WO2021107587A1 - 안테나 장치용 방열 기구 - Google Patents

안테나 장치용 방열 기구 Download PDF

Info

Publication number
WO2021107587A1
WO2021107587A1 PCT/KR2020/016769 KR2020016769W WO2021107587A1 WO 2021107587 A1 WO2021107587 A1 WO 2021107587A1 KR 2020016769 W KR2020016769 W KR 2020016769W WO 2021107587 A1 WO2021107587 A1 WO 2021107587A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
wave
cover
dissipation cover
fins
Prior art date
Application number
PCT/KR2020/016769
Other languages
English (en)
French (fr)
Inventor
김덕용
여진수
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to JP2022529938A priority Critical patent/JP7365506B2/ja
Priority to EP20892918.2A priority patent/EP4068503A4/en
Priority to CN202080081601.3A priority patent/CN115053399A/zh
Priority claimed from KR1020200159452A external-priority patent/KR102463545B1/ko
Publication of WO2021107587A1 publication Critical patent/WO2021107587A1/ko
Priority to US17/752,871 priority patent/US12062829B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion

Definitions

  • the present invention relates to a cooling device for an antenna device (COOLING DEVICE FOR ANTENNA APPARATUS), and more particularly, to a heat dissipation device for an antenna device capable of improving heat dissipation performance by smooth flow of outside air.
  • a distributed antenna system is an example of a relay system that relays communication between a base station and a user terminal. It can provide a mobile communication service to a shadow area that inevitably occurs in indoor or outdoor areas. It is being used in terms of extending the service coverage of the base station.
  • the distributed antenna system receives the base station signal from the base station based on the downlink path, performs signal processing such as amplification, etc., and then transmits the signal-processed base station signal to the user terminal in the service area, and the service area based on the uplink path It serves to transmit the terminal signal transmitted from the user terminal in the base station after signal processing such as amplification, etc.
  • signal processing such as amplification, etc.
  • matching of signals transmitted and received between the base station and the distributed antenna system for example It is essential to adjust the power of the signal, and for this purpose, a base station signal matching apparatus has been used.
  • Such a base station signal matching device adjusts a base station signal having a high power level in a downlink path to an appropriate power level required for a distributed antenna system. At this time, as a significant amount of heat is generated, the base station signal matching device is damaged and has a lifespan. Since there is a problem of shortening, a method capable of efficiently dissipating the generated heat is required.
  • FIG. 1 is a cross-sectional view showing a heat dissipation fin structure of a general heat dissipation unit applied to an antenna device according to the prior art.
  • the heat dissipation unit includes a heat dissipation cover 10 having an inner surface exposed in a predetermined thermal space (TS) in which heat exists, and an outer surface of the heat dissipation cover 10 . It includes a plurality of combined heat dissipation fins 20, and the plurality of heat dissipation fins 20 are formed to have a substantially straight vertical cross-section.
  • TS thermal space
  • the heat in the predetermined space TS is generated from an electrical component (not shown) made of a heat generating element, and is heat-conducted through the inner surface of the heat dissipation cover 10 made of a thermally conductive material, and outside of the heat dissipation cover 10 . It is radiated to the outside through a plurality of heat dissipation fins 20 coupled to the side.
  • the heat dissipation fin structure of the general heat dissipation unit configured as described above is, as shown in FIG. 1 , a portion where each heat dissipation fin 20 and the heat dissipation cover 10 are connected (refer to reference numeral “A” in FIG. 1 ) There is a problem in that heat is laminated to the heat dissipation performance is deteriorated.
  • the heat dissipation fin structure of the conventional general heat dissipation fin 20 has a structure that can flow only when the flow direction of outside air coincides between any one heat dissipation fin 20 and the adjacent heat dissipation fin 20 . Therefore, since the flow of outside air is blocked by the width of the single heat dissipation fin 20 and the inflow thereof is difficult, heat to be dissipated is laminated on the connection portion A with the heat dissipation cover 10, thereby reducing heat dissipation performance.
  • the present invention has been devised to solve the above technical problem, and has a plurality of wave heat dissipation fins provided to allow inflow of external air in all directions except for the surface closed by the heat dissipation cover. Its purpose is to provide an instrument.
  • another object of the present invention is to provide a heat dissipation mechanism for an antenna device in which a plurality of wave heat dissipation fins can be easily arranged and designed.
  • An embodiment of the heat dissipation mechanism for the antenna device according to the present invention has an inner surface exposed to a predetermined space in which heat exists, and the outer surface is a heat dissipation cover exposed to the outside through which outdoor air flows, and the heat dissipation cover of the heat dissipation cover A plurality of wave heat dissipation fins are disposed on the outer surface of the heat dissipation cover to form a continuous curved surface from the outer surface of the heat dissipation cover to a predetermined height.
  • the plurality of wave heat dissipation fins may be arranged such that an outer end of a point furthest from the outer surface of the heat dissipation cover is maintained in a state rotated at a predetermined angle in the same direction, which is each direction.
  • one end of the plurality of wave heat dissipation fins may be fixed in thermal contact to the outer surface of the heat dissipation cover.
  • the plurality of wave heat dissipation fins are arranged in a plurality of rows on the outer surface of the heat dissipation cover, and are simultaneously connected to one or two or more rows of the plurality of wave heat dissipation fins to mediate thermal contact fixation to the outer surface of the heat dissipation cover It may further include a mounting heat conduction plate.
  • the mounting heat conduction plate includes at least one vertical flange and at least one vertical flange disposed perpendicular to the outer surface of the heat dissipation cover so as to interconnect one end of one or two or more rows of the plurality of wave heat dissipation fins.
  • the front end may include a horizontal flange bent parallel to the outer surface of the heat dissipation cover.
  • the horizontal flange may be seated and fixed in a seating groove formed on the outer surface of the heat dissipation cover, so that the outer surface of the horizontal flange is horizontally matched with the outer surface of the heat dissipation cover.
  • the plurality of wave heat dissipation fins may be manufactured by twisting a rectangular conductive material formed long vertically in one direction with respect to the vertical central axis.
  • the horizontal cross-sections of the plurality of wave heat dissipation fins corresponding to an arbitrary height from the outer surface of the heat dissipation cover may be arranged in a predetermined direction that is the same direction.
  • the plurality of wave heat dissipation fins may be arranged to have the same separation distance from each other.
  • each of the plurality of wave heat dissipation fins may extend in a spiral shape as the distance from the outer surface of the heat dissipation cover increases.
  • each of the plurality of wave heat dissipation fins is twisted so that the other end spaced apart from the outer surface of the heat dissipation cover is rotated at least 180 degrees with respect to one end connected to the outer surface of the heat dissipation cover with respect to the upper and lower central axes.
  • the inflow and flow of outside air from the outside to the inside of the plurality of wave heat dissipation fins is easy, and thus has an effect of improving the overall heat dissipation performance.
  • the plurality of wave heat dissipation fins are formed to allow inflow and flow of outside air in all directions according to the height at least of which one surface and the other surface are spaced apart from the heat dissipation cover, a plurality of The layout design of the wave heat dissipation fins has the effect of being easy.
  • FIG. 1 is a cross-sectional view showing a heat dissipation fin structure of a general heat dissipation unit according to the prior art
  • FIG. 2 is a perspective view showing an embodiment of a heat dissipation mechanism for an antenna device according to the present invention
  • FIG. 3 is a front view or a side view of FIG. 2;
  • Figure 4 is a plan view of Figure 2
  • FIG. 5 is a perspective view showing a wave heat dissipation fin in the configuration of FIG. 2;
  • FIG. 6 is a perspective view showing various embodiments of the wave heat dissipation fin in the configuration of FIG. 2;
  • FIG. 7 is a perspective view showing a state in which outside air is introduced through a heat dissipation cover and a plurality of wave heat dissipation fins;
  • FIG. 8 is a cutaway perspective view taken along lines B-B, C-C, D-D and E-E of FIG. 2;
  • FIG. 9 is a front view of a heat dissipation mechanism for an antenna device according to the present invention.
  • 10A to 10C are cross-sectional views and external air inflow diagrams taken along lines 'I-I', 'II-II' and 'III-III' of FIG. 9 .
  • 131,131a,131b vertical flange 132: horizontal flange
  • TS predetermined space (thermal space)
  • C upper and lower central axis
  • FIG. 2 is a perspective view showing an embodiment of a heat dissipation mechanism for an antenna device according to the present invention
  • FIG. 3 is a front view or a side view of FIG. 2
  • FIG. 4 is a plan view of FIG. 2
  • FIG. 5 is a configuration of FIG. It is a perspective view showing a wave heat dissipation fin
  • FIG. 6 is a perspective view showing various embodiments of the wave heat dissipation fin in the configuration of FIG. 2 .
  • a heat dissipation mechanism 100 for an antenna device according to an embodiment of the present invention is a predetermined space (or 'thermal space', hereinafter, 'TS') in which heat exists.
  • 'TS' 'thermal space'
  • the predetermined space TS is provided for installation and protection of a printed circuit board (PCB, Printed Circuit Board) 103 on which an electric component, which is a plurality of heating elements 105, is mounted, as shown in FIG. 2 . It may be set as the inner space of the casing unit 101 .
  • the plurality of heating elements 105 may be antenna-related electronic components such as an amplifier (PA) or a field programmable gate array (FPGA).
  • the heat dissipation cover 110 may be disposed to cover one surface of the printed circuit board 103 on which an electrical component, which is a plurality of heating elements, is mounted, coupled to one open side of the casing unit 101 . Between the inner surface of the heat dissipation cover 110 and the printed circuit board 103 is a predetermined space TS defined as described above, and is a space in which heat is generated from the electrical components that are the plurality of heating elements 105 .
  • the plurality of wave heat dissipation fins 120 may be arranged in a plurality of rows to conduct heat to the outer surface of the heat dissipation cover 110 as shown in FIGS. 2 to 5 .
  • the plurality of wave heat dissipation fins 120 may be formed to extend by a predetermined distance from the outer surface of the heat dissipation cover 110 .
  • the plurality of wave heat dissipation fins 120 form a continuous curved surface not only from the outer surface of the heat dissipation cover 110 to the above-described predetermined separation distance, but also to an arbitrary separation distance from the outer surface of the heat dissipation cover 110 . can be provided.
  • the plurality of wave heat dissipation fins 120 have a horizontal cross section (hereinafter, referred to as 'outer section') at an arbitrary distance from the outer surface of the heat dissipation cover 110 on the outer surface of the heat dissipation cover 110 (or this It may have a straight-line shape in a state rotated by a predetermined angle in any one direction with respect to a horizontal cross-section (hereinafter, referred to as an 'inner cross-section') in the adjacent portion).
