WO2015099471A1 - 변압기용 방열장치 - Google Patents
변압기용 방열장치 Download PDFInfo
- Publication number
- WO2015099471A1 WO2015099471A1 PCT/KR2014/012860 KR2014012860W WO2015099471A1 WO 2015099471 A1 WO2015099471 A1 WO 2015099471A1 KR 2014012860 W KR2014012860 W KR 2014012860W WO 2015099471 A1 WO2015099471 A1 WO 2015099471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiator
- cooling fan
- heat
- cooling
- transformer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/085—Cooling by ambient air
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/20172—Fan mounting or fan specifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20209—Thermal management, e.g. fan control
Definitions
- the present invention relates to a heat dissipation device for a transformer, and more particularly, to a heat dissipation device for a transformer to perform heat dissipation by passing an air flow formed by a cooling fan between the heat dissipation plates constituting the heat dissipator.
- the transformer acts to raise or lower the voltage and becomes an important component of the power system. Such a transformer is very important for the stable supply of power.
- heat is generated by the magnetic action of the current, which causes a rise in the temperature of the insulating oil inside the transformer's enclosure.
- the radiator is installed outside the transformer to discharge heat generated inside the transformer and transferred to the insulating oil through the radiator. That is, the insulating oil is sent to the radiator to discharge heat to the outside, and the insulating oil having a low temperature is sent to the inside of the transformer for use.
- the exterior of the transformer body (1) constitutes an enclosure (3)
- the inside of the enclosure (3) is coiled around the core to be transformed
- the enclosure (3) is filled with insulating oil have.
- a plurality of radiators 5 are connected to one side of the outside of the transformer body 1 to discharge heat generated from the transformer body 1 to the outside. Insulating oil inside the enclosure 3 flows to the radiator 5 to discharge heat to the outside.
- the radiator 5 has an upper header pipe 7 communicating with the interior of the enclosure 3 through the upper portion of the transformer body 1, and the interior of the enclosure 3 through the lower portion of the transformer body 1. There is a lower header pipe 7 'in communication with it. A plurality of heat sinks 9 are provided between these header pipes 7 and 7 '.
- the heat sink 9 is configured by combining two panels to form a space in which the insulating oil flows. An upper portion of the heat sink 9 is connected to the upper header pipe 7, and a lower portion of the heat sink 9 is connected to the lower header pipe 7 ′.
- Insulating oil is supplied from the enclosure 3 through the upper header pipe 7, and insulating oil is supplied from the upper header pipe 7 to the inside of the heat sink 9 so as to be heated to the outside from the heat sink 9. Is released. The insulating oil passing through the heat sink 9 is transferred to the enclosure 3 again through the lower header pipe 7 ′ to perform an insulating action.
- the radiator 5 is used to radiate heat generated from the transformer body 1 to the outside, and the larger the number of the radiators 5, the greater the amount of heat dissipation.
- the number of the radiators 5 increases, there is a problem that the size of the entire transformer increases.
- the size of the transformer main body 1 is increased, the cost of transportation costs increases when it is necessary to manufacture a factory and transport it to an installation place.
- An object of the present invention is to solve the conventional problems as described above, to provide a heat dissipation device that effectively discharges the heat generated from the transformer to the outside by using the cooling airflow.
- Another object of the present invention is to provide a heat dissipation device for a transformer that can minimize the number of heat radiators used in a transformer.
- the present invention provides a heat dissipation device for a transformer that discharges heat generated from the transformer body to the outside while the insulating oil in the interior of the transformer body flows inside,
- a plurality of heat sinks are disposed between the upper header pipe and the lower header pipe, and a plurality of heat sinks are arranged in a row; a plurality of first cooling fans disposed to face the radiator at one end of the radiator, and the radiator. And a plurality of second cooling fans located below the one opposite to the radiator on the side with the first cooling fan.
- Inverters are provided in the first cooling fan and the second cooling fan, respectively, to control the air volume.
- the first cooling fan is provided with a plurality of height difference from the position corresponding to the upper portion of the radiator.
- the first cooling fan is provided in plural at the same height of the radiator.
- the second cooling fan is provided with a plurality of one radiator.
- the first cooling fan is set to have a greater air volume as it is located above the radiator and adjacent to the enclosure, and the second cooling fan is located below the radiator opposite to the radiator in which the first cooling fan is installed. It is set so that the amount of air flows as much as possible and adjacent to the enclosure.
- Both the first cooling fan and the second cooling fan may be operated at the same time, or only a part of them may be operated at the same time.
- the cooling fan is operated from the furthest from the first cooling fan, and the first cooling fan and the second cooling fan are sequentially operated.
- cooling fans are formed at different positions to form cooling air flows for heat exchange with the radiators. To increase. Therefore, there is an effect that the amount of heat radiation from the radiator becomes larger.
- the present invention can reduce the number of radiators as a whole by adjusting the direction of the air flow according to the position of the cooling fan and the amount of cooling air according to the position of the cooling fan, so that the size of the entire transformer can be miniaturized. have.
- FIG. 1 is a perspective view showing the configuration of a transformer having a general radiator.
- Figure 2 is a perspective view showing the configuration of a preferred embodiment of a heat dissipation device for a transformer according to the present invention.
- FIG. 3 is a schematic front view showing the configuration of the embodiment shown in FIG. 2 from the front;
- Figure 4 is an operating state showing that the cooling airflow is formed in the embodiment shown in FIG.
- the transformer body 11 forms a skeleton of the transformer 10.
- the enclosure 13 forms an exterior of the transformer body 11.
- the coil 13 is wound around the core so as to transform the inside of the enclosure 13, and the inside of the enclosure 13 is filled with insulating oil.
- the insulating oil is insulated from the components inside the enclosure 13 and at the same time receives heat generated from the components and flows to the radiator 15 to be described below to release heat to the outside.
- a plurality of radiators 15 are connected to one outside of the transformer body 11 to discharge heat generated from the transformer body 11 to the outside. Insulating oil inside the enclosure 13 flows into the radiator 15 to discharge heat to the outside.
