WO2020217793A1 - Adhesive tape - Google Patents

Adhesive tape Download PDF

Info

Publication number
WO2020217793A1
WO2020217793A1 PCT/JP2020/012070 JP2020012070W WO2020217793A1 WO 2020217793 A1 WO2020217793 A1 WO 2020217793A1 JP 2020012070 W JP2020012070 W JP 2020012070W WO 2020217793 A1 WO2020217793 A1 WO 2020217793A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
adhesive layer
sensitive adhesive
adhesive tape
silicon wafer
Prior art date
Application number
PCT/JP2020/012070
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 塩島
和泉 大同
樋口 勲夫
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020530699A priority Critical patent/JPWO2020217793A1/ja
Priority to KR1020217015450A priority patent/KR20220002240A/en
Priority to CN202080007386.2A priority patent/CN113272399A/en
Publication of WO2020217793A1 publication Critical patent/WO2020217793A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • adhesive tape is used to facilitate handling of wafers and semiconductor chips during processing and to prevent damage. For example, when a thick film wafer cut out from a high-purity silicon single crystal or the like is ground to a predetermined thickness to obtain a thin film wafer, grinding is performed after attaching an adhesive tape to the thick film wafer.
  • the adhesive composition used for such an adhesive tape has high adhesiveness enough to firmly fix an adherend such as a wafer or a semiconductor chip during the processing process, and is covered with the wafer or the semiconductor chip after the process is completed. It is required that the wafer can be peeled off without damaging it (hereinafter, also referred to as "high adhesive easy peeling").
  • Patent Document 1 discloses an adhesive tape using a photocurable adhesive that cures by irradiating light such as ultraviolet rays to reduce the adhesive strength. ..
  • a photocurable pressure-sensitive adhesive By using a photocurable pressure-sensitive adhesive as the pressure-sensitive adhesive, the adherend can be reliably fixed during the processing process, and can be easily peeled off by irradiating with ultraviolet rays or the like.
  • FIG. 1 shows a schematic view showing the state of thermocompression bonding.
  • a semiconductor chip 3 is laminated on a wafer 2 fixed to a glass plate or the like via an adhesive tape 1.
  • the semiconductor chip 3 is connected to the lower layer semiconductor chip by applying heat and a load, and the semiconductor chips are laminated by repeating this process.
  • bonding is often performed at a high temperature and pressure of about 260 ° C.
  • the adhesive tape is strongly compressed in the thickness direction. ..
  • stress in the shear direction is applied to the interface between the adhesive tape 1 and the wafer 2 at the outer edge of the semiconductor chip laminated portion when heat and load are applied, and peeling occurs at the interface. .. If a part of the adhesive tape is peeled off, the adhesive tape becomes uneven, so that the semiconductor chips cannot be laminated normally or can not be laminated. Therefore, in thermocompression bonding, an adhesive tape having a heat resistance of about 260 ° C. and a performance of not peeling due to heat and pressure is required in addition to the conventional high adhesive peeling function.
  • Another problem during lamination is deformation of the solder bumps 4 formed on the surface of the wafer 2 on the adhesive tape 1 side due to pressure during thermocompression bonding.
  • a conventional adhesive tape is used, the adhesion between the wafer 2 and the adhesive tape 1 is weak, so that the wafer 2 moves during crimping, and at that time, the solder bump 4 embedded in the adhesive layer may be deformed. .. If the solder bump 4 is deformed, a bonding defect may occur in the process after the adhesive tape is peeled off, or a defective product may be produced due to a poor appearance. Therefore, the adhesive tape used for temporary fixing is also required to suppress bump deformation during thermocompression bonding.
  • the present invention provides an adhesive tape that does not peel off from the adherend even when used in a process involving high temperature and load, can be easily peeled off at the time of peeling, and can also suppress deformation of solder bumps.
  • the purpose is.
  • Another object of the present invention is to provide a method for manufacturing a semiconductor device using the adhesive tape.
  • the present invention is an adhesive tape in which the pressure-sensitive adhesive layer A, the base film, and the pressure-sensitive adhesive layer B are laminated in this order.
  • the pressure-sensitive adhesive layer A is attached to a silicon wafer chip, and the pressure-sensitive adhesive layer B is attached. Die-share strength with respect to the silicon wafer chip after being attached to a glass plate, irradiating the adhesive layer A with ultraviolet rays of 3000 mJ / cm 2 from the surface of the adhesive tape on the adhesive layer B side, and heat-treating at 240 ° C. for 10 minutes.
  • the adhesive layer A is attached to a silicon wafer, and the adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 from the surface on the adhesive layer B side, and 1 at 200 ° C.
  • the 180 ° peel strength with respect to the silicon wafer after the time heat treatment is 0.1 N / inch or more and 0.3 N / inch or less
  • the adhesive layer B is attached to a glass plate, and the adhesive layer A is 3000 mJ / cm.
  • the present invention will be described in detail below.
  • the adhesive tape of the present invention is an adhesive tape in which the pressure-sensitive adhesive layer A, the base film, and the pressure-sensitive adhesive layer B are laminated in this order.
  • the adhesive layer A is attached to a silicon wafer chip
  • the adhesive layer B is attached to a glass plate
  • the surface of the adhesive tape on the adhesive layer B side is 3 N / 9 mm 2 or more.
  • the adhesive tape Since at least one side of the adhesive layer of the adhesive tape satisfies the die shear strength in the above range, the 180 ° peel strength described later, and the horizontal load strength measured by SAICAS, the adhesive tape is difficult to peel off even by a treatment involving high temperature and load. In addition, it is possible to suppress adhesive residue on the adherend and deformation of bumps.
  • Die-share strength is one of the methods for measuring the bonding strength of a semiconductor chip, and when a force is applied laterally to the semiconductor chip bonded on a wafer or substrate by a bonding material, the semiconductor chip and the wafer or It is possible to measure the force when the joint surface of the substrate is broken. In the present invention, it is used as an index for measuring the adhesion between the adhesive tape and the silicon wafer chip in the shear direction. Specifically, a force is applied from the lateral direction to the silicon wafer chip bonded on the adhesive tape to form the silicon wafer chip. Measure the strength when peeled off.
  • the die shear strength is preferably 4N / 9mm 2 or more, more preferably 4.5N / 9mm 2 or more, and 5.5N / It is more preferably 9 mm 2 or more.
  • the upper limit of the die shear strength is not particularly limited, but is preferably 10 N / 9 mm 2 or less from the viewpoint of facilitating peeling after use.
  • the die shear strength can be adjusted by the type of adhesive and the content of silicone or fluorine compound. More specifically, the die shear strength can be measured by the following method.
  • the release film on the adhesive layer A side of the laminated body of the adhesive tape and the glass is peeled off, and a single crystal silicon wafer chip having a thickness of 3 mm ⁇ 3 mm and a thickness of ⁇ 0.1 ⁇ m is applied to the adhesive layer of the adhesive tape. It is placed on A and bonded at a stage temperature of 20 ° C., a head temperature of 20 ° C., and a bonding pressure of 3N.
  • ultraviolet rays of 405 nm are irradiated from the pressure-sensitive adhesive layer B side of the pressure-sensitive adhesive tape toward the pressure-sensitive adhesive layer A, and the irradiation amount on the surface of the pressure-sensitive adhesive layer A on the side opposite to the base material. Irradiate so that the value is 3000 mJ / cm 2 .
  • heat treatment is performed at 240 ° C. for 10 minutes. After the heat treatment, the silicon wafer chip is allowed to cool at room temperature, and a bond tester (4000PXY, manufactured by Nordson Advanced Technology Co., Ltd., universal type) is used to cover the entire side surface of the silicon wafer chip at 25 ° C. and 50% RH. A force in the direction perpendicular to the side surface is applied, and the maximum load when the silicon wafer chip is moved is measured, and this is defined as the die shear strength.