  • 'outer section' horizontal cross section
  • one end of the plurality of wave heat dissipation fins 120 may be fixed to the outer surface of the heat dissipation cover 110 , respectively, as shown in FIGS. 2 and 4 .
  • the heat dissipation cover 110 when the heat dissipation cover 110 is provided with a plate of a substantially rectangular conductive material, as shown in FIG. 2 , the plurality of wave heat dissipation fins 120 are, respectively, on the outer surface of the heat dissipation cover 110 in the longitudinal direction or At least two columns or at least two rows or more may be arranged in the width direction.
  • the heat dissipation cover 110 is provided with a square plate and the plurality of wave heat dissipation fins 120 are arranged in 10 columns and 10 rows, respectively, but it is not necessarily limited to this arrangement It should be noted that no
  • the plurality of wave heat dissipation fins 120 may be arranged to have the same separation distance, respectively.
  • the present invention is not limited thereto, and it will be natural that the arrangement may be designed to have a different separation distance depending on the arrangement position of the electric component, which is the heating element 105 disposed inside the casing 101 , or the amount of heat generated.
  • the plurality of wave heat dissipation fins 120 may have one end (lower part in FIG. 2 ) fixed in thermal contact with the outer surface of the heat dissipation cover 110 .
  • the meaning of 'thermal contact fixation' is a concept including all of which can be thermally conducted in a conductive manner according to contact depending on the characteristics of the material.
  • the plurality of wave heat dissipation fins 120 may be arranged in a plurality of columns and rows, as shown in FIGS. 2 to 4 .
  • the heat dissipation mechanism 100 for an antenna device as shown in FIG. 6 , one row (see FIG. 6A ) or two rows among a plurality of wave heat dissipation fins 120 ) It may further include a mounting heat conduction plate 130 connected at the same time as the above (refer to (b) of FIG. 6 ) to mediate thermal contact fixation to the outer surface of the heat dissipation cover 110 .
  • the mounting heat conduction plate 130 is a vertical flange 131 that interconnects one end of a plurality of wave heat dissipation fins arranged in one row, as referenced in FIG. 6A , and at the tip of the vertical flange 131 . It may include a horizontal flange 132 bent and extended parallel to the outer surface of the heat dissipation cover 110 .
  • the mounting heat conduction plate 130 as referenced in FIG. 6 (b), a first vertical flange (131a) provided to interconnect one end of the plurality of wave heat dissipation fins 120 arranged in two rows, respectively. And the second vertical flange (131b), the first vertical flange (131) and the front ends of the second vertical flange (131b) interconnected, and a horizontal flange (132) extending bent parallel to the outer surface of the heat dissipation cover (110) ) may be included.
  • the horizontal flange 132 of the mounting heat conduction plate 130 may be fixed to be seated in a seating groove 115 (refer to FIGS. 3A and 3B ) formed in advance on the outer surface of the heat dissipation cover 110 .
  • the outer surface of the horizontal flange 132 may be seated and fixed to be horizontally matched with the outer surface of the heat dissipation cover 110 . Accordingly, the flow resistance of the outside air introduced between the plurality of wave heat dissipation fins 120 is minimized, thereby preventing deterioration of heat dissipation performance.
  • a method of fixing the horizontal flange 132 to the seating groove 115 of the heat dissipation cover 110 may be any one of a welding method and a screw fastening method. However, it may be preferable to be fixed by a screw fastening method so that they can be easily replaced in consideration of the amount of heat generated by the heating elements 105 disposed in the predetermined space TS. To this end, a plurality of screw fastening holes 133 may be formed in the horizontal flange 132 for screw fastening to the heat dissipation cover 110 as shown in FIG. 6A .
  • the heat dissipation cover 110 may be provided with the above-described seating groove 115 in the form of a hole communicating with a predetermined space TS of the heat dissipation cover 110 , and a mounting heat conduction plate 130 .
  • the inner surface of the horizontal flange 132 is installed in the seating groove 115 provided in the form of a hole and can be seated and fixed to be exposed to a predetermined space TS, and the heating elements 105 in the predetermined space TS are directly It is also possible to be provided so as to be in surface thermal contact with the horizontal flange 132 .
  • a higher heat dissipation performance effect may be achieved by performing heat dissipation in a direct contact heat conduction method between the plurality of wave heat dissipation fins 120 and the high heat generating elements 105 .
  • the plurality of wave heat dissipation fins 120 may be manufactured by twisting a rectangular thermally conductive plate material formed long vertically in one direction with respect to the vertical central axis (C).
  • each of the plurality of wave heat sinks are extended in a direction away from the outer surface of the heat dissipation cover 110 as shown in FIG. 5 , and may extend in a spiral shape. have.
  • each of the plurality of wave heat dissipation fins 120 has the other end 120b that is most distant from the outer surface of the heat dissipation cover 110 is up and down with respect to one end 120a connected to the outer surface of the heat dissipation cover 110 . It may be twisted to rotate at least 180 degrees with respect to the central axis (C). Since the twisting angle of each of the plurality of wave heat dissipation fins 120 is 'at least 180 degrees or more', it is possible to be 360 degrees (ie, one rotation) or more, but in this case, necessarily in a direction spaced apart from the outer surface of the heat dissipation cover 110 . is preferably formed in a curved surface.
  • each of the plurality of wave heat dissipation fins 120 are observed in a predetermined circular shape when viewed from the top and directly below, and the diameter of each circle is a single wave heat dissipation fin ( 120) may be the same as the length of the width of the base material of the rectangular plate.
  • the outer sectional shape of the plurality of wave heat dissipation fins 120 at an arbitrary first height that is the same height from the outer surface of the heat dissipation cover 110 is a straight line shape.
  • the outer sectional shape of the plurality of wave heat dissipation fins 120 at an arbitrary second height higher than the first height may also be formed in a straight line shape.
  • the outer cross-sectional shape of the plurality of wave heat dissipation fins 120 at the same height is not necessarily limited to a straight line shape, and the cut surface of the curved surface as long as the inflow or flow of outside air into the plurality of wave heat dissipation fins 120 is easy. It may have a curved shape.
  • the outer cross-sectional shape of the plurality of wave heat dissipation fins 120 at the first height and the outer cross-sectional shape of the plurality of wave heat dissipation fins 120 at the second height may form a predetermined angle on the xy coordinates or overlap the same. However, it may extend in a curved surface in the vertical direction (ie, the z-coordinate). Even at this time, it is preferable that one surface or the other surface of the plurality of wave heat dissipation fins 120 is formed in a curved shape without necessarily having a step portion. This is to prevent flow resistance due to the step surface when outside air flows between the adjacent plurality of wave heat dissipation fins 120, as will be described later.
  • the outside air introduced from the outside to the inside rides the curved surface at the top (ie, the direction spaced apart from the outer surface of the heat dissipation cover 110 ) or the bottom Since it flows naturally without resistance to flow in the direction toward the outer surface of the heat dissipation cover 110 , external air circulation for the entire plurality of wave heat dissipation fins 120 may be active.
  • outer end surfaces of the plurality of wave heat dissipation fins 120 corresponding to the same height from the outer surface of the heat dissipation cover 110 may all be arranged in a predetermined direction that is the same direction.
  • the outer cross-section of the plurality of wave heat dissipation fins 120 at the same height may have any one of a straight line shape and a curved shape that is a curved cut surface.
  • the outside air located on the outside of the plurality of wave heat dissipation fins 120 is respectively introduced and flowed in different directions (in all directions) according to the distance away from the outer surface of the heat dissipation cover 110 (that is, the height of the wave heat dissipation fin 120). Therefore, the flow rate of the outside air can be increased.
  • FIG. 7 is a perspective view showing a state in which outside air is introduced through a heat dissipation cover and a plurality of wave heat dissipation fins
  • FIG. 8 is a cutaway perspective view taken along lines BB, CC, DD and EE of FIG. 2
  • FIG. 9 is a perspective view according to the present invention It is a front view of a heat dissipation mechanism for an antenna device
  • FIGS. 10A to 10C are cross-sectional views and external air inflow views taken along 'I-I', 'II-II' and 'III-III' of FIG. 9 .
  • the heat conducted to the outer surface of the heat dissipation cover 110 is transmitted to each of the plurality of wave heat dissipation fins 120 disposed on the outer surface of the heat dissipation cover 110 , and an arbitrary distance from the outer surface of the heat dissipation cover 110 .
  • Smooth heat dissipation can be achieved by the external air introduced between the wave heat dissipation fins 120 and the adjacent wave heat dissipation fins 120 in the .
  • the BB line, the CC line, the DD line and the EE line are cross-sectional lines taken at different distances from the outer surface of the heat dissipation cover 110, respectively, the cross-sections taken from each site
  • the outer cross-section of any one of the wave heat-dissipating fins 120 formed by the line is provided in a straight line, and the outer cross-section of the adjacent wave heat-dissipating fin 120 is also provided in a straight line and parallel to the bar, and the outside air is a plurality of wave heat radiation fins 120 ) can be easily introduced from all directions between the heat dissipation performance can be greatly improved.
  • each of the plurality of wave heat dissipation fins 120 is diagonally lined. They are arranged in a straight line side by side in the direction, and the outside air may flow between the adjacent wave heat dissipation fins 120 to be introduced or discharged in an oblique direction.
  • each of the front ends of the plurality of wave heat dissipation fins 120 In this drawing, in the left and right direction of the heat dissipation cover 110, the outside air is blocked so that the inflow of outside air is difficult, but in the drawing, the heat dissipation cover 110 is arranged side by side in a straight line in the front and rear direction, and the outside air is provided between the adjacent wave heat dissipation fins 120. It may flow so as to flow in or out in the front-rear direction.
  • the front end of each of the plurality of wave heat dissipation fins 120 is a heat dissipation cover in the drawing
  • the outside air is blocked so that the inflow of outside air is difficult, but it is arranged in a straight line side by side in the left and right direction of the heat dissipation cover 110 in the drawing, and outside air is introduced in the left and right direction between the adjacent wave heat dissipation fins 120 or It can be flowed to outflow.
  • the plurality of wave heat dissipation fins 120 are provided to form a continuous curved surface from the outer surface of the heat dissipation cover 110 to any spaced apart point,
  • a heat concentration phenomenon that may occur at the coupling portion between the heat dissipation cover 110 and the plurality of wave heat dissipation fins 120 is prevented in advance. Therefore, it is possible to have more improved heat dissipation performance.
  • the present invention provides a heat dissipation mechanism for an antenna device having a plurality of wave heat dissipation fins provided to allow inflow of external air according to the flow in all directions except for the surface closed by the heat dissipation cover.

