WO2021107137A1 - Manufacturing method for semiconductor device and a laminate for semiconductor processing - Google Patents

Manufacturing method for semiconductor device and a laminate for semiconductor processing Download PDF

Info

Publication number
WO2021107137A1
WO2021107137A1 PCT/JP2020/044352 JP2020044352W WO2021107137A1 WO 2021107137 A1 WO2021107137 A1 WO 2021107137A1 JP 2020044352 W JP2020044352 W JP 2020044352W WO 2021107137 A1 WO2021107137 A1 WO 2021107137A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor processing
adhesive tape
semiconductor
temperature
tape
Prior art date
Application number
PCT/JP2020/044352
Other languages
French (fr)
Japanese (ja)
Inventor
智範 今
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202080048374.4A priority Critical patent/CN114097073A/en
Priority to JP2021507090A priority patent/JPWO2021107137A1/ja
Priority to KR1020217043070A priority patent/KR20220106915A/en
Publication of WO2021107137A1 publication Critical patent/WO2021107137A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing.
  • the electronic components When processing electronic components such as semiconductors, in order to facilitate the handling of the electronic components and prevent them from being damaged, the electronic components are fixed to the support plate via an adhesive composition, or the adhesive tape is electronically attached. It is protected by attaching it to parts. For example, when a thick film wafer cut out from a high-purity silicon single crystal or the like is ground to a predetermined thickness to obtain a thin film wafer, the thick film wafer can be adhered to a support plate via an adhesive composition. Will be done.
  • the adhesive tape is attached to the semiconductor package.
  • the semiconductor package to which the adhesive tape is attached is further temporarily fixed on a tape called a dicing tape, and the semiconductor package is diced together with the adhesive tape on the dicing tape.
  • the separated semiconductor package is peeled from the dicing tape and / or the adhesive tape by a needle pickup or the like.
  • Patent Document 1 discloses a pressure-sensitive adhesive sheet in which a polyfunctional monomer or oligomer having a radiopolymerizable functional group is bonded to the side chain or main chain of a polymer. Has been done.
  • the adhesive strength is lowered by irradiating the polymer with ultraviolet rays at the time of peeling, and the polymer can be peeled without adhesive residue.
  • the semiconductor package having the metal film formed on the back surface and the side surface is peeled off from the temporary fixing tape and the adhesive tape by a needle pickup or the like.
  • a needle pickup or the like depending on the height, shape, etc. of the electrodes on the circuit surface (front surface) of the semiconductor package, it may not be possible to satisfactorily pick up the semiconductor package after the shield treatment.
  • the present invention provides a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing. The purpose is.
  • the present invention is a method for manufacturing a semiconductor device, wherein a semiconductor package to which an adhesive tape for semiconductor processing is attached is laminated on a temporary fixing tape so that the adhesive tape for semiconductor processing is in contact with the above.
  • a semiconductor processing laminate in which metal films are formed on the back surface and side surfaces of a semiconductor package to which an adhesive tape for semiconductor processing is attached, a semiconductor package having metal films formed on the back surface and side surfaces is formed from the above-mentioned adhesive tape for semiconductor processing.
  • Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t
  • Fb (t) represents the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t
  • the pickup When picking up a semiconductor package after shielding, the pickup is defective because peeling occurs not at the interface between the semiconductor package and the adhesive tape (adhesive tape for semiconductor processing) but at the interface between the temporary fixing tape and the adhesive tape for semiconductor processing. Occurs.
  • the present inventors have described "adhesive strength of adhesive tape for semiconductor processing to an adherend (using a standard copper plate)" and "adhesion of temporary fixing tape to adhesive tape for semiconductor processing”. I focused on "power”. By picking up the semiconductor package in a state where the ratio of these adhesive strengths is heated to a temperature that satisfies a specific range, the present inventors can peel off the temporary fixing tape and the adhesive tape for semiconductor processing at the interface. We have found that it is possible to suppress and pick up a semiconductor package satisfactorily, and have completed the present invention.
  • a step (3) of picking up a semiconductor package having a metal film formed on the back surface and side surfaces from an adhesive tape for semiconductor processing is performed in a specific laminate for semiconductor processing.
  • the specific semiconductor processing laminate is a semiconductor package to which the semiconductor processing adhesive tape is attached, which is laminated on the temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with the semiconductor processing adhesive tape.
  • the method for obtaining such a laminate for semiconductor processing is not particularly limited, but a method for obtaining a laminate for semiconductor processing by performing the following steps (1) and (2) before the above step (3) is possible. preferable.
  • a temporary fixing tape so that the adhesive tape side for semiconductor processing is in contact with the tape (1).
  • the adhesive tape for semiconductor processing may be a support type having a base material and an adhesive layer laminated on at least one surface of the base material, or may have no base material and may have an adhesive layer. It may be a non-support type having. In particular, since it becomes easy to adjust Fb (t) / Fa (t) as described later and the semiconductor package can be picked up better, it is laminated on the base material and one surface of the base material.
  • a single-sided support type having an adhesive layer is preferable. When the adhesive tape for semiconductor processing is a single-sided support type, the base material side of the adhesive tape for semiconductor processing comes into contact with the adhesive surface of the temporary fixing tape.
  • the material of the base material of the adhesive tape for semiconductor processing is not particularly limited, but a heat-resistant material is preferable.
  • the material of the base material of the adhesive tape for semiconductor processing include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene, syndiotactic polystyrene, polyarylate, and polysulfone. , Polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like. Of these, polyethylene terephthalate and polyethylene naphthalate are preferable because they have excellent heat resistance.
  • the base material of the pressure-sensitive adhesive tape for semiconductor processing preferably has an easy-adhesion layer on the surface opposite to the pressure-sensitive adhesive layer.
  • the easy-adhesive layer is formed on the surface opposite to the pressure-sensitive adhesive layer, that is, on the back surface of the base material of the pressure-sensitive adhesive tape for semiconductor processing. Since the base material of the adhesive tape for semiconductor processing has the easy-adhesive layer, it becomes easy to adjust Fb (t) / Fa (t) as described later, and the semiconductor package can be picked up better. Can be done.
  • the easy-adhesion layer examples include a SiOx layer, a metal oxide layer, an organometallic compound layer, a silicone compound layer, a polymerizable polymer layer, a corona-treated layer, and a plasma-treated layer.
  • an organometallic compound layer and a corona-treated layer are preferable because they have a higher adhesive effect.
  • Examples of the method for easy adhesion treatment with an organic compound or an inorganic compound include vapor deposition, coating, and the like. Can be mentioned.
  • a method for forming the corona-treated layer for example, a high-frequency power supply device (AGI-020 manufactured by Kasuga Electric Works Ltd.) is used to reciprocate the film once under the conditions of an output of 0.24 Kw, a speed of 40 mm / min, and an electrode distance of 1 mm. , A method of applying a corona treatment to the back surface of the base material and the like.
  • the base material of the adhesive tape for semiconductor processing has a flexural rigidity of 2.38 ⁇ 10 -7 N ⁇ m 2 / m or more and 1.50 ⁇ 10 -4 N ⁇ m 2 per unit width in the TD direction at 23 ° C. It is preferably / m or less.
  • the flexural rigidity per unit width in the TD direction at 23 ° C. is more preferably 4.12 ⁇ 10-7 N ⁇ m 2 / m or more, and 9.76 ⁇ 10-7 N ⁇ m 2 / m or more.
  • the TD (Transverse Direction) direction refers to a direction perpendicular to the extrusion direction when the base material is extruded into a sheet shape.
  • the flexural rigidity per unit width is represented by a value obtained by dividing the product of the tensile elastic modulus E and the moment of inertia of area I by the length of the width of the base material.
  • the tensile elastic modulus E is determined by using, for example, a viscoelastic spectrometer (for example, DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a constant speed temperature rise tension mode, a temperature rise rate of 10 ° C./min, and a frequency of 10 Hz. Can be measured with.
  • the storage elastic modulus of the base material of the adhesive tape for semiconductor processing is not particularly limited, but is preferably 5.0 ⁇ 10 7 Pa or more and 1.0 ⁇ 10 11 Pa or less.
  • the base material becomes moderately bendable. Therefore, the semiconductor when dicing the semiconductor package together with the adhesive tape for semiconductor processing. The peeling of the package can be further suppressed, and the semiconductor package can be picked up better.
  • the storage elastic modulus of the base material of the adhesive tape for semiconductor processing is more preferably 8.0 ⁇ 10 8 Pa or more, further preferably 1.0 ⁇ 10 9 Pa or more, and 5.0 ⁇ 10 10 more preferably Pa or less, and more preferably not more than 5.0 ⁇ 10 9 Pa.
  • Examples of the method for measuring the storage elastic modulus of the base material of the adhesive tape for semiconductor processing include methods such as dynamic viscoelasticity measurement and tensile test. More specifically, a strip-shaped test piece having a width of 10 mm is prepared. The obtained test piece was subjected to a tensile test using a tensile tester (for example, RTG1250A, manufactured by AND, etc.) at a temperature of 23 ° C. and a humidity of 50% at a test speed of 300 mm / min, and according to JIS K7161-1. The tensile storage elastic modulus can be obtained.
  • a tensile tester for example, RTG1250A, manufactured by AND, etc.
  • the ultraviolet transmittance of the base material of the adhesive tape for semiconductor processing is not particularly limited, but when the adhesive layer of the adhesive tape for semiconductor processing is a photocurable adhesive layer, the ultraviolet transmittance at 405 nm is 1% or more. It is preferable to have.
  • the ultraviolet transmittance at 405 nm is more preferably 10% or more, further preferably 15% or more, and particularly preferably 50% or more.
  • the pressure-sensitive adhesive layer can be formed without using a photosensitizer when the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is a photocurable pressure-sensitive adhesive layer. It can be sufficiently cured.
  • the upper limit of the ultraviolet transmittance at 405 nm is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
  • the thickness of the base material of the adhesive tape for semiconductor processing is not particularly limited, but the preferable lower limit is 5 ⁇ m and the preferable upper limit is 200 ⁇ m. When the thickness of the base material of the adhesive tape for semiconductor processing is within the above range, the adhesive tape for semiconductor processing can be obtained with appropriate elasticity and excellent handleability.
  • the more preferable lower limit of the thickness of the base material of the adhesive tape for semiconductor processing is 10 ⁇ m, and the more preferable upper limit is 150 ⁇ m.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is not particularly limited, and may be either a non-curable type pressure-sensitive adhesive or a curable type pressure-sensitive adhesive.
  • rubber-based adhesives acrylic-based adhesives, vinyl alkyl ether-based adhesives, silicone-based adhesives, polyester-based adhesives, polyamide-based adhesives, urethane-based adhesives, styrene-diene block copolymerization systems.
  • Adhesives and the like can be mentioned.
  • an acrylic pressure-sensitive adhesive is preferable, and an acrylic-based curable pressure-sensitive adhesive is more preferable because it has excellent heat resistance and the adhesive strength can be easily adjusted.
  • the curable pressure-sensitive adhesive examples include a photo-curable pressure-sensitive adhesive that is crosslinked and cured by light irradiation, a thermosetting pressure-sensitive adhesive that is cross-linked and cured by heating, and the like. Of these, a photocurable adhesive is preferable because it does not easily damage the adherend and can be easily cured. That is, examples of the pressure-sensitive adhesive layer include a photocurable pressure-sensitive adhesive layer and a thermosetting type pressure-sensitive adhesive layer, but a photo-curable pressure-sensitive adhesive layer is preferable. Examples of the photocurable pressure-sensitive adhesive include a pressure-sensitive adhesive containing a polymerizable polymer as a main component and a photopolymerization initiator. Examples of the thermosetting pressure-sensitive adhesive include a pressure-sensitive adhesive containing a polymerizable polymer as a main component and a heat polymerization initiator.
  • a (meth) acrylic polymer having a functional group in the molecule (hereinafter referred to as a functional group-containing (meth) acrylic polymer) is synthesized in advance and reacted with the functional group in the molecule. It can be obtained by reacting a compound having a functional group to be subjected to a radically polymerizable unsaturated bond (hereinafter, referred to as a functional group-containing unsaturated compound).
  • the functional group-containing (meth) acrylic polymer further requires, for example, an acrylic acid alkyl ester and / or a methacrylate alkyl ester in which the number of carbon atoms of the alkyl group is usually in the range of 2 to 18, a functional group-containing monomer, and the like. It can be obtained by copolymerizing these with other copolymerizable modifying monomers.
  • the weight average molecular weight of the functional group-containing (meth) acrylic polymer is not particularly limited, but is usually about 200,000 to 2,000,000.
  • the weight average molecular weight can be determined by using gel permeation chromatography. More specifically, for example, the obtained polymer is adjusted to 0.2% by weight with tetrahydrofuran (THF), and the obtained diluent is filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 ⁇ m). To do.
  • the obtained filtrate was supplied to a gel permeation chromatograph (manufactured by Waters, 2690 Separations Model, or an equivalent product thereof), and GPC measurement was performed under the conditions of a sample flow rate of 1 mL / min and a column temperature of 40 ° C. to obtain a polystyrene-equivalent molecular weight. Is measured to determine the weight average molecular weight (Mw).
  • a GPC KF-806L manufactured by Showa Denko KK or an equivalent product thereof
  • a differential refractometer is used as the detector.
  • the functional group-containing monomer examples include a carboxyl group-containing monomer such as acrylate and methacrylic acid, a hydroxyl group-containing monomer such as hydroxyethyl acrylate and hydroxyethyl methacrylate, and an epoxy such as glycidyl acrylate and glycidyl methacrylate.
  • Group-containing monomers can be mentioned.
  • the functional group-containing monomer include isocyanate group-containing monomers such as ethyl isocyanate and ethyl methacrylate, and amino group-containing monomers such as aminoethyl acrylate and aminoethyl methacrylate.
  • Examples of the other copolymerizable monomer for modification include various monomers used in general (meth) acrylic polymers such as vinyl acetate, acrylonitrile, and styrene.
  • the functional group-containing unsaturated compound to be reacted with the functional group-containing (meth) acrylic polymer is the same as the functional group-containing monomer described above, depending on the functional group of the functional group-containing (meth) acrylic polymer. Can be used.
  • the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group
  • an epoxy group-containing monomer or an isocyanate group-containing monomer is used.
  • the functional group of the functional group-containing (meth) acrylic polymer is a hydroxyl group
  • an isocyanate group-containing monomer is used.
  • the functional group of the functional group-containing (meth) acrylic polymer is an epoxy group
  • a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used.
  • the functional group of the functional group-containing (meth) acrylic polymer is an amino group
  • an epoxy group-containing monomer is used.
  • the raw material monomer may be subjected to a radical reaction in the presence of a polymerization initiator.
  • a method of radically reacting the raw material monomer that is, a polymerization method
  • examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, and bulk polymerization.
  • the polymerization initiator used in the radical reaction for obtaining the functional group-containing (meth) acrylic polymer is not particularly limited, and examples thereof include organic peroxides and azo compounds.
  • organic peroxide examples include 1,1-bis (t-hexyl peroxy) -3,3,5-trimethylcyclohexane, t-hexyl peroxypivalate, t-butylperoxypivalate, 2,5. -Dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy Examples thereof include isobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate and t-butylperoxylaurate.
  • the azo compound examples include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or in combination of two or more.
  • the photocurable pressure-sensitive adhesive layer preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include those that are activated by irradiating light having a wavelength of 250 to 800 nm.
  • Examples of such a photopolymerization initiator include acetphenone derivative compounds such as methoxyacetophenone, benzoin ether compounds such as benzoin propyl ether and benzoin isobutyl ether, ketal derivative compounds such as benzyl dimethyl ketal and acetophenone diethyl ketal, and the like.
  • Examples include phosphine oxide derivative compounds.
  • bis ( ⁇ 5-cyclopentadienyl) titanosen derivative compound benzophenone, Michler ketone, chlorothioxanthone, todecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, ⁇ -hydroxycyclohexylphenylketone, 2-hydroxymethylphenylpropane and the like can also be mentioned.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the thermosetting pressure-sensitive adhesive layer preferably contains a thermal polymerization initiator.
  • the thermal polymerization initiator include those that generate active radicals that are decomposed by heat to initiate polymerization curing. Specifically, for example, dicumyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoale, t-butylhydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, etc. Examples thereof include paramentan hydroperoxide and di-t-butyl peroxide.
  • thermal polymerization initiator examples thereof include perbutyl D, perbutyl H, perbutyl P, and perpenta H (all of which are manufactured by NOF CORPORATION). These thermal polymerization initiators may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive layer may further contain a radically polymerizable polyfunctional oligomer or monomer.
  • a radically polymerizable polyfunctional oligomer or monomer By containing a radically polymerizable polyfunctional oligomer or monomer, the photocurability and thermosetting property of the pressure-sensitive adhesive layer are improved.
  • the polyfunctional oligomer or monomer is not particularly limited, but the weight average molecular weight is preferably 10,000 or less. Since the three-dimensional network of the pressure-sensitive adhesive layer is efficiently formed by light irradiation or heating, the polyfunctional oligomer or monomer has a weight average molecular weight of 5000 or less and the number of radically polymerizable unsaturated bonds in the molecule. Is preferably 2 to 20.
  • polyfunctional oligomer or monomer examples include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and the like. Examples thereof include methacrylate.
  • examples of the polyfunctional oligomer or monomer examples include 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, and methacrylates thereof. Be done. These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive layer may further contain an inorganic filler such as fumed silica.
  • an inorganic filler such as fumed silica.
  • the pressure-sensitive adhesive layer preferably contains a cross-linking agent.
  • a cross-linking agent By containing the cross-linking agent, the cohesive force of the pressure-sensitive adhesive layer is increased, and the peelability of the pressure-sensitive adhesive tape for semiconductor processing is improved, so that the semiconductor package can be picked up better.
  • the above-mentioned cross-linking agent is not particularly limited, and examples thereof include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents. Of these, isocyanate-based cross-linking agents are preferable because they have higher adhesive strength.
  • the content of the cross-linking agent is preferably 0.1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive can be appropriately cross-linked to increase the adhesive strength.
  • the more preferable lower limit of the content of the cross-linking agent is 0.5 parts by weight
  • the more preferable upper limit is 15 parts by weight
  • the further preferable lower limit is 1.0 part by weight
  • the further preferable upper limit is 10. It is a part by weight.
  • the pressure-sensitive adhesive layer may contain known additives such as plasticizers, resins, surfactants, waxes, and fine particle fillers. These additives may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive layer preferably has a storage elastic modulus at 23 ° C. of 8.5 ⁇ 10 5 Pa or more and 1.7 ⁇ 10 9 Pa or less.
  • the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. is within the above range, the pressure-sensitive adhesive layer can be attached to the adherend with sufficient adhesive strength, and the adherend can be sufficiently fixed. Further, since the peelability of the adhesive tape for semiconductor processing is improved, the semiconductor package can be picked up better.
  • the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. is more preferably 1.7 ⁇ 10 6 Pa or more, and more preferably 8.5 ⁇ 10 6 Pa or more.
  • the pressure-sensitive adhesive is a curable pressure-sensitive adhesive
  • the storage elastic modulus of the pressure-sensitive adhesive layer refers to that after curing.
  • the state after heating at 120 ° C. for 1 hour and then at 175 ° C. for 1 hour is defined as after curing, and in the case of a photocurable adhesive, an ultrahigh pressure mercury ultraviolet irradiation device is used.
  • the state after irradiating the pressure-sensitive adhesive layer with ultraviolet rays of 405 nm from the base material side so that the integrated intensity becomes 2500 mJ / cm 2 is defined as after curing.
  • Examples of the method for measuring the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. include a method such as dynamic viscoelasticity measurement. More specifically, it is measured using a viscoelastic spectrometer (for example, DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a constant speed temperature rise tension mode, a temperature rise rate of 10 ° C./min, and a frequency of 10 Hz. can do.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but a preferable lower limit is 5 ⁇ m and a preferable upper limit is 500 ⁇ m.
  • a preferable lower limit is 5 ⁇ m and a preferable upper limit is 500 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is within the above range, it can be attached to the adherend with sufficient adhesive strength, and the adherend can be sufficiently fixed.
  • the more preferable lower limit of the thickness of the pressure-sensitive adhesive layer is 10 ⁇ m
  • the more preferable upper limit is 300 ⁇ m
  • the further preferable lower limit is 15 ⁇ m
  • the further preferable upper limit is 250 ⁇ m
  • the further preferable upper limit is 200 ⁇ m. Is.
  • the method for obtaining the semiconductor package to which the adhesive tape for semiconductor processing is attached is not particularly limited, but the semiconductor is obtained by performing the following steps (1-1) and (1-2) before the step (1).
  • a method of obtaining a semiconductor package to which a processing adhesive tape is attached is preferable. That is, before the step (1), the step (1-1) of attaching the adhesive tape for semiconductor processing to the circuit surface of the semiconductor package and the semiconductor package to which the adhesive tape for semiconductor processing is attached are diced and individually. It is preferable to carry out the step (1-2) of obtaining a semiconductor package to which the separated adhesive tape for semiconductor processing is attached.
  • the method of attaching the adhesive tape for semiconductor processing is not particularly limited, and examples thereof include a method using a laminator.
  • the pressure-sensitive adhesive layer of the adhesive tape for semiconductor processing is a photocurable pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is irradiated with light after the step (1-1). It is preferable to carry out the step (1-3).
  • the base material side so as to have an integrated intensity of 405 nm ultraviolet rays of 2500 mJ / cm 2.
  • the irradiation intensity at this time is not particularly limited, but is preferably 50 to 100 mW / cm 2.
  • the dicing method is not particularly limited.
  • the semiconductor package to which the adhesive tape for semiconductor processing is attached is temporarily fixed on the dicing tape, the dicing tape is attached to the dicing frame, and the dicing device is used for individualization. After that, a method of peeling off the dicing tape can be mentioned.
  • the dicing apparatus is not particularly limited, and for example, DFD6361 manufactured by DISCO can be used.
  • the semiconductor package to which the adhesive tape for semiconductor processing thus obtained is attached is temporarily fixed on the temporary fixing tape so that the adhesive tape for semiconductor processing is in contact with the adhesive tape.
  • the temporary fixing tape is not particularly limited, and a method for manufacturing a semiconductor device, particularly an adhesive tape for temporary fixing that is usually used during dicing or shielding treatment can be used.
  • the temporary fixing tape has a preferable lower limit of 1.0 N / inch and a preferable upper limit of 35 N / inch in adhesive force to a copper plate (a copper plate satisfying JIS H3100: 2018, for example, C1100P, manufactured by Engineering Test Service Co., Ltd.).
  • a copper plate a copper plate satisfying JIS H3100: 2018, for example, C1100P, manufactured by Engineering Test Service Co., Ltd.
  • the adhesive force of the temporary fixing tape to the copper plate is within the above range, it becomes easy to adjust Fb (t) / Fa (t) as described later, and the semiconductor package can be picked up better. it can.
  • the adhesive force to the copper plate is at least the above lower limit, peeling at the interface between the temporary fixing tape and the adhesive tape for semiconductor processing can be further suppressed.
  • the adhesive force to the copper plate is not more than the upper limit, the handleability of the temporary fixing tape is improved.
  • the more preferable lower limit of the adhesive force of the temporary fixing tape to the copper plate is 4 N / inch, and the more preferable upper limit is 15 N / inch.
  • Examples of the method for measuring the adhesive force of the temporary fixing tape to the copper plate include the following methods. First, the temporary fixing tape is placed on the copper plate so that the adhesive layer faces the copper plate (a copper plate satisfying JIS H3100: 2018, for example, C1100P, manufactured by Engineering Test Service Co., Ltd.). The temporary fixing tape and the copper plate are bonded together by reciprocating a 2 kg rubber roller once at a speed of 300 mm / min. Then, it is allowed to stand at 23 degreeC for 1 hour to prepare a test sample.
  • the above provisional test sample was used in the 180 ° direction at a tensile speed of 300 mm / min in an environment of a temperature of 23 ° C. and a relative humidity of 50% using an autograph (manufactured by Shimadzu Corporation) according to JIS Z0237. Peel off the fixing tape and measure the peeling force.
  • the temporary fixing tape preferably has a base material and an adhesive layer laminated on one surface of the base material.
  • the pressure-sensitive adhesive layer of the temporary fixing tape is not particularly limited, but is preferably a silicone pressure-sensitive adhesive layer. By having the silicone pressure-sensitive adhesive layer, the heat resistance of the temporary fixing tape is improved.
  • the silicone compound constituting the silicone pressure-sensitive adhesive layer is not particularly limited, and examples thereof include polysiloxane, addition-curable silicone, and peroxide-curable silicone.
  • the thickness of the pressure-sensitive adhesive layer of the temporary fixing tape is not particularly limited, but the preferable lower limit is 5 ⁇ m and the preferable upper limit is 500 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer of the temporary fixing tape is within the above range, it can be attached to the adherend with sufficient adhesive force, and the adherend can be sufficiently fixed.
  • the more preferable lower limit of the thickness of the pressure-sensitive adhesive layer of the temporary fixing tape is 10 ⁇ m
  • the more preferable upper limit is 300 ⁇ m
  • the further preferable lower limit is 15 ⁇ m
  • the further preferable upper limit is 250 ⁇ m
  • the preferred upper limit is 200 ⁇ m.
  • the material of the base material of the temporary fixing tape is not particularly limited, but a heat-resistant material is preferable.
  • the material of the base material of the temporary fixing tape include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene, syndiotactic polystyrene, polyallylate, polysulfone, and poly.
  • Examples thereof include ether sulfone, polyphenylene sulfide, polyether ether ketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like. Of these, polyimide, polyethylene terephthalate, and polyethylene naphthalate are preferable because of their excellent heat resistance.
  • the thickness of the base material of the temporary fixing tape is not particularly limited, but the preferable lower limit is 5 ⁇ m and the preferable upper limit is 200 ⁇ m. When the thickness of the base material of the temporary fixing tape is within the above range, it is possible to obtain a temporary fixing tape having an appropriate elasticity and excellent handleability.
  • the more preferable lower limit of the thickness of the base material of the temporary fixing tape is 10 ⁇ m, and the more preferable upper limit is 150 ⁇ m.
  • the commercially available product of the temporary fixing tape is not particularly limited, and examples thereof include Kapton (registered trademark) adhesive tape 650R # 50 (manufactured by Terraoka Co., Ltd.).
  • the method for forming the metal film is not particularly limited, and examples thereof include a method for forming a film made of stainless steel, titanium, aluminum, or the like by sputtering or the like.
  • the semiconductor package to which the semiconductor processing adhesive tape is attached is laminated on the temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with each other. Moreover, it is possible to obtain a semiconductor processing laminate in which metal films are formed on the back surface and the side surface of the semiconductor package to which the semiconductor processing adhesive tape is attached.
  • a step (3) of picking up a semiconductor package having a metal film formed on the back surface and the side surface from the adhesive tape for semiconductor processing is performed. This makes it possible to obtain a semiconductor package in which a metal film is formed on the back surface and the side surface.
  • the semiconductor package having the metal film formed on the back surface and the side surface is picked up in a state of being heated to the temperature T 1 satisfying the following formula (1).
  • Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t
  • Fb (t) represents the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t
  • Fb (t) represents the peeling force of the temporarily fixed tape at the temperature t with respect to the back surface of the adhesive tape for semiconductor processing.
  • the Fa (t) is an index representing "adhesive force of the adhesive tape for semiconductor processing to an adherend (used as a standard copper plate) at a temperature t".
  • the Fb (t) is "adhesive force of the temporary fixing tape to the semiconductor processing adhesive tape at temperature t" (when the semiconductor processing adhesive tape is a single-sided support type, the temporary fixing tape adhesive tape for semiconductor processing at temperature t). It is an index showing the adhesive force to the back surface of the base material. All of these adhesive strengths are reduced by heating, but the degree of the reduction is different, and the Fa (t) tends to be significantly reduced by heating as compared with the Fb (t). That is, the Fb (t) / Fa (t) tends to increase as t increases.
  • the standard copper plate means a copper plate satisfying JIS H3100: 2018 (for example, C1100P, manufactured by Engineering Test Service Co., Ltd.).
  • the semiconductor package may be picked up in a state where the Fb (t) / Fa (t) is heated to a temperature that satisfies the above range (that is, exceeds 100). It is preferable to pick up the semiconductor package in a state of being heated to a temperature such that (t) / Fa (t) is 103 or more. Further, it is more preferable to pick up the semiconductor package in a state where the Fb (t) / Fa (t) is heated to a temperature of 150 or more. Further, it is more preferable to pick up the semiconductor package in a state where the Fb (t) / Fa (t) is heated to a temperature of 200 or more.
  • the upper limit of Fb (t) / Fa (t) is not particularly limited, but a substantial upper limit is, for example, 1500, and a more preferable upper limit is 750.
  • the value (Fa (T 1 )) of the Fa (t) at the temperature T 1 is not particularly limited, but the preferable lower limit is 0.001 N / inch and the preferable upper limit is 0.5 N / inch.
  • the pickup of the semiconductor package can be performed better.
  • the more preferable lower limit of Fa (T 1 ) is 0.005 N / inch, the more preferable lower limit is 0.01 N / inch, the more preferable upper limit is 0.1 N / inch, and the further preferable upper limit is 0.07 N / inch.
  • the value (Fb (T 1 )) of the Fb (t) at the temperature T 1 is not particularly limited, but a preferable lower limit is 1 N / inch, a more preferable lower limit is 5 N / inch, a further preferable lower limit is 10 N / inch, and even more preferable.
  • the lower limit is 15 N / inch.
  • the upper limit of the value (Fb (T 1 )) of the Fb (t) at the temperature T 1 is not particularly limited, but the actual upper limit is, for example, 50 N / inch, and the more preferable upper limit is 20 N / inch.
  • the value of Fa (t) at 23 ° C. is not particularly limited, but a preferable lower limit is 0.04 N / inch and a preferable upper limit is 1.5 N / inch.
  • a preferable lower limit is 0.04 N / inch and a preferable upper limit is 1.5 N / inch.
  • the more preferable lower limit of Fa (23 ° C.) is 0.1 N / inch, and the more preferable upper limit is 1 N / inch.
  • Fb (t) at 23 ° C. is not particularly limited, but a preferable lower limit is 3 N / inch and a preferable upper limit is 30 N / inch.
  • a preferable lower limit is 3 N / inch
  • a preferable upper limit is 30 N / inch.
  • the more preferable lower limit of Fb (23 ° C.) is 5 N / inch
  • the more preferable upper limit is 7 N / inch.
  • the specific value of the temperature T 1 is not particularly limited, but considering the normal temperature when picking up the semiconductor package, the preferable lower limit is 25 ° C, the preferable upper limit is 200 ° C, and the more preferable lower limit is 50 ° C. A more preferable upper limit is 150 ° C.
  • the method of picking up the semiconductor package while being heated to the temperature T 1 is not particularly limited. For example, a method of picking up the semiconductor package while heating to the temperature T 1 by applying warm air using a die bonder device, the temperature T 1 Examples thereof include a method of picking up the product while keeping the temperature at T 1 after heating.
  • Examples of the method for measuring Fa (t) include the following methods. First, the adhesive tape for semiconductor processing is placed on the copper plate so that the adhesive layer faces a copper plate (for example, C1100P, manufactured by Engineering Test Service Co., Ltd.) satisfying JIS H3100: 2018. The above-mentioned adhesive tape for semiconductor processing and a copper plate are bonded together by reciprocating a 2 kg rubber roller once at a speed of 600 mm / min. The laminate is heated while measuring the temperature of the back surface (base material side) of the adhesive tape for semiconductor processing with a temperature measurement sensor (for example, A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.). To do.
  • a temperature measurement sensor for example, A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.
  • the adhesive tape for semiconductor processing of the laminate heated to temperature t is peeled off in the 180 ° direction at a tensile speed of 300 mm / min in an environment of temperature t and humidity of 50%. , Measure the peeling force.
  • the copper plate as the adherend of the adhesive tape for semiconductor processing means a copper plate satisfying JIS H3100: 2018 (for example, C1100P, manufactured by Engineering Test Service Co., Ltd.), and is selected assuming the circuit surface of the semiconductor package. It is a thing.
  • Examples of the method for measuring Fb (t) include the following methods. First, the adhesive layer of the adhesive tape for semiconductor processing and the copper plate (C1100P) are opposed to each other, and are bonded using a double-sided tape (double-sided tape 560 manufactured by Sekisui Chemical Co., Ltd. or its equivalent). The temporary fixing tape is placed on the semiconductor processing adhesive tape so that the adhesive layer faces the back surface of the base material of the semiconductor processing adhesive tape. The temporary fixing tape and the adhesive tape for semiconductor processing are bonded together by reciprocating a 2 kg rubber roller once at a speed of 300 mm / min.
  • the laminate is heated while measuring the temperature of the back surface (base material side) of the temporary fixing tape with a temperature measuring sensor (for example, A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.).
  • a temperature measuring sensor for example, A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.
  • the temporary fixing tape of the laminate heated to a temperature t was peeled off in the 180 ° direction at a tensile speed of 300 mm / min in an environment of a temperature t and a relative humidity of 50%. Measure the peeling force. From the obtained Fa (t) and Fb (t), the Fb (t) / Fa (t) can be calculated.
  • the Fa (t) is heated to a temperature t after the semiconductor processing pressure-sensitive adhesive tape is attached to a copper plate.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is irradiated with light to cure the pressure-sensitive adhesive layer, and then the measurement is performed.
  • the base material side so as to have an integrated intensity of 405 nm ultraviolet rays of 2500 mJ / cm 2.
  • a method of irradiating the pressure-sensitive adhesive layer with The irradiation intensity at this time is not particularly limited, but is preferably 50 to 100 mW / cm 2.
  • the specific values of the Fa (t) and the Fb (t) may be adjusted.
  • a method for adjusting the Fa (t) in addition to the method for adjusting the temperature t, for example, a method for adjusting the type, composition, physical properties, etc. of the adhesive layer of the adhesive tape for semiconductor processing as described above. Can be mentioned.
  • a method for adjusting the Fb (t) within the above range in addition to the method for adjusting the temperature t, for example, the type, composition, physical properties, etc. of the base material of the adhesive tape for semiconductor processing are adjusted as described above.
  • Examples thereof include a method of forming an easy-adhesive layer as described above on the surface opposite to the pressure-sensitive adhesive layer of the base material of the pressure-sensitive adhesive tape for semiconductor processing, that is, on the back surface. Further, a method of adjusting the type, composition, physical properties and the like of the pressure-sensitive adhesive layer of the temporary fixing tape can also be mentioned.
  • FIG. 1 shows a diagram schematically showing an example of a method for manufacturing a semiconductor device of the present invention.
  • the method for manufacturing the semiconductor device of the present invention will be described with reference to FIG.
  • the adhesive tape 2 for semiconductor processing in FIG. 1 is a single-sided support type having a base material 2b and an adhesive layer 2a laminated on one surface of the base material 2b, the manufacturing of the semiconductor device of the present invention.
  • the adhesive tape 2 for semiconductor processing may be a non-support type having no base material 2b.
  • the step (1-1) of attaching the semiconductor processing adhesive tape 2 to the circuit surface of the semiconductor package 4 may be performed.
  • the pressure-sensitive adhesive layer of the semiconductor processing adhesive tape is a photocurable pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive layer of the semiconductor processing pressure-sensitive adhesive tape is irradiated with light after the step (1-1). It is preferable to carry out step (1-3) (not shown).
  • the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached is diced and the semiconductor processing adhesive tape 2 is separated into individual pieces.
  • the step (1-2) of obtaining the semiconductor package 4 to which is affixed may be performed.
  • the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached is temporarily fixed so that the semiconductor processing adhesive tape 2 side is in contact with the semiconductor package 4.
  • the step (1) of temporarily fixing on the tape 3 may be performed.
  • a metal film 5 is formed on the back surface and the side surface of the semiconductor package 4 to which the adhesive tape 2 for semiconductor processing is attached on the temporary fixing tape 3. (2) may be performed.
  • the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached is placed on the temporary fixing tape 3 so that the semiconductor processing adhesive tape 2 side is in contact with the semiconductor package 4. It is possible to obtain a semiconductor processing laminate in which the metal film 5 is formed on the back surface and the side surface of the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached.
  • the semiconductor package 4 in which the metal film 5 is formed on the back surface and the side surface is provided with an adhesive tape for semiconductor processing. The step (3) of picking up from 2 is performed.
  • the semiconductor package having the metal film formed on the back surface and the side surface is picked up in a state of being heated to the temperature T 1 satisfying the following formula (1).
  • Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t
  • Fb (t) represents the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t
  • a laminate for semiconductor processing which is an intermediate product of the method for manufacturing a semiconductor device of the present invention, is also one of the present inventions.
  • the semiconductor processing laminate of the present invention is a semiconductor processing laminate in which a semiconductor package to which a semiconductor processing adhesive tape is attached is laminated on a temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with the semiconductor package.
  • This is a semiconductor processing laminate having a temperature T 2 satisfying the following formula (1') in a temperature range of 25 to 200 ° C. 100 ⁇ ⁇ Fb (T 2 ) / Fa (T 2 ) ⁇ (1')
  • Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t
  • Fb (t) represent the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t
  • the lower limit of the specific value of the temperature T 2 is 25 ° C, and the upper limit is 200 ° C.
  • the specific value of the temperature T 2 is preferably 50 ° C. and a preferable upper limit is 150 ° C. in consideration of the normal temperature when picking up the semiconductor package.
  • metal films may be formed on the back surface and the side surface of the semiconductor package to which the adhesive tape for semiconductor processing is attached.
  • a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing can be obtained. Can be provided.
  • (A) to (e) are diagrams schematically showing an example of a method for manufacturing a semiconductor device of the present invention.
  • (A1) to (a4) are diagrams schematically showing each step of the method for manufacturing a semiconductor device in Examples and Reference Examples.
  • Example 1 A reactor equipped with a synthetic thermometer for an adhesive polymer, a stirrer, and a cooling tube was prepared.
  • this reactor 93 parts by weight of 2-ethylhexyl acrylate as a (meth) acrylic acid alkyl ester, 1 part by weight of acrylic acid as a functional group-containing monomer, 6 parts by weight of hydroxyethyl methacrylate, 0.01 part by weight of lauryl mercaptan, and the like. After adding 80 parts by weight of ethyl acetate, the reactor was heated to initiate reflux.
  • an ethyl acetate solution of a functional group-containing (meth) acrylic polymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
  • a functional group-containing (meth) acrylic polymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
  • 2-isocyanatoethyl methacrylate was added and reacted to obtain an adhesive polymer. It was.
  • Silicone compound (EBECRYL350, manufactured by Daicel Cytec)
  • Inorganic filler siliconca filler, Leoloseal MT-10, manufactured by Tokuyama Corporation
  • Urethane acrylate (UN-5500, manufactured by Negami Kogyo Co., Ltd.)
  • Cross-linking agent isocyanate-based cross-linking agent, Coronate L, manufactured by Nippon Urethane Industry Co., Ltd.
  • Photopolymerization initiator (Irgacure 369, manufactured by BASF)
  • a viscoelastic spectrometer (DVA-200, manufactured by IT Measurement Control Co., Ltd.) was used to set a constant rate of temperature rise and tension mode, and a temperature rise rate of 10 ° C./ The measurement was carried out under the condition of a frequency of 10 Hz.
  • the storage elastic modulus at 23 ° C. at this time is described as the storage elastic modulus of the pressure-sensitive adhesive layer.
  • the illuminance was adjusted so that the irradiation intensity was 100 mW / cm 2.
  • the laminate was heat-treated using an oven heated to the temperature T 1 shown in Table 1.
  • Temperature measuring sensors the temperature of the back surface of the semiconductor processing adhesive tape (substrate side) (Anritsu Meter Co., A-231K-01-1-TC1 -ANP) while measuring, the heated laminate to temperatures T 1 did.
  • peeling pressure-sensitive adhesive tape for semiconductor processing of the laminate the temperature 23 ° C. or a temperature T 1, in the 180 ° direction at a tensile rate of 300mm / min, under humidity of 50%,
  • the peeling force Fa (23 ° C.) and Fa (T 1 ) were measured.
  • the obtained pressure-sensitive adhesive layer and the corona-treated surface of the base material A having corona-treated one side were bonded to each other and cured at 40 ° C. for 6 days to obtain a temporary fixing tape.
  • the adhesive strength of the temporary fixing tape to the copper plate (copper plate satisfying JIS H3100: 2018, C1100P, manufactured by Engineering Test Service Co., Ltd.) was measured and found to be 6.5 N / inch.
  • the laminate was heat-treated using an oven heated to the temperature T 1 shown in Table 1. While measuring the temperature of the back surface of the temporary fixing tape (the base material side of the temporary fixing tape) with a temperature measurement sensor (A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.), the temperature of the laminate was T 1. Heated to. Using an autograph (manufactured by Shimadzu Corporation), peeling the temporary fixing tape laminate, the temperature 23 ° C. or a temperature T 1, in the 180 ° direction at a tensile rate of 300mm / min, under humidity of 50%, peel strength Fb (23 ° C.) and Fb (T 1 ) were measured.
  • a temperature measurement sensor A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.
  • PU force and bonding the back of the adhesive tape for semiconductor processing with respect PU force measurement dicing tape at a temperature T 1, and diced into 10 mm ⁇ 10 mm on the pressure-sensitive adhesive layer side substrate was affixed with a roller.
  • a desktop tensile compression tester (MCT-2150, manufactured by A & D) was used to pick up the adhesive tape for semiconductor processing by forming an individualized substrate from the back side (base material side). The force required to peel off the individualized substrate was measured and used as a PU (pick up) force.
  • the individualized substrate was attached to the adhesive tape for semiconductor processing, and then the laminate was heat-treated using an oven heated to the temperature T 1.
  • the laminate is heated to a temperature T 1 of In the same state, the pickup was performed in the same manner, and the PU force at the temperature T 1 was measured.
  • FIGS. 2 (a1) to (a4) were performed as shown below.
  • An adhesive tape 2 for semiconductor processing was attached to a surface of a copper-clad laminated substrate 7 (CCL-EL190T / GEPL-190T manufactured by Mitsubishi Gas Chemical Company, Inc.) having a copper foil 7a (FIG. 2 (a1)).
  • the pressure-sensitive adhesive layer 2a was cured by irradiating the pressure-sensitive adhesive layer 2a with ultraviolet rays of 405 nm from the base material 2b side for 25 seconds using an ultra-high pressure mercury ultraviolet irradiation device. The illuminance was adjusted so that the irradiation intensity was 100 mW / cm 2.
  • the copper-clad laminated substrate 7 to which the adhesive tape 2 for semiconductor processing is attached is temporarily fixed on the dicing tape 8 (Elegrip UPH-1510M4 manufactured by Denka Co., Ltd.) so that the copper-clad laminate 7 side is in contact with the dicing frame 9. (Fig. 2 (a2)).
  • the copper-clad laminated substrate 7 to which the adhesive tape 2 for semiconductor processing was attached was individualized (chips) into 10 mm squares using a dicing device (DFD6361 manufactured by DISCO) (FIG. 2 (a3)).
  • the dicing tape 8 was cured by irradiating the dicing tape 8 with an ultraviolet ray of 405 nm so as to have an integrated intensity of 2500 mJ / cm 2 using an ultrahigh pressure mercury ultraviolet ray irradiator. The illuminance was adjusted so that the irradiation intensity was 50 mW / cm 2. Then, the dicing tape 8 was peeled off. The copper-clad laminated substrate 7 to which the individualized adhesive tape 2 for semiconductor processing was attached was temporarily fixed on the temporary fixing tape 3 so that the adhesive tape 2 for semiconductor processing was in contact with the adhesive tape 2, and was reattached to the dicing frame 9. (Fig. 2 (a4)).
  • the copper-clad laminated substrate 7 to which the individualized adhesive tape 2 for semiconductor processing was attached was heat-treated together with the dicing frame 9 for 1 hour. It should be noted that "heating at 150 ° C. for 1 hour" is set assuming the temperature and time required when the semiconductor package is shielded. After a lapse of a predetermined time, the copper-clad laminated substrate 7 to which the individualized adhesive tape 2 for semiconductor processing was attached was taken out together with the dicing frame 9 and sufficiently allowed to cool in an environment of a temperature of 23 ° C. and a relative humidity of 50%. Using a die bonder device (Canon Machinery Co., Ltd., BestD02), the copper-clad laminated substrate 7 is separated while being heated to the temperature T 1 shown in Table 1 by heating to the temperature T 1 by applying warm air. Was picked up.
  • Examples 2 to 8, reference examples 1 to 5 An adhesive tape for semiconductor processing and a temporary fixing tape were obtained in the same manner as in Example 1 except that the composition of the pressure-sensitive adhesive layer and the base material were changed as shown in Table 1. Each physical property was measured and a semiconductor device was manufactured in the same manner as in Example 1.
  • pick-up evaluation (1-1) semiconductor package - a case Pick Stay up-force at the interface separation temperature T 1 of between the adhesive tape is less than 1N A, above 1N, the case was less than 5N B, more 5N When it was less than 10N, it was judged as C, and when it was 10N or more (the individualized substrate was not peeled off), it was judged as D.
  • a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing can be obtained. Can be provided.
  • Adhesive tape for semiconductor processing 2a Adhesive layer 2b Base material 3 Temporary fixing tape 4 Semiconductor package 5 Metal film 6 Pickup needle 7 Copper-clad laminated substrate 7a Copper foil 8 Dicing tape 9 Dicing frame