- the radiator 15 has an upper header pipe 17 in communication with the interior of the enclosure 13 through the upper portion of the transformer body 11 to flow the insulating oil, and the enclosure through the lower portion of the transformer body 11. There is a lower header pipe 17 'in communication with the interior of (13) through which insulating oil flows. A plurality of heat sinks 19 are provided between these header pipes 17 and 17 '.
- the insulating oil inside the enclosure 13 flows into the upper header pipe 17 and enters each heat sink 19 from the upper header pipe 17.
- the insulating oil entering the heat sink 19 flows through the flow path formed inside the heat sink 19 and heats to the outside to release heat to the outside.
- the insulating oil flowing inside the heat sink 19 enters the enclosure 13 again through the lower header pipe 17 '.
- the heat sink 19 is configured by combining two panels to form a space in which the insulating oil flows. An upper portion of the heat sink 19 is connected to the upper header pipe 17, and a lower portion of the heat sink 19 is connected to the lower header pipe 17 ′.
- radiators 15 including one upper header pipe 17, a lower header pipe 17 ′, and a plurality of heat sinks 19 are used.
- the number of radiators 15 is related to the amount of heat generated by the transformer body 11. In this embodiment, six radiators 15 are connected to the enclosure 13 side by side.
- the plurality of first cooling fans 20 are installed at the radiator 15 at one end thereof from the top to the bottom thereof.
- the first cooling fans 20 installed adjacent to the radiator 15 at one end thereof are disposed while going from the top to the bottom of the radiator 15.
- the first cooling fan 20 is disposed in the radiator 15 of the one end portion is arranged in the present embodiment two by the same height, the number of the first cooling fan 20 is installed at the same height is the radiator ( 15) depends on the size.
- the first cooling fan 20, which is disposed at the same height with respect to one radiator 15, is disposed from a portion adjacent to the enclosure 13. This is illustrated well in FIG.
- the first cooling fans 20 are arranged from the top of the radiator 15 because the temperature of the top of the radiator 15 is higher than that of the bottom, forcing more heat emission. As such, the cool air stream formed by the first cooling fans 20 passes through adjacent radiators 15 in sequence. Therefore, when the airflow formed by the first cooling fan 20 is called the first cooling airflow, the first cooling airflow passes through the radiators 15 and finally flows outward.
- Inverters 22 are provided in the first cooling fans 20, respectively.
- the first cooling fan 20 is capable of adjusting the air volume.
- the air volume of the first cooling fans 20 may vary depending on the position, which is determined in consideration of the relationship with the second cooling airflows formed by the second cooling fans 30 to be described below.
- the first cooling fan 20 has a relatively large air volume of the upper portion of the radiator 15. And the first cooling fan 20 at the same height is relatively more air volume adjacent to the enclosure (13).
- the second cooling fan 30 is installed at the lower portion of each of the radiators 15 starting from the radiator 15 on the opposite side where the first cooling fans 20 are installed among the radiators 15.
- a plurality of second cooling fans 30 are also arranged for one radiator 15.
- the second cooling fan 30 is installed in order from the position adjacent to the enclosure (13). This corresponds to the arrangement position of the first cooling fan 20 above.
- the second cooling fans 30 are not located below all of the radiators 15, but are disposed at a portion after the midstream of the first cooling air stream at least in the heat of the radiator 15, and mainly the downstream radiator ( It is good to be arranged in the lower part of 15).
- the second cooling fan 30 is installed below the three radiators 15 downstream of the six radiators 15.
- the second cooling fan 30 forms a second cooling airflow flowing from the lower part of the radiator 15 to the upper part.
- the second cooling air stream is heat-exchanged starting from the lower portion of the radiator 15, and the first cooling air is downstream from the first cooling air stream formed by the first cooling fan 20 at the lower portion of the radiator 15. It is mixed with the airflow. Downstream of the first cooling air stream, the second cooling air stream is mixed by the first cooling air stream.
- Inverters 32 are also provided in the second cooling fans 30, respectively, and the air volumes of the second cooling fans 30 are set differently by these inverters 32.
- the air volume of the second cooling fans 30 is relatively high in the second cooling fan 30 corresponding to the radiator 15 far from the radiator 15 adjacent to the first cooling fan (20).
- the second cooling fan 30 adjacent to the enclosure 13 also has a relatively higher air volume.
- the air flow rate of the cooling fans (20, 30) is good to make the difference between about 10%.
- the air volume may be reduced by 10% as the height decreases.
- the air volume may be reduced by 10% as the radiator 15 is changed. It is good.
- the insulating oil transferred to the heat dissipation plates 19 exchanges heat with the heat dissipation plate 19 while falling from the top to the bottom along the inside of the heat dissipation plate 19.
- the temperature of the insulating oil is lowered toward the lower portion of the heat sink 19, the upper portion of the heat sink 19 maintains a higher temperature than the bottom.
- the insulating oil exchanged through the flow path inside the heat sink 19 is transferred to the lower header pipe 17 ′ and enters the inside of the enclosure 13 from the lower header pipe 17 ′. Insulating oil that enters the interior of the enclosure 13 receives the heat and flows along the path described above to discharge heat.
- the first cooling air stream formed by the first cooling fan 20 exchanges heat with the heat sink 19 while passing through an outer surface of the heat sink 19 of the heat sink 15. As shown in FIG. 4, the first cooling air stream starts from the radiator 15 at one end, passes through each radiator 15, passes through the last radiator 15, and is discharged to the outside.
- the second cooling air stream formed by the second cooling fan 30 exchanges heat while passing through the outer surface of the heat sink 19 of the heat sink 15 from the bottom to the top. As shown in FIG. 4, the second cooling airflow performs heat exchange while passing from the bottom to the top of the radiator 15 on the opposite side to the side where the first cooling fan 20 is located.
- the downstream of the first cooling airflow and the downstream of the second cooling airflow meet each other, which becomes an upper portion of the radiators 15 corresponding to the second cooling fan 30.
- a case in which both the first cooling fan 20 and the second cooling fan 30 are operated is considered.
- the downstream portions of the first cooling air stream and the second cooling air stream are mixed with each other to form a turbulent flow, thereby further promoting heat exchange.
- turbulence is formed by mixing air streams downstream of the first cooling air stream and the second cooling air stream.