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Details Of Aerials (AREA)

Abstract

본 발명은 안테나 장치용 방열 기구에 관한 것으로서, 특히, 열이 존재하는 소정 공간 상으로 노출된 내측면을 가짐과 아울러, 외측면은 외기가 유동되는 외부로 노출되는 방열 커버 및 상기 방열 커버의 외측면에 열전도되게 복수개 열로 배치되되, 상기 방열 커버의 외측면으로부터 임의의 높이까지 연속되는 곡면을 형성하되, 상기 임의의 높이에서의 수평단면이 상기 방열 커버의 외측면에서의 수평 단면으로부터 어느 일 방향으로 소정각도 회전된 상태의 일직선 형상을 가지는 복수의 웨이브 방열핀을 포함함으로써, 방열 성능을 향상시키는 이점을 제공한다.

Description

안테나 장치용 방열 기구
본 발명은 안테나 장치용 방열 기구(COOLING DEVICE FOR ANTENNA APPARATUS)에 관한 것으로서, 보다 상세하게는, 외기의 유동이 원활하여 방열 성능을 향상시킬 수 있는 안테나 장치용 방열 기구에 관한 것이다.
분산 안테나 시스템(distributed antenna system)은 기지국과 사용자 단말 사이의 통신을 중계하는 중계 시스템의 일 예로, 인도어(indoor)나 아웃도어(outdoor)에서 필연적으로 발생하는 음영지역까지 이동통신 서비스를 제공할 수 있도록 기지국의 서비스 커버리지 확장 측면에서 활용되고 있다.
분산 안테나 시스템은, 다운링크 경로를 기준으로 기지국으로부터 기지국 신호를 전송 받아 증폭 등의 신호 처리를 수행한 후 신호 처리된 기지국 신호를 서비스 영역 내의 사용자 단말로 전송하고, 업링크 경로를 기준으로 서비스 영역 내의 사용자 단말기로부터 전송되는 단말 신호를 증폭 등의 신호 처리 후 이를 기지국으로 전송하는 역할을 하는데, 이와 같은 분산 안테나 시스템의 중계 역할 구현을 위해서는 기지국과 분산 안테나 시스템 간에 송수신되는 신호의 정합, 예를 들어 신호의 파워 조정 등이 필수적이며, 이를 위해서 기지국 신호 정합 장치가 이용되어 왔다.
이러한 기지국 신호 정합 장치는, 다운링크 경로에서 높은 파워 레벨을 갖는 기지국 신호를 분산 안테나 시스템에 요구되는 적정 파워 레벨로 조정해주는데, 이 때 상당한 양의 열이 발생함에 따라 기지국 신호 정합 장치가 파손되고 수명이 단축되는 문제가 있어, 발생되는 열을 효율적으로 방출시킬 수 있는 방안이 요구된다.
도 1은 종래 기술에 따른 안테나 장치에 적용되는 일반적인 방열부의 방열 핀 구조를 나타낸 단면도이다.
종래 기술에 따른 방열부는, 도 1에 도시된 바와 같이, 열이 존재하는 소정 공간(TS, Thermal Space) 상에 내측면이 노출되는 방열 커버(10)와, 방열 커버(10)의 외측면에 결합된 다수의 방열 핀(20)을 포함하고, 다수의 방열 핀(20)은 대략 직선의 수직 단면을 가지도록 형성된다.
소정 공간(TS) 상의 열은 발열소자로 이루어진 전장부품(미도시)으로부터 생성된 것으로써, 열전도성 재질로 구비된 방열 커버(10)의 내측면을 통해 열전도되고, 방열 커버(10)의 외측면에 결합된 다수의 방열 핀(20)을 통해 외부로 방열된다.
그러나, 상기와 같이 구성되는 일반적인 방열부의 방열 핀 구조는, 도 1에 도시된 바와 같이, 각 방열 핀(20)과 방열 커버(10)가 연결되는 부위(도 1의 도면부호 "A" 참조)에 열이 적층되는 현상이 발생되어 방열 성능이 저하되는 문제점이 있다.
이는, 열이 적층되는 부위(A)로 외기의 유입이 제대로 이루어지지 않기 때문에 발생되는 문제로 파악된다. 즉, 종래의 일반적인 방열부의 방열 핀 구조는, 어느 하나의 방열 핀(20)과 인접하는 방열 핀(20) 사이로 외기의 유동 방향과 일치하는 경우에만 유동될 수 구조이다. 따라서, 단일 방열 핀(20)의 폭만큼은 외기의 유동이 막혀 그 유입이 어렵기 때문에, 방열되어야 할 열이 방열 커버(10)와의 연결 부위(A)에 적층됨으로써 방열 성능이 저하되는 것이다.
본 발명은 상기한 기술적 과제를 해결하기 위하여 안출된 것으로서, 방열 커버에 의하여 폐쇄된 면을 제외한 전 방위에서 외기의 유동에 따른 유입이 가능하도록 구비된 복수의 웨이브 방열 핀을 구비한 안테나 장치용 방열 기구를 제공하는 것을 그 목적으로 한다.
아울러, 본 발명은 복수의 웨이브 방열 핀의 배치 설계가 용이한 안테나 장치용 방열 기구를 제공하는 것을 다른 목적으로 한다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 안테나 장치용 방열 기구의 일 실시예는, 열이 존재하는 소정 공간 상으로 노출된 내측면을 가짐과 아울러, 외측면은 외기가 유동되는 외부로 노출되는 방열 커버 및 상기 방열 커버의 외측면에 열전도되게 복수 개로 배치되고, 상기 방열 커버의 외측면으로부터 임의의 높이까지 연속되는 곡면을 형성하도록 연장된 복수의 웨이브 방열핀을 포함한다.
여기서, 상기 복수의 웨이브 방열핀은, 상기 방열 커버의 외측면으로부터 가장 먼 지점의 외측단부가 각각 어느 일 방향인 동일 방향으로 소정각도 회전된 상태로 유지되도록 배치될 수 있다.
또한, 상기 복수의 웨이브 방열핀은, 일단부가 상기 방열 커버의 외측면에 열접촉 고정될 수 있다.
또한, 상기 복수의 웨이브 방열핀은, 상기 방열 커버의 외측면에 복수 열로 배치되고, 상기 복수의 웨이브 방열핀 중 1열 또는 2열 이상과 동시에 연결되어 상기 방열 커버의 외측면에의 열접촉 고정을 매개하는 마운팅 열전도 플레이트를 더 포함할 수 있다.
또한, 상기 마운팅 열전도 플레이트는, 상기 복수의 웨이브 방열핀 중 1열 또는 2열 이상의 일단을 상호 연결하도록 상기 방열 커버의 외측면에 대하여 수직되게 배치된 적어도 하나의 수직 플랜지 및 상기 적어도 하나의 수직 플랜지의 선단에서 상기 방열 커버의 외측면과 평행되게 절곡 연장된 수평 플랜지를 포함할 수 있다.
또한, 상기 수평 플랜지는, 상기 방열 커버의 외측면에 형성된 안착홈에 안착 고정되되, 상기 수평 플랜지의 외측면이 상기 방열 커버의 외측면과 수평 매칭되도록 안착 고정될 수 있다.