Abstract

The purpose of the present invention is to provide a manufacturing method for a semiconductor device and a laminate for semiconductor processing by which peeling is suppressed at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing, and by which it is possible to favorably pick up a semiconductor package. The present invention involves a manufacturing method for a semiconductor device, wherein the method comprises a step (3) in which, in a laminate for semiconductor processing obtained by laminating a semiconductor package to which a semiconductor processing adhesive tape is adhered on a temporary fixing tape such that the semiconductor processing adhesive tape-side is in contact, and forming a metal film on the rear surface and side surfaces of the semiconductor package to which the semiconductor processing adhesive tape is adhered, the semiconductor package in which the metal film is formed on the rear surface and the side surfaces is picked up from the semiconductor processing adhesive tape; and in step (3), the semiconductor package in which the metal film is formed on the rear surface and the side surfaces is picked up when heated to a temperature T1 that satisfies formula (1) below. (1) 100 < {Fb(T1)/Fa(T1)} In formula (1): Fa(t) represents the peel strength of the semiconductor processing adhesive tape at temperature t with respect to a copper plate; Fa(T1) represents the value of Fa(t) at temperature t = T1; Fb(t) represents the peel strength of the temporary fixing tape at temperature t with respect to the semiconductor processing adhesive tape; and Fb(T1) represents the value of Fb(t) at temperature t = T1.