  • the adhesive layer A is attached to a silicon wafer, the adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 from the surface on the adhesive layer B side, and heated at 200 ° C. for 1 hour.
  • the 180 ° peel strength with respect to the processed silicon wafer is 0.1 N / inch or more and 0.3 N / inch or less.
  • the 180 ° peel strength is preferably 0.11 N / inch or more, and preferably 0.13 N / inch or more. More preferably, it is 0.15 N / inch or more. Further, from the viewpoint of facilitating peeling after use and suppressing adhesive residue, the 180 ° peel strength is more preferably 0.25 N / inch or less, and further preferably 0.2 N / inch or less. ..
  • the 180 ° peel strength can be adjusted by adjusting the content of the pressure-sensitive adhesive layer, the filler to be added, the inorganic filler, the fine particle component or the urethane compound, the additive having a releasable component such as silicone or the fluorine compound, and the like. it can. More specifically, the 180 ° peel strength can be measured by the following method.
  • the release film on the adhesive layer A side of the adhesive tape is peeled off, and a single crystal silicon wafer of 8 inches, thickness 0.75 mm, and surface roughness ⁇ 0.1 ⁇ m is placed on the adhesive layer A of the adhesive tape, and the silicon wafer is placed.
  • the top is bonded by reciprocating once with a 2 kg rubber roller. After the bonding, the film is allowed to stand at room temperature for 20 minutes, the release film on the adhesive layer B side is peeled off, and then ultraviolet rays of 405 nm are adhered from the adhesive layer B side of the adhesive tape using a high-pressure mercury UV irradiator.
  • Irradiation is performed toward the agent layer A so that the irradiation amount on the surface of the adhesive layer A opposite to the base material is 3000 mJ / cm 2 . Then, heat treatment is performed at 200 ° C. for 1 hour. The adhesive tape after the heat treatment is subjected to a tensile test in the 180 ° direction at a peeling speed of 300 mm / min according to JIS Z0237, and the 180 ° peel strength with respect to the silicon wafer is measured.
  • the pressure-sensitive adhesive layer B is attached to a glass plate, the pressure-sensitive adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 , and then 10 ⁇ m from the surface layer portion of the pressure-sensitive adhesive layer A measured by SAICAS measurement.
  • the horizontal load strength in the portion is 0.06 N / mm or more.
  • the SAICAS method is an evaluation method for cutting a material from a surface layer portion at a low speed with a sharp cutting edge, which is called a Surface And Interfacial Cutting Analsis System method. By using the SAICAS method, it is possible to measure the horizontal force and the normal force applied to the cutting edge when cutting the surface of the pressure-sensitive adhesive layer.
  • the horizontal load strength of the pressure-sensitive adhesive layer A is within the above range, the strength of the pressure-sensitive adhesive layer is increased, and the adhesive is less likely to be torn when peeled from the adherend. It can be suppressed.
  • the horizontal load strength is preferably 0.07 N / mm or more, more preferably 0.075 N / mm or more, and 0.08 N / mm or more. Is more preferable.
  • the upper limit of the horizontal load strength is not particularly limited, but is preferably 0.2 N / mm or less from the viewpoint of suppressing the pressure-sensitive adhesive layer from becoming brittle.
  • the horizontal load strength can be adjusted by adjusting the content of the pressure-sensitive adhesive, the filler to be added, the inorganic filler, the fine particle component or the urethane compound, the additive having a releasable component, and the like. Specifically, the horizontal load strength can be measured by the following method.
  • the release film on the adhesive layer B side of the adhesive tape whose both sides are protected by a release film cut into 3 cm x 4 cm is peeled off, and the adhesive layer B and the slide glass (S9111, manufactured by Matsunami Glass Industry Co., Ltd.) are bonded together.
  • the bonding is performed by reciprocating a 2 kg roller once on the surface of the adhesive tape on the adhesive layer A side.
  • the release film on the pressure-sensitive adhesive layer A side of the obtained sample was peeled off, and an ultraviolet light of 405 nm from the pressure-sensitive adhesive layer A side was emitted from the pressure-sensitive adhesive layer A side using a high-pressure mercury UV irradiator to oppose the base material of the pressure-sensitive adhesive layer A.
  • the pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A is not particularly limited as long as it satisfies the ranges of the die shear strength, the 180 ° peel strength and the horizontal load strength, but since it is easy to satisfy these ranges, radicals are introduced in the molecule. It is preferably a pressure-sensitive adhesive component having a polymerizable unsaturated bond. It is more preferable that the pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A contains a (meth) acrylic acid alkyl ester-based polymerizable polymer having a radically polymerizable unsaturated bond in the molecule.
  • a (meth) acrylic polymer having a functional group in the molecule (hereinafter, referred to as a functional group-containing (meth) acrylic polymer) is synthesized in advance and reacts with the functional group in the molecule. It can be obtained by reacting a functional group to be subjected to a compound having a radically polymerizable unsaturated bond (hereinafter referred to as a functional group-containing unsaturated compound).
  • the functional group-containing (meth) acrylic polymer includes an acrylic acid alkyl ester and / or a methacrylate alkyl ester in which the number of carbon atoms of the alkyl group is usually in the range of 2 to 18, a functional group-containing monomer, and if necessary. It is obtained by copolymerizing these with another copolymerizable monomer for modification by a conventional method.
  • the weight average molecular weight of the functional group-containing (meth) acrylic polymer is usually about 200,000 to 2,000,000. In the present specification, the weight average molecular weight can be usually determined by the GPC method. For example, THF is used as an eluate at a column temperature of 40 ° C., and Waters HSPgel HR MB-M 6.0 ⁇ 150 mm is used as a column. It can be determined by the polystyrene standard.
  • Examples of the functional group-containing monomer include a carboxyl group-containing monomer, a hydroxy group-containing monomer, an epoxy group-containing monomer, an isocyanate group-containing monomer, and an amino group-containing monomer.
  • Examples of the carboxy group-containing monomer include acrylic acid and methacrylic acid.
  • Examples of the hydroxy group-containing monomer include hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • Examples of the epoxy group-containing monomer include glycidyl acrylate and glycidyl methacrylate.
  • Examples of the isocyanate group-containing monomer include ethyl isocyanate, ethyl methacrylate, and the like.
  • Examples of the amino group-containing monomer include aminoethyl acrylate and aminoethyl methacrylate.
  • Examples of the other copolymerizable monomer for modification include various monomers used in general (meth) acrylic polymers such as vinyl acetate, acrylonitrile, and styrene.
  • the same one as the above-mentioned functional group-containing monomer is used depending on the functional group of the functional group-containing (meth) acrylic polymer. it can.
  • the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group
  • an epoxy group-containing monomer or an isocyanate group-containing monomer is used.
  • the functional group is a hydroxy group
  • an isocyanate group-containing monomer is used.
  • the functional group is an epoxy group
  • a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used.
  • an amino group an epoxy group-containing monomer is used.
  • the pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A preferably has X + Y ⁇ 10 when the hydroxyl value and the acid value are X mgKOH / mg and YmgKOH / mg, respectively.
  • the hydroxyl value and acid value of the pressure-sensitive adhesive component satisfy the above relational expression, the cohesive force of the pressure-sensitive adhesive component is increased, and the pressure-sensitive adhesive layer A is more difficult to break. Therefore, even when heat and a load are applied. Can also make it difficult to peel off the adhesive tape. Further, by satisfying the above relational expression, it is possible to easily satisfy the above horizontal load and die shear strength.
  • the X + Y is more preferably 30 or more, and further preferably 50 or more.