- the first cooling fan 20 and the second cooling fan 30 may vary the air volume by the interlock 22, 32, the first cooling fan 20, the upper portion of the radiator (15).
- the wind speeds are higher in the ones installed in the air, and the lower the air flows downward.
- the air volume decreases as it moves away from the enclosure 13.
- the radiator 15 farther from the first cooling fan 20 in the radiator 15 has the greatest air volume, and in the radiator 15, the air volume closer to the enclosure 13 is greater. .
- the air flow rate is set to increase the airflow rate of the airflow passing through the relatively high temperature portion.
- the air volume of the second cooling fan 30 near the downstream part is large so that turbulence is formed on the downstream side. That is, the second cooling fan 30 at the lower portion of the radiator 15 farthest from the radiator 15 provided with the first cooling fan 20 has the largest amount of air. This is to return the turbulence generated by combining the first cooling air stream and the second cooling air stream, and to occur the downstream portion. That is, before the heat exchange is performed while each air flows without mixing the first cooling air stream and the second cooling air stream. However, since the temperature of the first cooling air is higher toward the downstream, the heat is not properly transmitted unless the turbulence is formed.
- first cooling fan 20 and the second cooling fan 30 are not necessarily used. According to the load given to the heat radiating device, only a part of the first and second cooling fans 20 and 30 are operated. To this end, the order in which the first cooling fan 20 and the second cooling fan 30 are operated is determined.
- the first one that is operated is adjacent to the enclosure 13 of the first cooling fan 20, which is arranged above the radiator 15. Next, the first cooling fan 20 at the same height is operated.
- the second cooling fan 30 is operated, and the second closest to the enclosure 13 at the bottom of the radiator 15 opposite to the first cooling fan 20 among the second cooling fans 30.
- the cooling fan 30 is operated first.
- the second cooling fan 30 of the same radiator 15 the one remote from the enclosure 13 is operated.
- the second cooling fan 30 operated above is adjacent to the enclosure 13 among those installed in the lower part of the radiator 15 which is relatively close to the first cooling fan 20 in the second cooling fan 30.
- the second cooling fan 30 is operated.
- the second cooling fan 30, which is relatively far from the enclosure 13, is operated.
- the first cooling fan 20 at the lowest height is operated in the same order as described above, and in the second cooling fan 30, the first cooling fan 20 is closest to the radiator 15 having the first cooling fan 20.
- the lower one of the radiators 15 operates near the enclosure 13.
- Operating the first cooling fan 20 and the second cooling fan 30 in this manner may proceed while confirming the heat dissipation capacity of the transformer body 11. This operation can be determined by measuring the internal temperature of the enclosure 13 of the transformer body 11 or by measuring the insulating oil temperature at the inlet side of the upper header pipe 17.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Transformer Cooling (AREA)
Abstract
본 발명은 변압기용 방열장치이다. 본 발명에서는 변압기본체(11)에서 발생된 열을 절연유가 전달받아 방열기(15)에서 외부로 배출한다. 상기 방열기(15)에서의 열방출을 위해 제1냉각팬(20)과 제2냉각팬(30)이 사용되는데, 제1냉각팬(20)은 상기 방열기(15)의 상부에서부터 하부로 가면서 높이차를 두고 다수개가 배치된다. 상기 제2냉각팬(30)은 상기 방열기(15)의 하부에 배치되어 방열기(15)의 하부에서 상부로 냉각기류를 형성한다. 상기 제2냉각팬(30)은 상기 제1냉각팬(20)이 있는 쪽의 방열기(15)의 반대쪽에 있는 방열기(15)의 하부에 배치된다. 본 발명에서는 상기 제1냉각팬(20)과 제2냉각팬(30) 각각의 풍량을 달리하는데, 제1냉각팬(20)은 방열기(15)의 상부로 갈수록 풍량이 크고, 방열기본체(11)의 외함(13)에 가까울 수록 풍량이 크다. 상기 제2냉각팬(30)은 제1냉각팬(20)이 설치된 위치의 방열기(15)에서 멀리 떨어질수록 풍량이 크고 외함(13)에 인접할 수록 풍량이 크다. 이와 같은 본 발명에 의하면 방열장치의 방열기(15)의 설계가 최적화되고 열방출능력이 상대적으로 커지는 이점이 있다.
Description
본 발명은 변압기용 방열장치에 관한 것으로, 더욱 상세하게는 방열기를 구성하는 방열판들 사이로 냉각팬에 의해 형성된 기류를 통과시켜 방열을 수행하는 변압기용 방열장치에 관한 것이다.
변압기는 전압을 높이거나 낮추는 역할을 하는 것으로, 전력계통의 중요한 구성요소가 된다. 이와 같은 변압기는 전력의 안정된 공급을 위해 그 역할이 매우 중요하다. 변압기에서 전압을 변환시킬 때, 전류의 자기작용으로 인해 열이 발생하고, 이 열로 인해 변압기의 외함 내부에 있는 절연유의 온도상승이 발생한다.
상기 절연유의 온도상승이 발생하면 변압기의 내부 압력도 함께 상승하게 되어, 과열 및 압력상승으로 인해 변압기의 폭발사고를 유발시키고, 절연유가 열화되어 절연손상이 발생하게 된다.
이러한 문제점을 해결하기 위해 변압기의 외부에 방열기를 설치하여 변압기 내부에서 발생되어 절연유로 전달된 열을 방열기를 통해 배출한다. 즉, 상기 절연유를 상기 방열기로 보내 외부로 열을 배출시키고, 온도가 낮아진 절연유는 다시 변압기의 내부로 보내 사용하는 것이다.
도 1에는 일반적으로 사용되는 변압기의 구성이 개시되어 있다. 이에 따르면, 변압기본체(1)의 외관을 외함(3)이 구성하는데, 상기 외함(3)의 내부에는 코어에 코일이 권선되어 변압을 할 수 있도록 되어 있고, 상기 외함(3)에는 절연유가 채워져 있다.