Description

半導体装置の製造方法、及び、半導体加工用積層体Manufacturing method of semiconductor devices and laminates for semiconductor processing
本発明は、仮固定テープと半導体加工用粘着テープとの界面での剥離を抑制し、半導体パッケージのピックアップを良好に行うことのできる半導体装置の製造方法、及び、半導体加工用積層体に関する。 The present invention relates to a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing.
半導体等の電子部品の加工時においては、電子部品の取扱いを容易にし、破損したりしないようにするために、粘着剤組成物を介して電子部品を支持板に固定したり、粘着テープを電子部品に貼付したりして保護することが行われている。例えば、高純度なシリコン単結晶等から切り出した厚膜ウエハを所定の厚さにまで研削して薄膜ウエハとする場合に、粘着剤組成物を介して厚膜ウエハを支持板に接着することが行われる。 When processing electronic components such as semiconductors, in order to facilitate the handling of the electronic components and prevent them from being damaged, the electronic components are fixed to the support plate via an adhesive composition, or the adhesive tape is electronically attached. It is protected by attaching it to parts. For example, when a thick film wafer cut out from a high-purity silicon single crystal or the like is ground to a predetermined thickness to obtain a thin film wafer, the thick film wafer can be adhered to a support plate via an adhesive composition. Will be done.
また、広面積の半導体パッケージをダイシングして多数の個片化された半導体パッケージを得る場合にも、粘着テープを半導体パッケージに貼付することが行われる。このような工程では、粘着テープが貼付された半導体パッケージを、更にダイシングテープと呼ばれるテープ上に仮固定し、ダイシングテープ上で粘着テープごと半導体パッケージをダイシングする。ダイシング後は、ニードルピックアップ等によって、個片化された半導体パッケージをダイシングテープ及び/又は粘着テープから剥離する。 Further, when a large-area semiconductor package is diced to obtain a large number of individualized semiconductor packages, the adhesive tape is attached to the semiconductor package. In such a step, the semiconductor package to which the adhesive tape is attached is further temporarily fixed on a tape called a dicing tape, and the semiconductor package is diced together with the adhesive tape on the dicing tape. After dicing, the separated semiconductor package is peeled from the dicing tape and / or the adhesive tape by a needle pickup or the like.
このように電子部品に用いる粘着剤組成物や粘着テープには、加工工程中に電子部品を強固に固定できるだけの高い接着性とともに、工程終了後には電子部品を損傷することなく剥離できることが求められる(以下、「高接着易剥離」ともいう。)。
高接着易剥離の実現手段として、例えば特許文献1には、ポリマーの側鎖又は主鎖に放射線重合性官能基を有する多官能性モノマー又はオリゴマーが結合された粘着剤を用いた粘着シートが開示されている。放射線重合性官能基を有することにより紫外線照射によりポリマーが硬化することを利用して、剥離時に紫外線を照射することにより粘着力が低下して、糊残りなく剥離することができる。
As described above, the adhesive composition and the adhesive tape used for the electronic component are required to have high adhesiveness enough to firmly fix the electronic component during the processing process and to be able to be peeled off without damaging the electronic component after the process is completed. (Hereinafter, it is also referred to as "high adhesion easy peeling").
As a means for realizing high adhesive peeling, for example, Patent Document 1 discloses a pressure-sensitive adhesive sheet in which a polyfunctional monomer or oligomer having a radiopolymerizable functional group is bonded to the side chain or main chain of a polymer. Has been done. Utilizing the fact that the polymer is cured by ultraviolet irradiation due to having a radiation-polymerizable functional group, the adhesive strength is lowered by irradiating the polymer with ultraviolet rays at the time of peeling, and the polymer can be peeled without adhesive residue.
特開平5-32946号公報Japanese Unexamined Patent Publication No. 5-32946
一方、携帯電話等の通信機器は、高周波化が進んでおり、高周波によるノイズが半導体パッケージの誤作動を引き起こすという問題が生じている。特に、近年の通信機器は、小型化によるデバイス密度の増加やデバイスの低電圧化が進んでいるため、半導体パッケージは高周波によるノイズの影響を受けやすくなっている。
この問題に対し、例えば、ダイシング後の個片化された半導体パッケージの背面及び側面にスパッタリング等によって金属の膜で覆うシールド処理を施し、高周波を遮断することが行われている。このようなシールド処理においても、回路面(前面)の保護及び汚染防止のため、粘着テープを半導体パッケージの回路面(前面)に貼付することが行われる。即ち、回路面(前面)に粘着テープが貼付された半導体パッケージを、更に仮固定テープ上に仮固定し、仮固定テープ上で半導体パッケージの背面及び側面に金属膜を形成する。
On the other hand, communication devices such as mobile phones are becoming higher in frequency, and there is a problem that noise due to high frequency causes a malfunction of a semiconductor package. In particular, in recent years, communication devices have been miniaturized to increase the device density and the device voltage to be lowered, so that semiconductor packages are easily affected by noise due to high frequencies.
To solve this problem, for example, the back surface and side surfaces of the individualized semiconductor package after dicing are shielded with a metal film by sputtering or the like to block high frequencies. Even in such a shielding process, an adhesive tape is attached to the circuit surface (front surface) of the semiconductor package in order to protect the circuit surface (front surface) and prevent contamination. That is, the semiconductor package to which the adhesive tape is attached to the circuit surface (front surface) is further temporarily fixed on the temporary fixing tape, and metal films are formed on the back surface and the side surface of the semiconductor package on the temporary fixing tape.
シールド処理後は、ニードルピックアップ等によって、背面及び側面に金属膜が形成された半導体パッケージを仮固定テープ及び粘着テープから剥離する。しかしながら、半導体パッケージの回路面(前面)の電極の高さ、形状等によっては、シールド処理後の半導体パッケージのピックアップを良好に行えないことがある。
本発明は、仮固定テープと半導体加工用粘着テープとの界面での剥離を抑制し、半導体パッケージのピックアップを良好に行うことのできる半導体装置の製造方法、及び、半導体加工用積層体を提供することを目的とする。
After the shield treatment, the semiconductor package having the metal film formed on the back surface and the side surface is peeled off from the temporary fixing tape and the adhesive tape by a needle pickup or the like. However, depending on the height, shape, etc. of the electrodes on the circuit surface (front surface) of the semiconductor package, it may not be possible to satisfactorily pick up the semiconductor package after the shield treatment.
The present invention provides a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing. The purpose is.
本発明は、半導体装置の製造方法であって、半導体加工用粘着テープが貼付された半導体パッケージが、上記半導体加工用粘着テープ側が接するようにして仮固定テープ上に積層されており、かつ、上記半導体加工用粘着テープが貼付された半導体パッケージの背面及び側面に金属膜が形成されている半導体加工用積層体において、背面及び側面に金属膜が形成された半導体パッケージを上記半導体加工用粘着テープからピックアップする工程(3)を有し、上記工程(3)において、下記式(1)を満たす温度Tに加熱された状態で上記背面及び側面に金属膜が形成された半導体パッケージをピックアップする半導体装置の製造方法である。
100<{Fb(T)/Fa(T)}  (1)
式(1)中、Fa(t)は、温度tにおける半導体加工用粘着テープの銅板に対する剥離力を表し、Fa(T)は、Fa(t)の温度t=Tにおける値を表し、Fb(t)は、温度tにおける仮固定テープの半導体加工用粘着テープに対する剥離力を表し、Fb(T)は、Fb(t)の温度t=Tにおける値を表す。
以下に本発明を詳述する。
The present invention is a method for manufacturing a semiconductor device, wherein a semiconductor package to which an adhesive tape for semiconductor processing is attached is laminated on a temporary fixing tape so that the adhesive tape for semiconductor processing is in contact with the above. In a semiconductor processing laminate in which metal films are formed on the back surface and side surfaces of a semiconductor package to which an adhesive tape for semiconductor processing is attached, a semiconductor package having metal films formed on the back surface and side surfaces is formed from the above-mentioned adhesive tape for semiconductor processing. A semiconductor having a pick-up step (3) and picking up a semiconductor package having a metal film formed on the back surface and the side surface in a state of being heated to a temperature T 1 satisfying the following formula (1) in the above step (3). It is a manufacturing method of the device.
100 << {Fb (T 1 ) / Fa (T 1 )} (1)
In the formula (1), Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t, and Fa (T 1 ) represents the value of Fa (t) at the temperature t = T 1. Fb (t) represents the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t, and Fb (T 1 ) represents the value of Fb (t) at the temperature t = T 1.
The present invention will be described in detail below.
シールド処理後の半導体パッケージのピックアップにおいては、半導体パッケージと粘着テープ(半導体加工用粘着テープ)との界面ではなく、仮固定テープと半導体加工用粘着テープとの界面で剥離が生じることにより、ピックアップ不良が生じる。このような問題に対して、本発明者らは、「半導体加工用粘着テープの被着体(標準的な銅板とする)に対する接着力」と、「仮固定テープの半導体加工用粘着テープに対する接着力」とに着目した。本発明者らは、これらの接着力の比が特定範囲を満たすような温度に加熱された状態で半導体パッケージをピックアップすることで、仮固定テープと半導体加工用粘着テープとの界面での剥離を抑制し、半導体パッケージのピックアップを良好に行うことができることを見出し、本発明を完成させるに至った。 When picking up a semiconductor package after shielding, the pickup is defective because peeling occurs not at the interface between the semiconductor package and the adhesive tape (adhesive tape for semiconductor processing) but at the interface between the temporary fixing tape and the adhesive tape for semiconductor processing. Occurs. In response to such problems, the present inventors have described "adhesive strength of adhesive tape for semiconductor processing to an adherend (using a standard copper plate)" and "adhesion of temporary fixing tape to adhesive tape for semiconductor processing". I focused on "power". By picking up the semiconductor package in a state where the ratio of these adhesive strengths is heated to a temperature that satisfies a specific range, the present inventors can peel off the temporary fixing tape and the adhesive tape for semiconductor processing at the interface. We have found that it is possible to suppress and pick up a semiconductor package satisfactorily, and have completed the present invention.
本発明の半導体装置の製造方法では、特定の半導体加工用積層体において、背面及び側面に金属膜が形成された半導体パッケージを半導体加工用粘着テープからピックアップする工程(3)を行う。
ここで、特定の半導体加工用積層体とは、半導体加工用粘着テープが貼付された半導体パッケージが、上記半導体加工用粘着テープ側が接するようにして仮固定テープ上に積層されており、かつ、上記半導体加工用粘着テープが貼付された半導体パッケージの背面及び側面に金属膜が形成されている半導体加工用積層体である。このような半導体加工用積層体を得る方法は特に限定されないが、上記工程(3)の前に、次の工程(1)及び工程(2)を行うことにより半導体加工用積層体を得る方法が好ましい。即ち、本発明の半導体装置の製造方法では、まず、半導体加工用粘着テープが貼付された半導体パッケージを、上記半導体加工用粘着テープ側が接するようにして仮固定テープ上に仮固定する工程(1)を行うことが好ましい。
In the method for manufacturing a semiconductor device of the present invention, a step (3) of picking up a semiconductor package having a metal film formed on the back surface and side surfaces from an adhesive tape for semiconductor processing is performed in a specific laminate for semiconductor processing.
Here, the specific semiconductor processing laminate is a semiconductor package to which the semiconductor processing adhesive tape is attached, which is laminated on the temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with the semiconductor processing adhesive tape. A laminate for semiconductor processing in which metal films are formed on the back surface and side surfaces of a semiconductor package to which an adhesive tape for semiconductor processing is attached. The method for obtaining such a laminate for semiconductor processing is not particularly limited, but a method for obtaining a laminate for semiconductor processing by performing the following steps (1) and (2) before the above step (3) is possible. preferable. That is, in the method for manufacturing a semiconductor device of the present invention, first, a step of temporarily fixing a semiconductor package to which an adhesive tape for semiconductor processing is attached on a temporary fixing tape so that the adhesive tape side for semiconductor processing is in contact with the tape (1). Is preferable.
上記半導体加工用粘着テープは、基材と、該基材の少なくとも一方の面に積層された粘着剤層とを有するサポートタイプであってもよいし、基材を有さず、粘着剤層を有するノンサポートタイプであってもよい。なかでも、後述するようなFb(t)/Fa(t)を調整することが容易となり、半導体パッケージのピックアップをより良好に行えることから、基材と、該基材の一方の面に積層された粘着剤層とを有する、片面サポートタイプが好ましい。上記半導体加工用粘着テープが片面サポートタイプである場合には、上記半導体加工用粘着テープの基材側が上記仮固定テープの粘着面と接することになる。 The adhesive tape for semiconductor processing may be a support type having a base material and an adhesive layer laminated on at least one surface of the base material, or may have no base material and may have an adhesive layer. It may be a non-support type having. In particular, since it becomes easy to adjust Fb (t) / Fa (t) as described later and the semiconductor package can be picked up better, it is laminated on the base material and one surface of the base material. A single-sided support type having an adhesive layer is preferable. When the adhesive tape for semiconductor processing is a single-sided support type, the base material side of the adhesive tape for semiconductor processing comes into contact with the adhesive surface of the temporary fixing tape.
上記半導体加工用粘着テープの基材の材料は特に制限されないが、耐熱性の材料であることが好ましい。
上記半導体加工用粘着テープの基材の材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレン、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、液晶ポリマー等が挙げられる。なかでも、耐熱性に優れることから、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましい。
The material of the base material of the adhesive tape for semiconductor processing is not particularly limited, but a heat-resistant material is preferable.
Examples of the material of the base material of the adhesive tape for semiconductor processing include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene, syndiotactic polystyrene, polyarylate, and polysulfone. , Polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like. Of these, polyethylene terephthalate and polyethylene naphthalate are preferable because they have excellent heat resistance.
上記半導体加工用粘着テープの基材は、粘着剤層とは反対側の表面に易接着層を有することが好ましい。
上記易接着層は、上記半導体加工用粘着テープの基材において、粘着剤層とは反対側の表面、即ち、背面に形成される。上記半導体加工用粘着テープの基材が上記易接着層を有することにより、後述するようなFb(t)/Fa(t)を調整することが容易となり、半導体パッケージのピックアップをより良好に行うことができる。
The base material of the pressure-sensitive adhesive tape for semiconductor processing preferably has an easy-adhesion layer on the surface opposite to the pressure-sensitive adhesive layer.
The easy-adhesive layer is formed on the surface opposite to the pressure-sensitive adhesive layer, that is, on the back surface of the base material of the pressure-sensitive adhesive tape for semiconductor processing. Since the base material of the adhesive tape for semiconductor processing has the easy-adhesive layer, it becomes easy to adjust Fb (t) / Fa (t) as described later, and the semiconductor package can be picked up better. Can be done.
上記易接着層としては、例えば、SiOx層、金属酸化物層、有機金属化合物層、シリコーン化合物層、重合性ポリマー層、コロナ処理層、プラズマ処理層等が挙げられる。なかでも、より易接着効果が高いことから、有機金属化合物層、コロナ処理層が好ましい。 Examples of the easy-adhesion layer include a SiOx layer, a metal oxide layer, an organometallic compound layer, a silicone compound layer, a polymerizable polymer layer, a corona-treated layer, and a plasma-treated layer. Of these, an organometallic compound layer and a corona-treated layer are preferable because they have a higher adhesive effect.
有機化合物又は無機化合物による易接着処理の方法(即ち、上記SiOx層、金属酸化物層、有機金属化合物層、シリコーン化合物層、重合性ポリマー層等の形成方法)としては、例えば、蒸着、コーティング等が挙げられる。
上記コロナ処理層を形成する方法としては、例えば、高周波電源装置(春日電機社製AGI-020)を用いて出力0.24Kw、速度40mm/min、電極距離1mmの条件でフィルムを一往復させて、基材背面にコロナ処理を施す方法等が挙げられる。
Examples of the method for easy adhesion treatment with an organic compound or an inorganic compound (that is, a method for forming the SiOx layer, metal oxide layer, organometallic compound layer, silicone compound layer, polymerizable polymer layer, etc.) include vapor deposition, coating, and the like. Can be mentioned.
As a method for forming the corona-treated layer, for example, a high-frequency power supply device (AGI-020 manufactured by Kasuga Electric Works Ltd.) is used to reciprocate the film once under the conditions of an output of 0.24 Kw, a speed of 40 mm / min, and an electrode distance of 1 mm. , A method of applying a corona treatment to the back surface of the base material and the like.
上記半導体加工用粘着テープの基材は、23℃におけるTD方向の単位幅あたりの曲げ剛性が2.38×10-7N・m/m以上、1.50×10-4N・m/m以下であることが好ましい。上記23℃におけるTD方向の単位幅あたりの曲げ剛性が上記範囲内であることで、被着体をより確実に保護できるとともに取り扱い性に優れる半導体加工用粘着テープとすることができる。上記23℃におけるTD方向の単位幅あたりの曲げ剛性は4.12×10-7N・m/m以上であることがより好ましく、9.76×10-7N・m/m以上であることが更に好ましく、8.5×10-5N・m/m以下であることがより好ましく、1.0×10-5N・m/m以下であることが更に好ましい。
ここで、TD(Transverse Direction)方向とは、基材をシート状に押出加工する際の押出方向に対して垂直な方向をいう。なお、単位幅あたりの曲げ剛性は、引張弾性率Eと、断面二次モーメントIとの積を基材の幅の長さで除した値で表される。引張弾性率Eは、例えば、粘弾性スペクトロメーター(例えば、DVA-200、アイティー計測制御社製等)を用いて、定速昇温引張モード、昇温速度10℃/分、周波数10Hzの条件で測定することができる。基材(断面が長方形)の断面二次モーメントIは、下記式(3)で表される。
I=(基材の幅の長さ(m))×(基材の厚み(m))/12 (単位m)  (3)
The base material of the adhesive tape for semiconductor processing has a flexural rigidity of 2.38 × 10 -7 N ・ m 2 / m or more and 1.50 × 10 -4 N ・ m 2 per unit width in the TD direction at 23 ° C. It is preferably / m or less. When the flexural rigidity per unit width in the TD direction at 23 ° C. is within the above range, the adherend can be more reliably protected and the adhesive tape for semiconductor processing having excellent handleability can be obtained. The flexural rigidity per unit width in the TD direction at 23 ° C. is more preferably 4.12 × 10-7 N ・ m 2 / m or more, and 9.76 × 10-7 N ・ m 2 / m or more. It is more preferably 8.5 × 10 -5 N · m 2 / m or less, and further preferably 1.0 × 10 -5 N · m 2 / m or less.
Here, the TD (Transverse Direction) direction refers to a direction perpendicular to the extrusion direction when the base material is extruded into a sheet shape. The flexural rigidity per unit width is represented by a value obtained by dividing the product of the tensile elastic modulus E and the moment of inertia of area I by the length of the width of the base material. The tensile elastic modulus E is determined by using, for example, a viscoelastic spectrometer (for example, DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a constant speed temperature rise tension mode, a temperature rise rate of 10 ° C./min, and a frequency of 10 Hz. Can be measured with. The geometrical moment of inertia I of the base material (rectangular cross section) is represented by the following formula (3).
I = (length of the width of the substrate (m)) × (base material thickness (m)) 3/12 (units m 4) (3)
上記半導体加工用粘着テープの基材の貯蔵弾性率は特に限定されないが、5.0×10Pa以上、1.0×1011Pa以下であることが好ましい。上記半導体加工用粘着テープの基材の貯蔵弾性率が上記範囲内であることにより、上記基材が適度に曲がりやすいものとなるため、上記半導体加工用粘着テープごと半導体パッケージをダイシングする際の半導体パッケージの剥がれをより抑制するとともに、半導体パッケージのピックアップをより良好に行うことができる。上記半導体加工用粘着テープの基材の貯蔵弾性率は8.0×10Pa以上であることがより好ましく、1.0×10Pa以上であることが更に好ましく、5.0×1010Pa以下であることがより好ましく、5.0×10Pa以下であることが更に好ましい。
上記半導体加工用粘着テープの基材の貯蔵弾性率を測定する方法としては、例えば、動的粘弾性測定、引張試験等の方法が挙げられる。より具体的には、10mm幅の短冊状の試験片を作製する。得られた試験片について、引張試験機(例えば、RTG1250A、AND社製等)を用いて、温度23℃、湿度50%で、試験速度300mm/分で引張試験を行い、JIS K7161-1に準じて、引張貯蔵弾性率を求めることができる。
The storage elastic modulus of the base material of the adhesive tape for semiconductor processing is not particularly limited, but is preferably 5.0 × 10 7 Pa or more and 1.0 × 10 11 Pa or less. When the storage elastic modulus of the base material of the adhesive tape for semiconductor processing is within the above range, the base material becomes moderately bendable. Therefore, the semiconductor when dicing the semiconductor package together with the adhesive tape for semiconductor processing. The peeling of the package can be further suppressed, and the semiconductor package can be picked up better. The storage elastic modulus of the base material of the adhesive tape for semiconductor processing is more preferably 8.0 × 10 8 Pa or more, further preferably 1.0 × 10 9 Pa or more, and 5.0 × 10 10 more preferably Pa or less, and more preferably not more than 5.0 × 10 9 Pa.
Examples of the method for measuring the storage elastic modulus of the base material of the adhesive tape for semiconductor processing include methods such as dynamic viscoelasticity measurement and tensile test. More specifically, a strip-shaped test piece having a width of 10 mm is prepared. The obtained test piece was subjected to a tensile test using a tensile tester (for example, RTG1250A, manufactured by AND, etc.) at a temperature of 23 ° C. and a humidity of 50% at a test speed of 300 mm / min, and according to JIS K7161-1. The tensile storage elastic modulus can be obtained.
上記半導体加工用粘着テープの基材の紫外線透過率は特に限定されないが、上記半導体加工用粘着テープの粘着剤層が光硬化型粘着剤層である場合、405nmの紫外線透過率が1%以上であることが好ましい。上記405nmの紫外線透過率は10%以上であることがより好ましく、15%以上であることが更に好ましく、50%以上であることが特に好ましい。上記405nmの紫外線透過率がこれらの下限以上であることで、上記半導体加工用粘着テープの粘着剤層が光硬化型粘着剤層である場合に、光増感剤を用いずとも粘着剤層を充分に硬化させることができる。上記405nmの紫外線透過率の上限は特に限定されず、高ければ高いほどよく、通常、100%以下である。 The ultraviolet transmittance of the base material of the adhesive tape for semiconductor processing is not particularly limited, but when the adhesive layer of the adhesive tape for semiconductor processing is a photocurable adhesive layer, the ultraviolet transmittance at 405 nm is 1% or more. It is preferable to have. The ultraviolet transmittance at 405 nm is more preferably 10% or more, further preferably 15% or more, and particularly preferably 50% or more. When the ultraviolet transmittance at 405 nm is equal to or higher than these lower limits, the pressure-sensitive adhesive layer can be formed without using a photosensitizer when the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is a photocurable pressure-sensitive adhesive layer. It can be sufficiently cured. The upper limit of the ultraviolet transmittance at 405 nm is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
上記半導体加工用粘着テープの基材の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は200μmである。上記半導体加工用粘着テープの基材の厚みが上記範囲内であることにより、適度なコシがあって、取り扱い性に優れる半導体加工用粘着テープとすることができる。上記半導体加工用粘着テープの基材の厚みのより好ましい下限は10μm、より好ましい上限は150μmである。 The thickness of the base material of the adhesive tape for semiconductor processing is not particularly limited, but the preferable lower limit is 5 μm and the preferable upper limit is 200 μm. When the thickness of the base material of the adhesive tape for semiconductor processing is within the above range, the adhesive tape for semiconductor processing can be obtained with appropriate elasticity and excellent handleability. The more preferable lower limit of the thickness of the base material of the adhesive tape for semiconductor processing is 10 μm, and the more preferable upper limit is 150 μm.
上記半導体加工用粘着テープの粘着剤層を構成する粘着剤は特に限定されず、非硬化型の粘着剤又は硬化型の粘着剤のいずれであってもよい。具体的には例えば、ゴム系粘着剤、アクリル系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、スチレン・ジエンブロック共重合体系粘着剤等が挙げられる。なかでも、耐熱性に優れ、粘着力の調節が容易であることから、アクリル系粘着剤が好適であり、アクリル系の硬化型粘着剤がより好ましい。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is not particularly limited, and may be either a non-curable type pressure-sensitive adhesive or a curable type pressure-sensitive adhesive. Specifically, for example, rubber-based adhesives, acrylic-based adhesives, vinyl alkyl ether-based adhesives, silicone-based adhesives, polyester-based adhesives, polyamide-based adhesives, urethane-based adhesives, styrene-diene block copolymerization systems. Adhesives and the like can be mentioned. Among them, an acrylic pressure-sensitive adhesive is preferable, and an acrylic-based curable pressure-sensitive adhesive is more preferable because it has excellent heat resistance and the adhesive strength can be easily adjusted.
上記硬化型粘着剤としては、光照射により架橋及び硬化する光硬化型粘着剤、加熱により架橋及び硬化する熱硬化型粘着剤等が挙げられる。なかでも、被着体を損傷しにくく、容易に硬化を行えることから、光硬化型粘着剤が好ましい。即ち、上記粘着剤層は、光硬化型粘着剤層、熱硬化型粘着剤層等が挙げられるが、光硬化型粘着剤層であることが好ましい。
上記光硬化型粘着剤としては、例えば、重合性ポリマーを主成分として、光重合開始剤を含有する粘着剤が挙げられる。上記熱硬化型粘着剤としては、例えば、重合性ポリマーを主成分として、熱重合開始剤を含有する粘着剤が挙げられる。
Examples of the curable pressure-sensitive adhesive include a photo-curable pressure-sensitive adhesive that is crosslinked and cured by light irradiation, a thermosetting pressure-sensitive adhesive that is cross-linked and cured by heating, and the like. Of these, a photocurable adhesive is preferable because it does not easily damage the adherend and can be easily cured. That is, examples of the pressure-sensitive adhesive layer include a photocurable pressure-sensitive adhesive layer and a thermosetting type pressure-sensitive adhesive layer, but a photo-curable pressure-sensitive adhesive layer is preferable.
Examples of the photocurable pressure-sensitive adhesive include a pressure-sensitive adhesive containing a polymerizable polymer as a main component and a photopolymerization initiator. Examples of the thermosetting pressure-sensitive adhesive include a pressure-sensitive adhesive containing a polymerizable polymer as a main component and a heat polymerization initiator.
上記重合性ポリマーは、例えば、分子内に官能基を持った(メタ)アクリル系ポリマー(以下、官能基含有(メタ)アクリル系ポリマーという)を予め合成し、分子内に上記の官能基と反応する官能基とラジカル重合性の不飽和結合とを有する化合物(以下、官能基含有不飽和化合物という)を反応させることにより得ることができる。 For the polymerizable polymer, for example, a (meth) acrylic polymer having a functional group in the molecule (hereinafter referred to as a functional group-containing (meth) acrylic polymer) is synthesized in advance and reacted with the functional group in the molecule. It can be obtained by reacting a compound having a functional group to be subjected to a radically polymerizable unsaturated bond (hereinafter, referred to as a functional group-containing unsaturated compound).