  • the upper limit of X + Y is not particularly limited, but is preferably 70 or less, and more preferably 65 or less, from the viewpoint of suppressing adhesive residue due to increased adhesion caused by an increase in the polarity of the pressure-sensitive adhesive layer.
  • the hydroxyl value and acid value can be adjusted, for example, by the amount of the functional group-containing monomer.
  • the pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A preferably has a radically polymerizable unsaturated bond amount of 0.2 meq / g or more and 2 meq / g or less.
  • the amount of the radically polymerizable unsaturated bond of the pressure-sensitive adhesive component is more preferably 0.3 meq / g or more, more preferably 0.5 meq / g, from the viewpoint of making it easier to satisfy the ranges of the die shear strength, the 180 ° peel strength and the horizontal load strength.
  • the amount of the radically polymerizable unsaturated bond can be adjusted, for example, by the amount of the functional group-containing unsaturated compound.
  • the hydroxyl value and acid value of the pressure-sensitive adhesive component can be measured by performing a titration test of a solution of the pressure-sensitive adhesive component according to JIS K0070.
  • the unsaturated bond amount can be calculated in the form of meq / g by subtracting the atomic weight of iodine 126.9 from the value of iodine value calculated by JIS K0070.
  • the pressure-sensitive adhesive layer A preferably contains a polymerization initiator.
  • a polymerization initiator By using the polymerizable polymer and the polymerization initiator in the pressure-sensitive adhesive layer A and curing the pressure-sensitive adhesive layer A, it is possible to easily satisfy the ranges of the die shear strength, the 180 ° peel strength and the horizontal load strength.
  • the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator. Of these, a photopolymerization initiator is preferable because it can be easily cured and damage to the adherend is small.
  • Examples of the photopolymerization initiator include those that are activated by irradiating with ultraviolet rays having a wavelength of 200 to 410 nm.
  • Examples of such photopolymerization initiators include acetophenone derivative compounds, benzophenone ether compounds, ketal derivative compounds, phosphine oxide derivative compounds, bis ( ⁇ 5-cyclopentadienyl) titanosen derivative compounds, benzophenone, Michler ketone, and chloro.
  • Examples thereof include thioxanthone, todecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, ⁇ -hydroxycyclohexylphenylketone, 2-hydroxymethylphenylpropane and the like.
  • Examples of the acetophenone derivative compound include methoxyacetophenone and the like.
  • Examples of the benzoin ether compound include benzoin propyl ether and benzoin isobutyl ether.
  • Examples of the ketal derivative compound include benzyldimethyl ketal and acetophenone diethyl ketal. These photopolymerization initiators may be used alone or in combination of two or more.
  • thermal polymerization initiator examples include those that generate active radicals that are decomposed by heat to initiate polymerization curing. Specifically, for example, dicumyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoale, t-butylhydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, etc. Examples thereof include paramentan hydroperoxide and di-t-butyl peroxide.
  • thermal polymerization initiators those commercially available are not particularly limited, but for example, perbutyl D, perbutyl H, perbutyl P, perpenta H (all of which are manufactured by NOF CORPORATION) and the like are suitable. These thermal polymerization initiators may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive layer A may contain a radically polymerizable polyfunctional oligomer or monomer.
  • the ultraviolet curability is improved.
  • the polyfunctional oligomer or monomer preferably has a weight average molecular weight of 10,000 or less, and more preferably has a weight average molecular weight of 5000 so that the pressure-sensitive adhesive layer can be efficiently reticulated by irradiation with ultraviolet rays.
  • the number of radically polymerizable unsaturated bonds in the molecule is 2 to 20 below.
  • the polyfunctional oligomer or monomer is, for example, trimethylolpropane triacrylate, tetramethylolmethanetetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate or the same methacrylate as above.
  • Other examples include 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, and the same methacrylates as described above.
  • These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive layer A preferably contains a cross-linking agent.
  • a cross-linking agent When the pressure-sensitive adhesive layer A contains a cross-linking agent, the cohesive force of the pressure-sensitive adhesive component can be improved.
  • the above-mentioned cross-linking agent include isocyanate-based cross-linking agents and epoxy-based cross-linking agents. Of these, isocyanate-based cross-linking agents are preferable because they can further improve the peeling performance.
  • the content of the cross-linking agent is not particularly limited, but the preferable lower limit is 0.01 parts by weight, the more preferable lower limit is 0.1 parts by weight, the preferable upper limit is 10 parts by weight, and the more preferable upper limit is 100 parts by weight. 5 parts by weight.
  • the content of the cross-linking agent is in the above range, the pressure-sensitive adhesive component can be appropriately cross-linked to further enhance the cohesive force of the pressure-sensitive adhesive component while maintaining high adhesive strength.
  • the pressure-sensitive adhesive layer A preferably contains a releasable component, and is a silicone or fluorine compound having a functional group crosslinkable with the pressure-sensitive adhesive component as the releasable component (hereinafter, also simply referred to as silicone or fluorine compound). Is more preferable to contain.
  • silicone or fluorine compound bleeds out at the interface between the pressure-sensitive adhesive layer A and the adherend, so that the adhesive tape can be easily peeled off without adhesive residue after the treatment is completed. can do.
  • the silicone or the fluorine compound has a functional group capable of cross-linking with the pressure-sensitive adhesive component
  • the silicone or the fluorine compound chemically reacts with the pressure-sensitive adhesive component or is incorporated into the pressure-sensitive adhesive component via a cross-linking agent or the like. Therefore, the contamination caused by the adhesion of the silicone or the fluorine compound to the adherend is suppressed.
  • the crosslinkable functional value of the silicone or fluorine compound is, for example, 2 to 6 valent, preferably 2 to 4 valent, and more preferably divalent.
  • the functional group crosslinkable with the pressure-sensitive adhesive component is appropriately determined by the functional group contained in the pressure-sensitive adhesive component.
  • the pressure-sensitive adhesive component contains a (meth) acrylic acid alkyl ester-based polymerizable polymer.
  • (Meta) Select an acrylic group and a crosslinkable functional group.
  • the functional group crosslinkable with the (meth) acrylic group is a functional group having an unsaturated double bond, and specifically contains, for example, a vinyl group, a (meth) acrylic group, an allyl group, a maleimide group and the like.
  • Select silicone or fluorine compounds examples include a hydroxyl group, a carboxyl group, an epoxy group, and the like, in addition to the functional group that can be crosslinked with the (meth) acrylic group.
  • silicone or a fluorine compound chemically reacts with the pressure-sensitive adhesive component at the same time as the curing reaction and is incorporated into the pressure-sensitive adhesive component. Therefore, a functional having an unsaturated double bond. It is preferably a group.
  • silicone or fluorine compound include silicone diacrylate and fluoroacrylate.
  • the content of the silicone or fluorine compound in the pressure-sensitive adhesive layer A has a preferable lower limit of 2% by weight, a more preferable lower limit of 5% by weight, a further preferable lower limit of 10% by weight, a preferable upper limit of 40% by weight, and a more preferable upper limit. Is 35% by weight, and a more preferable upper limit is 30% by weight.
  • the adherend can be peeled off with less adhesive residue.
  • the pressure-sensitive adhesive layer A preferably contains a urethane compound (hereinafter, also simply referred to as a urethane compound) having a functional group crosslinkable with the pressure-sensitive adhesive component.
  • a urethane compound having a functional group crosslinkable with the pressure-sensitive adhesive component.
  • the urethane compound has a functional group capable of cross-linking with the pressure-sensitive adhesive component, the urethane compound chemically reacts with the pressure-sensitive adhesive component or is incorporated into the pressure-sensitive adhesive component via a cross-linking agent or the like. Contamination caused by the adhesion of urethane compounds to the body is suppressed.