상기 변압기본체(1)에서 발생한 열을 외부로 방출하기 위해 방열기(5)가 상기 변압기본체(1) 외부 일측에 다수개가 연결되어 있다. 상기 방열기(5)로는 상기 외함(3) 내부의 절연유가 유동되어 외부로 열을 배출하게 된다.
상기 방열기(5)에는 상기 변압기본체(1)의 상부를 통해 외함(3)의 내부와 연통되는 상부헤더파이프(7)가 있고, 상기 변압기본체(1)의 하부를 통해 외함(3)의 내부와 연통되는 하부헤더파이프(7')가 있다. 이들 헤더파이프(7,7')의 사이에는 다수개의 방열판(9)이 설치된다. 상기 방열판(9)은 두 개의 패널이 내부에 절연유가 유동되는 공간을 형성하도록 결합되어 구성되는 것이다. 상기 방열판(9)의 상부는 상기 상부헤더파이프(7)에 연결되고, 상기 방열판(9)의 하부는 상기 하부헤더파이프(7')에 연결된다.
상기 상부헤더파이프(7)를 통해서는 상기 외함(3)에서부터 절연유가 공급되고, 상기 상부헤더파이프(7)에서 상기 방열판(9)의 내부로 절연유가 공급되어 상기 방열판(9)에서 외부로 열이 방출된다. 상기 방열판(9)을 통과한 절연유는 상기 하부헤더파이프(7')를 통해 다시 상기 외함(3)으로 전달되어 절연작용을 수행한다.
그러나 상기한 바와 같은 구성을 가지는 종래 기술에 의한 변압기에서는 다음과 같은 문제점이 있다.
상기 변압기본체(1)에서 발생된 열을 외부로 방출하기 위해서 상기 방열기(5)를 사용하는데, 상기 방열기(5)의 갯수가 많을수록 열방출 양이 많아지게 된다. 하지만, 상기 방열기(5)의 갯수가 많아지면, 전체 변압기의 크기가 커지는 문제점이 있다. 상기 변압기본체(1)의 크기가 커지게 되면 공장에서 제작하여 설치 장소로 운송해야 하는 경우에는 운송비 부담이 커지게 된다.
또한, 상기 방열기(5)의 갯수가 변압기본체(1)에서 발생하는 열에 비해서 너무 많이 있게 되면, 일종의 과설계가 되어 자원의 낭비가 되는 문제점이 있다.
본 발명의 목적은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로, 변압기에서 발생하는 열을 냉각기류를 활용하여 외부로 효과적으로 배출하는 방열장치를 제공하는 것이다.
본 발명의 다른 목적은 변압기에서 사용되는 방열기의 수를 최소화할 수 있는 변압기용 방열장치를 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 변압기본체의 외함 내부에 있는 절연유가 내부를 유동하면서 변압기본체에서 발생된 열을 외부로 방출하는 변압기용 방열장치에 있어서, 다수개의 방열판이 상부헤더파이프 및 하부헤더파이프 사이에 배치되어 구성되어 다수개가 열을 지어 설치되는 방열기와, 상기 방열기중에서 일측 단부에 있는 방열기와 마주보도록 배치되는 다수개의 제1냉각팬과, 상기 방열기중에서 상기 제1냉각팬이 있는 쪽의 방열기 반대쪽에 있는 것의 하부에 위치되는 다수개의 제2냉각팬을 포함한다.
상기 제1냉각팬과 제2냉각팬에는 각각 인버터가 구비되어 풍량조절을 수행한다.
상기 제1냉각팬은 상기 방열기의 상부와 대응되는 위치에서부터 높이차를 두고 다수개가 구비된다.
상기 제1냉각팬은 상기 방열기의 같은 높이에 다수개가 구비된다.
상기 제2냉각팬은 하나의 방열기에 다수개가 구비된다.
상기 제1냉각팬은 상기 방열기의 상부에 있을수록 그리고 상기 외함에 인접하여 있을수록 풍량이 많도록 설정되고, 상기 제2냉각팬은 상기 제1냉각팬이 설치된 방열기의 반대쪽에 있는 방열기의 하부에 있을수록 그리고 상기 외함에 인접하여 있을수록 풍량이 많도록 설정된다.
상기 제1냉각팬과 제2냉각팬은 모두 동시에 동작되거나 일부만이 동시에 동작될 수도 있는데, 상기 제1냉각팬중에서 가장 높은 위치에 있는 것이 먼저 동작되고 외함에서 가까운 것부터 동작되면, 다음으로는 제2냉각팬중에서 제1냉각팬에서 가장 멀리 떨어져 있는 것부터 동작되며 계속해서 제1냉각팬과 제2냉각팬이 차례대로 동작된다.
본 발명에 의한 변압기용 방열장치에서는 다음과 같은 효과를 얻을 수 있다.
본 발명에서는 다수개의 방열기가 사용되는 변압기에서 방열기와의 열교환을 위한 냉각기류를 형성하는 냉각팬을 서로 다른 위치에 설치하여 각각 형성된 냉각기류가 하류부에서 만나 서로 혼합되면서 난류를 형성하여 냉각효율을 더 높일 수 있도록 하였다. 따라서, 방열기에서의 방열량이 보다 많아지는 효과가 있다.
본 발명에서는 냉각팬을 사용하여 강제로 방열기 주변에 냉각기류를 형성함에 있어 냉각팬의 위치에 따라 풍량을 조절하여 효율적으로 방열이 이루어지도록 함과 동시에 기류가 혼합되는 것이 원활하게 되도록 하므로 방열이 보다 효율적으로 일어나게 되는 효과도 있다.
또한, 본 발명에서는 냉각팬의 위치에 따른 기류의 방향조절 및 냉각팬의 위치에 따른 냉각풍량의 조절에 의해 전체적으로 방열기의 갯수를 줄일 수 있어 전체 변압기의 크기를 소형화할 수 있게 되는 효과도 얻을 수 있다.
도 1은 일반적인 방열기를 가진 변압기의 구성을 보인 사시도.
도 2는 본 발명에 의한 변압기용 방열장치의 바람직한 실시례의 구성을 보인 사시도.
도 3은 도 2에 도시된 실시례의 구성을 정면에서 보인 개략정면도.
도 4는 도 2에 도시된 실시례에서 냉각기류가 형성된 것을 보인 동작상태도.