上記官能基含有(メタ)アクリル系ポリマーは、例えば、アルキル基の炭素数が通常2~18の範囲にあるアクリル酸アルキルエステル及び/又はメタクリル酸アルキルエステルと、官能基含有モノマーと、更に必要に応じてこれらと共重合可能な他の改質用モノマーとを共重合させることにより得ることができる。 The functional group-containing (meth) acrylic polymer further requires, for example, an acrylic acid alkyl ester and / or a methacrylate alkyl ester in which the number of carbon atoms of the alkyl group is usually in the range of 2 to 18, a functional group-containing monomer, and the like. It can be obtained by copolymerizing these with other copolymerizable modifying monomers.
上記官能基含有(メタ)アクリル系ポリマーの重量平均分子量は特に限定されないが、通常、20万~200万程度である。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィを用いて決定することができる。より具体的には例えば、得られたポリマーをテトラヒドロフラン(THF)によって0.2重量%に調整して得られた希釈液をフィルター(材質:ポリテトラフルオロエチレン、ポア径:0.2μm)で濾過する。得られた濾液をゲルパーミエーションクロマトグラフ(Waters社製、2690 Separations Model、又はその同等品)に供給して、サンプル流量1mL/min、カラム温度40℃の条件でGPC測定を行い、ポリスチレン換算分子量を測定して、重量平均分子量(Mw)を求める。カラムとしてはGPC KF-806L(昭和電工社製、又はその同等品)を用い、検出器としては示差屈折計を用いる。
The weight average molecular weight of the functional group-containing (meth) acrylic polymer is not particularly limited, but is usually about 200,000 to 2,000,000.
The weight average molecular weight can be determined by using gel permeation chromatography. More specifically, for example, the obtained polymer is adjusted to 0.2% by weight with tetrahydrofuran (THF), and the obtained diluent is filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 μm). To do. The obtained filtrate was supplied to a gel permeation chromatograph (manufactured by Waters, 2690 Separations Model, or an equivalent product thereof), and GPC measurement was performed under the conditions of a sample flow rate of 1 mL / min and a column temperature of 40 ° C. to obtain a polystyrene-equivalent molecular weight. Is measured to determine the weight average molecular weight (Mw). A GPC KF-806L (manufactured by Showa Denko KK or an equivalent product thereof) is used as the column, and a differential refractometer is used as the detector.
上記官能基含有モノマーとしては、例えば、アクリル酸、メタクリル酸等のカルボキシル基含有モノマーや、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル等のヒドロキシル基含有モノマーや、アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有モノマーが挙げられる。また、上記官能基含有モノマーとしては、例えば、アクリル酸イソシアネートエチル、メタクリル酸イソシアネートエチル等のイソシアネート基含有モノマーや、アクリル酸アミノエチル、メタクリル酸アミノエチル等のアミノ基含有モノマー等も挙げられる。 Examples of the functional group-containing monomer include a carboxyl group-containing monomer such as acrylate and methacrylic acid, a hydroxyl group-containing monomer such as hydroxyethyl acrylate and hydroxyethyl methacrylate, and an epoxy such as glycidyl acrylate and glycidyl methacrylate. Group-containing monomers can be mentioned. Examples of the functional group-containing monomer include isocyanate group-containing monomers such as ethyl isocyanate and ethyl methacrylate, and amino group-containing monomers such as aminoethyl acrylate and aminoethyl methacrylate.
上記共重合可能な他の改質用モノマーとしては、例えば、酢酸ビニル、アクリロニトリル、スチレン等の一般の(メタ)アクリル系ポリマーに用いられている各種のモノマーが挙げられる。 Examples of the other copolymerizable monomer for modification include various monomers used in general (meth) acrylic polymers such as vinyl acetate, acrylonitrile, and styrene.
上記官能基含有(メタ)アクリル系ポリマーに反応させる官能基含有不飽和化合物としては、上記官能基含有(メタ)アクリル系ポリマーの官能基に応じて、上述した官能基含有モノマーと同様のものを使用できる。例えば、上記官能基含有(メタ)アクリル系ポリマーの官能基がカルボキシル基の場合は、エポキシ基含有モノマーやイソシアネート基含有モノマーが用いられる。上記官能基含有(メタ)アクリル系ポリマーの官能基がヒドロキシル基の場合は、イソシアネート基含有モノマーが用いられる。上記官能基含有(メタ)アクリル系ポリマーの官能基がエポキシ基の場合は、カルボキシル基含有モノマーやアクリルアミド等のアミド基含有モノマーが用いられる。上記官能基含有(メタ)アクリル系ポリマーの官能基がアミノ基の場合は、エポキシ基含有モノマーが用いられる。 The functional group-containing unsaturated compound to be reacted with the functional group-containing (meth) acrylic polymer is the same as the functional group-containing monomer described above, depending on the functional group of the functional group-containing (meth) acrylic polymer. Can be used. For example, when the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group, an epoxy group-containing monomer or an isocyanate group-containing monomer is used. When the functional group of the functional group-containing (meth) acrylic polymer is a hydroxyl group, an isocyanate group-containing monomer is used. When the functional group of the functional group-containing (meth) acrylic polymer is an epoxy group, a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used. When the functional group of the functional group-containing (meth) acrylic polymer is an amino group, an epoxy group-containing monomer is used.
上記官能基含有(メタ)アクリル系ポリマーを得るには、原料モノマーを、重合開始剤の存在下にてラジカル反応させればよい。上記原料モノマーをラジカル反応させる方法、即ち、重合方法としては、従来公知の方法が用いられ、例えば、溶液重合(沸点重合又は定温重合)、乳化重合、懸濁重合、塊状重合等が挙げられる。
上記官能基含有(メタ)アクリル系ポリマーを得るためのラジカル反応に用いる重合開始剤は特に限定されず、例えば、有機過酸化物、アゾ化合物等が挙げられる。上記有機過酸化物として、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート等が挙げられる。上記アゾ化合物として、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等が挙げられる。これらの重合開始剤は単独で用いられてもよく、2種以上が併用されてもよい。
In order to obtain the functional group-containing (meth) acrylic polymer, the raw material monomer may be subjected to a radical reaction in the presence of a polymerization initiator. As a method of radically reacting the raw material monomer, that is, a polymerization method, a conventionally known method is used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, and bulk polymerization.
The polymerization initiator used in the radical reaction for obtaining the functional group-containing (meth) acrylic polymer is not particularly limited, and examples thereof include organic peroxides and azo compounds. Examples of the organic peroxide include 1,1-bis (t-hexyl peroxy) -3,3,5-trimethylcyclohexane, t-hexyl peroxypivalate, t-butylperoxypivalate, 2,5. -Dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy Examples thereof include isobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate and t-butylperoxylaurate. Examples of the azo compound include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or in combination of two or more.
上記光硬化型粘着剤層は、光重合開始剤を含有することが好ましい。上記光重合開始剤は、例えば、250~800nmの波長の光を照射することにより活性化されるものが挙げられる。このような光重合開始剤としては、例えば、メトキシアセトフェノン等のアセトフェノン誘導体化合物や、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル系化合物や、ベンジルジメチルケタール、アセトフェノンジエチルケタール等のケタール誘導体化合物や、フォスフィンオキシド誘導体化合物が挙げられる。また、ビス(η5-シクロペンタジエニル)チタノセン誘導体化合物、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、トデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等も挙げられる。これらの光重合開始剤は単独で用いられてもよく、2種以上が併用されてもよい。 The photocurable pressure-sensitive adhesive layer preferably contains a photopolymerization initiator. Examples of the photopolymerization initiator include those that are activated by irradiating light having a wavelength of 250 to 800 nm. Examples of such a photopolymerization initiator include acetphenone derivative compounds such as methoxyacetophenone, benzoin ether compounds such as benzoin propyl ether and benzoin isobutyl ether, ketal derivative compounds such as benzyl dimethyl ketal and acetophenone diethyl ketal, and the like. Examples include phosphine oxide derivative compounds. Further, bis (η5-cyclopentadienyl) titanosen derivative compound, benzophenone, Michler ketone, chlorothioxanthone, todecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, α-hydroxycyclohexylphenylketone, 2-hydroxymethylphenylpropane and the like can also be mentioned. These photopolymerization initiators may be used alone or in combination of two or more.
上記熱硬化型粘着剤層は、熱重合開始剤を含有することが好ましい。上記熱重合開始剤としては、熱により分解し、重合硬化を開始する活性ラジカルを発生するものが挙げられる。具体的には、例えば、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエール、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド等が挙げられる。
上記熱重合開始剤の市販品は特に限定されないが、例えば、パーブチルD、パーブチルH、パーブチルP、パーペンタH(以上いずれも日油社製)等が挙げられる。これらの熱重合開始剤は単独で用いられてもよく、2種以上が併用されてもよい。
The thermosetting pressure-sensitive adhesive layer preferably contains a thermal polymerization initiator. Examples of the thermal polymerization initiator include those that generate active radicals that are decomposed by heat to initiate polymerization curing. Specifically, for example, dicumyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoale, t-butylhydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, etc. Examples thereof include paramentan hydroperoxide and di-t-butyl peroxide.
Commercially available products of the thermal polymerization initiator are not particularly limited, and examples thereof include perbutyl D, perbutyl H, perbutyl P, and perpenta H (all of which are manufactured by NOF CORPORATION). These thermal polymerization initiators may be used alone or in combination of two or more.
上記粘着剤層は、更に、ラジカル重合性の多官能オリゴマー又はモノマーを含有していてもよい。ラジカル重合性の多官能オリゴマー又はモノマーを含有することにより、上記粘着剤層の光硬化性及び熱硬化性が向上する。
上記多官能オリゴマー又はモノマーは特に限定されないが、重量平均分子量が1万以下であることが好ましい。光照射又は加熱による上記粘着剤層の三次元網状化が効率よくなされることから、上記多官能オリゴマー又はモノマーは、重量平均分子量が5000以下でかつ分子内のラジカル重合性の不飽和結合の数が2~20個であることが好ましい。
The pressure-sensitive adhesive layer may further contain a radically polymerizable polyfunctional oligomer or monomer. By containing a radically polymerizable polyfunctional oligomer or monomer, the photocurability and thermosetting property of the pressure-sensitive adhesive layer are improved.
The polyfunctional oligomer or monomer is not particularly limited, but the weight average molecular weight is preferably 10,000 or less. Since the three-dimensional network of the pressure-sensitive adhesive layer is efficiently formed by light irradiation or heating, the polyfunctional oligomer or monomer has a weight average molecular weight of 5000 or less and the number of radically polymerizable unsaturated bonds in the molecule. Is preferably 2 to 20.
上記多官能オリゴマー又はモノマーとして、例えば、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、及び、これらのメタクリレート等が挙げられる。また、上記多官能オリゴマー又はモノマーとしては、例えば、1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、市販のオリゴエステルアクリレート、及び、これらのメタクリレート等も挙げられる。これらの多官能オリゴマー又はモノマーは単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the polyfunctional oligomer or monomer include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and the like. Examples thereof include methacrylate. Examples of the polyfunctional oligomer or monomer include 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, and methacrylates thereof. Be done. These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
上記粘着剤層は、更に、ヒュームドシリカ等の無機フィラーを含有してもよい。無機フィラーを含有することにより、上記粘着剤層の凝集力が上がり、上記半導体加工用粘着テープの剥離性が向上するため、半導体パッケージのピックアップをより良好に行うことができる。 The pressure-sensitive adhesive layer may further contain an inorganic filler such as fumed silica. By containing the inorganic filler, the cohesive force of the pressure-sensitive adhesive layer is increased, and the peelability of the pressure-sensitive adhesive tape for semiconductor processing is improved, so that the semiconductor package can be picked up better.
上記粘着剤層は、架橋剤を含有することが好ましい。架橋剤を含有することにより、上記粘着剤層の凝集力が上がり、上記半導体加工用粘着テープの剥離性が向上するため、半導体パッケージのピックアップをより良好に行うことができる。
上記架橋剤は特に限定されず、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。なかでも、より粘着力が高まることから、イソシアネート系架橋剤が好ましい。
The pressure-sensitive adhesive layer preferably contains a cross-linking agent. By containing the cross-linking agent, the cohesive force of the pressure-sensitive adhesive layer is increased, and the peelability of the pressure-sensitive adhesive tape for semiconductor processing is improved, so that the semiconductor package can be picked up better.
The above-mentioned cross-linking agent is not particularly limited, and examples thereof include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, aziridine-based cross-linking agents, and metal chelate-based cross-linking agents. Of these, isocyanate-based cross-linking agents are preferable because they have higher adhesive strength.
上記架橋剤の含有量は、上記粘着剤層を構成する粘着剤100重量部に対して0.1重量部以上、20重量部以下であることが好ましい。上記架橋剤の含有量が上記範囲内であることにより、上記粘着剤を適度に架橋して、粘着力を高めることができる。粘着力をより高める観点から、上記架橋剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は15重量部であり、更に好ましい下限は1.0重量部、更に好ましい上限は10重量部である。 The content of the cross-linking agent is preferably 0.1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer. When the content of the cross-linking agent is within the above range, the pressure-sensitive adhesive can be appropriately cross-linked to increase the adhesive strength. From the viewpoint of further enhancing the adhesive strength, the more preferable lower limit of the content of the cross-linking agent is 0.5 parts by weight, the more preferable upper limit is 15 parts by weight, the further preferable lower limit is 1.0 part by weight, and the further preferable upper limit is 10. It is a part by weight.
上記粘着剤層は、可塑剤、樹脂、界面活性剤、ワックス、微粒子充填剤等の公知の添加剤を含有してもよい。これらの添加剤は単独で用いられてもよく、2種以上が併用されてもよい。 The pressure-sensitive adhesive layer may contain known additives such as plasticizers, resins, surfactants, waxes, and fine particle fillers. These additives may be used alone or in combination of two or more.
上記粘着剤層は、23℃における貯蔵弾性率が8.5×10Pa以上、1.7×10Pa以下であることが好ましい。上記粘着剤層の23℃における貯蔵弾性率が上記範囲内であることにより、充分な粘着力で被着体に貼付でき、被着体を充分に固定できる。また、上記半導体加工用粘着テープの剥離性が向上するため、半導体パッケージのピックアップをより良好に行うことができる。粘着力及び剥離性を良好にする観点から、上記粘着剤層の23℃における貯蔵弾性率は1.7×10Pa以上であることがより好ましく、8.5×10Pa以上であることが更に好ましく、1.7×10Pa以下であることがより好ましく、8.5×10Pa以下であることが更に好ましい。
なお、上記粘着剤が硬化型粘着剤である場合、上記粘着剤層の貯蔵弾性率は、硬化後のものを指す。熱硬化型粘着剤の場合、120℃で1時間加熱し、かつ、その後175℃で1時間加熱した後の状態を硬化後とし、光硬化型粘着剤の場合、超高圧水銀紫外線照射器を用いて405nmの紫外線を積算強度が2500mJ/cmとなるように基材側から粘着剤層に照射した後の状態を硬化後とする。
上記粘着剤層の23℃における貯蔵弾性率を測定する方法としては、例えば、動的粘弾性測定等の方法が挙げられる。より具体的には、粘弾性スペクトロメーター(例えば、DVA-200、アイティー計測制御社製等)を用いて、定速昇温引張モード、昇温速度10℃/分、周波数10Hzの条件で測定することができる。
The pressure-sensitive adhesive layer preferably has a storage elastic modulus at 23 ° C. of 8.5 × 10 5 Pa or more and 1.7 × 10 9 Pa or less. When the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. is within the above range, the pressure-sensitive adhesive layer can be attached to the adherend with sufficient adhesive strength, and the adherend can be sufficiently fixed. Further, since the peelability of the adhesive tape for semiconductor processing is improved, the semiconductor package can be picked up better. From the viewpoint of improving the adhesive strength and the peelability, the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. is more preferably 1.7 × 10 6 Pa or more, and more preferably 8.5 × 10 6 Pa or more. Is more preferable, and it is more preferably 1.7 × 10 8 Pa or less, and further preferably 8.5 × 10 7 Pa or less.
When the pressure-sensitive adhesive is a curable pressure-sensitive adhesive, the storage elastic modulus of the pressure-sensitive adhesive layer refers to that after curing. In the case of a thermosetting adhesive, the state after heating at 120 ° C. for 1 hour and then at 175 ° C. for 1 hour is defined as after curing, and in the case of a photocurable adhesive, an ultrahigh pressure mercury ultraviolet irradiation device is used. The state after irradiating the pressure-sensitive adhesive layer with ultraviolet rays of 405 nm from the base material side so that the integrated intensity becomes 2500 mJ / cm 2 is defined as after curing.
Examples of the method for measuring the storage elastic modulus of the pressure-sensitive adhesive layer at 23 ° C. include a method such as dynamic viscoelasticity measurement. More specifically, it is measured using a viscoelastic spectrometer (for example, DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a constant speed temperature rise tension mode, a temperature rise rate of 10 ° C./min, and a frequency of 10 Hz. can do.
上記粘着剤層の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は500μmである。上記粘着剤層の厚みが上記範囲内であることにより、充分な粘着力で被着体に貼付でき、被着体を充分に固定できる。粘着力を良好にする観点から、上記粘着剤層の厚みのより好ましい下限は10μm、より好ましい上限は300μmであり、更に好ましい下限は15μm、更に好ましい上限は250μmであり、更により好ましい上限は200μmである。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, but a preferable lower limit is 5 μm and a preferable upper limit is 500 μm. When the thickness of the pressure-sensitive adhesive layer is within the above range, it can be attached to the adherend with sufficient adhesive strength, and the adherend can be sufficiently fixed. From the viewpoint of improving the adhesive strength, the more preferable lower limit of the thickness of the pressure-sensitive adhesive layer is 10 μm, the more preferable upper limit is 300 μm, the further preferable lower limit is 15 μm, the further preferable upper limit is 250 μm, and the further preferable upper limit is 200 μm. Is.
上記半導体加工用粘着テープが貼付された半導体パッケージを得る方法は特に限定されないが、上記工程(1)の前に、次の工程(1-1)及び(1-2)を行うことにより上記半導体加工用粘着テープが貼付された半導体パッケージを得る方法が好ましい。
即ち、上記工程(1)の前に、半導体パッケージの回路面に半導体加工用粘着テープを貼付する工程(1-1)と、上記半導体加工用粘着テープが貼付された半導体パッケージをダイシングし、個片化された上記半導体加工用粘着テープが貼付された半導体パッケージを得る工程(1-2)とを行うことが好ましい。
The method for obtaining the semiconductor package to which the adhesive tape for semiconductor processing is attached is not particularly limited, but the semiconductor is obtained by performing the following steps (1-1) and (1-2) before the step (1). A method of obtaining a semiconductor package to which a processing adhesive tape is attached is preferable.
That is, before the step (1), the step (1-1) of attaching the adhesive tape for semiconductor processing to the circuit surface of the semiconductor package and the semiconductor package to which the adhesive tape for semiconductor processing is attached are diced and individually. It is preferable to carry out the step (1-2) of obtaining a semiconductor package to which the separated adhesive tape for semiconductor processing is attached.
上記半導体加工用粘着テープを貼付する方法は特に限定されず、例えば、ラミネーターを用いる方法等が挙げられる。 The method of attaching the adhesive tape for semiconductor processing is not particularly limited, and examples thereof include a method using a laminator.
上記半導体加工用粘着テープの上記粘着剤層が光硬化型粘着剤層である場合には、上記工程(1-1)の後、上記半導体加工用粘着テープの上記粘着剤層に光を照射する工程(1-3)を行うことが好ましい。
上記半導体加工用粘着テープの上記粘着剤層に光を照射する方法としては、例えば、超高圧水銀紫外線照射器を用いて、405nmの紫外線を積算強度が2500mJ/cmとなるように基材側から粘着剤層に照射する方法が挙げられる。このときの照射強度は特に限定されないが、50~100mW/cmが好ましい。
When the pressure-sensitive adhesive layer of the adhesive tape for semiconductor processing is a photocurable pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is irradiated with light after the step (1-1). It is preferable to carry out the step (1-3).
As a method of irradiating the adhesive layer of the adhesive tape for semiconductor processing with light, for example, using an ultra-high pressure mercury ultraviolet irradiator, the base material side so as to have an integrated intensity of 405 nm ultraviolet rays of 2500 mJ / cm 2. There is a method of irradiating the pressure-sensitive adhesive layer. The irradiation intensity at this time is not particularly limited, but is preferably 50 to 100 mW / cm 2.
上記ダイシングする方法は特に限定されず、例えば、上記半導体加工用粘着テープが貼付された半導体パッケージをダイシングテープ上に仮固定し、このダイシングテープをダイシングフレームに取り付け、ダイシング装置を用いて個片化を行った後、ダイシングテープを剥がす方法が挙げられる。ダイシング装置は特に限定されず、例えば、DISCO社製のDFD6361等を用いることができる。 The dicing method is not particularly limited. For example, the semiconductor package to which the adhesive tape for semiconductor processing is attached is temporarily fixed on the dicing tape, the dicing tape is attached to the dicing frame, and the dicing device is used for individualization. After that, a method of peeling off the dicing tape can be mentioned. The dicing apparatus is not particularly limited, and for example, DFD6361 manufactured by DISCO can be used.
上記工程(1)においては、このようにして得られた上記半導体加工用粘着テープが貼付された半導体パッケージを、上記半導体加工用粘着テープ側が接するようにして仮固定テープ上に仮固定する。
上記仮固定テープは特に限定されず、半導体装置の製造方法、特にダイシング又はシールド処理時に通常用いられる仮固定用の粘着テープを用いることができる。
In the step (1), the semiconductor package to which the adhesive tape for semiconductor processing thus obtained is attached is temporarily fixed on the temporary fixing tape so that the adhesive tape for semiconductor processing is in contact with the adhesive tape.
The temporary fixing tape is not particularly limited, and a method for manufacturing a semiconductor device, particularly an adhesive tape for temporary fixing that is usually used during dicing or shielding treatment can be used.
上記仮固定テープは、銅板(JIS H3100:2018を満たす銅板、例えばC1100P、エンジニアリングテストサービス社製)に対する接着力の好ましい下限が1.0N/inch、好ましい上限が35N/inchである。上記仮固定テープの銅板に対する接着力が上記範囲内であることにより、後述するようなFb(t)/Fa(t)を調整することが容易となり、半導体パッケージのピックアップをより良好に行うことができる。また、上記銅板に対する接着力が上記下限以上であれば、仮固定テープと半導体加工用粘着テープとの界面での剥離をより抑制することができる。上記銅板に対する接着力が上記上限以下であれば、上記仮固定テープ取り扱い性が向上する。上記仮固定テープの銅板に対する接着力のより好ましい下限は4N/inch、より好ましい上限は15N/inchである。
上記仮固定テープの銅板に対する接着力の測定方法としては、例えば、次の方法が挙げられる。まず、上記仮固定テープを粘着剤層が銅板(JIS H3100:2018を満たす銅板、例えばC1100P、エンジニアリングテストサービス社製)と対向するようにして銅板上に載せる。300mm/分の速度で2kgのゴムローラーを一往復させることにより上記仮固定テープと銅板とを貼り合わせる。その後、23℃で1時間静置して試験サンプルを作製する。静置後の試験サンプルについて、JIS Z0237に準じて、オートグラフ(島津製作所社製)を用い、温度23℃、相対湿度50%の環境下で300mm/minの引張速度で180°方向に上記仮固定テープを引き剥がし、剥離力を測定する。
The temporary fixing tape has a preferable lower limit of 1.0 N / inch and a preferable upper limit of 35 N / inch in adhesive force to a copper plate (a copper plate satisfying JIS H3100: 2018, for example, C1100P, manufactured by Engineering Test Service Co., Ltd.). When the adhesive force of the temporary fixing tape to the copper plate is within the above range, it becomes easy to adjust Fb (t) / Fa (t) as described later, and the semiconductor package can be picked up better. it can. Further, when the adhesive force to the copper plate is at least the above lower limit, peeling at the interface between the temporary fixing tape and the adhesive tape for semiconductor processing can be further suppressed. When the adhesive force to the copper plate is not more than the upper limit, the handleability of the temporary fixing tape is improved. The more preferable lower limit of the adhesive force of the temporary fixing tape to the copper plate is 4 N / inch, and the more preferable upper limit is 15 N / inch.
Examples of the method for measuring the adhesive force of the temporary fixing tape to the copper plate include the following methods. First, the temporary fixing tape is placed on the copper plate so that the adhesive layer faces the copper plate (a copper plate satisfying JIS H3100: 2018, for example, C1100P, manufactured by Engineering Test Service Co., Ltd.). The temporary fixing tape and the copper plate are bonded together by reciprocating a 2 kg rubber roller once at a speed of 300 mm / min. Then, it is allowed to stand at 23 degreeC for 1 hour to prepare a test sample. For the test sample after standing, the above provisional test sample was used in the 180 ° direction at a tensile speed of 300 mm / min in an environment of a temperature of 23 ° C. and a relative humidity of 50% using an autograph (manufactured by Shimadzu Corporation) according to JIS Z0237. Peel off the fixing tape and measure the peeling force.
上記仮固定テープは、基材と、上記基材の一方の面に積層された粘着剤層とを有することが好ましい。
上記仮固定テープの粘着剤層は特に限定されないが、シリコーン粘着剤層であることが好ましい。上記シリコーン粘着剤層を有することにより、上記仮固定テープの耐熱性が向上する。上記シリコーン粘着剤層を構成するシリコーン化合物は特に限定されず、例えば、ポリシロキサン、付加硬化型シリコーン、過酸化物硬化型シリコーン等が挙げられる。
The temporary fixing tape preferably has a base material and an adhesive layer laminated on one surface of the base material.
The pressure-sensitive adhesive layer of the temporary fixing tape is not particularly limited, but is preferably a silicone pressure-sensitive adhesive layer. By having the silicone pressure-sensitive adhesive layer, the heat resistance of the temporary fixing tape is improved. The silicone compound constituting the silicone pressure-sensitive adhesive layer is not particularly limited, and examples thereof include polysiloxane, addition-curable silicone, and peroxide-curable silicone.
上記仮固定テープの粘着剤層の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は500μmである。上記仮固定テープの粘着剤層の厚みが上記範囲内であることにより、充分な粘着力で被着体に貼付でき、被着体を充分に固定できる。粘着力を良好にする観点から、上記仮固定テープの粘着剤層の厚みのより好ましい下限は10μm、より好ましい上限は300μmであり、更に好ましい下限は15μm、更に好ましい上限は250μmであり、更により好ましい上限は200μmである。 The thickness of the pressure-sensitive adhesive layer of the temporary fixing tape is not particularly limited, but the preferable lower limit is 5 μm and the preferable upper limit is 500 μm. When the thickness of the pressure-sensitive adhesive layer of the temporary fixing tape is within the above range, it can be attached to the adherend with sufficient adhesive force, and the adherend can be sufficiently fixed. From the viewpoint of improving the adhesive strength, the more preferable lower limit of the thickness of the pressure-sensitive adhesive layer of the temporary fixing tape is 10 μm, the more preferable upper limit is 300 μm, the further preferable lower limit is 15 μm, the further preferable upper limit is 250 μm, and further. The preferred upper limit is 200 μm.