또한, 상기 복수의 웨이브 방열핀은, 상하로 길게 형성된 직사각형의 전도성 재질의 판재를 상하 중심축을 기준으로 일방향으로 비틀림시켜 제조될 수 있다.
또한, 상기 방열 커버의 외측면으로부터 임의의 높이에 해당하는 상기 복수의 웨이브 방열핀의 수평단면은 동일한 방향인 기결정된 방향으로 배열될 수 있다.
또한, 상기 복수의 웨이브 방열핀은, 각각 동일한 이격거리를 가지도록 배열될 수 있다.
또한, 상기 복수의 웨이브 방열핀 각각의 좌측단과 우측단은, 상기 방열 커버의 외측면으로부터 멀어질수록 나선 형상으로 연장될 수 있다.
또한, 상기 복수의 웨이브 방열핀 각각은, 상기 방열 커버의 외측면으로부터 가장 원거리에 이격된 타단부가 상기 방열 커버의 외측면에 연결된 일단부에 대하여 상하 중심축을 기준으로 적어도 180도 이상 회전되도록 비틀림 형성될 수 있다.
본 발명에 따른 안테나 장치용 방열 기구의 일 실시예에 따르면, 복수의 웨이브 방열 핀의 외측의 전방위로부터 내부로의 외기 유입 및 유동이 용이한 바, 전체적인 방열 성능을 향상시키는 효과를 가진다.
아울러, 본 발명에 따른 안테나 장치용 방열 기구의 일 실시예에 따르면, 복수의 웨이브 방열 핀은 일면 및 타면이 적어도 방열 커버로부터 이격되는 높이에 따라 전방위의 외기 유입 및 유동이 가능하도록 형성된 바, 복수의 웨이브 방열 핀의 배치 설계가 용이한 효과를 가진다.
도 1은 종래 기술에 따른 일반적인 방열부의 방열 핀 구조를 나타낸 단면도이고,
도 2는 본 발명에 따른 안테나 장치용 방열 기구의 일 실시예를 나타낸 사시도이며,
도 3은 도 2의 정면도 또는 측면도이고,
도 4는 도 2의 평면도이며,
도 5는 도 2의 구성 중 웨이브 방열핀을 나타낸 사시도이고,
도 6은 도 2의 구성 중 웨이브 방열핀의 다양한 실시예를 나타낸 사시도이며,
도 7은 방열 커버 및 복수의 웨이브 방열핀을 통해 외기가 유입되는 모습을 나타낸 사시도이고,
도 8은 도 2의 B-B, C-C, D-D 및 E-E선에 따라 취한 절개 사시도이며,
도 9는 본 발명에 따른 안테나 장치용 방열 기구의 정면도이고,
도 10a 내지 도 10c는 도 9의 'Ⅰ-Ⅰ', 'Ⅱ-Ⅱ' 및 'Ⅲ-Ⅲ'에 따라 취한 단면도 및 외기 유입도이다.
<부호의 설명>
100: 방열 기구 101: 케이싱부
103: 인쇄회로기판 105: 발열소자
110: 방열 커버 115: 안착홈
120: 웨이브 방열핀 130: 마운팅 열전도 플레이트
131,131a,131b: 수직 플랜지 132: 수평 플랜지
TS: 소정 공간(열 공간, Thermal Space) C: 상하 중심축
이하, 본 발명에 따른 안테나 장치용 방열 기구의 일 실시예를 예시적인 도면을 통해 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 2는 본 발명에 따른 안테나 장치용 방열 기구의 일 실시예를 나타낸 사시도이고, 도 3은 도 2의 정면도 또는 측면도이며, 도 4는 도 2의 평면도이고, 도 5는 도 2의 구성 중 웨이브 방열핀을 나타낸 사시도이며, 도 6은 도 2의 구성 중 웨이브 방열핀의 다양한 실시예를 나타낸 사시도이다.
본 발명의 일 실시예에 따른 안테나 장치용 방열 기구(100)는, 도 2 내지 도 5에 참조된 바와 같이, 열이 존재하는 소정 공간(또는, '열 공간', 이하, 'TS'로 도면부호 병기함, Thermal Space) 상으로 노출된 내측면을 가짐과 아울러, 외측면은 외기가 유동되는 외부로 노출되는 방열 커버(110) 및 방열 커버(110)의 외측면에 배치된 복수의 웨이브 방열핀(120)을 포함한다.
여기서, 소정 공간(TS)은, 도 2에 참조된 바와 같이, 다수의 발열소자(105)인 전장부품이 실장된 인쇄회로기판(PCB, Printed Circuit Board)(103)의 설치 및 보호를 위해 마련된 케이싱부(101)의 내부 공간으로 설정될 수 있다. 다수의 발열소자(105)는 안테나 장치에 구비된 경우, 증폭기(PA, Power Amplifier) 또는 FPGA(Field Programmable Gate Array) 등의 안테나 관련 전장부품일 수 있다.
방열 커버(110)는, 케이싱부(101)의 개방된 일측면에 결합되되, 다수의 발열 소자인 전장 부품이 실장된 인쇄회로기판(103)의 일면을 커버링하도록 배치될 수 있다. 방열 커버(110)의 내측면과 인쇄회로기판(103) 사이는 상술한 바와 같이 정의된 소정 공간(TS)으로서, 다수의 발열소자(105)인 전장부품으로부터 열이 발생되는 공간이다.
복수의 웨이브 방열핀(120)은, 도 2 내지 도 5에 참조된 바와 같이, 방열 커버(110)의 외측면에 열전도되게 복수개 열로 배치될 수 있다. 아울러, 복수의 웨이브 방열핀(120)은, 방열 커버(110)의 외측면으로부터 기설정된 이격 거리만큼 연장 형성될 수 있다. 이때, 복수의 웨이브 방열핀(120)은, 방열 커버(110)의 외측면으로부터 상술한 기설정된 이격 거리까지 뿐만 아니라, 방열 커버(110)의 외측면에서 임의의 이격 거리까지 연속되는 곡면을 형성하도록 구비될 수 있다.
또한, 복수의 웨이브 방열핀(120)은, 방열 커버(110)의 외측면으로부터 임의의 이격 거리에서의 수평단면(이하, '외측단면'이라 칭함)이 방열 커버(110)의 외측면(또는 이에 근접하는 부위)에서의 수평단면(이하, '내측단면'이라 칭함)에 대하여 어느 일 방향으로 소정각도 회전된 상태의 일직선 형상을 가질 수 있다.
보다 상세하게는, 복수의 웨이브 방열핀(120)은, 도 2 및 도 4에 참조된 바와 같이, 방열 커버(110)의 외측면에 복수의 웨이브 방열핀(120)의 일단부가 각각 고정될 수 있다.
예컨대, 방열 커버(110)가 도 2에 참조된 바와 같이, 대략 장방형의 전도성 재질의 판재로 구비된 경우, 복수의 웨이브 방열핀(120)은, 각각 방열 커버(110)의 외측면에 길이방향 또는 폭방향으로 적어도 2열 또는 적어도 2행 이상 배열될 수 있다. 본 발명의 일 실시예에서는, 방열 커버(110)를 정사각형의 판재로 구비하고, 복수의 웨이브 방열핀(120)을 각각 10열 및 10행으로 배열한 것이 채용되었으나, 반드시 이 배열 구성에 한정되는 것은 아님에 주의하여야 할 것이다.