  • the functional group crosslinkable with the pressure-sensitive adhesive component include those similar to silicone or fluorine compounds having a functional group crosslinkable with the pressure-sensitive adhesive component.
  • the urethane compound include urethane acrylate.
  • the content of the urethane compound in the pressure-sensitive adhesive layer A has a preferable upper limit of 20% by weight, a more preferable upper limit of 15% by weight, and a further preferable upper limit of 10% by weight.
  • the lower limit of the content of the urethane compound is not particularly limited, but it is preferably 1% by weight from the viewpoint of making the adhesive tape more difficult to tear and suppressing adhesive residue.
  • the pressure-sensitive adhesive layer A may contain an inorganic filler such as fumed silica, a plasticizer, a resin, a surfactant, a wax, a fine particle filler, and other known additives.
  • an inorganic filler such as fumed silica, a plasticizer, a resin, a surfactant, a wax, a fine particle filler, and other known additives.
  • the above additives may be used alone or in combination of two or more.
  • the content thereof is preferably 100% by weight of the pressure-sensitive adhesive component from the viewpoint of making it easy to adjust the horizontal load within the above range. It is 3% by weight or more, more preferably 12% by weight or more, preferably 24% by weight or less, and more preferably 18% by weight or less.
  • the pressure-sensitive adhesive layer A preferably has a tensile strength of 1.0 MPa or more at 23 ° C. after irradiation with ultraviolet rays of 3000 mJ / cm 2 .
  • the tensile strength of the pressure-sensitive adhesive layer A after irradiation with ultraviolet rays is within the above range, the obtained adhesive tape can be made more difficult to tear, and the generation of adhesive residue can be further suppressed. Further, the horizontal load can be controlled within the above range.
  • the tensile strength is more preferably 1.2 MPa or more, and even more preferably 1.5 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but is preferably 6 MPa or less from the viewpoint of adhesive strength.
  • the tensile strength can be measured by a method according to JIS K 7161. Specifically, for example, using a punching blade "tensile No. 1 type dumbbell shape" manufactured by Polymer Instruments Co., Ltd., the adhesive layer A is dumbbelled so that the long side is the same as the flow direction at the time of manufacture. A test piece is prepared by punching into a shape. The obtained test piece is measured at a tensile speed of 100 mm / min using, for example, "Autograph AGS-X” manufactured by Shimadzu Corporation, and the test piece is broken. The tensile strength is calculated from the strength at the breaking point.
  • the pressure-sensitive adhesive layer A is preferably a tensile modulus at 260 ° C. after ultraviolet irradiation of 3000 mJ / cm 2 is 1.0 ⁇ 10 6 Pa or more.
  • the tensile elastic modulus of the pressure-sensitive adhesive layer A after irradiation with ultraviolet rays is within the above range, the resistance to the load of the obtained adhesive tape is enhanced, the adherend can be made less likely to be damaged, and further, the above-mentioned horizontal It becomes easier to control the load and die shear strength within the above range.
  • the tensile elastic modulus is more preferably 5 ⁇ 10 6 Pa or more, and further preferably 1 ⁇ 10 7 Pa or more.
  • the upper limit of the tensile elastic modulus is not particularly limited, but is preferably 30 ⁇ 10 6 Pa or less from the viewpoint of adhesive strength.
  • the tensile elastic modulus can be measured by the following method.
  • a 5 mm ⁇ 35 mm test piece is produced by punching a single-layer sample of the pressure-sensitive adhesive layer A with a punching blade so that the long side is the same as the flow direction at the time of manufacture.
  • the obtained test piece is immersed in liquid nitrogen and cooled to -50 ° C., and then using a viscoelastic spectrometer (for example, DVA-200, manufactured by IT Measurement Control Co., Ltd., etc.), a constant-speed temperature rise tensile mode.
  • the temperature is raised to 300 ° C. under the conditions of a heating rate of 10 ° C./min and a frequency of 10 Hz, and the storage elastic modulus is measured. From the result of the obtained storage elastic modulus, the storage elastic modulus at 260 ° C. is defined as the tensile elastic modulus.
  • the thickness of the pressure-sensitive adhesive layer A is not particularly limited, but the lower limit is preferably 1 ⁇ m and the upper limit is preferably 200 ⁇ m. When the thickness of the pressure-sensitive adhesive layer A is within the above range, the adherend can be protected with sufficient adhesive strength, and adhesive residue during peeling can be suppressed.
  • the more preferable lower limit of the thickness of the pressure-sensitive adhesive layer A is 10 ⁇ m, and the more preferable upper limit is 100 ⁇ m.
  • the pressure-sensitive adhesive layer B is not particularly limited as long as the pressure-sensitive adhesive layer A can satisfy the range of the die-share strength and the 180 ° peel strength, and may be the same as or different from the pressure-sensitive adhesive layer A. .. Further, the pressure-sensitive adhesive layer B may be a curable type or a non-curable type.
  • Examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer B include a rubber-based pressure-sensitive adhesive, an acrylic-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, and a urethane-based pressure-sensitive adhesive. Examples thereof include styrene / diene block copolymer adhesives.
  • the structure of the pressure-sensitive adhesive component is not particularly limited, and may be a random copolymer or a block copolymer.
  • the pressure-sensitive adhesive layer B preferably has an ultraviolet transmittance of 1% or more at 405 nm because the pressure-sensitive adhesive layer A easily satisfies the range of the die shear strength and the 180 ° peel strength.
  • the ultraviolet transmittance is more preferably 10% or more, further preferably 15% or more, and particularly preferably 50% or more. When the ultraviolet transmittance is at least these lower limits, the pressure-sensitive adhesive layer A can be sufficiently cured when the pressure-sensitive adhesive layer A is an ultraviolet-curable type without using a photosensitizer.
  • the upper limit of the ultraviolet transmittance is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
  • the thickness of the pressure-sensitive adhesive layer B is not particularly limited, but the preferable lower limit is 5 ⁇ m, the more preferable lower limit is 10 ⁇ m, the preferable upper limit is 100 ⁇ m, and the more preferable upper limit is 60 ⁇ m.
  • the thickness of the upper pressure-sensitive adhesive layer B is within the above range, it can be adhered to the support or the like with sufficient adhesive strength, and the adherend can be reliably fixed.
  • the material constituting the base film is not particularly limited as long as the pressure-sensitive adhesive layer A can satisfy the range of the die shear strength and the 180 ° peel strength, and may be an organic material or an inorganic material. However, it is preferable that the material has heat resistance.
  • heat-resistant organic materials include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultra-high molecular weight polyethylene, syndiotactic polystyrene, polyarylate, polysulfone, and polyether sulfone.
  • Examples thereof include polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, and liquid crystal polymer. Of these, polyethylene naphthalate is preferable because it has excellent heat resistance. Further, examples of the heat-resistant inorganic material include thin glass.
  • the base film preferably has an ultraviolet transmittance of 1% or more at 405 nm.
  • the ultraviolet transmittance is more preferably 10% or more, further preferably 15% or more, and particularly preferably 50% or more.
  • the pressure-sensitive adhesive layer A can be sufficiently cured when the pressure-sensitive adhesive layer A is an ultraviolet-curable type without using a photosensitizer.
  • the upper limit of the ultraviolet transmittance is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
  • the shape of the base film is not particularly limited, and examples thereof include a sheet shape, a sheet shape having a mesh-like structure, and a sheet shape having holes.
  • the above-mentioned base material is a base material which has been subjected to a treatment for improving the adhesive force with an adhesive such as sandblasting treatment and a surface corona treatment, and a treatment for imparting conductivity such as sputtering film formation and conductive film deposition. May be good.
