置及方法
CN105021953A (zh) 基于地表磁感应强度的变电站接地网腐蚀检测系统及方法
CN109444684A (zh) 一种带线路的杆塔冲击特性测试方法
CN104251956A (zh) 带屏蔽功能的避雷器在线监测装置
CN108027397A (zh) 用于对具有一个或多个捕获装置和闪电电流导出路径的设备的闪电电流参数进行探测的方法
CN104280637A (zh) 带屏蔽功能的避雷器在线监测信号采集装置
CN108548973A (zh) 一种引雷塔保护范围测试系统及方法
CN109100572A (zh) 一种输电线路杆塔接地电阻的在线监测方法
Fernández et al. Simulation of current distribution in a wind turbine blade using the FDTD method
CN104537137B (zh) 高压电力变压器短路故障预测方法、预测装置和防御方法
CN106443389A (zh) 一种开关柜局放监测装置
Yang et al. Characteristics analysis of the induced overcurrent generated by close triggered lightning on the overhead transmission power line
CN101915566A (zh) 一种测量架空输电线路档距两端不等高时雷电绕击率的方法
Meng et al. Overvoltage of secondary cables in substation due to short circuit fault
CN111239558B (zh) 一种线路故障电弧等效放电量在线测量方法
CN107843759A (zh) 航天器中电子设备的浪涌电流测试系统及测试方法
CN202837440U (zh) 一种测试500kV氧化锌避雷器的试验装置
CN112216450A (zh) 一种监测一体化避雷器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190322

RJ01 Rejection of invention patent application after publication