여기서, 복수의 웨이브 방열핀(120)은, 각각 동일한 이격거리를 가지도록 배열될 수 있다. 그러나, 이에 한정되는 것은 아니고, 케이싱부(101) 내부에 배치된 발열소자(105)인 전장부품의 배치 위치 또는 발열량 등에 따라 상이한 이격거리를 가지도록 배열 설계되는 것도 가능함은 당연하다고 할 것이다.
한편, 복수의 웨이브 방열핀(120)은, 도 2에 참조된 바와 같이, 일단부(도 2에서 하측 부분)가 방열 커버(110)의 외측면에 열접촉 고정될 수 있다. 여기서, '열접촉 고정'의 의미는, 재질의 특성에 의하여 접촉에 따른 전도 방식으로 열전도가 이루어질 수 있는 것을 모두 포함하는 개념이다.
보다 상세하게는, 복수의 웨이브 방열핀(120)은, 도 2 내지 도 4에 참조된 바와 같이, 복수의 열 및 행으로 배열될 수 있다. 여기서, 본 발명의 일 실시예에 따른 안테나 장치용 방열 기구(100)는, 도 6에 참조된 바와 같이, 복수의 웨이브 방열핀(120) 중 1열(도 6의 (a) 참조) 또는 2열 이상(도 6의 (b) 참조)과 동시에 연결되어 방열 커버(110)의 외측면에의 열접촉 고정을 매개하는 마운팅 열전도 플레이트(130)를 더 포함할 수 있다.
마운팅 열전도 플레이트(130)는, 도 6의 (a)에 참조된 바와 같이, 1열로 배열되어 있는 복수의 웨이브 방열핀의 일단을 상호 연결하는 수직 플랜지(131)와, 수직 플랜지(131)의 선단에서 방열 커버(110)의 외측면과 평행되게 절곡 연장된 수평 플랜지(132)를 포함할 수 있다.
또한, 마운팅 열전도 플레이트(130)는, 도 6의 (b)에 참조된 바와 같이, 2열로 배열되어 있는 복수의 웨이브 방열핀(120)의 일단을 각각 상호 연결하도록 구비된 제1수직 플랜지(131a) 및 제2수직 플랜지(131b)와, 제1수직 플랜지(131) 및 제2수직 플랜지(131b)의 선단을 상호 연결하고, 방열 커버(110)의 외측면과 평행되게 절곡 연장된 수평 플랜지(132)를 포함할 수 있다.
여기서, 마운팅 열전도 플레이트(130)의 수평 플랜지(132)는, 방열 커버(110)의 외측면에 미리 형성된 안착홈(115)(도 3a 및 도 3b 참조)에 안착되도록 고정될 수 있다. 이때, 수평 플랜지(132)의 외측면은 방열 커버(110)의 외측면과 수평 매칭되도록 안착 고정될 수 있다. 따라서, 복수의 웨이브 방열핀(120) 사이로 유입된 외기의 유동 저항이 최소화되어 방열 성능이 저하되는 것을 방지할 수 있다.
수평 플랜지(132)의 방열 커버(110)의 안착홈(115)에 대한 고정 방식은, 용접 방식 및 나사 체결 방식 중 어느 하나일 수 있다. 그러나, 소정 공간(TS) 상에 배치된 발열소자(105)들의 발열량 등을 고려하여 용이하게 교체 가능하도록 나사 체결 방식으로 고정되는 것이 선호될 수 있다. 이를 위해, 수평 플랜지(132)에는, 도 6의 (a)에 참조된 바와 같이, 방열 커버(110)에 대한 나사 체결을 위하여 복수의 스크류 체결홀(133)이 형성될 수 있다.
한편, 도면에 도시되지 않았으나, 방열 커버(110)에는 상술한 안착홈(115)이 방열 커버(110)의 소정 공간(TS)과 연통되는 홀 형태로 구비될 수 있고, 마운팅 열전도 플레이트(130)의 수평 플랜지(132)의 내측면은 홀 형태로 구비된 안착홈(115)에 설치되어 소정 공간(TS)으로 노출되게 안착 고정될 수 있고, 소정 공간(TS) 내의 발열소자(105)들이 직접 수평 플랜지(132)에 표면 열접촉되도록 구비되는 것도 가능하다. 복수의 웨이브 방열핀(120)과 발열량이 높은 발열소자(105)들 사이에 직접 접촉의 열전도 방식으로 방열을 수행함으로써 보다 높은 방열 성능 효과를 달성할 수 있다.
복수의 웨이브 방열핀(120)은, 상하로 길게 형성된 직사각형의 열전도성 재질의 판재를 상하 중심축(C)을 기준으로 일방향으로 비틀림시켜 제조된 것일 수 있다.
따라서, 복수의 웨이브 방열판 각각의 좌측단(120L)과 우측단(120R)은, 도 5에 참조된 바와 같이, 방열 커버(110)의 외측면으로부터 멀어지는 방향으로 연장되되, 나선 형상으로 연장될 수 있다.
이때, 복수의 웨이브 방열핀(120) 각각은, 방열 커버(110)의 외측면으로부터 가장 원거리에 이격된 타단부(120b)가 방열 커버(110)의 외측면에 연결된 일단부(120a)에 대하여 상하 중심축(C)을 기준으로 적어도 180도 이상 회전되도록 비틀림 형성될 수 있다. 복수의 웨이브 방열핀(120) 각각의 비틀림 형성 각도는 '적어도 180도 이상'이므로, 360도(즉, 1회전) 이상도 가능하나, 이 경우 반드시 방열 커버(110)의 외측면으로부터 이격되는 방향으로는 곡면으로 형성됨이 바람직하다.
따라서, 도 4에 참조된 바와 같이, 복수의 웨이브 방열핀(120) 각각의 좌측단과 우측단은 상부에서 직하방으로 관찰할 때 소정의 원형 형상으로 관찰되고, 각각의 원의 지름은 단일 웨이브 방열핀(120)의 모재인 직사각형 판재의 폭의 길이와 동일할 수 있다.
이와 같은 구성으로 이루어진 본 발명의 일 실시예에 따른 방열 장치는, 방열 커버(110)의 외측면으로부터 동일 높이인 임의의 제1높이에서의 복수의 웨이브 방열핀(120)의 외측단면 형상은 일직선 형상으로 형성될 수 있다. 나아가 제1높이보다 더 높은 임의의 제2높이에서의 복수의 웨이브 방열핀(120)의 외측단면 형상 또한 일직선 형상으로 형성될 수 있다. 그러나, 반드시 동일 높이에서의 복수의 웨이브 방열핀(120)의 외측단면 형상이 일직선 형상으로 한정되는 것은 아니고, 복수의 웨이브 방열핀(120)의 내측으로 외기의 유입 또는 유동이 용이한 한도에서 곡면의 절단면인 곡선 형상을 가질 수 있다.