이하 본 발명에 의한 변압기용 방열장치의 바람직한 실시례를 첨부된 도면을 참고하여 상세하게 설명한다.
도 2 및 도 3에 도시된 바에 따르면, 변압기(10)의 골격을 변압기본체(11)가 형성한다. 상기 변압기본체(11)의 외관을 외함(13)이 형성한다. 상기 외함(13)의 내부에는 코어에 코일이 권선되어 변압을 할 수 있도록 되어 있고, 상기 외함(13)의 내부에는 절연유가 채워져 있다. 상기 절연유는 상기 외함(13) 내부에 있는 부품들의 절연을 수행함과 동시에 부품들에서 발생한 열을 받아 아래에서 설명될 방열기(15)로 유동되어 외부로 열을 방출하는 역할을 한다.
상기 변압기본체(11)에서 발생한 열을 외부로 방출하기 위해 방열기(15)가 상기 변압기본체(11) 외부 일측에 다수개가 연결되어 있다. 상기 방열기(15)로는 상기 외함(13) 내부의 절연유가 유동되어 외부로 열을 배출하게 된다.
상기 방열기(15)의 구성을 살펴본다. 상기 방열기(15)에는 상기 변압기본체(11)의 상부를 통해 외함(13)의 내부와 연통되어 상기 절연유가 유동되는 상부헤더파이프(17)가 있고, 상기 변압기본체(11)의 하부를 통해 외함(13)의 내부와 연통되어 절연유가 유동되는 하부헤더파이프(17')가 있다. 이들 헤더파이프(17,17')의 사이에는 다수개의 방열판(19)이 설치된다. 따라서, 상기 외함(13) 내부의 절연유는 상기 상부헤더파이프(17)로 유동되고, 상기 상부헤더파이프(17)에서 각각의 방열판(19)으로 들어간다. 상기 방열판(19)으로 들어간 절연유는 방열판(19) 내부에 형성된 유로를 통해 유동되면서 외부로 열교환하여 열을 외부로 방출한다. 상기 방열판(19) 내부를 유동한 절연유는 상기 하부헤더파이프(17')를 통해 다시 외함(13)으로 들어간다.
상기 방열판(19)은 두 개의 패널이 내부에 절연유가 유동되는 공간을 형성하도록 결합되어 구성되는 것이다. 상기 방열판(19)의 상부는 상기 상부헤더파이프(17)에 연결되고, 상기 방열판(19)의 하부는 상기 하부헤더파이프(17')에 연결된다.
이와 같이 하나의 상부헤더파이프(17)와 하부헤더파이프(17') 그리고 다수개의 방열판(19)으로 구성된 방열기(15)는 다수개가 사용된다. 상기 방열기(15)의 갯수는 상기 변압기본체(11)에서 발생하는 열의 양과 관련된다. 본 실시례에서는 상기 방열기(15)가 6개가 나란히 상기 외함(13)에 연결되어 구비된다.
상기 다수개의 방열기(15)가 나란히 설치되어 있는 중에 일측 단부에 있는 방열기(15)에는 그 상부에서부터 시작해서 하부로 다수개의 제1냉각팬(20)들이 설치된다. 상기 일측 단부의 방열기(15)에 인접하여 설치되는 제1냉각팬(20)들은 상기 방열기(15)의 상부에서부터 하부로 가면서 배치된다. 상기 일측 단부의 방열기(15)에 배치되는 제1냉각팬(20)은 본 실시례에서는 같은 높이에 2개씩이 배치되는데, 같은 높이에 설치되는 제1냉각팬(20)의 갯수는 상기 방열기(15)의 크기에 따라 달리된다. 하나의 방열기(15)에 대해 같은 높이에 배치되는 제1냉각팬(20)은 상기 외함(13)에 인접한 부분에서부터 배치된다. 이는 도 2에 잘 도시되어 있다.
상기 제1냉각팬(20)들을 상기 방열기(15)의 상부에서부터 배치하는 것은 상기 방열기(15)의 상부의 온도가 하부에 비해 높기 때문에, 보다 많은 열방출을 강제로 시키기 위함이다. 이와 같이 상기 제1냉각팬(20)들에 의해 형성되는 냉각기류는 인접하는 방열기(15)들을 차례로 통과하도록 된다. 따라서, 상기 제1냉각팬(20)에 의해 형성되는 기류를 제1냉각기류라고 할 때, 제1냉각기류는 각각의 방열기(15)들을 통과하여 최종적으로 외부로 유동된다.
상기 제1냉각팬(20)들에는 각각 인버터(22)가 구비된다. 상기 인버터(22)가 구비됨에 의해 상기 제1냉각팬(20)들은 그 풍량조절이 가능하게 된다. 상기 제1냉각팬(20)들의 풍량은 위치에 따라 달리하는 것이 좋은데, 이는 아래에서 설명될 제2냉각팬(30)들에 의해 형성되는 제2냉각기류와의 관계를 고려하여 결정된다.
상기 제1냉각팬(20)은 상대적으로 방열기(15)의 상부에 있는 것의 풍량이 크다. 그리고 같은 높이에 있는 제1냉각팬(20)은 상기 외함(13)에 인접한 것이 상대적으로 더 풍량이 크다.
다음으로, 상기 방열기(15)중 상기 제1냉각팬(20)들이 설치된 반대쪽의 방열기(15)에서부터 시작해서 각각의 방열기(15)의 하부에는 제2냉각팬(30)들이 설치된다. 상기 제2냉각팬(30)들도 역시 하나의 방열기(15)에 대해 다수개가 배치된다. 본 실시례에서는 하나의 방열기(15) 당 2개씩 배치되는데, 상기 외함(13)에 인접한 위치에서부터 차례로 제2냉각팬(30)이 설치된다. 이는 위의 제1냉각팬(20)의 배치위치와 대응된다. 상기 제2냉각팬(30)들은 모든 방열기(15)의 하부에 위치되는 것은 아니고, 최소한 방열기(15)의 열중에서 상기 제1냉각기류의 중류 이후 부분에 배치되고, 주로 하류에 해당되는 방열기(15)의 하부에 배치되는 것이 좋다. 본 실시례에서는 총 6개의 방열기(15)중에서 하류의 3개의 방열기(15) 하부에 제2냉각팬(30)이 설치되었다.