  • the thickness of the base film is not particularly limited, but the preferable lower limit is 5 ⁇ m and the preferable upper limit is 100 ⁇ m. When the thickness of the base film is within this range, the adhesive tape has an appropriate elasticity and is excellent in handleability.
  • the more preferable lower limit of the thickness of the base film is 10 ⁇ m, and the more preferable upper limit is 50 ⁇ m.
  • the adhesive tape of the present invention may have an anchor layer between the base film and the pressure-sensitive adhesive layer A, or between the base film and the pressure-sensitive adhesive layer B.
  • an anchor layer is provided between the base film and the pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive layer contains a silicone or a fluorine compound
  • the silicone or the fluorine compound bleeds out to the base film side and the pressure-sensitive adhesive is provided. It is possible to prevent the layer from peeling off from the base film.
  • the anchor layer examples include an acrylic pressure-sensitive adhesive and a urethane-based pressure-sensitive adhesive. Of these, an acrylic adhesive is preferable because it has excellent anchoring performance.
  • the anchor layer may contain known additives such as an inorganic filler, a heat stabilizer, an antioxidant, an antistatic agent, a plasticizer, a resin, a surfactant, and a wax, if necessary. These additives may be used alone or in combination of two or more.
  • the thickness of the anchor layer is not particularly limited, but a preferable lower limit is 1 ⁇ m and a preferable upper limit is 30 ⁇ m.
  • a preferable lower limit is 1 ⁇ m and a preferable upper limit is 30 ⁇ m.
  • the anchor force between the pressure-sensitive adhesive layer on the anchor layer side and the base film can be further improved.
  • the more preferable lower limit of the thickness of the anchor layer is 3 ⁇ m, and the more preferable upper limit is 10 ⁇ m.
  • the adhesive tape of the present invention preferably has an ultraviolet transmittance of 1% or more at 405 nm because the adhesive layer A easily satisfies the range of the die shear strength and the 180 ° peel strength.
  • the ultraviolet transmittance is more preferably 10% or more, and further preferably 15% or more.
  • the pressure-sensitive adhesive layer A can be sufficiently cured when the pressure-sensitive adhesive layer A is an ultraviolet-curable type without using a photosensitizer.
  • the upper limit of the ultraviolet transmittance is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
  • the ultraviolet transmittance can be measured using a spectrophotometer (U-3900, manufactured by Hitachi, Ltd., or an equivalent product thereof).
  • the method for producing the adhesive tape of the present invention is not particularly limited, and conventionally known methods can be used.
  • a solution containing a pressure-sensitive adhesive component, a silicone or a fluorine compound, a urethane compound, or the like was applied onto a film that had undergone a mold release treatment and dried to form a pressure-sensitive adhesive layer A, which was then subjected to another mold release treatment.
  • the pressure-sensitive adhesive layer B After forming the pressure-sensitive adhesive layer B on the film by the same method, the pressure-sensitive adhesive layer A and the pressure-sensitive adhesive layer B can be bonded to both sides of the base film.
  • the application of the adhesive tape of the present invention is not particularly limited, but it can be particularly preferably used as a protective tape in the manufacture of electronic parts such as electronic substrates, semiconductor chips, and panel parts for display materials, which have a manufacturing process involving high temperature and load. it can.
  • the adhesive tape of the present invention used for manufacturing such electronic components is also one of the present inventions.
  • the adhesive tape of the present invention can be suitably used for manufacturing electronic components including a thermocompression bonding step of heating at 280 ° C. for a short time (for example, 90 seconds or less, typically 1 to 20 seconds). ..
  • Examples thereof include a method for manufacturing a semiconductor device having a step of laminating by crimp bonding.
  • a method for manufacturing such a semiconductor device is also one of the present inventions.
  • the method of fixing the wafer on the support via the adhesive tape of the present invention is not particularly limited, but the adhesive layer A and the wafer such as a silicon wafer are bonded to each other and the other A method of bonding the pressure-sensitive adhesive layer B and a support such as glass is preferable.
  • thermocompression bonding may be repeated, and the thermocompression bonding is heated at 280 ° C. for a short time (for example, 90 seconds or less, typically 1 to 20 seconds).
  • a short time for example, 90 seconds or less, typically 1 to 20 seconds.
  • a large number of semiconductor chips may be laminated by repeating the above steps.
  • the step of fixing the wafer may be followed by another step, and then the step of laminating the semiconductor chips by thermocompression bonding.
  • the other steps include a step of thinning the wafer by back grinding, a wafer level molding step, and the like.
  • a step of laminating the semiconductor chips by thermocompression bonding and then a step of peeling the adhesive tape from the support, the wafer, or both may be performed.
  • the support is not particularly limited, and examples thereof include glass, a polyimide film, and a glass epoxy substrate.
  • an adhesive tape that does not peel off from the adherend even when used in a process involving high temperature and load can be easily peeled off at the time of peeling, and can also suppress deformation of solder bumps.
  • thermocompression bonding bonding It is a schematic diagram which showed the state of thermocompression bonding bonding.
  • an ethyl acetate solution of a functional group-containing (meth) acrylic polymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
  • a functional group-containing (meth) acrylic polymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
  • 2-isocyanatoethyl methacrylate was added as a functional group-containing unsaturated compound to react.
  • the adhesive component A was obtained.
  • Adhesive components B to K were obtained in the same manner as the pressure-sensitive adhesive component A except that the compositions were as shown in Table 1.
  • Example 1 3 parts by weight of filler, 10 parts by weight of urethane compound, 20 parts by weight of mold release agent, 1 part by weight of photopolymerization initiator, and cross-linking agent with respect to 100 parts by weight of the resin solid content of the obtained ethyl acetate solution of the pressure-sensitive adhesive component A. 0.2 parts by weight were mixed to obtain an ethyl acetate solution of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer A.
  • the pressure-sensitive adhesive layer A was obtained by heating and drying at 110 ° C. for 5 minutes.
  • a doctor knife is applied with an ethyl acetate solution of the adhesive constituting the pressure-sensitive adhesive layer B so that the thickness of the dry film is 20 ⁇ m. And dried by heating at 110 ° C. for 5 minutes to obtain an adhesive layer B.
  • a 50 ⁇ m polyethylene naphthalate (PEN) film having corona treatment on both sides was prepared as a base material, and an adhesive layer A and an adhesive layer B were bonded to both sides of the PEN film to obtain an adhesive tape.
  • PEN polyethylene naphthalate
  • filler Leoloseal MT-10, Tokuyama Urethane Compound: Urethane Acrylate, UN-5500, Negami Kogyo's Mold Release Agent: Silicone Diacrylate, EBECRYL 350, Daicel Ornex Photopolymerization Initiator: Esacure One, Nippon Sibel Hegner Cross-linking agent: Isocyanate-based cross-linking agent, Coronate L, manufactured by Nippon Urethane Industry Co., Ltd.
  • Example 2 to 16 Comparative Examples 1 to 10
  • An adhesive tape was obtained in the same manner as in Example 1 except that the composition of the pressure-sensitive adhesive layer A was as shown in Tables 2 and 3.
  • Comparative Examples 8 and 9 the following mold release agents were used.
  • Release agent Silicon acrylate, RAD2250, manufactured by Evonik Japan Co., Ltd.
  • release agent Silicone modified acrylic polymer, 8BS-9000, manufactured by Taisei Fine Chemicals Co., Ltd.
  • the release film on the adhesive layer A side of the laminated body of the adhesive tape and the glass is peeled off, and a single crystal silicon wafer chip having a thickness of 3 mm ⁇ 3 mm and a thickness of ⁇ 0.1 ⁇ m is applied to the adhesive layer of the adhesive tape.