다만, 제1높이에서의 복수의 웨이브 방열핀(120)의 외측단면 형상과 제2높이에서의 복수의 웨이브 방열핀(120)의 외측단면 형상은 각각 x-y 좌표 상에서 소정 각도를 형성하거나 동일하게 겹쳐질 수 있으나, 상하 방향(즉, z좌표)으로는 곡면으로 연장될 수 있다. 이 때에도, 복수의 웨이브 방열핀(120)의 일면 또는 타면은 반드시 단차 부위 없이 곡면 형상으로 형성됨이 바람직하다. 이는 후술하는 바와 같이, 인접하는 복수의 웨이브 방열핀(120) 사이로 외기 유동 시 단차면에 의한 유동 저항이 생기는 것을 방지하기 위함이다. 또한, 복수의 웨이브 방열핀(120)이 상하 방향으로 곡면을 형성할 경우에는, 외부에서 내측으로 유입된 외기가 곡면을 타고 상부(즉, 방열 커버(110)의 외측면으로부터 이격된 방향) 또는 하부(즉, 방열 커버(110)의 외측면을 향하는 방향)로 유동 저항 없이 자연스럽게 유동되므로, 복수의 웨이브 방열핀(120) 전체에 대한 외기 순환이 활발해질 수 있다.
그리고, 방열 커버(110)의 외측면으로부터 임의의 동일 높이에 해당하는 복수의 웨이브 방열핀(120)의 외측단면은 모두 동일한 방향인 기결정된 방향으로 배열될 수 있다. 아울러, 동일 높이에서의 복수의 웨이브 방열핀(120)의 외측단면은 일직선 형상 및 곡면의 절단면인 곡선 형상 중 어느 하나의 형상을 가질 수 있다.
그러므로, 복수의 웨이브 방열핀(120)의 외측에 위치한 외기는 방열 커버(110)의 외측면으로부터 멀어지는 거리(즉, 웨이브 방열핀(120)의 높이)에 따라 상이한 방향(전방위)으로 각각 유입 및 유동될 수 있으므로, 외기의 유동율이 증가될 수 있다.
복수의 웨이브 방열핀(120)의 내부로의 외기 유동율이 증가할 경우, 방열 커버(110)의 외측면에 가까운 부위에의 열 적층 현상이 해소될 수 있고, 이로써 일반적인 방열부의 방열 핀 구조에 비하여 방열 성능이 크게 향상될 수 있다.
도 7은 방열 커버 및 복수의 웨이브 방열핀을 통해 외기가 유입되는 모습을 나타낸 사시도이고, 도 8은 도 2의 B-B, C-C, D-D 및 E-E선에 따라 취한 절개 사시도이며, 도 9는 본 발명에 따른 안테나 장치용 방열 기구의 정면도이고, 도 10a 내지 도 10c는 도 9의 'Ⅰ-Ⅰ', 'Ⅱ-Ⅱ' 및 'Ⅲ-Ⅲ'에 따라 취한 단면도 및 외기 유입도이다.
상술한 바와 같이 구성된 본 발명에 따른 안테나 장치용 방열 기구의 방열 모습을 간략하게 설명하면 다음과 같다.
먼저, 도 7 및 도 8을 참조하면, 안테나의 기능을 담당하는 발열소자(105)로 구비된 전장부품들로부터 소정의 작동 열이 발생하면 케이싱부(101)의 내부에 배치된 인쇄회로기판(103)과 방열 커버(110)의 내측면 사이인 소정 공간(TS)에 열이 포집되고, 포집된 열은 열전도성 재질로 구비된 방열 커버(110)의 내측면을 통해 전도된다.
방열 커버(110)의 외측면으로 전도된 열은, 방열 커버(110)의 외측면에 배치된 복수의 웨이브 방열핀(120)에 각각 전달되고, 방열 커버(110)의 외측면으로부터 임의의 이격거리에서 인접하는 웨이브 방열핀(120)과의 사이로 유입된 외기에 의하여 원활한 방열이 이루어질 수 있다.
예를 들면, 도 8에 참조된 바와 같이, B-B선, C-C선, D-D선 및 E-E선은 각각 방열 커버(110)의 외측면에 대하여 상이한 이격거리에서 취한 단면선인데, 각각의 부위에서 취한 단면선에 의하여 형성된 어느 하나의 웨이브 방열핀(120)의 외측 단면은 일직선 형태로 구비되고 그에 인접된 웨이브 방열핀(120)의 외측 단면 또한 일직선 형태로써 평행되게 구비되는 바, 외기가 복수의 웨이브 방열핀(120)들 사이로 전방위에서 용이하게 유입될 수 있으므로, 방열 성능이 크게 향상될 수 있다.
보다 상세하게는, 도 9 및 도 10a에 참조된 바와 같이, 방열 커버(110)의 외측면으로부터 가장 가까이 이격되어 있는 'Ⅰ-Ⅰ'선의 높이에서는 복수의 웨이브 방열핀(120)의 선단부 각각이 사선 방향으로 나란히 일직선 형태로 배열되고, 인접하는 웨이브 방열핀(120) 사이로 외기가 사선 방향으로 유입되거나 유출되도록 유동될 수 있다.
또한, 도 9 및 도 10b에 참조된 바와 같이, 방열 커버(110)의 외측면으로부터 'Ⅰ-Ⅰ'보다 더 이격되어 있는 'Ⅱ-Ⅱ'선의 높이에서는 복수의 웨이브 방열핀(120)의 선단부 각각이 도면상 방열 커버(110)의 좌우 방향으로는 외기의 유입이 어렵도록 막은 형태이나 도면상 방열 커버(110)의 전후 방향으로 나란히 일직선 형태로 배열되고, 인접하는 웨이브 방열핀(120) 사이로 외기가 전후 방향으로 유입되거나 유출되도록 유동될 수 있다.
그리고, 도 9 및 도 10c에 참조된 바와 같이, 방열 커버(110)의 외측면으로부터 가장 멀리 이격되어 있는 'Ⅲ-Ⅲ'선의 높이에서는 복수의 웨이브 방열핀(120)의 선단부 각각이 도면상 방열 커버(110)의 전후 방향으로는 외기의 유입이 어렵도록 막은 형태이나 도면상 방열 커버(110)의 좌우 방향으로 나란히 일직선 형태로 배열되고, 인접하는 웨이브 방열핀(120) 사이로 외기가 좌우 방향으로 유입되거나 유출되도록 유동될 수 있다.
이와 같이 본 발명에 따른 안테나 장치용 방열 기구의 일 실시예는, 복수의 웨이브 방열핀(120)이 방열 커버(110)의 외측면으로부터 이격되는 임의의 이격 지점까지 연속적인 곡면을 형성하도록 구비되되, 인접하는 웨이브 방열핀(120)과의 관계에서 외기의 유입 및 유출이 자연스럽게 이루어지도록 형성됨으로써, 방열 커버(110)와 복수의 웨이브 방열핀(120)의 결합 부위에 발생할 수 있는 열 집중 현상을 미연에 방지할 수 있으므로 보다 향상된 방열 성능을 가질 수 있다.
이상, 본 발명에 따른 안테나 장치용 방열 기구의 일 실시예를 첨부된 도면을 참조하여 상세하게 설명하였다. 그러나, 본 발명의 실시예가 반드시 상술한 일 실시예에 의하여 한정되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변형 및 균등한 범위에서의 실시가 가능함은 당연하다고 할 것이다. 그러므로, 본 발명의 진정한 권리범위는 후술하는 청구범위에 의하여 정해진다고 할 것이다.
본 발명은 방열 커버에 의하여 폐쇄된 면을 제외한 전 방위에서 외기의 유동에 따른 유입이 가능하도록 구비된 복수의 웨이브 방열 핀을 구비한 안테나 장치용 방열 기구를 제공한다.