상기 제2냉각팬(30)에서는 상기 방열기(15)의 하부에서부터 시작해서 상부로 유동되는 제2냉각기류를 형성한다. 상기 제2냉각기류는 상기 방열기(15)의 하부에서부터 시작해서 열교환을 하고, 상기 방열기(15)의 하부에서 상기 제1냉각팬(20)에 의해 형성되는 제1냉각기류의 하류부에서 제1냉각기류와 섞이게 된다. 상기 제1냉각기류의 하류에서 제2냉각기류가 제1냉각기류에 의해 섞이게 된다.
상기 제2냉각팬(30)들에도 각각 인버터(32)가 구비되는데, 이들 인버터(32)에 의해 제2냉각팬(30)들의 풍량이 각각 다르게 설정된다. 상기 제2냉각팬(30)들의 풍량은 상기 제1냉각팬(20)들과 인접한 방열기(15)에서 먼 방열기(15)에 대응되는 제2냉각팬(30)들이 상대적으로 풍량이 크다. 그리고 같은 방열기(15)에 위치되는 제2냉각팬(30)들 사이에서는 역시 상기 외함(13)에 인접한 제2냉각팬(30)이 상대적으로 더 풍량이 크다. 상기 냉각팬(20,30)들의 풍량은 인접하는 것들이 10%정도의 차이가 있도록 하는 것이 좋다. 참고로 제1냉각팬(20)의 경우 높이가 낮아질 수록 10%씩 풍량이 줄어들도록 하는 것이 좋고, 제2냉각팬(30)의 경우 방열기(15)가 달라지면서 10%씩 풍량이 줄어들도록 하는 것이 좋다.
이하 상기한 바와 같은 구성을 가지는 본 발명에 의한 변압기용 방열장치가 사용되는 것을 상세하게 설명한다.
변압기(10)가 동작하면 상기 변압기본체(11)의 내부에서는 열이 발생하게 되고, 상기 열은 절연유로 전달된다. 상기 절연유는 열을 전달받게 되면 상기 외함(13)의 내부에서 상부로 유동되고, 상기 상부헤더파이프(17)를 통해 상기 방열판(19)으로 전달된다. 상기 방열판(19)은 상기 상부헤더파이프(17)의 길이방향을 따라 다수개가 차례로 상기 상부헤더파이프(17)에 연결되어 있어, 절연유가 나누어져 상기 방열판(19)들로 전달된다.
상기 방열판(19)들로 전달된 절연유는 상기 방열판(19)의 내부를 따라 상부에서 하부로 낙하되면서 방열판(19)과 열교환한다. 상기 방열판(19)과 열교환함에 의해 상기 절연유의 온도는 상기 방열판(19)의 하부로 갈수록 낮아지고, 상기 방열판(19)은 상부가 하부에 비해 높은 온도를 유지하게 된다.
상기 방열판(19) 내부의 유로를 통과하면서 열교환된 절연유는 상기 하부헤더파이프(17')로 전달되고, 상기 하부헤더파이프(17')에서 상기 외함(13)의 내부로 들어가게 된다. 상기 외함(13)의 내부로 들어간 절연유는 다시 상기 열을 전달받아 위에서 설명된 경로를 따라 유동되면서 열을 배출하는 역할을 하게 된다.
한편, 상기 제1냉각팬(20)에 의해서 형성되는 제1냉각기류는 상기 방열기(15)의 방열판(19) 외면을 통과하면서 방열판(19)과 열교환한다. 도 4에 도시된 바와, 상기 제1냉각기류는 일측 단부의 방열기(15)에서 시작해서 각각의 방열기(15)를 통과하여 마지막 방열기(15)를 통과해서 외부로 배출된다.
그리고, 상기 제2냉각팬(30)에 의해서 형성되는 제2냉각기류는 상기 방열기(15)의 방열판(19)의 외면을 하부에서부터 상부로 통과하면서 열교환한다. 도 4에 도시된 바와 같이, 상기 제2냉각기류는 제1냉각팬(20)이 있는 쪽의 반대쪽에 있는 방열기(15)를 하부에서 상부로 통과하면서 열교환을 하게 된다.
상기 제1냉각기류의 하류와 상기 제2냉각기류의 하류는 서로 만나게 되는데, 이는 상기 제2냉각팬(30)과 대응되는 방열기(15)들의 상부가 된다. 물론, 도시된 실시례의 경우에는 제1냉각팬(20)과 제2냉각팬(30) 각각 모두가 동작되는 경우를 생각한다. 이와 같이 되면 제1냉각기류와 제2냉각기류의 하류부는 서로 혼합되어 난류를 형성하면서 열교환이 더욱 촉진된다. 이와 같이 제1냉각기류와 제2냉각기류의 하류에서 기류가 혼합되어 난류가 형성된 것이 도 4에 표시되어 있다.
한편, 상기 제1냉각팬(20)과 제2냉각팬(30)은 인터버(22,32)에 의해 그 풍량을 달리할 수 있는데, 제1냉각팬(20)에서는 방열기(15)의 상부에 설치된 것들이 풍량이 크고, 아래로 내려갈수록 풍량이 작게 한다. 같은 높이에 있는 제1냉각팬(200의 경우 외함(13)에서 멀어질 수록 풍량이 작아진다.
제2냉각팬(30)에서는 방열기(15)중에서 제1냉각팬(20)에서 멀리 있는 방열기(15)의 것이 가장 풍량이 크고, 같이 방열기(15)에서는 외함(13)에 가까운 것이 풍량이 크다.