上記仮固定テープの基材の材料は特に制限されないが、耐熱性の材料であることが好ましい。
上記仮固定テープの基材の材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレン、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、液晶ポリマー等が挙げられる。なかでも、耐熱性に優れることから、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましい。
The material of the base material of the temporary fixing tape is not particularly limited, but a heat-resistant material is preferable.
Examples of the material of the base material of the temporary fixing tape include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultrahigh molecular weight polyethylene, syndiotactic polystyrene, polyallylate, polysulfone, and poly. Examples thereof include ether sulfone, polyphenylene sulfide, polyether ether ketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like. Of these, polyimide, polyethylene terephthalate, and polyethylene naphthalate are preferable because of their excellent heat resistance.
上記仮固定テープの基材の厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は200μmである。上記仮固定テープの基材の厚みが上記範囲内であることにより、適度なコシがあって、取り扱い性に優れる仮固定テープとすることができる。上記仮固定テープの基材の厚みのより好ましい下限は10μm、より好ましい上限は150μmである。 The thickness of the base material of the temporary fixing tape is not particularly limited, but the preferable lower limit is 5 μm and the preferable upper limit is 200 μm. When the thickness of the base material of the temporary fixing tape is within the above range, it is possible to obtain a temporary fixing tape having an appropriate elasticity and excellent handleability. The more preferable lower limit of the thickness of the base material of the temporary fixing tape is 10 μm, and the more preferable upper limit is 150 μm.
上記仮固定テープの市販品は特に限定されず、例えば、カプトン(登録商標)粘着テープ650R#50(テラオカ社製)等が挙げられる。 The commercially available product of the temporary fixing tape is not particularly limited, and examples thereof include Kapton (registered trademark) adhesive tape 650R # 50 (manufactured by Terraoka Co., Ltd.).
本発明の半導体装置の製造方法では、次いで、上記仮固定テープ上で、上記半導体加工用粘着テープが貼付された半導体パッケージの背面及び側面に金属膜を形成する工程(2)を行うことが好ましい。
上記金属膜を形成する方法は特に限定されず、例えば、スパッタリング等により、ステンレス、チタン、アルミ等からなる膜を形成する方法が挙げられる。
In the method for manufacturing a semiconductor device of the present invention, it is preferable to perform the step (2) of forming a metal film on the back surface and the side surface of the semiconductor package to which the adhesive tape for semiconductor processing is attached on the temporary fixing tape. ..
The method for forming the metal film is not particularly limited, and examples thereof include a method for forming a film made of stainless steel, titanium, aluminum, or the like by sputtering or the like.
上記工程(1)及び上記工程(2)を行うことにより、半導体加工用粘着テープが貼付された半導体パッケージが、上記半導体加工用粘着テープ側が接するようにして仮固定テープ上に積層されており、かつ、上記半導体加工用粘着テープが貼付された半導体パッケージの背面及び側面に金属膜が形成されている半導体加工用積層体を得ることができる。
本発明の半導体装置の製造方法では、このような半導体加工用積層体において、背面及び側面に金属膜が形成された半導体パッケージを上記半導体加工用粘着テープからピックアップする工程(3)を行う。これにより、背面及び側面に金属膜が形成された半導体パッケージを得ることができる。
By performing the above steps (1) and (2), the semiconductor package to which the semiconductor processing adhesive tape is attached is laminated on the temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with each other. Moreover, it is possible to obtain a semiconductor processing laminate in which metal films are formed on the back surface and the side surface of the semiconductor package to which the semiconductor processing adhesive tape is attached.
In the method for manufacturing a semiconductor device of the present invention, in such a laminate for semiconductor processing, a step (3) of picking up a semiconductor package having a metal film formed on the back surface and the side surface from the adhesive tape for semiconductor processing is performed. This makes it possible to obtain a semiconductor package in which a metal film is formed on the back surface and the side surface.
上記工程(3)においては、下記式(1)を満たす温度Tに加熱された状態で上記背面及び側面に金属膜が形成された半導体パッケージをピックアップする。
100<{Fb(T)/Fa(T)}  (1)
式(1)中、Fa(t)は、温度tにおける半導体加工用粘着テープの銅板に対する剥離力を表し、Fa(T)は、Fa(t)の温度t=Tにおける値を表し、Fb(t)は、温度tにおける仮固定テープの半導体加工用粘着テープに対する剥離力を表し、Fb(T)は、Fb(t)の温度t=Tにおける値を表す。
なお、半導体加工用粘着テープが片面サポートタイプである場合、Fb(t)は、温度tにおける仮固定テープの半導体加工用粘着テープの基材背面に対する剥離力を表す。
In the step (3), the semiconductor package having the metal film formed on the back surface and the side surface is picked up in a state of being heated to the temperature T 1 satisfying the following formula (1).
100 << {Fb (T 1 ) / Fa (T 1 )} (1)
In the formula (1), Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t, and Fa (T 1 ) represents the value of Fa (t) at the temperature t = T 1. Fb (t) represents the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t, and Fb (T 1 ) represents the value of Fb (t) at the temperature t = T 1.
When the adhesive tape for semiconductor processing is a single-sided support type, Fb (t) represents the peeling force of the temporarily fixed tape at the temperature t with respect to the back surface of the adhesive tape for semiconductor processing.
上記Fa(t)は、「温度tにおける半導体加工用粘着テープの被着体(標準的な銅板とする)に対する接着力」を表す指標である。上記Fb(t)は、「温度tにおける仮固定テープの半導体加工用粘着テープに対する接着力」(半導体加工用粘着テープが片面サポートタイプである場合、温度tにおける仮固定テープの半導体加工用粘着テープの基材背面に対する接着力)を表す指標である。これらの接着力はいずれも加熱により低下するが、その低下の度合いは異なっており、上記Fb(t)に比べて上記Fa(t)のほうが加熱により大きく低下する傾向にある。即ち、上記Fb(t)/Fa(t)は、tの増加に伴って増加する傾向にある。
上記工程(3)においては、上記Fb(t)/Fa(t)が上記範囲を満たすような温度に加熱された状態で半導体パッケージをピックアップすることで、上記Fb(t)に比べて上記Fa(t)を大きく低下させることができる。これにより、仮固定テープと半導体加工用粘着テープとの界面での剥離を抑制し、半導体パッケージのピックアップを良好に行うことができる。
なお、標準的な銅板とは、JIS H3100:2018を満たす銅板(例えばC1100P、エンジニアリングテストサービス社製)を意味する。
The Fa (t) is an index representing "adhesive force of the adhesive tape for semiconductor processing to an adherend (used as a standard copper plate) at a temperature t". The Fb (t) is "adhesive force of the temporary fixing tape to the semiconductor processing adhesive tape at temperature t" (when the semiconductor processing adhesive tape is a single-sided support type, the temporary fixing tape adhesive tape for semiconductor processing at temperature t). It is an index showing the adhesive force to the back surface of the base material. All of these adhesive strengths are reduced by heating, but the degree of the reduction is different, and the Fa (t) tends to be significantly reduced by heating as compared with the Fb (t). That is, the Fb (t) / Fa (t) tends to increase as t increases.
In the step (3), by picking up the semiconductor package in a state where the Fb (t) / Fa (t) is heated to a temperature that satisfies the above range, the Fa is compared with the Fb (t). (T) can be greatly reduced. As a result, peeling at the interface between the temporary fixing tape and the adhesive tape for semiconductor processing can be suppressed, and the semiconductor package can be picked up satisfactorily.
The standard copper plate means a copper plate satisfying JIS H3100: 2018 (for example, C1100P, manufactured by Engineering Test Service Co., Ltd.).
上記工程(3)においては、上記Fb(t)/Fa(t)が上記範囲(即ち、100を超える)を満たすような温度に加熱された状態で半導体パッケージをピックアップすればよいが、上記Fb(t)/Fa(t)が103以上となるような温度に加熱された状態で半導体パッケージをピックアップすることが好ましい。更に、上記Fb(t)/Fa(t)が150以上となるような温度に加熱された状態で半導体パッケージをピックアップすることがより好ましい。更に、上記Fb(t)/Fa(t)が200以上となるような温度に加熱された状態で半導体パッケージをピックアップすることが更に好ましい。上記Fb(t)/Fa(t)の上限は特に限定されないが、実質的な上限は例えば1500であり、より好ましい上限は750である。 In the step (3), the semiconductor package may be picked up in a state where the Fb (t) / Fa (t) is heated to a temperature that satisfies the above range (that is, exceeds 100). It is preferable to pick up the semiconductor package in a state of being heated to a temperature such that (t) / Fa (t) is 103 or more. Further, it is more preferable to pick up the semiconductor package in a state where the Fb (t) / Fa (t) is heated to a temperature of 150 or more. Further, it is more preferable to pick up the semiconductor package in a state where the Fb (t) / Fa (t) is heated to a temperature of 200 or more. The upper limit of Fb (t) / Fa (t) is not particularly limited, but a substantial upper limit is, for example, 1500, and a more preferable upper limit is 750.
上記Fa(t)の温度Tにおける値(Fa(T))は特に限定されないが、好ましい下限は0.001N/inch、好ましい上限は0.5N/inchである。上記Fa(T)が上記範囲内であることにより、半導体パッケージのピックアップをより良好に行うことができる。上記Fa(T)のより好ましい下限は0.005N/inch、更に好ましい下限は0.01N/inch、より好ましい上限は0.1N/inch、更に好ましい上限は0.07N/inchである。 The value (Fa (T 1 )) of the Fa (t) at the temperature T 1 is not particularly limited, but the preferable lower limit is 0.001 N / inch and the preferable upper limit is 0.5 N / inch. When the Fa (T 1 ) is within the above range, the pickup of the semiconductor package can be performed better. The more preferable lower limit of Fa (T 1 ) is 0.005 N / inch, the more preferable lower limit is 0.01 N / inch, the more preferable upper limit is 0.1 N / inch, and the further preferable upper limit is 0.07 N / inch.
上記Fb(t)の温度Tにおける値(Fb(T))は特に限定されないが、好ましい下限は1N/inch、より好ましい下限は5N/inch、更に好ましい下限は10N/inch、更により好ましい下限は15N/inchである。上記Fb(T)が上記下限以上であることにより、半導体パッケージのピックアップをより良好に行うことができる。上記Fb(t)の温度Tにおける値(Fb(T))の上限は特に限定されないが、実質的な上限は例えば50N/inchであり、より好ましい上限は20N/inchである。 The value (Fb (T 1 )) of the Fb (t) at the temperature T 1 is not particularly limited, but a preferable lower limit is 1 N / inch, a more preferable lower limit is 5 N / inch, a further preferable lower limit is 10 N / inch, and even more preferable. The lower limit is 15 N / inch. When the Fb (T 1 ) is at least the above lower limit, the pickup of the semiconductor package can be performed better. The upper limit of the value (Fb (T 1 )) of the Fb (t) at the temperature T 1 is not particularly limited, but the actual upper limit is, for example, 50 N / inch, and the more preferable upper limit is 20 N / inch.
上記Fa(t)の23℃における値(Fa(23℃))は特に限定されないが、好ましい下限は0.04N/inch、好ましい上限は1.5N/inchである。上記Fa(23℃)が上記範囲内であることにより、上記Fb(t)/Fa(t)を調整することが容易となり、半導体パッケージのピックアップをより良好に行うことができる。上記Fa(23℃)のより好ましい下限は0.1N/inch、より好ましい上限は1N/inchである。 The value of Fa (t) at 23 ° C. (Fa (23 ° C.)) is not particularly limited, but a preferable lower limit is 0.04 N / inch and a preferable upper limit is 1.5 N / inch. When the Fa (23 ° C.) is within the above range, the Fb (t) / Fa (t) can be easily adjusted, and the pickup of the semiconductor package can be performed better. The more preferable lower limit of Fa (23 ° C.) is 0.1 N / inch, and the more preferable upper limit is 1 N / inch.
上記Fb(t)の23℃における値(Fb(23℃))は特に限定されないが、好ましい下限は3N/inch、好ましい上限は30N/inchである。上記Fb(23℃)が上記範囲内であることにより、上記Fb(t)/Fa(t)を調整することが容易となり、半導体パッケージのピックアップをより良好に行うことができる。上記Fb(23℃)のより好ましい下限は5N/inch、より好ましい上限は7N/inchである。 The value of Fb (t) at 23 ° C. (Fb (23 ° C.)) is not particularly limited, but a preferable lower limit is 3 N / inch and a preferable upper limit is 30 N / inch. When the Fb (23 ° C.) is within the above range, the Fb (t) / Fa (t) can be easily adjusted, and the pickup of the semiconductor package can be performed better. The more preferable lower limit of Fb (23 ° C.) is 5 N / inch, and the more preferable upper limit is 7 N / inch.
上記温度Tの具体的な値は特に限定されないが、半導体パッケージのピックアップを行う際の通常の温度を考慮すると、好ましい下限は25℃、好ましい上限は200℃であり、より好ましい下限は50℃、より好ましい上限は150℃である。
上記温度Tに加熱された状態で半導体パッケージをピックアップする方法は特に限定されず、例えば、ダイボンダー装置を用いて、温風を当てることで温度Tに加熱しながらピックアップする方法、温度T以上に加熱した後に温度Tに保った状態でピックアップする方法等が挙げられる。
The specific value of the temperature T 1 is not particularly limited, but considering the normal temperature when picking up the semiconductor package, the preferable lower limit is 25 ° C, the preferable upper limit is 200 ° C, and the more preferable lower limit is 50 ° C. A more preferable upper limit is 150 ° C.
The method of picking up the semiconductor package while being heated to the temperature T 1 is not particularly limited. For example, a method of picking up the semiconductor package while heating to the temperature T 1 by applying warm air using a die bonder device, the temperature T 1 Examples thereof include a method of picking up the product while keeping the temperature at T 1 after heating.
上記Fa(t)の測定方法としては、例えば、次の方法が挙げられる。まず、上記半導体加工用粘着テープを粘着剤層がJIS H3100:2018を満たす銅板(例えばC1100P、エンジニアリングテストサービス社製)に対向するようにして銅板上に載せる。600mm/分の速度で2kgのゴムローラーを一往復させることにより上記半導体加工用粘着テープと銅板とを貼り合わせる。上記半導体加工用粘着テープの背面(基材側)の温度を温度測定用センサー(例えば、安立計器社製、A-231K-01-1-TC1-ANP等)で測定しつつ、積層体を加熱する。オートグラフ(島津製作所社製)を用い、温度tに加熱した積層体の上記半導体加工用粘着テープを、温度t、湿度50%の環境下で300mm/minの引張速度で180°方向に引き剥がし、剥離力を測定する。
なお、半導体加工用粘着テープの被着体としての銅板とは、JIS H3100:2018を満たす銅板(例えば、C1100P、エンジニアリングテストサービス社製)を意味し、半導体パッケージの回路面を想定して選択されたものである。
Examples of the method for measuring Fa (t) include the following methods. First, the adhesive tape for semiconductor processing is placed on the copper plate so that the adhesive layer faces a copper plate (for example, C1100P, manufactured by Engineering Test Service Co., Ltd.) satisfying JIS H3100: 2018. The above-mentioned adhesive tape for semiconductor processing and a copper plate are bonded together by reciprocating a 2 kg rubber roller once at a speed of 600 mm / min. The laminate is heated while measuring the temperature of the back surface (base material side) of the adhesive tape for semiconductor processing with a temperature measurement sensor (for example, A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.). To do. Using an autograph (manufactured by Shimadzu Corporation), the adhesive tape for semiconductor processing of the laminate heated to temperature t is peeled off in the 180 ° direction at a tensile speed of 300 mm / min in an environment of temperature t and humidity of 50%. , Measure the peeling force.
The copper plate as the adherend of the adhesive tape for semiconductor processing means a copper plate satisfying JIS H3100: 2018 (for example, C1100P, manufactured by Engineering Test Service Co., Ltd.), and is selected assuming the circuit surface of the semiconductor package. It is a thing.
上記Fb(t)の測定方法としては、例えば、次の方法が挙げられる。まず、上記半導体加工用粘着テープの粘着剤層と銅板(C1100P)とを対向させ、両面テープ(積水化学社製両面テープ560、又はその同等品)を用いて貼り合わせる。上記仮固定テープを粘着剤層が上記半導体加工用粘着テープの基材背面と対向するようにして上記半導体加工用粘着テープ上に載せる。300mm/分の速度で2kgのゴムローラーを一往復させることにより上記仮固定テープと上記半導体加工用粘着テープとを貼り合わせる。上記仮固定テープの背面(基材側)の温度を温度測定用センサー(例えば、安立計器社製、A-231K-01-1-TC1-ANP等)で測定しつつ、積層体を加熱する。オートグラフ(島津製作所社製)を用い、温度tに加熱した積層体の上記仮固定テープを、温度t、相対湿度50%の環境下で300mm/minの引張速度で180°方向に引き剥がし、剥離力を測定する。
得られた上記Fa(t)及び上記Fb(t)から、上記Fb(t)/Fa(t)を算出することができる。
Examples of the method for measuring Fb (t) include the following methods. First, the adhesive layer of the adhesive tape for semiconductor processing and the copper plate (C1100P) are opposed to each other, and are bonded using a double-sided tape (double-sided tape 560 manufactured by Sekisui Chemical Co., Ltd. or its equivalent). The temporary fixing tape is placed on the semiconductor processing adhesive tape so that the adhesive layer faces the back surface of the base material of the semiconductor processing adhesive tape. The temporary fixing tape and the adhesive tape for semiconductor processing are bonded together by reciprocating a 2 kg rubber roller once at a speed of 300 mm / min. The laminate is heated while measuring the temperature of the back surface (base material side) of the temporary fixing tape with a temperature measuring sensor (for example, A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.). Using an autograph (manufactured by Shimadzu Corporation), the temporary fixing tape of the laminate heated to a temperature t was peeled off in the 180 ° direction at a tensile speed of 300 mm / min in an environment of a temperature t and a relative humidity of 50%. Measure the peeling force.
From the obtained Fa (t) and Fb (t), the Fb (t) / Fa (t) can be calculated.
上記半導体加工用粘着テープの上記粘着剤層が光硬化型粘着剤層である場合、上記Fa(t)は、上記半導体加工用粘着テープを銅板に貼付した後であってかつ温度tに加熱する前に、上記半導体加工用粘着テープの上記粘着剤層に光を照射し、該粘着剤層を硬化させてから測定される。
上記半導体加工用粘着テープの上記粘着剤層に光を照射する方法としては、例えば、超高圧水銀紫外線照射器を用いて、405nmの紫外線を積算強度が2500mJ/cmとなるように基材側から粘着剤層照射する方法が挙げられる。このときの照射強度は特に限定されないが、50~100mW/cmが好ましい。
When the pressure-sensitive adhesive layer of the semiconductor processing adhesive tape is a photocurable pressure-sensitive adhesive layer, the Fa (t) is heated to a temperature t after the semiconductor processing pressure-sensitive adhesive tape is attached to a copper plate. Before, the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing is irradiated with light to cure the pressure-sensitive adhesive layer, and then the measurement is performed.
As a method of irradiating the adhesive layer of the adhesive tape for semiconductor processing with light, for example, using an ultra-high pressure mercury ultraviolet irradiator, the base material side so as to have an integrated intensity of 405 nm ultraviolet rays of 2500 mJ / cm 2. A method of irradiating the pressure-sensitive adhesive layer with The irradiation intensity at this time is not particularly limited, but is preferably 50 to 100 mW / cm 2.
上記Fb(t)/Fa(t)を調整するためには、上記Fa(t)及び上記Fb(t)のそれぞれの具体的な値を調整すればよい。
上記Fa(t)を調整する方法としては、温度tを調整する方法のほかにも、例えば、上記半導体加工用粘着テープの粘着剤層の種類、組成、物性等を上述のように調整する方法が挙げられる。上記Fb(t)を上記範囲に調整する方法としては、温度tを調整する方法のほかにも、例えば、上記半導体加工用粘着テープの基材の種類、組成、物性等を上述のように調整する方法、上記半導体加工用粘着テープの基材の粘着剤層とは反対側の表面、即ち、背面に上述したような易接着層を形成する方法が挙げられる。また、上記仮固定テープの粘着剤層の種類、組成、物性等を調整する方法も挙げられる。
In order to adjust the Fb (t) / Fa (t), the specific values of the Fa (t) and the Fb (t) may be adjusted.
As a method for adjusting the Fa (t), in addition to the method for adjusting the temperature t, for example, a method for adjusting the type, composition, physical properties, etc. of the adhesive layer of the adhesive tape for semiconductor processing as described above. Can be mentioned. As a method for adjusting the Fb (t) within the above range, in addition to the method for adjusting the temperature t, for example, the type, composition, physical properties, etc. of the base material of the adhesive tape for semiconductor processing are adjusted as described above. Examples thereof include a method of forming an easy-adhesive layer as described above on the surface opposite to the pressure-sensitive adhesive layer of the base material of the pressure-sensitive adhesive tape for semiconductor processing, that is, on the back surface. Further, a method of adjusting the type, composition, physical properties and the like of the pressure-sensitive adhesive layer of the temporary fixing tape can also be mentioned.
図1に、本発明の半導体装置の製造方法の一例を模式的に示す図を示す。以下、図1を参照しながら、本発明の半導体装置の製造方法について説明する。
なお、図1において半導体加工用粘着テープ2は基材2bと、該基材2bの一方の面に積層された粘着剤層2aとを有する片面サポートタイプであるが、本発明の半導体装置の製造方法において、半導体加工用粘着テープ2は、基材2bを有さないノンサポートタイプであってもよい。
FIG. 1 shows a diagram schematically showing an example of a method for manufacturing a semiconductor device of the present invention. Hereinafter, the method for manufacturing the semiconductor device of the present invention will be described with reference to FIG.
Although the adhesive tape 2 for semiconductor processing in FIG. 1 is a single-sided support type having a base material 2b and an adhesive layer 2a laminated on one surface of the base material 2b, the manufacturing of the semiconductor device of the present invention. In the method, the adhesive tape 2 for semiconductor processing may be a non-support type having no base material 2b.
本発明の半導体装置の製造方法では、まず、図1(a)に示すように、半導体パッケージ4の回路面に半導体加工用粘着テープ2を貼付する工程(1-1)を行ってもよい。
上記半導体加工用粘着テープの上記粘着剤層が光硬化型粘着剤層である場合には、上記工程(1-1)の後、上記半導体加工用粘着テープの上記粘着剤層に光を照射する工程(1-3)を行うことが好ましい(図示しない)。
本発明の半導体装置の製造方法では、次いで、図1(b)に示すように、半導体加工用粘着テープ2が貼付された半導体パッケージ4をダイシングし、個片化された半導体加工用粘着テープ2が貼付された半導体パッケージ4を得る工程(1-2)を行ってもよい。
In the method for manufacturing a semiconductor device of the present invention, first, as shown in FIG. 1A, the step (1-1) of attaching the semiconductor processing adhesive tape 2 to the circuit surface of the semiconductor package 4 may be performed.
When the pressure-sensitive adhesive layer of the semiconductor processing adhesive tape is a photocurable pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer of the semiconductor processing pressure-sensitive adhesive tape is irradiated with light after the step (1-1). It is preferable to carry out step (1-3) (not shown).
In the method for manufacturing a semiconductor device of the present invention, then, as shown in FIG. 1 (b), the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached is diced and the semiconductor processing adhesive tape 2 is separated into individual pieces. The step (1-2) of obtaining the semiconductor package 4 to which is affixed may be performed.
本発明の半導体装置の製造方法では、次いで、図1(c)に示すように、半導体加工用粘着テープ2が貼付された半導体パッケージ4を、半導体加工用粘着テープ2側が接するようにして仮固定テープ3上に仮固定する工程(1)を行ってもよい。 In the method for manufacturing a semiconductor device of the present invention, then, as shown in FIG. 1C, the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached is temporarily fixed so that the semiconductor processing adhesive tape 2 side is in contact with the semiconductor package 4. The step (1) of temporarily fixing on the tape 3 may be performed.
本発明の半導体装置の製造方法では、次いで、図1(d)に示すように、仮固定テープ3上で、半導体加工用粘着テープ2が貼付された半導体パッケージ4の背面及び側面に金属膜5を形成する工程(2)を行ってもよい。 In the method for manufacturing a semiconductor device of the present invention, then, as shown in FIG. 1D, a metal film 5 is formed on the back surface and the side surface of the semiconductor package 4 to which the adhesive tape 2 for semiconductor processing is attached on the temporary fixing tape 3. (2) may be performed.
図1(a)~図1(d)に示す工程を行うことにより、半導体加工用粘着テープ2が貼付された半導体パッケージ4が、半導体加工用粘着テープ2側が接するようにして仮固定テープ3上に積層されており、かつ、半導体加工用粘着テープ2が貼付された半導体パッケージ4の背面及び側面に金属膜5が形成されている半導体加工用積層体を得ることができる。
本発明の半導体装置の製造方法では、このような半導体加工用積層体において、図1(e)に示すように、背面及び側面に金属膜5が形成された半導体パッケージ4を半導体加工用粘着テープ2からピックアップする工程(3)を行う。これにより、背面及び側面に金属膜が形成された半導体パッケージを得ることができる。
上記工程(3)においては、下記式(1)を満たす温度Tに加熱された状態で上記背面及び側面に金属膜が形成された半導体パッケージをピックアップする。
100<{Fb(T)/Fa(T)}  (1)
式(1)中、Fa(t)は、温度tにおける半導体加工用粘着テープの銅板に対する剥離力を表し、Fa(T)は、Fa(t)の温度t=Tにおける値を表し、Fb(t)は、温度tにおける仮固定テープの半導体加工用粘着テープに対する剥離力を表し、し、Fb(T)は、Fb(t)の温度t=Tにおける値を表す。
By performing the steps shown in FIGS. 1 (a) to 1 (d), the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached is placed on the temporary fixing tape 3 so that the semiconductor processing adhesive tape 2 side is in contact with the semiconductor package 4. It is possible to obtain a semiconductor processing laminate in which the metal film 5 is formed on the back surface and the side surface of the semiconductor package 4 to which the semiconductor processing adhesive tape 2 is attached.
In the method for manufacturing a semiconductor device of the present invention, in such a laminate for semiconductor processing, as shown in FIG. 1 (e), the semiconductor package 4 in which the metal film 5 is formed on the back surface and the side surface is provided with an adhesive tape for semiconductor processing. The step (3) of picking up from 2 is performed. This makes it possible to obtain a semiconductor package in which a metal film is formed on the back surface and the side surface.
In the step (3), the semiconductor package having the metal film formed on the back surface and the side surface is picked up in a state of being heated to the temperature T 1 satisfying the following formula (1).
100 << {Fb (T 1 ) / Fa (T 1 )} (1)
In the formula (1), Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t, and Fa (T 1 ) represents the value of Fa (t) at the temperature t = T 1. Fb (t) represents the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t, and Fb (T 1 ) represents the value of Fb (t) at the temperature t = T 1.
本発明の半導体装置の製造方法の中間成果物である半導体加工用積層体もまた、本発明の1つである。 A laminate for semiconductor processing, which is an intermediate product of the method for manufacturing a semiconductor device of the present invention, is also one of the present inventions.