Claims (11)

  1. 열이 존재하는 소정 공간 상으로 노출된 내측면을 가짐과 아울러, 외측면은 외기가 유동되는 외부로 노출되는 방열 커버; 및
    상기 방열 커버의 외측면에 열전도되게 복수 개로 배치되고, 상기 방열 커버의 외측면으로부터 임의의 높이까지 연속되는 곡면을 형성하도록 연장된 복수의 웨이브 방열핀; 을 포함하는, 안테나 장치용 방열 기구.
  2. 청구항 1에 있어서,
    상기 복수의 웨이브 방열핀은, 상기 방열 커버의 외측면으로부터 가장 먼 지점의 외측단부가 각각 어느 일 방향인 동일 방향으로 소정각도 회전된 상태로 유지되도록 배치된, 안테나 장치용 방열 기구.
  3. 청구항 1에 있어서,
    상기 복수의 웨이브 방열핀은, 일단부가 상기 방열 커버의 외측면에 열접촉 고정되는, 안테나 장치용 방열 기구.
  4. 청구항 3에 있어서,
    상기 복수의 웨이브 방열핀은, 상기 방열 커버의 외측면에 복수 열로 배치되고,
    상기 복수의 웨이브 방열핀 중 1열 또는 2열 이상과 동시에 연결되어 상기 방열 커버의 외측면에의 열접촉 고정을 매개하는 마운팅 열전도 플레이트; 를 더 포함하는, 안테나 장치용 방열 기구.
  5. 청구항 4에 있어서,
    상기 마운팅 열전도 플레이트는,
    상기 복수의 웨이브 방열핀 중 1열 또는 2열 이상의 일단을 상호 연결하도록 상기 방열 커버의 외측면에 대하여 수직되게 배치된 적어도 하나의 수직 플랜지; 및
    상기 적어도 하나의 수직 플랜지의 선단에서 상기 방열 커버의 외측면과 평행되게 절곡 연장된 수평 플랜지; 를 포함하는, 안테나 장치용 방열 기구.
  6. 청구항 5에 있어서,
    상기 수평 플랜지는, 상기 방열 커버의 외측면에 형성된 안착홈에 안착 고정되되, 상기 수평 플랜지의 외측면이 상기 방열 커버의 외측면과 수평 매칭되도록 안착 고정되는, 안테나 장치용 방열 기구.
  7. 청구항 1에 있어서,
    상기 복수의 웨이브 방열핀은,
    상하로 길게 형성된 직사각형의 열전도성 재질의 판재를 상하 중심축을 기준으로 일방향으로 비틀림시켜 제조된, 안테나 장치용 방열 기구.
  8. 청구항 1에 있어서,
    상기 방열 커버의 외측면으로부터 임의의 동일 높이에 해당하는 상기 복수의 웨이브 방열핀의 수평단면은 동일한 방향인 기결정된 방향으로 배열된, 안테나 장치용 방열 기구.
  9. 청구항 1에 있어서,
    상기 복수의 웨이브 방열핀은, 각각 동일한 이격거리를 가지도록 배열된, 안테나 장치용 방열 기구.
  10. 청구항 1에 있어서,
    상기 복수의 웨이브 방열핀 각각의 좌측단과 우측단은, 상기 방열 커버의 외측면으로부터 멀어질수록 나선 형상으로 연장되는, 안테나 장치용 방열 기구.
  11. 청구항 1에 있어서,
    상기 복수의 웨이브 방열핀 각각은, 상기 방열 커버의 외측면으로부터 가장 원거리에 이격된 타단부가 상기 방열 커버의 외측면에 연결된 일단부에 대하여 상하 중심축을 기준으로 적어도 180도 이상 회전되도록 비틀림 형성되는, 안테나 장치용 방열 기구.
PCT/KR2020/016769 2019-11-25 2020-11-25 안테나 장치용 방열 기구 WO2021107587A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022529938A JP7365506B2 (ja) 2019-11-25 2020-11-25 アンテナ装置用放熱器具
EP20892918.2A EP4068503A4 (en) 2019-11-25 2020-11-25 COOLING DEVICE FOR ANTENNA DEVICE
CN202080081601.3A CN115053399A (zh) 2019-11-25 2020-11-25 天线装置用散热机构
US17/752,871 US12062829B2 (en) 2019-11-25 2022-05-25 Cooling device for antenna apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0151879 2019-11-25
KR20190151879 2019-11-25
KR10-2020-0159452 2020-11-25
KR1020200159452A KR102463545B1 (ko) 2019-11-25 2020-11-25 안테나 장치용 방열 기구