  • the silicon wafer chip After the heat treatment, the silicon wafer chip is allowed to cool at room temperature, and a bond tester (4000PXY, a universal type manufactured by Nordson Advanced Technology Co., Ltd.) is used to cover the entire side surface of the silicon wafer chip at 25 ° C. and 50% RH. A force in the vertical direction was applied to the silicon wafer chip, and the maximum load when the silicon wafer chip was moved was measured and used as the die shear strength.
  • a bond tester 4000PXY, a universal type manufactured by Nordson Advanced Technology Co., Ltd.
  • the release film on the adhesive layer A side of the adhesive tape is peeled off, and a single crystal silicon wafer of 8 inches, thickness 0.75 mm, and surface roughness ⁇ 0.1 ⁇ m is placed on the adhesive layer A of the adhesive tape, and the silicon wafer is placed.
  • the top was bonded by reciprocating once with a 2 kg rubber roller. After the bonding, the film is allowed to stand at room temperature for 20 minutes, the release film on the adhesive layer B side is peeled off, and then ultraviolet rays of 405 nm are adhered from the adhesive layer B side of the adhesive tape using a high-pressure mercury UV irradiator.
  • the film was irradiated toward the agent layer A so that the irradiation amount on the surface of the pressure-sensitive adhesive layer A opposite to the base material was 3000 mJ / cm 2 . Then, heat treatment was performed at 200 ° C. for 1 hour.
  • the adhesive tape after the heat treatment was subjected to a tensile test in the 180 ° direction at a peeling speed of 300 mm / min according to JIS Z0237, and the 180 ° peel strength with respect to the silicon wafer was measured.
  • the release film on the pressure-sensitive adhesive layer A side of the obtained sample was peeled off, and an ultraviolet light of 405 nm from the pressure-sensitive adhesive layer A side was emitted from the pressure-sensitive adhesive layer A side using a high-pressure mercury UV irradiator to oppose the base material of the pressure-sensitive adhesive layer A.
  • the irradiation was performed so that the illuminance on the side surface was 3000 mJ / cm 2 .
  • SAICAS DN-20 surface / interface physical property analyzer
  • a single crystal diamond blade having a width of 1 mm, a rake angle of 40 °, and a clearance angle of 10 ° was used as the cutting blade, and the cutting conditions were 5 ⁇ m / sec in the horizontal direction and 0.5 ⁇ m / sec in the vertical direction in the constant speed mode.
  • the point where the horizontal load was 0.002 N or more was defined as the point where the cutting edge came into contact with the surface of the pressure-sensitive adhesive layer A, and the horizontal load strength was measured within a depth range of 10 ⁇ m in the vertical direction from there.
  • the obtained test piece is immersed in liquid nitrogen and cooled to -50 ° C., and then, using a viscoelastic spectrometer (DVA-200, manufactured by IT Measurement Control Co., Ltd.), constant speed temperature rise and tension mode, temperature rise.
  • the temperature was raised to 300 ° C. under the conditions of a speed of 10 ° C./min and a frequency of 10 Hz, and the storage elastic modulus was measured.
  • the value of the storage elastic modulus (E') at 260 ° C. at this time was measured.
  • the ultraviolet transmittance of the adhesive tape was measured using a spectrophotometer (U-3900, manufactured by Hitachi, Ltd.). More specifically, the measurement was performed in a region of 800 to 200 nm at a scan speed of 300 nm / min and a slit interval of 4 nm, and the transmittance at 405 nm was measured.
  • the adhesive layer A side of the adhesive tape cut into a circle with a diameter of 20 cm was attached to a silicon wafer having a diameter of 20 cm, a thickness of 50 ⁇ m, and a surface roughness ⁇ 0.1 ⁇ m.
  • the adhesive B layer side of the adhesive tape was attached to a glass wafer (Tempax, manufactured by SCHOTT) having a diameter of 20 cm and a thickness of 0.6 mm.
  • ultraviolet light having a wavelength of 405 nm is irradiated from the glass wafer surface side so that the irradiation amount of the pressure-sensitive adhesive layer A is 3000 mJ / cm 2.
  • a and B were crosslinked and cured.
  • the obtained silicon wafer / adhesive tape / glass wafer laminate was allowed to stand for 1 hour in an oven set at 200 ° C. with the glass side facing down, and heat-treated.
  • a 50 ⁇ m-thick wafer was laminated on the sample that had returned to room temperature after the heat treatment using a flip chip bonder (FC6000, manufactured by Shibaura Mechatronics Co., Ltd.). Specifically, it is adsorbed on a SUS stage set at 80 ° C. so that the silicon wafer surface faces up, and has a thickness of 9.8 mm ⁇ 9.8 mm, a thickness of 50 ⁇ m, a surface roughness ⁇ 0.1 ⁇ m, and a thickness of 25 ⁇ m.
  • FC6000 flip chip bonder
  • Single crystal silicon thin wafer chips with a bonding film were laminated using a ceramic tool with a head size of 10 mm ⁇ 10 mm.
  • the temperature of the head during stacking was 310 ° C.
  • the pressure was 300 N
  • the stacking time was 90 seconds.
  • the laminating process the case where the thin wafer chips can be laminated in eight stages is indicated by " ⁇ ", and the case where the first stage can be laminated but peeling occurs between the silicon wafer and the adhesive tape in the second and subsequent stages.
  • the laminating process was evaluated with " ⁇ " and "x" when even one step could not be laminated.
  • the adhesive layer B side of the adhesive tape was attached to a glass wafer (Tempax, manufactured by SCHOTT) having a diameter of 20 cm and a thickness of 0.6 mm. After sticking, with the wavelength of 365 nm or less cut by a filter, ultraviolet light having a wavelength of 405 nm is irradiated from the glass wafer surface side so that the irradiation amount of the pressure-sensitive adhesive layer A is 3000 mJ / cm 2. A was crosslinked and cured.
  • the obtained silicon wafer / adhesive tape / glass wafer laminate was allowed to stand for 1 hour in an oven set at 200 ° C. with the glass side facing down, and heat-treated. After allowing the laminate to cool, the adhesive tape was peeled off from the wafer. The wafer after peeling was observed with an optical microscope, and when the number of bumps remaining in the adhesive was 5% or less among the bumps existing in the range of 500 ⁇ m square, it was “ ⁇ ”, which was more than 5% and 20% or less. The peelability was evaluated as " ⁇ " when the value was " ⁇ ", " ⁇ " when the percentage was more than 20% and 50% or less, and "x" when the percentage was more than 50%.
  • the adhesive layer B side of the adhesive tape was attached to a glass wafer (Tempax, manufactured by SCHOTT) having a diameter of 20 cm and a thickness of 0.6 mm. After sticking, with the wavelength of 365 nm or less cut by a filter, ultraviolet light having a wavelength of 405 nm is irradiated from the glass wafer surface side so that the irradiation amount of the pressure-sensitive adhesive layer A is 3000 mJ / cm 2. A was crosslinked and cured.
  • the obtained silicon wafer / adhesive tape / glass wafer laminate was allowed to stand for 1 hour in an oven set at 200 ° C. with the glass side facing down, and heat-treated.
  • a thin wafer chip was laminated in one stage on the bumped wafer of the sample of the laminate after the heat treatment under the same method and conditions as in the evaluation of the above lamination process.
  • the adhesive tape was peeled off, and the peeled wafer with bumps was observed with a scanning electron microscope.
  • the case where the bump whose shape has changed compared to the initial state is 5% or less
  • the case where it is more than 5% and 20% or less was evaluated as “ ⁇ ”, when it was more than 20% and 50% or less, it was evaluated as “ ⁇ ”, and when it was more than 50%, it was evaluated as “x”.
  • an adhesive tape that does not peel off from the adherend even when used in a process involving high temperature and load can be easily peeled off at the time of peeling, and can also suppress deformation of solder bumps.