이와 같이 풍량을 설정하는 것은 상대적으로 온도가 높은 부분을 지나는 기류의 풍량을 많게 하는 것을 원칙으로 한다. 물론, 제1냉각기류와 제2냉각기류가 서로 합쳐졌을 때, 되도록 하류쪽에서 난류가 형성되도록 하기 위해 하류부에 가까운 쪽의 제2냉각팬(30)의 풍량이 크다. 즉, 제1냉각팬(20)이 설치된 방열기(15)에서 가장 멀리 있는 방열기(15)의 하부에 있는 제2냉각팬(30)이 풍량이 가장 크다. 이는 제1냉각기류와 제2냉각기류가 합쳐져서 난류가 발생하는 것은 되돌고 하류부에서 일어나도록 하기 위함이다. 즉, 그 전에는 제1냉각기류와 제2냉각기류의 혼합이 없이 각각의 기류가 유동되면서 열교환이 이루어지도록 하는 것이다. 하지만, 제1냉각기류는 하류로 갈수록 온도가 높아져 있으므로, 난류를 형성하지 않으면 열을 제대로 전달받지 못하기 때문이다.
다음으로, 제1냉각팬(20)과 제2냉각팬(30)들이 반드시 모두 다 사용되어야 하는 것은 아니다. 방열장치에 주어지는 부하에 따라서, 제1 및 제2 냉각팬(20,30)의 일부만을 동작시킨다. 이를 위해 제1냉각팬(20)과 제2냉각팬(30)이 동작되는 순서가 정해진다.
가장 먼저 동작되는 것은 제1냉각팬(20)중에서 상기 방열기(15)의 상부에 배치된 것중에서 외함(13)에 인접한 것이다. 그 다음으로 같은 높이에 있는 제1냉각팬(20)이 동작된다.
다음으로는 제2냉각팬(30)이 동작되는데, 제2냉각팬(30)중에서 제1냉각팬(20)이 있는 반대쪽의 방열기(15)의 하부에서 상기 외함(13)에 가장 인접한 제2냉각팬(30)이 가장 먼저 동작된다. 다음으로 같은 방열기(15)의 제2냉각팬(30)중에서 외함(13)에서 멀리 떨어진 것이 동작된다.
다음으로는 상기 제1냉각팬(20)중에서 다음 높이에 있는 것들이 동작되는데, 이들 중에는 외함(13)에 인접한 것이 먼저 동작된다.
다음 순서로는 제2냉각팬(30)중에서 위에서 동작된 제2냉각팬(30)에서 상대적으로 제1냉각팬(20)에 가까운 방열기(15)의 하부에 설치된 것 중에서 외함(13)에 인접한 제2냉각팬(30)이 동작된다. 다음으로는 외함(13)에서 상대적으로 멀리 있는 제2냉각팬(30)이 동작된다.
다음으로는 본 실시례에서 가장 낮은 높이에 있는 제1냉각팬(20)이 위와 같은 순서로 동작되고, 제2냉각팬(30)에서는 제1냉각팬(20)있는 방열기(15)에 가장 인접한 방열기(15)의 하부에 있는 것중에서 외함(13)에 가까운 것부터 동작된다.
이와 같은 방식으로 제1냉각팬(20)과 제2냉각팬(30)을 동작시키는 것은 변압기본체(11)의 열방출 용량을 확인하면서 진행할 수 있다. 이와 같은 동작은 상기 변압기본체(11)의 외함(13) 내부 온도를 측정하거나 상기 상부헤더파이프(17)의 입구측에서의 절연유온도를 측정하여 결정할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (7)
- 변압기본체의 외함 내부에 있는 절연유가 내부를 유동하면서 변압기본체에서 발생된 열을 외부로 방출하는 변압기용 방열장치에 있어서,다수개의 방열판이 상부헤더파이프 및 하부헤더파이프 사이에 배치되어 구성되어 다수개가 열을 지어 설치되는 방열기와,상기 방열기중에서 일측 단부에 있는 방열기와 마주보도록 배치되는 다수개의 제1냉각팬과,상기 방열기중에서 상기 제1냉각팬이 있는 쪽의 방열기 반대쪽에 있는 것의 하부에 위치되는 다수개의 제2냉각팬을 포함하는 변압기용 방열장치.
- 제 1 항에 있어서, 상기 제1냉각팬과 제2냉각팬에는 각각 인버터가 구비되어 풍량조절을 수행하는 변압기용 방열장치.
- 제 1 항에 있어서, 상기 제1냉각팬은 상기 방열기의 상부와 대응되는 위치에서부터 높이차를 두고 다수개가 구비되는 변압기용 방열장치.
- 제 3 항에 있어서, 상기 제1냉각팬은 상기 방열기의 같은 높이에 다수개가 구비되는 변압기용 방열장치.
- 제 4 항에 있어서, 상기 제2냉각팬은 하나의 방열기에 다수개가 구비되는 변압기용 방열장치.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 제1냉각팬은 상기 방열기의 상부에 있을수록 그리고 상기 외함에 인접하여 있을수록 풍량이 많도록 설정되고, 상기 제2냉각팬은 상기 제1냉각팬이 설치된 방열기의 반대쪽에 있는 방열기의 하부에 있을수록 그리고 상기 외함에 인접하여 있을수록 풍량이 많도록 설정되는 변압기용 방열장치.