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/752,871 Continuation US12062829B2 (en) 2019-11-25 2022-05-25 Cooling device for antenna apparatus

Publications (1)

Publication Number Publication Date
WO2021107587A1 true WO2021107587A1 (ko) 2021-06-03

Family

ID=76130660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016769 WO2021107587A1 (ko) 2019-11-25 2020-11-25 안테나 장치용 방열 기구

Country Status (3)

Country Link
US (1) US12062829B2 (ko)
JP (1) JP7365506B2 (ko)
WO (1) WO2021107587A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200241122Y1 (ko) * 2001-04-25 2001-10-12 주식회사 우주통신 전자 회로 기판용 방열판
US20070131386A1 (en) * 2005-12-14 2007-06-14 Ming-Kun Tsai Fin unit for a cooler
CN104053342A (zh) * 2014-06-25 2014-09-17 上海理工大学 扭齿散热片
KR101610044B1 (ko) * 2015-04-07 2016-04-20 (주)텍슨 히트 싱크
KR20160121491A (ko) * 2016-10-10 2016-10-19 주식회사 케이엠더블유 방열 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273697A (ja) * 1988-09-09 1990-03-13 Hitachi Ltd 放熱フイン
JP2873765B2 (ja) * 1992-04-13 1999-03-24 アクトロニクス 株式会社 ▲l▼字形状ピン群を有する剣山型ヒートシンク
US5397919A (en) * 1993-03-04 1995-03-14 Square Head, Inc. Heat sink assembly for solid state devices
JPH09252066A (ja) 1996-03-15 1997-09-22 Mitsubishi Electric Corp ヒートシンク
US6053240A (en) * 1996-08-09 2000-04-25 Aavid Thermal Technologies, Inc. Heat sink
JP2002329821A (ja) * 2001-04-27 2002-11-15 Toshiyuki Arai ヒートシンク
US6469898B1 (en) * 2001-05-21 2002-10-22 Rouchon Industries Inc. Heat dissipating device
JP2003152419A (ja) 2001-08-28 2003-05-23 Toshiba Corp アンテナ装置
US20030131970A1 (en) * 2002-01-17 2003-07-17 Carter Daniel P. Heat sinks and method of formation
US6640883B2 (en) * 2002-02-14 2003-11-04 Glacialtech Inc. Computer heat sink
US6886627B2 (en) * 2003-06-27 2005-05-03 Intel Corporation Radial heat sink with helical shaped fins
US7347059B2 (en) * 2005-03-09 2008-03-25 Kelix Heat Transfer Systems, Llc Coaxial-flow heat transfer system employing a coaxial-flow heat transfer structure having a helically-arranged fin structure disposed along an outer flow channel for constantly rotating an aqueous-based heat transfer fluid flowing therewithin so as to improve heat transfer with geological environments
US8988881B2 (en) * 2007-12-18 2015-03-24 Sandia Corporation Heat exchanger device and method for heat removal or transfer
KR101002989B1 (ko) * 2008-10-08 2010-12-22 제일히트씽크 주식회사 방열성을 향상시킨 전기, 전자 제품용 히트싱크
US8787021B2 (en) * 2011-06-17 2014-07-22 Hewlett-Packard Development Company, L.P. Memory cooler
JP2015211056A (ja) * 2014-04-24 2015-11-24 日本電気株式会社 電子機器
JP2023552140A (ja) * 2020-12-02 2023-12-14 ケーエムダブリュ・インコーポレーテッド アンテナ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200241122Y1 (ko) * 2001-04-25 2001-10-12 주식회사 우주통신 전자 회로 기판용 방열판
US20070131386A1 (en) * 2005-12-14 2007-06-14 Ming-Kun Tsai Fin unit for a cooler
CN104053342A (zh) * 2014-06-25 2014-09-17 上海理工大学 扭齿散热片
KR101610044B1 (ko) * 2015-04-07 2016-04-20 (주)텍슨 히트 싱크
KR20160121491A (ko) * 2016-10-10 2016-10-19 주식회사 케이엠더블유 방열 장치

Also Published As

Publication number Publication date
JP2023504384A (ja) 2023-02-03
US12062829B2 (en) 2024-08-13
JP7365506B2 (ja) 2023-10-19
US20220285820A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
CN101151771A (zh) 具有冷却特征的电连接器
WO2014077634A1 (ko) 이동통신 시스템의 소형 기지국 장치
WO2015099471A1 (ko) 변압기용 방열장치
WO2015072727A1 (ko) 기지국 안테나 장치
WO2019112289A1 (ko) 다중 입출력 안테나 장치
WO2015130057A1 (ko) 전지모듈
CN215647689U (zh) 电信机柜的热交换结构
WO2014081140A1 (ko) 공냉식 방열기를 가진 변압기
WO2016153268A1 (ko) 효율적인 온도 검출이 가능한 구조를 갖는 배터리 팩 및 이에 적용되는 온도 소자 실장형 인쇄회로기판
WO2011040671A1 (ko) 발광다이오드 조명기구
WO2014025075A1 (ko) 무선 통신기기의 함체 장치
KR102463545B1 (ko) 안테나 장치용 방열 기구
WO2021107587A1 (ko) 안테나 장치용 방열 기구
WO2018012721A1 (ko) 배터리 모듈
US10104791B2 (en) Modular assembly
WO2016188162A1 (zh) 单板散热装置及方法
WO2019231242A1 (ko) 안테나 장치의 방열 기구
WO2016105085A1 (ko) 변압기용 방열기
WO2019199078A1 (ko) 다중 입출력 안테나 장치
WO2019112401A1 (ko) 전장소자의 방열 장치
CN110267482B (zh) 通信设备
WO2021145730A1 (ko) 방열 함체 및 그 제작 방법
WO2017104964A1 (ko) 엘이디 조명장치
CN111836121A (zh) 一种板卡连接架构及具有该架构的通信设备
WO2022045729A1 (ko) 인쇄회로기판 모듈 및 이를 포함하는 전자장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892918

Country of ref document: EP

Effective date: 20220627