Abstract

One purpose of the present invention is to provide an adhesive tape which is not separated from an adherend even if used in a process that is accompanied by a high temperature and a load, while being able to be easily separated upon separation, and which is also capable of suppressing deformation of a solder bump. Another purpose of the present invention is to provide a method for producing a semiconductor device, which uses this adhesive tape. The present invention is an adhesive tape which is obtained by sequentially stacking an adhesive layer A, a base material film and an adhesive layer B in this order, wherein: after the adhesive layer A is bonded to a silicon wafer chip, the adhesive layer B is bonded to a glass plate, and the adhesive tape is irradiated with ultraviolet light of 3,000 mJ/cm2 from the adhesive layer B-side surface toward the adhesive layer A and is subjected to a heat treatment at 240°C for 10 minutes, the die shear strength with respect to the silicon wafer chip is 3 N/9 mm2 or more; after the adhesive layer A is bonded to a silicon wafer, and the adhesive tape is irradiated with ultraviolet light of 3,000 mJ/cm2 from the adhesive layer B-side surface toward the adhesive layer A and is subjected to a heat treatment at 200°C for one hour, the 180° peel strength with respect to the silicon wafer is from 0.10 N/inch to 0.30 N/inch (inclusive); and after the adhesive layer B is bonded to a glass plate and the adhesive layer A is irradiated with ultraviolet light of 3,000 mJ/cm2, the horizontal load-bearing strength of a portion from the surface part to the depth of 10 μm of the adhesive layer A as determined by SAICAS measurement is 0.06 N/mm or more.

Description

粘着テープAdhesive tape
本発明は、粘着テープに関する。 The present invention relates to an adhesive tape.
半導体チップの製造工程において、ウエハや半導体チップの加工時の取扱いを容易にし、破損を防止するために粘着テープが用いられている。例えば、高純度なシリコン単結晶等から切り出した厚膜ウエハを所定の厚さにまで研削して薄膜ウエハとする場合、厚膜ウエハに粘着テープを貼り合わせた後に研削が行われる。 In the semiconductor chip manufacturing process, adhesive tape is used to facilitate handling of wafers and semiconductor chips during processing and to prevent damage. For example, when a thick film wafer cut out from a high-purity silicon single crystal or the like is ground to a predetermined thickness to obtain a thin film wafer, grinding is performed after attaching an adhesive tape to the thick film wafer.
このような粘着テープに用いられる接着剤組成物には、加工工程中にウエハや半導体チップ等の被着体を強固に固定できるだけの高い接着性とともに、工程終了後にはウエハや半導体チップ等の被着体を損傷することなく剥離できることが求められる(以下、「高接着易剥離」ともいう。)。
高接着易剥離を実現した接着剤組成物として、特許文献1には紫外線等の光を照射することにより硬化して粘着力が低下する光硬化型粘着剤を用いた粘着テープが開示されている。粘着剤として光硬化型粘着剤を用いることで、加工工程中には確実に被着体を固定できるとともに、紫外線等を照射することにより容易に剥離することができる。
The adhesive composition used for such an adhesive tape has high adhesiveness enough to firmly fix an adherend such as a wafer or a semiconductor chip during the processing process, and is covered with the wafer or the semiconductor chip after the process is completed. It is required that the wafer can be peeled off without damaging it (hereinafter, also referred to as "high adhesive easy peeling").
As an adhesive composition that achieves high adhesiveness and easy peeling, Patent Document 1 discloses an adhesive tape using a photocurable adhesive that cures by irradiating light such as ultraviolet rays to reduce the adhesive strength. .. By using a photocurable pressure-sensitive adhesive as the pressure-sensitive adhesive, the adherend can be reliably fixed during the processing process, and can be easily peeled off by irradiating with ultraviolet rays or the like.
特開平5-32946号公報Japanese Unexamined Patent Publication No. 5-32946
近年、半導体製品の薄化、小型化によって、ウエハ上に半導体チップを多数積層した半導体デバイスが製造されるようになってきており、半導体チップは熱圧着ボンディングによって積層されている。ここで熱圧着ボンディングの様子を表した模式図を図1に示した。図1に示すように、熱圧着ボンディングでは、粘着テープ1を介してガラス板等に固定されたウエハ2上に半導体チップ3が積層される。半導体チップ3は熱と荷重をかけることで下層の半導体チップと接続され、この工程を繰り返すことで半導体チップが積層されていく。
このような熱圧着ボンディングにおいては、チップ同士またはチップとウエハ間の接合のため260℃程度の高い温度、高い圧力で圧着を図ることが多く、その際に粘着テープが厚み方向に強く圧縮される。従来の粘着テープを用いた場合、熱と荷重がかけられた際に半導体チップ積層箇所の外縁部において、粘着テープ1とウエハ2の界面にせん断方向の応力がかかり、その界面で剥離が発生する。粘着テープの一部が剥離してしまうと粘着テープが平坦でなくなるため、半導体チップが正常に積層されなくなったり、積層が行えなくなったりする。そのため熱圧着ボンディングでは、従来の高接着易剥離機能に加えて260℃程度の耐熱性と、熱及び圧力によって剥離しない性能を持った粘着テープが求められている。
また、積層時のもうひとつの課題として、ウエハ2の粘着テープ1側の面に形成された半田バンプ4の、熱圧着時の圧力による変形が挙げられる。従来の粘着テープを用いた場合、ウエハ2と粘着テープ1の間の密着が弱いため、圧着時にウエハ2が動き、その際に粘着剤層中に埋め込まれた半田バンプ4が変形することがある。半田バンプ4が変形すると、粘着テープ剥離後のプロセスにおいて接合不良が発生したり、外観不良による不良品となったりする。そのため、仮固定時に用いられる粘着テープには熱圧着時のバンプ変形の抑制も同時に求められている。
In recent years, with the thinning and miniaturization of semiconductor products, semiconductor devices in which a large number of semiconductor chips are laminated on a wafer have been manufactured, and the semiconductor chips are laminated by thermocompression bonding. Here, FIG. 1 shows a schematic view showing the state of thermocompression bonding. As shown in FIG. 1, in thermocompression bonding, a semiconductor chip 3 is laminated on a wafer 2 fixed to a glass plate or the like via an adhesive tape 1. The semiconductor chip 3 is connected to the lower layer semiconductor chip by applying heat and a load, and the semiconductor chips are laminated by repeating this process.
In such thermocompression bonding, bonding is often performed at a high temperature and pressure of about 260 ° C. for bonding chips to each other or between chips and wafers, and at that time, the adhesive tape is strongly compressed in the thickness direction. .. When a conventional adhesive tape is used, stress in the shear direction is applied to the interface between the adhesive tape 1 and the wafer 2 at the outer edge of the semiconductor chip laminated portion when heat and load are applied, and peeling occurs at the interface. .. If a part of the adhesive tape is peeled off, the adhesive tape becomes uneven, so that the semiconductor chips cannot be laminated normally or can not be laminated. Therefore, in thermocompression bonding, an adhesive tape having a heat resistance of about 260 ° C. and a performance of not peeling due to heat and pressure is required in addition to the conventional high adhesive peeling function.
Another problem during lamination is deformation of the solder bumps 4 formed on the surface of the wafer 2 on the adhesive tape 1 side due to pressure during thermocompression bonding. When a conventional adhesive tape is used, the adhesion between the wafer 2 and the adhesive tape 1 is weak, so that the wafer 2 moves during crimping, and at that time, the solder bump 4 embedded in the adhesive layer may be deformed. .. If the solder bump 4 is deformed, a bonding defect may occur in the process after the adhesive tape is peeled off, or a defective product may be produced due to a poor appearance. Therefore, the adhesive tape used for temporary fixing is also required to suppress bump deformation during thermocompression bonding.