本発明の半導体加工用積層体は、半導体加工用粘着テープが貼付された半導体パッケージが、上記半導体加工用粘着テープ側が接するようにして仮固定テープ上に積層されている半導体加工用積層体であって、温度25~200℃の範囲に、下記式(1’)を満たす温度Tを有する半導体加工用積層体である。
100<{Fb(T)/Fa(T)}  (1’)
式(1’)中、Fa(t)は、温度tにおける半導体加工用粘着テープの銅板に対する剥離力を表し、Fa(T)は、Fa(t)の温度t=Tにおける値を表し、Fb(t)は、温度tにおける仮固定テープの半導体加工用粘着テープに対する剥離力を表し、Fb(T)は、Fb(t)の温度t=Tにおける値を表す。
The semiconductor processing laminate of the present invention is a semiconductor processing laminate in which a semiconductor package to which a semiconductor processing adhesive tape is attached is laminated on a temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with the semiconductor package. This is a semiconductor processing laminate having a temperature T 2 satisfying the following formula (1') in a temperature range of 25 to 200 ° C.
100 << {Fb (T 2 ) / Fa (T 2 )} (1')
In the formula (1'), Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t, and Fa (T 2 ) represents the value of Fa (t) at the temperature t = T 2. , Fb (t) represent the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t, and Fb (T 2 ) represents the value of Fb (t) at the temperature t = T 2.
上記温度Tの具体的な値の下限は25℃、上限は200℃である。上記温度Tの具体的な値は、半導体パッケージのピックアップを行う際の通常の温度を考慮すると、好ましい下限は50℃、好ましい上限は150℃である。 The lower limit of the specific value of the temperature T 2 is 25 ° C, and the upper limit is 200 ° C. The specific value of the temperature T 2 is preferably 50 ° C. and a preferable upper limit is 150 ° C. in consideration of the normal temperature when picking up the semiconductor package.
本発明の半導体加工用積層体は、更に、上記半導体加工用粘着テープが貼付された半導体パッケージの背面及び側面に金属膜が形成されていてもよい。 Further, in the laminate for semiconductor processing of the present invention, metal films may be formed on the back surface and the side surface of the semiconductor package to which the adhesive tape for semiconductor processing is attached.
本発明によれば、仮固定テープと半導体加工用粘着テープとの界面での剥離を抑制し、半導体パッケージのピックアップを良好に行うことのできる半導体装置の製造方法、及び、半導体加工用積層体を提供することができる。 According to the present invention, a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing can be obtained. Can be provided.
(a)~(e)は、本発明の半導体装置の製造方法の一例を模式的に示す図である。(A) to (e) are diagrams schematically showing an example of a method for manufacturing a semiconductor device of the present invention. (a1)~(a4)は、実施例及び参考例における半導体装置の製造方法の各工程を模式的に示す図である。(A1) to (a4) are diagrams schematically showing each step of the method for manufacturing a semiconductor device in Examples and Reference Examples.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
(1)粘着性ポリマーの合成
温度計、攪拌機、冷却管を備えた反応器を用意した。この反応器内に、(メタ)アクリル酸アルキルエステルとして2-エチルヘキシルアクリレート93重量部、官能基含有モノマーとしてアクリル酸1重量部、メタクリル酸ヒドロキシエチル6重量部、ラウリルメルカプタン0.01重量部と、酢酸エチル80重量部を加えた後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤として1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン0.01重量部を添加し、還流下で重合を開始させた。次に、重合開始から1時間後及び2時間後にも、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンを0.01重量部ずつ添加し、更に、重合開始から4時間後にt-ヘキシルパーオキシピバレートを0.05重量部添加して重合反応を継続させた。そして、重合開始から8時間後に、固形分55重量%、重量平均分子量60万の官能基含有(メタ)アクリル系ポリマーの酢酸エチル溶液を得た。
得られた官能基含有(メタ)アクリル系ポリマーを含む酢酸エチル溶液の樹脂固形分100重量部に対して、2-イソシアナトエチルメタクリレート3.5重量部を加えて反応させて粘着性ポリマーを得た。
(Example 1)
(1) A reactor equipped with a synthetic thermometer for an adhesive polymer, a stirrer, and a cooling tube was prepared. In this reactor, 93 parts by weight of 2-ethylhexyl acrylate as a (meth) acrylic acid alkyl ester, 1 part by weight of acrylic acid as a functional group-containing monomer, 6 parts by weight of hydroxyethyl methacrylate, 0.01 part by weight of lauryl mercaptan, and the like. After adding 80 parts by weight of ethyl acetate, the reactor was heated to initiate reflux. Subsequently, 0.01 part by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added as a polymerization initiator into the reactor, and the polymerization was started under reflux. It was. Next, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added 1 hour and 2 hours after the start of the polymerization, and further, the polymerization was started. After 4 hours from the above, 0.05 parts by weight of t-hexyl peroxypivalate was added to continue the polymerization reaction. Then, 8 hours after the start of the polymerization, an ethyl acetate solution of a functional group-containing (meth) acrylic polymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
To 100 parts by weight of the resin solid content of the obtained ethyl acetate solution containing a functional group-containing (meth) acrylic polymer, 3.5 parts by weight of 2-isocyanatoethyl methacrylate was added and reacted to obtain an adhesive polymer. It was.
(2)半導体加工用粘着テープの製造
上記で得られた粘着性ポリマーの酢酸エチル溶液の樹脂固形分100重量部に対してシリコーン化合物1重量部、無機フィラー3重量部、ウレタンアクリレート10重量部、架橋剤0.2重量部、光重合開始剤1重量部を加え、100rpmの攪拌速度で混合し、粘着剤溶液を得た。次いで、粘着剤溶液を、表面に離型処理が施されたポリエチレンテレフタレートフィルムの離型処理面上に乾燥後の厚さが40μmとなるようにドクターナイフで塗工し、105℃、5分間加熱乾燥させて粘着剤層を得た。得られた粘着剤層と、片面にコロナ処理を施した基材Aのコロナ処理面とを貼り合わせて、40℃6日間養生することで半導体加工用粘着テープを得た。
(2) Production of Adhesive Tape for Semiconductor Processing 1 part by weight of silicone compound, 3 parts by weight of inorganic filler, and 10 parts by weight of urethane acrylate with respect to 100 parts by weight of the resin solid content of the ethyl acetate solution of the adhesive polymer obtained above. 0.2 parts by weight of the cross-linking agent and 1 part by weight of the photopolymerization initiator were added and mixed at a stirring speed of 100 rpm to obtain an adhesive solution. Next, the pressure-sensitive adhesive solution is applied on the release-treated surface of the polyethylene terephthalate film whose surface has been released-treated with a doctor knife so that the thickness after drying is 40 μm, and heated at 105 ° C. for 5 minutes. It was dried to obtain an adhesive layer. The obtained adhesive layer and the corona-treated surface of the base material A having been subjected to corona treatment on one side were bonded and cured at 40 ° C. for 6 days to obtain an adhesive tape for semiconductor processing.
なお、基材A、シリコーン化合物、無機フィラー、ウレタンアクリレート、架橋剤、光重合開始剤は、以下のものを用いた。
基材A(ポリエチレンテレフタレート、G’=1.7×10Pa、単位幅あたりの曲げ剛性=1.8×10-5N・m/m、厚み=50μm)
シリコーン化合物(EBECRYL350、ダイセルサイテック社製)
無機フィラー(シリカフィラー、レオロシール MT-10、トクヤマ社製)
ウレタンアクリレート(UN-5500、根上工業社製)
架橋剤(イソシアネート系架橋剤、コロネートL、日本ウレタン工業社製)
光重合開始剤(イルガキュア369、BASF社製)
The following materials were used as the base material A, the silicone compound, the inorganic filler, the urethane acrylate, the cross-linking agent, and the photopolymerization initiator.
Base material A (polyethylene terephthalate, G'= 1.7 × 10 9 Pa, flexural rigidity per unit width = 1.8 × 10-5 N ・ m 2 / m, thickness = 50 μm)
Silicone compound (EBECRYL350, manufactured by Daicel Cytec)
Inorganic filler (silica filler, Leoloseal MT-10, manufactured by Tokuyama Corporation)
Urethane acrylate (UN-5500, manufactured by Negami Kogyo Co., Ltd.)
Cross-linking agent (isocyanate-based cross-linking agent, Coronate L, manufactured by Nippon Urethane Industry Co., Ltd.)
Photopolymerization initiator (Irgacure 369, manufactured by BASF)
(3)粘着剤層の貯蔵弾性率G’の測定
半導体加工用粘着テープの製造と同様にして粘着剤層のみからなる測定サンプルを作製した。測定サンプルから、10mm幅の短冊状の試験片を作製した。超高圧水銀紫外線照射器を用いて405nmの紫外線を積算強度が2500mJ/cmとなるように試験片の離型フィルム側から粘着剤層に照射し、粘着剤層を硬化させた。硬化後の試験片について、両面の離型フィルムを除去した後、粘弾性スペクトロメーター(DVA-200、アイティー計測制御社製)を用いて、定速昇温引張モード、昇温速度10℃/分、周波数10Hzの条件で測定を行った。このときの23℃における貯蔵弾性率を粘着剤層の貯蔵弾性率として記載した。
(3) Measurement of Storage Elastic Modulus G'of Adhesive Layer A measurement sample consisting of only the adhesive layer was prepared in the same manner as in the production of the adhesive tape for semiconductor processing. A strip-shaped test piece having a width of 10 mm was prepared from the measurement sample. The pressure-sensitive adhesive layer was cured by irradiating the pressure-sensitive adhesive layer with ultraviolet rays of 405 nm from the release film side of the test piece so that the integrated intensity was 2500 mJ / cm 2 using an ultra-high pressure mercury ultraviolet ray irradiator. After removing the release films on both sides of the cured test piece, a viscoelastic spectrometer (DVA-200, manufactured by IT Measurement Control Co., Ltd.) was used to set a constant rate of temperature rise and tension mode, and a temperature rise rate of 10 ° C./ The measurement was carried out under the condition of a frequency of 10 Hz. The storage elastic modulus at 23 ° C. at this time is described as the storage elastic modulus of the pressure-sensitive adhesive layer.
(4)Fa(23℃)及びFa(T)の測定
厚さ1mmの銅板(JIS H3100:2018を満たす銅板、C1100P、エンジニアリングテストサービス社製)の表面をエタノールで洗浄し、充分に乾燥させた。予め幅25mm、長さ10cmにカットした半導体加工用粘着テープを、2kgローラーを1往復させて銅板に貼付し、積層体を得た。超高圧水銀紫外線照射器を用いて405nmの紫外線を基材側から粘着剤層に25秒間照射し、粘着剤層を硬化させた。照射強度が100mW/cmとなるよう照度を調節した。その後、Fa(T)の測定においては、表1に示す温度Tに加熱しておいたオーブンを用いて積層体を加熱処理した。半導体加工用粘着テープの背面(基材側)の温度を温度測定用センサー(安立計器社製、A-231K-01-1-TC1-ANP)で測定しつつ、積層体を温度Tに加熱した。
オートグラフ(島津製作所社製)を用い、積層体の半導体加工用粘着テープを、温度23℃又は温度T、湿度50%の環境下で300mm/minの引張速度で180°方向に引き剥がし、剥離力Fa(23℃)及びFa(T)を測定した。
(4) Measurement of Fa (23 ° C.) and Fa (T 1 ) The surface of a copper plate having a thickness of 1 mm (a copper plate satisfying JIS H3100: 2018, C1100P, manufactured by Engineering Test Service Co., Ltd.) is washed with ethanol and sufficiently dried. It was. An adhesive tape for semiconductor processing, which had been previously cut to a width of 25 mm and a length of 10 cm, was attached to a copper plate by reciprocating a 2 kg roller once to obtain a laminate. The pressure-sensitive adhesive layer was cured by irradiating the pressure-sensitive adhesive layer with ultraviolet rays of 405 nm from the substrate side for 25 seconds using an ultra-high pressure mercury ultraviolet irradiation device. The illuminance was adjusted so that the irradiation intensity was 100 mW / cm 2. Then, in the measurement of Fa (T 1 ), the laminate was heat-treated using an oven heated to the temperature T 1 shown in Table 1. Temperature measuring sensors the temperature of the back surface of the semiconductor processing adhesive tape (substrate side) (Anritsu Meter Co., A-231K-01-1-TC1 -ANP) while measuring, the heated laminate to temperatures T 1 did.
Using an autograph (manufactured by Shimadzu Corporation), peeling pressure-sensitive adhesive tape for semiconductor processing of the laminate, the temperature 23 ° C. or a temperature T 1, in the 180 ° direction at a tensile rate of 300mm / min, under humidity of 50%, The peeling force Fa (23 ° C.) and Fa (T 1 ) were measured.
(5)仮固定テープの製造
上記で得られた粘着性ポリマーの酢酸エチル溶液の樹脂固形分100重量部に対して、ウレタンアクリレート10重量部、架橋剤0.5重量部を加え、100rpmの攪拌速度で混合し、粘着剤溶液を得た。次いで、粘着剤溶液を、表面に離型処理が施されたポリエチレンテレフタレートフィルムの離型処理面上に乾燥後の厚さが5μmとなるようにドクターナイフで塗工し、105℃、5分間加熱乾燥させて粘着剤層を得た。得られた粘着剤層と、片面にコロナ処理を施した基材Aのコロナ処理面とを貼り合わせて、40℃6日間養生することで仮固定テープを得た。
仮固定テープの銅板(JIS H3100:2018を満たす銅板、C1100P、エンジニアリングテストサービス社製)に対する接着力を測定したところ、6.5N/inchであった。
(5) Production of Temporary Fixing Tape To 100 parts by weight of the resin solid content of the ethyl acetate solution of the adhesive polymer obtained above, 10 parts by weight of urethane acrylate and 0.5 parts by weight of a cross-linking agent are added, and stirring is performed at 100 rpm. Mixing at a rate gave an adhesive solution. Next, the pressure-sensitive adhesive solution is applied on the release-treated surface of the polyethylene terephthalate film whose surface has been released-treated with a doctor knife so that the thickness after drying is 5 μm, and heated at 105 ° C. for 5 minutes. It was dried to obtain an adhesive layer. The obtained pressure-sensitive adhesive layer and the corona-treated surface of the base material A having corona-treated one side were bonded to each other and cured at 40 ° C. for 6 days to obtain a temporary fixing tape.
The adhesive strength of the temporary fixing tape to the copper plate (copper plate satisfying JIS H3100: 2018, C1100P, manufactured by Engineering Test Service Co., Ltd.) was measured and found to be 6.5 N / inch.
(6)Fb(23℃)及びFb(T)の測定
半導体加工用粘着テープの製造において粘着剤層を形成する前の基材の表面(粘着剤層が形成される側の表面)を、両面テープ(積水化学社製両面テープ560)を用いて銅板(C1100P)に貼り付けた。予め幅25mm幅、長さ10cmにカットした仮固定テープを、2kgローラーを1往復させて基材の背面(粘着剤層が形成されない側の表面)に貼付し、積層体を得た。その後、Fb(T)の測定においては、表1に示す温度Tに加熱しておいたオーブンを用いて積層体を加熱処理した。仮固定テープの背面(仮固定テープの基材側)の温度を温度測定用センサー(安立計器社製、A-231K-01-1-TC1-ANP)で測定しつつ、積層体を温度Tに加熱した。
オートグラフ(島津製作所社製)を用い、積層体の仮固定テープを、温度23℃又は温度T、湿度50%の環境下で300mm/minの引張速度で180°方向に引き剥がし、剥離力Fb(23℃)及びFb(T)を測定した。
(6) Measurement of Fb (23 ° C.) and Fb (T 1 ) The surface of the base material (the surface on the side where the pressure-sensitive adhesive layer is formed) before the pressure-sensitive adhesive layer is formed in the production of the pressure-sensitive adhesive tape for semiconductor processing. It was attached to a copper plate (C1100P) using a double-sided tape (double-sided tape 560 manufactured by Sekisui Chemical Co., Ltd.). A temporary fixing tape cut to a width of 25 mm and a length of 10 cm in advance was attached to the back surface of the base material (the surface on the side where the adhesive layer is not formed) by reciprocating a 2 kg roller once to obtain a laminate. Then, in the measurement of Fb (T 1 ), the laminate was heat-treated using an oven heated to the temperature T 1 shown in Table 1. While measuring the temperature of the back surface of the temporary fixing tape (the base material side of the temporary fixing tape) with a temperature measurement sensor (A-231K-011-1-TC1-ANP manufactured by Anritsu Keiki Co., Ltd.), the temperature of the laminate was T 1. Heated to.
Using an autograph (manufactured by Shimadzu Corporation), peeling the temporary fixing tape laminate, the temperature 23 ° C. or a temperature T 1, in the 180 ° direction at a tensile rate of 300mm / min, under humidity of 50%, peel strength Fb (23 ° C.) and Fb (T 1 ) were measured.
(7)PU force及び温度TにおけるPU forceの測定
ダイシングテープに対して半導体加工用粘着テープの背面(基材側)を貼り合わせ、その粘着剤層側に10mm×10mmに個片化した基板をローラーで貼付した。卓上引張圧縮試験機(MCT-2150、A&D製)を用いて、半導体加工用粘着テープの背面側(基材側)から個片化した基板をつくことでピックアップを行った。個片化した基板を剥離するために必要な力を測定し、PU(pick up) forceとした。
温度TにおけるPU forceについては、個片化した基板を半導体加工用粘着テープに貼付した後、温度Tに加熱しておいたオーブンを用いて積層体を加熱処理した。半導体加工用粘着テープの背面(基材側)の温度を温度測定用センサー(安立計器社製、A-231K-01-1-TC1-ANP)で測定し、積層体が温度Tに加熱された状態で同様にピックアップを行い、温度TにおけるPU forceの測定を行った。
(7) PU force and bonding the back of the adhesive tape for semiconductor processing (substrate side) with respect PU force measurement dicing tape at a temperature T 1, and diced into 10 mm × 10 mm on the pressure-sensitive adhesive layer side substrate Was affixed with a roller. A desktop tensile compression tester (MCT-2150, manufactured by A & D) was used to pick up the adhesive tape for semiconductor processing by forming an individualized substrate from the back side (base material side). The force required to peel off the individualized substrate was measured and used as a PU (pick up) force.
Regarding the PU force at the temperature T 1 , the individualized substrate was attached to the adhesive tape for semiconductor processing, and then the laminate was heat-treated using an oven heated to the temperature T 1. Measured at the back of the semiconductor processing adhesive tape sensor for measuring temperature of the temperature (substrate side) (Anritsu Meter Co., A-231K-01-1-TC1 -ANP), the laminate is heated to a temperature T 1 of In the same state, the pickup was performed in the same manner, and the PU force at the temperature T 1 was measured.
(8)半導体装置の製造
下記のように図2の(a1)~(a4)に示す各工程を行った。
銅張積層基板7(三菱ガス化学社製、CCL-EL190T/GEPL-190T)の銅箔7aを有する面に半導体加工用粘着テープ2を貼り付けた(図2(a1))。超高圧水銀紫外線照射器を用いて405nmの紫外線を基材2b側から粘着剤層2aに25秒間照射し、粘着剤層2aを硬化させた。照射強度が100mW/cmとなるよう照度を調節した。
半導体加工用粘着テープ2が貼付された銅張積層基板7を、銅張積層基板7側が接するようにしてダイシングテープ8(デンカ社製、エレグリップUPH-1510M4)上に仮固定し、ダイシングフレーム9に取り付けた(図2(a2))。
半導体加工用粘着テープ2が貼付された銅張積層基板7を、ダイシング装置(DISCO社製、DFD6361)を用いて10mm角に個片化(チップ化)した(図2(a3))。
(8) Manufacturing of Semiconductor Device Each step shown in FIGS. 2 (a1) to (a4) was performed as shown below.
An adhesive tape 2 for semiconductor processing was attached to a surface of a copper-clad laminated substrate 7 (CCL-EL190T / GEPL-190T manufactured by Mitsubishi Gas Chemical Company, Inc.) having a copper foil 7a (FIG. 2 (a1)). The pressure-sensitive adhesive layer 2a was cured by irradiating the pressure-sensitive adhesive layer 2a with ultraviolet rays of 405 nm from the base material 2b side for 25 seconds using an ultra-high pressure mercury ultraviolet irradiation device. The illuminance was adjusted so that the irradiation intensity was 100 mW / cm 2.
The copper-clad laminated substrate 7 to which the adhesive tape 2 for semiconductor processing is attached is temporarily fixed on the dicing tape 8 (Elegrip UPH-1510M4 manufactured by Denka Co., Ltd.) so that the copper-clad laminate 7 side is in contact with the dicing frame 9. (Fig. 2 (a2)).
The copper-clad laminated substrate 7 to which the adhesive tape 2 for semiconductor processing was attached was individualized (chips) into 10 mm squares using a dicing device (DFD6361 manufactured by DISCO) (FIG. 2 (a3)).
超高圧水銀紫外線照射器を用いて、405nmの紫外線を積算強度が2500mJ/cmとなるように照射し、ダイシングテープ8を硬化させた。照射強度が50mW/cmとなるよう照度を調節した。その後、ダイシングテープ8を剥がした。
個片化された半導体加工用粘着テープ2が貼付された銅張積層基板7を、半導体加工用粘着テープ2側が接するようにして仮固定テープ3上に仮固定し、再びダイシングフレーム9に取り付けた(図2(a4))。
150℃に加熱しておいたオーブンを用いて、個片化された半導体加工用粘着テープ2が貼付された銅張積層基板7をダイシングフレーム9ごと1時間加熱処理した。なお、「150℃で1時間加熱」とは、半導体パッケージのシールド処理を行うときにかかる温度及び時間を想定して設定されたものである。所定時間経過後、個片化された半導体加工用粘着テープ2が貼付された銅張積層基板7をダイシングフレーム9ごと取り出し、温度23℃、相対湿度50%の環境下で充分に放冷した。
ダイボンダー装置(キャノンマシナリー社製、BestemD02)を用いて、温風を当てることで温度Tに加熱することによって表1に示す温度Tに加熱しながら、個片化された銅張積層基板7のピックアップを行った。
The dicing tape 8 was cured by irradiating the dicing tape 8 with an ultraviolet ray of 405 nm so as to have an integrated intensity of 2500 mJ / cm 2 using an ultrahigh pressure mercury ultraviolet ray irradiator. The illuminance was adjusted so that the irradiation intensity was 50 mW / cm 2. Then, the dicing tape 8 was peeled off.
The copper-clad laminated substrate 7 to which the individualized adhesive tape 2 for semiconductor processing was attached was temporarily fixed on the temporary fixing tape 3 so that the adhesive tape 2 for semiconductor processing was in contact with the adhesive tape 2, and was reattached to the dicing frame 9. (Fig. 2 (a4)).
Using an oven heated to 150 ° C., the copper-clad laminated substrate 7 to which the individualized adhesive tape 2 for semiconductor processing was attached was heat-treated together with the dicing frame 9 for 1 hour. It should be noted that "heating at 150 ° C. for 1 hour" is set assuming the temperature and time required when the semiconductor package is shielded. After a lapse of a predetermined time, the copper-clad laminated substrate 7 to which the individualized adhesive tape 2 for semiconductor processing was attached was taken out together with the dicing frame 9 and sufficiently allowed to cool in an environment of a temperature of 23 ° C. and a relative humidity of 50%.
Using a die bonder device (Canon Machinery Co., Ltd., BestD02), the copper-clad laminated substrate 7 is separated while being heated to the temperature T 1 shown in Table 1 by heating to the temperature T 1 by applying warm air. Was picked up.
(実施例2~8、参考例1~5)
粘着剤層の組成及び基材を表1に記載の通りに変更した以外は実施例1と同様にして、半導体加工用粘着テープ及び仮固定テープを得た。実施例1と同様にして各物性を測定するとともに半導体装置を製造した。
基材B(ポリエチレンテレフタレート、G’=1.7×10Pa、単位幅あたりの曲げ剛性=1.4×10-4N・m/m、厚み=100μm)
基材C(ポリエチレンテレフタレート、G’=1.7×10Pa、単位幅あたりの曲げ剛性=2.2×10-6N・m/m、厚み=25μm)
(Examples 2 to 8, reference examples 1 to 5)
An adhesive tape for semiconductor processing and a temporary fixing tape were obtained in the same manner as in Example 1 except that the composition of the pressure-sensitive adhesive layer and the base material were changed as shown in Table 1. Each physical property was measured and a semiconductor device was manufactured in the same manner as in Example 1.
Base material B (polyethylene terephthalate, G'= 1.7 × 10 9 Pa, flexural rigidity per unit width = 1.4 × 10-4 N ・ m 2 / m, thickness = 100 μm)
Base material C (polyethylene terephthalate, G'= 1.7 × 10 9 Pa, flexural rigidity per unit width = 2.2 × 10-6 N ・ m 2 / m, thickness = 25 μm)
<評価>
実施例及び参考例における半導体加工用粘着テープ、仮固定テープ及び半導体装置の製造方法について、以下の方法により評価を行った。結果を表1に示した。
<Evaluation>
The manufacturing methods of the adhesive tape for semiconductor processing, the temporary fixing tape, and the semiconductor device in Examples and Reference Examples were evaluated by the following methods. The results are shown in Table 1.
(1)ピックアップ評価
(1-1)半導体パッケージ-粘着テープ間の界面剥離
温度TにおけるPick up forceが1N未満であった場合をA、1N以上、5N未満であった場合をB、5N以上、10N未満であった場合をC、10N以上であった(個片化した基板が剥離しなかった)場合をDと判定した。
(1) pick-up evaluation (1-1) semiconductor package - a case Pick Stay up-force at the interface separation temperature T 1 of between the adhesive tape is less than 1N A, above 1N, the case was less than 5N B, more 5N When it was less than 10N, it was judged as C, and when it was 10N or more (the individualized substrate was not peeled off), it was judged as D.
(1-2)仮固定テープの粘着テープ背面への密着性
上記(8)の半導体装置の製造において、個片化された銅張積層基板7のピックアップを行った際、半導体加工用粘着テープ2の背面(基材側)と仮固定テープ3との界面での剥離について判定した。
上記界面で全く剥離しなかった場合をA、上記界面で剥離部分は存在するが、全面積の半分以下であった場合をB、上記界面で剥離部分が存在し全面積の半分を超えるが、完全には剥離しなかった場合をC、半導体加工用粘着テープ2が仮固定テープ3から完全に剥離した場合をDと判定した。
(1-2) Adhesiveness of Temporary Fixing Tape to Adhesive Tape Back Side When the individualized copper-clad laminated substrate 7 is picked up in the manufacture of the semiconductor device of (8) above, the adhesive tape for semiconductor processing 2 The peeling at the interface between the back surface (base material side) and the temporary fixing tape 3 was determined.
A when no peeling occurs at the interface, B when the peeling part exists at the interface but less than half of the total area, B where the peeling part exists at the interface and exceeds half of the total area. The case where the adhesive tape 2 for semiconductor processing was completely peeled off from the temporary fixing tape 3 was judged as C, and the case where the adhesive tape 2 for semiconductor processing was completely peeled off was judged as D.
(2)他の工程(ピックアップ以外)の評価
上記(8)の半導体装置の製造において、個片化(チップ化)後の銅張積層基板7を無作為に50個選び出し、銅張積層基板7の半導体加工用粘着テープ2との界面を光学顕微鏡で観察し端部の剥離の有無を観察し、ダイシング剥がれを下記基準で評価した。
50個のサンプルのうち、300μm以上端部が剥離したサンプルがなかった場合をA、300μm以上端部が剥離したサンプル数が5%未満であった場合をB、300μm以上端部が剥離したサンプル数が5%以上であった場合をCと判定した。なお、端部の剥離が300μm未満であれば、スパッタ時の金属回り込みが少なく、歩留まりが向上する。
(2) Evaluation of Other Steps (Other than Pickup) In the manufacture of the semiconductor device according to (8) above, 50 copper-clad laminates 7 after individualization (chips) were randomly selected, and the copper-clad laminates 7 were selected. The interface with the adhesive tape 2 for semiconductor processing was observed with an optical microscope to observe the presence or absence of peeling at the end, and the dicing peeling was evaluated according to the following criteria.
Of the 50 samples, A was the case where there was no sample with the end peeled by 300 μm or more, B was the sample with the end peeled by 300 μm or more and less than 5%, and the sample with the end peeled by 300 μm or more. When the number was 5% or more, it was judged as C. If the peeling of the end portion is less than 300 μm, the metal wraparound during sputtering is small and the yield is improved.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
本発明によれば、仮固定テープと半導体加工用粘着テープとの界面での剥離を抑制し、半導体パッケージのピックアップを良好に行うことのできる半導体装置の製造方法、及び、半導体加工用積層体を提供することができる。 According to the present invention, a method for manufacturing a semiconductor device capable of suppressing peeling at an interface between a temporary fixing tape and an adhesive tape for semiconductor processing and satisfactorily picking up a semiconductor package, and a laminate for semiconductor processing can be obtained. Can be provided.
2  半導体加工用粘着テープ
2a 粘着剤層
2b 基材
3  仮固定テープ
4  半導体パッケージ
5  金属膜
6  ピックアップニードル
7  銅張積層基板
7a 銅箔
8  ダイシングテープ
9  ダイシングフレーム
2 Adhesive tape for semiconductor processing 2a Adhesive layer 2b Base material 3 Temporary fixing tape 4 Semiconductor package 5 Metal film 6 Pickup needle 7 Copper-clad laminated substrate 7a Copper foil 8 Dicing tape 9 Dicing frame