- 제 6 항에 있어서, 상기 제1냉각팬과 제2냉각팬은 모두 동시에 동작되거나 일부만이 동시에 동작될 수도 있는데, 상기 제1냉각팬중에서 가장 높은 위치에 있는 것이 먼저 동작되고 외함에서 가까운 것부터 동작되면, 다음으로는 제2냉각팬중에서 제1냉각팬에서 가장 멀리 떨어져 있는 것부터 동작되며 계속해서 제1냉각팬과 제2냉각팬이 차례대로 동작되는 변압기용 방열장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130165946A KR20150077085A (ko) | 2013-12-27 | 2013-12-27 | 변압기용 방열장치 |
KR10-2013-0165946 | 2013-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015099471A1 true WO2015099471A1 (ko) | 2015-07-02 |
Family
ID=53479233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/012860 WO2015099471A1 (ko) | 2013-12-27 | 2014-12-24 | 변압기용 방열장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20150077085A (ko) |
WO (1) | WO2015099471A1 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108231346A (zh) * | 2017-12-29 | 2018-06-29 | 重庆市展隆电子有限公司 | 一种变压器 |
CN108231357A (zh) * | 2016-12-12 | 2018-06-29 | 上海置信电气非晶有限公司 | 一种具有降噪高效散热功能的波纹油箱 |
CN109786075A (zh) * | 2019-03-27 | 2019-05-21 | 华翔翔能电气股份有限公司 | 一种大容量油浸式变压器 |
CN109961932A (zh) * | 2019-05-15 | 2019-07-02 | 杨潇 | 一种油浸式变压器油箱 |
CN110379587A (zh) * | 2019-06-25 | 2019-10-25 | 盐城奇林电气有限公司 | 一种煤矿变压器过载保护机构及过载保护方法 |
CN110444370A (zh) * | 2019-07-26 | 2019-11-12 | 福建安顺变压器有限公司 | 一种干式智能温控系统变压器 |
CN111667981A (zh) * | 2020-06-30 | 2020-09-15 | 曹维国 | 变压器散热装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106783051B (zh) * | 2017-01-20 | 2018-07-10 | 江苏腾奇电力设备科技有限公司 | 综合冷却型变压器用片式散热器 |
CN106710808A (zh) * | 2017-02-22 | 2017-05-24 | 江苏凡高电气有限公司 | 一种风冷三相油浸式配电变压器 |
CN107068343A (zh) * | 2017-02-22 | 2017-08-18 | 江苏凡高电气有限公司 | 一种强迫导向冷却三相油浸式配电变压器 |
KR102053754B1 (ko) * | 2018-06-18 | 2019-12-09 | 엘에스산전 주식회사 | 변압기 |
CN110933792B (zh) * | 2019-12-04 | 2022-03-08 | 国网湖南省电力有限公司 | 一种变压器灭火真型试验绝缘油加热系统及方法 |
KR102696941B1 (ko) | 2022-12-27 | 2024-08-21 | 한국전력공사 | 변압기용 상간 방열기 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070064087A (ko) * | 2005-12-16 | 2007-06-20 | 김영철 | 파이프용 탈자기 |
KR100773027B1 (ko) * | 2006-11-07 | 2007-11-02 | 권오경 | 변압기용 방열기 |
JP2008187014A (ja) * | 2007-01-30 | 2008-08-14 | Mitsubishi Electric Corp | トランスの冷却装置 |
KR20110072952A (ko) * | 2009-12-23 | 2011-06-29 | 주식회사 효성 | 유입 변압기 |
-
2013
- 2013-12-27 KR KR1020130165946A patent/KR20150077085A/ko active IP Right Grant
-
2014
- 2014-12-24 WO PCT/KR2014/012860 patent/WO2015099471A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070064087A (ko) * | 2005-12-16 | 2007-06-20 | 김영철 | 파이프용 탈자기 |
KR100773027B1 (ko) * | 2006-11-07 | 2007-11-02 | 권오경 | 변압기용 방열기 |
JP2008187014A (ja) * | 2007-01-30 | 2008-08-14 | Mitsubishi Electric Corp | トランスの冷却装置 |
KR20110072952A (ko) * | 2009-12-23 | 2011-06-29 | 주식회사 효성 | 유입 변압기 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108231357A (zh) * | 2016-12-12 | 2018-06-29 | 上海置信电气非晶有限公司 | 一种具有降噪高效散热功能的波纹油箱 |
CN108231346A (zh) * | 2017-12-29 | 2018-06-29 | 重庆市展隆电子有限公司 | 一种变压器 |
CN109786075A (zh) * | 2019-03-27 | 2019-05-21 | 华翔翔能电气股份有限公司 | 一种大容量油浸式变压器 |
CN109961932A (zh) * | 2019-05-15 | 2019-07-02 | 杨潇 | 一种油浸式变压器油箱 |
CN110379587A (zh) * | 2019-06-25 | 2019-10-25 | 盐城奇林电气有限公司 | 一种煤矿变压器过载保护机构及过载保护方法 |
CN110444370A (zh) * | 2019-07-26 | 2019-11-12 | 福建安顺变压器有限公司 | 一种干式智能温控系统变压器 |
CN110444370B (zh) * | 2019-07-26 | 2022-05-31 | 福建安顺变压器有限公司 | 一种干式智能温控系统变压器 |
CN111667981A (zh) * | 2020-06-30 | 2020-09-15 | 曹维国 | 变压器散热装置 |
CN111667981B (zh) * | 2020-06-30 | 2024-02-09 | 海南核电有限公司 | 变压器散热装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20150077085A (ko) | 2015-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015099471A1 (ko) | 변압기용 방열장치 | |
EP3849294B1 (en) | Cooling-heat dissipating case and heat dissipation control method | |
CN104812217B (zh) | 机柜和散热系统 | |
WO2014081140A1 (ko) | 공냉식 방열기를 가진 변압기 | |
CN103779043B (zh) | 大功率电磁组件 | |
CN107078652B (zh) | 具有多部分式壳体和内部冷却空气通道的逆变器 | |
CN107171570A (zh) | 一种逆变器功率柜 | |
WO2015002493A1 (en) | Air conditioner | |
CN109361240A (zh) | 功率柜、光伏并网系统和集装箱 | |
CN108520932A (zh) | 电池包及具有其的车辆 | |
WO2013042812A1 (ko) | 일체형 엑스선 발생장치 | |
KR101089594B1 (ko) | 스마트 유입 변압기 | |
CN212649999U (zh) | 一种监控房主机降温散热装置 | |
CN208284327U (zh) | 电磁器件 | |
CN212296748U (zh) | 电磁泵 | |
CN211792649U (zh) | 一种泛在物联网用散热型通信设备 | |
CN213152665U (zh) | 一种散热装置及电子设备 | |
CN208047109U (zh) | 散热结构、机柜及通信系统 | |
KR101163422B1 (ko) | 유입 변압기 | |
CN216391914U (zh) | 电力设备机柜 | |
WO2023231221A1 (zh) | 集成式牵引变压器总成 | |
CN108561979A (zh) | 电器盒、室外机、光伏空调系统及电器设备 | |
CN111356327B (zh) | 一种变流器 | |
CN212809995U (zh) | 一种变压器用散热壳体 | |
CN106972372A (zh) | 变电站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873455 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14873455 Country of ref document: EP Kind code of ref document: A1 |