Claims (10)

  1. 半導体装置の製造方法であって、
    半導体加工用粘着テープが貼付された半導体パッケージが、前記半導体加工用粘着テープ側が接するようにして仮固定テープ上に積層されており、かつ、前記半導体加工用粘着テープが貼付された半導体パッケージの背面及び側面に金属膜が形成されている半導体加工用積層体において、背面及び側面に金属膜が形成された半導体パッケージを前記半導体加工用粘着テープからピックアップする工程(3)を有し、
    前記工程(3)において、下記式(1)を満たす温度Tに加熱された状態で前記背面及び側面に金属膜が形成された半導体パッケージをピックアップする
    ことを特徴とする半導体装置の製造方法。
    100<{Fb(T)/Fa(T)}  (1)
    式(1)中、Fa(t)は、温度tにおける半導体加工用粘着テープの銅板に対する剥離力を表し、Fa(T)は、Fa(t)の温度t=Tにおける値を表し、Fb(t)は、温度tにおける仮固定テープの半導体加工用粘着テープに対する剥離力を表し、Fb(T)は、Fb(t)の温度t=Tにおける値を表す。
    It is a manufacturing method of semiconductor devices.
    The semiconductor package to which the semiconductor processing adhesive tape is attached is laminated on the temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with the semiconductor package, and the back surface of the semiconductor package to which the semiconductor processing adhesive tape is attached is attached. In the semiconductor processing laminate having the metal film formed on the back surface and the side surface, the step (3) of picking up the semiconductor package having the metal film formed on the back surface and the side surface from the semiconductor processing adhesive tape is provided.
    A method for manufacturing a semiconductor device, which comprises picking up a semiconductor package having a metal film formed on its back surface and side surfaces in a state of being heated to a temperature T 1 satisfying the following formula (1) in the step (3).
    100 << {Fb (T 1 ) / Fa (T 1 )} (1)
    In the formula (1), Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t, and Fa (T 1 ) represents the value of Fa (t) at the temperature t = T 1. Fb (t) represents the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t, and Fb (T 1 ) represents the value of Fb (t) at the temperature t = T 1.
  2. 工程(3)の前に、
    半導体加工用粘着テープが貼付された半導体パッケージを、前記半導体加工用粘着テープ側が接するようにして仮固定テープ上に仮固定する工程(1)と、
    前記仮固定テープ上で、前記半導体加工用粘着テープが貼付された半導体パッケージの背面及び側面に金属膜を形成する工程(2)とを行う
    ことを特徴とする請求項1記載の半導体装置の製造方法。
    Before step (3)
    The step (1) of temporarily fixing the semiconductor package to which the semiconductor processing adhesive tape is attached on the temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with each other.
    The manufacture of the semiconductor device according to claim 1, wherein the step (2) of forming a metal film on the back surface and the side surface of the semiconductor package to which the adhesive tape for semiconductor processing is attached is performed on the temporary fixing tape. Method.
  3. Fa(t)の温度Tにおける値(Fa(T))が0.5N/inch以下であることを特徴とする請求項1又は2記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the value (Fa (T 1 )) at the temperature T 1 of Fa (t) is 0.5 N / inch or less.
  4. Fa(t)の23℃における値(Fa(23℃))が0.04N/inch以上であることを特徴とする請求項1、2又は3記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, 2 or 3, wherein the value of Fa (t) at 23 ° C. (Fa (23 ° C.)) is 0.04 N / inch or more.
  5. Fb(t)の23℃における値(Fb(23℃))が3N/inch以上であることを特徴とする請求項1、2、3又は4記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, 2, 3 or 4, wherein the value of Fb (t) at 23 ° C. (Fb (23 ° C.)) is 3 N / inch or more.
  6. Fb(t)の温度Tにおける値(Fb(T))が1N/inch以上50N/inch以下であることを特徴とする請求項1、2、3、4又は5記載の半導体装置の製造方法。 The manufacture of the semiconductor device according to claim 1, 2, 3, 4 or 5, wherein the value (Fb (T 1 )) of Fb (t) at the temperature T 1 is 1 N / inch or more and 50 N / inch or less. Method.
  7. 工程(1)の前に、
    半導体パッケージの回路面に半導体加工用粘着テープを貼付する工程(1-1)と、
    前記半導体加工用粘着テープが貼付された半導体パッケージをダイシングし、個片化された前記半導体加工用粘着テープが貼付された半導体パッケージを得る工程(1-2)とを行う
    ことを特徴とする請求項1、2、3、4、5又は6記載の半導体装置の製造方法。
    Before step (1)
    The process of attaching the adhesive tape for semiconductor processing to the circuit surface of the semiconductor package (1-1),
    A claim characterized by performing a step (1-2) of dicing a semiconductor package to which the adhesive tape for semiconductor processing is attached to obtain an individualized semiconductor package to which the adhesive tape for semiconductor processing is attached. Item 1. The method for manufacturing a semiconductor device according to Item 1, 2, 3, 4, 5 or 6.
  8. 半導体加工用粘着テープは、基材と、該基材の少なくとも一方の面に積層された粘着剤層とを有し、前記粘着剤層は、光硬化型粘着剤層であることを特徴とする請求項7記載の半導体装置の製造方法。 The adhesive tape for semiconductor processing has a base material and a pressure-sensitive adhesive layer laminated on at least one surface of the base material, and the pressure-sensitive adhesive layer is a photocurable pressure-sensitive adhesive layer. The method for manufacturing a semiconductor device according to claim 7.
  9. 工程(1-1)の後、半導体加工用粘着テープの粘着剤層に光を照射する工程(1-3)を行うことを特徴とする請求項8記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 8, wherein after the step (1-1), a step (1-3) of irradiating the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape for semiconductor processing with light is performed.
  10. 半導体加工用粘着テープが貼付された半導体パッケージが、前記半導体加工用粘着テープ側が接するようにして仮固定テープ上に積層されている半導体加工用積層体であって、
    温度25~200℃の範囲に、下記式(1’)を満たす温度Tを有する
    ことを特徴とする半導体加工用積層体。
    100<{Fb(T)/Fa(T)}  (1’)
    式(1’)中、Fa(t)は、温度tにおける半導体加工用粘着テープの銅板に対する剥離力を表し、Fa(T)は、Fa(t)の温度t=Tにおける値を表し、Fb(t)は、温度tにおける仮固定テープの半導体加工用粘着テープに対する剥離力を表し、Fb(T)は、Fb(t)の温度t=Tにおける値を表す。
    The semiconductor package to which the semiconductor processing adhesive tape is attached is a semiconductor processing laminate that is laminated on the temporary fixing tape so that the semiconductor processing adhesive tape side is in contact with the semiconductor package.
    A laminate for semiconductor processing, which has a temperature T 2 satisfying the following formula (1') in a temperature range of 25 to 200 ° C.
    100 << {Fb (T 2 ) / Fa (T 2 )} (1')
    In the formula (1'), Fa (t) represents the peeling force of the adhesive tape for semiconductor processing with respect to the copper plate at the temperature t, and Fa (T 2 ) represents the value of Fa (t) at the temperature t = T 2. , Fb (t) represent the peeling force of the temporary fixing tape against the adhesive tape for semiconductor processing at the temperature t, and Fb (T 2 ) represents the value of Fb (t) at the temperature t = T 2.
PCT/JP2020/044352 2019-11-28 2020-11-27 Manufacturing method for semiconductor device and a laminate for semiconductor processing WO2021107137A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080048374.4A CN114097073A (en) 2019-11-28 2020-11-27 Method for manufacturing semiconductor device and laminate for semiconductor processing
JP2021507090A JPWO2021107137A1 (en) 2019-11-28 2020-11-27
KR1020217043070A KR20220106915A (en) 2019-11-28 2020-11-27 The manufacturing method of a semiconductor device, and the laminated body for semiconductor processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-215562 2019-11-28
JP2019215562 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021107137A1 true WO2021107137A1 (en) 2021-06-03

Family

ID=76129663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044352 WO2021107137A1 (en) 2019-11-28 2020-11-27 Manufacturing method for semiconductor device and a laminate for semiconductor processing

Country Status (5)

Country Link
JP (1) JPWO2021107137A1 (en)
KR (1) KR20220106915A (en)
CN (1) CN114097073A (en)
TW (1) TW202136050A (en)
WO (1) WO2021107137A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082131A (en) * 2016-11-18 2018-05-24 積水化学工業株式会社 Method for manufacturing semiconductor device and protective tape

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601956B2 (en) 1991-07-31 1997-04-23 リンテック株式会社 Removable adhesive polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018082131A (en) * 2016-11-18 2018-05-24 積水化学工業株式会社 Method for manufacturing semiconductor device and protective tape

Also Published As

Publication number Publication date
CN114097073A (en) 2022-02-25
TW202136050A (en) 2021-10-01
KR20220106915A (en) 2022-08-01
JPWO2021107137A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
KR101516147B1 (en) Wafer processing method
JP2004256793A (en) Adhesive tape for sticking wafer
JP2005263876A (en) Double-sided pressure-sensitive adhesive sheet and transfer method for brittle member
KR101888198B1 (en) Radiation-curable pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP6820724B2 (en) Semiconductor device manufacturing method and protective tape
JP2007238802A (en) Method for processing electronic part
JP2016146437A (en) Method for treating wafer
WO2021107137A1 (en) Manufacturing method for semiconductor device and a laminate for semiconductor processing
JP5583099B2 (en) Adhesive tape for brittle wafer processing
WO2021090867A1 (en) Laminate for semiconductor processing, adhesive tape for semiconductor processing, and method for manufacturing semiconductor device
JP2018207011A (en) Semiconductor chip manufacturing method and adhesive tape
WO2020217793A1 (en) Adhesive tape
JP2018162452A (en) Surface protective film
KR20180048658A (en) Adhesive sheet
JP6789057B2 (en) Double-sided adhesive tape and wafer processing method
JP2019033214A (en) Manufacturing method of semiconductor device
JP2012204457A (en) Adhesive sheet for producing chip body
JP2021147579A (en) Adhesive tape for semiconductor protection and method for producing semiconductor device
JP2021153183A (en) Production method of semiconductor device
JPWO2018168403A1 (en) Substrate for back grinding tape
WO2021065515A1 (en) Adhesive tape
JP6713864B2 (en) Method for manufacturing semiconductor chip and adhesive tape for temporarily fixing wafer
WO2023188521A1 (en) Wafer production method using peel tape and adhesive material, peel tape and adhesive material for use in same
KR20230166048A (en) Temporary fixing tape and semiconductor device manufacturing method
JP2021055061A (en) Adhesive tape

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021507090

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894579

Country of ref document: EP

Kind code of ref document: A1