本発明は、高温と荷重を伴う工程に用いられた場合であっても被着体から剥離せず、剥離の際には容易に剥離でき、更に半田バンプの変形も抑制できる粘着テープを提供することを目的とする。また、本発明は、該粘着テープを用いた半導体デバイスの製造方法を提供することを目的とする。 The present invention provides an adhesive tape that does not peel off from the adherend even when used in a process involving high temperature and load, can be easily peeled off at the time of peeling, and can also suppress deformation of solder bumps. The purpose is. Another object of the present invention is to provide a method for manufacturing a semiconductor device using the adhesive tape.
本発明は、粘着剤層Aと基材フィルムと粘着剤層Bとがこの順番に積層された粘着テープであって、前記粘着剤層Aをシリコンウエハチップへ貼り付け、前記粘着剤層Bをガラス板に貼り付け、粘着テープの前記粘着剤層B側の面から前記粘着剤層Aへ3000mJ/cmの紫外線を照射し、240℃で10分間加熱処理した後のシリコンウエハチップに対するダイシェア強度が3N/9mm以上であり、前記粘着剤層Aをシリコンウエハへ貼り付け、前記粘着剤層B側の面から前記粘着剤層Aへ3000mJ/cmの紫外線を照射し、200℃で1時間加熱処理した後のシリコンウエハに対する180°ピール強度が0.1N/inch以上0.3N/inch以下であり、前記粘着剤層Bをガラス板に貼り付け、前記粘着剤層Aに3000mJ/cmの紫外線を照射後にSAICAS測定によって測定された前記粘着剤層Aの表層部から10μmの部分における水平荷重強度が0.06N/mm以上である、粘着テープである。
以下に本発明を詳述する。
The present invention is an adhesive tape in which the pressure-sensitive adhesive layer A, the base film, and the pressure-sensitive adhesive layer B are laminated in this order. The pressure-sensitive adhesive layer A is attached to a silicon wafer chip, and the pressure-sensitive adhesive layer B is attached. Die-share strength with respect to the silicon wafer chip after being attached to a glass plate, irradiating the adhesive layer A with ultraviolet rays of 3000 mJ / cm 2 from the surface of the adhesive tape on the adhesive layer B side, and heat-treating at 240 ° C. for 10 minutes. Is 3N / 9 mm 2 or more, the adhesive layer A is attached to a silicon wafer, and the adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 from the surface on the adhesive layer B side, and 1 at 200 ° C. The 180 ° peel strength with respect to the silicon wafer after the time heat treatment is 0.1 N / inch or more and 0.3 N / inch or less, the adhesive layer B is attached to a glass plate, and the adhesive layer A is 3000 mJ / cm. This is an adhesive tape having a horizontal load strength of 0.06 N / mm or more in a portion 10 μm from the surface layer portion of the pressure-sensitive adhesive layer A measured by SAICAS measurement after irradiation with the ultraviolet rays of 2 .
The present invention will be described in detail below.
本発明の粘着テープは、粘着剤層Aと基材フィルムと粘着剤層Bとがこの順番に積層された粘着テープである。
本発明の粘着テープは、上記粘着剤層Aをシリコンウエハチップへ貼り付け、上記粘着剤層Bをガラス板に貼り付け、粘着テープの上記粘着剤層B側の面から上記粘着剤層Aへ3000mJ/cmの紫外線を照射し、240℃で10分間加熱処理した後のシリコンウエハチップに対するダイシェア強度が3N/9mm以上である。
粘着テープの粘着剤層の少なくとも片面が、上記範囲のダイシェア強度と、後述する180°ピール強度及びSAICAS測定による水平荷重強度を満たすことで、高温と荷重を伴う処理によっても粘着テープが剥離し難く、かつ被着体への糊残りとバンプの変形を抑制することができる。
The adhesive tape of the present invention is an adhesive tape in which the pressure-sensitive adhesive layer A, the base film, and the pressure-sensitive adhesive layer B are laminated in this order.
In the adhesive tape of the present invention, the adhesive layer A is attached to a silicon wafer chip, the adhesive layer B is attached to a glass plate, and the surface of the adhesive tape on the adhesive layer B side to the adhesive layer A. The die shear strength with respect to the silicon wafer chip after irradiation with ultraviolet rays of 3000 mJ / cm 2 and heat treatment at 240 ° C. for 10 minutes is 3 N / 9 mm 2 or more.
Since at least one side of the adhesive layer of the adhesive tape satisfies the die shear strength in the above range, the 180 ° peel strength described later, and the horizontal load strength measured by SAICAS, the adhesive tape is difficult to peel off even by a treatment involving high temperature and load. In addition, it is possible to suppress adhesive residue on the adherend and deformation of bumps.
ダイシェア強度とは半導体チップの接合強度を測定する手法の一つであり、接合材によってウエハや基板等の上に接合された半導体チップに横方向に力を印加した際に、半導体チップとウエハや基板の接合面が破壊された際の力を測定することができる。
本発明においては、粘着テープとシリコンウエハチップのせん断方向の密着性を測る指標として用い、具体的には粘着テープの上にボンディングしたシリコンウエハチップへ横方向から力を印加し、シリコンウエハチップが剥離した際の強度を測定する。上記ダイシェア強度が高いとせん断方向への応力に対する密着性が高くなり、圧縮時にチップ圧着箇所の外縁部で粘着テープとウエハの界面に加わるせん断方向の負荷に対しても剥がれ難くなるため、結果として熱と荷重がかかった際にウエハと粘着テープの間での剥離が起き難くなる。粘着テープとシリコンウエハのせん断方向の密着性を高める観点から、上記ダイシェア強度は、4N/9mm以上であることが好ましく、4.5N/9mm以上であることがより好ましく、5.5N/9mm以上であることが更に好ましい。上記ダイシェア強度の上限は特に限定されないが、使用後の剥離をより容易とする観点から10N/9mm以下であることが好ましい。上記ダイシェア強度は粘着剤の種類、シリコーンまたはフッ素化合物の含有量によって調節することができる。
なお、上記ダイシェア強度は、より具体的には以下の方法で測定することができる。
Die-share strength is one of the methods for measuring the bonding strength of a semiconductor chip, and when a force is applied laterally to the semiconductor chip bonded on a wafer or substrate by a bonding material, the semiconductor chip and the wafer or It is possible to measure the force when the joint surface of the substrate is broken.
In the present invention, it is used as an index for measuring the adhesion between the adhesive tape and the silicon wafer chip in the shear direction. Specifically, a force is applied from the lateral direction to the silicon wafer chip bonded on the adhesive tape to form the silicon wafer chip. Measure the strength when peeled off. If the die shear strength is high, the adhesion to stress in the shear direction becomes high, and it becomes difficult to peel off even with a load in the shear direction applied to the interface between the adhesive tape and the wafer at the outer edge of the chip crimping portion during compression. Peeling between the wafer and the adhesive tape is less likely to occur when heat and load are applied. From the viewpoint of enhancing the adhesion between the adhesive tape and the silicon wafer in the shear direction, the die shear strength is preferably 4N / 9mm 2 or more, more preferably 4.5N / 9mm 2 or more, and 5.5N / It is more preferably 9 mm 2 or more. The upper limit of the die shear strength is not particularly limited, but is preferably 10 N / 9 mm 2 or less from the viewpoint of facilitating peeling after use. The die shear strength can be adjusted by the type of adhesive and the content of silicone or fluorine compound.
More specifically, the die shear strength can be measured by the following method.
3cm×4cmに切った両面が離型フィルムで保護された粘着テープの粘着剤層B側の離型フィルムを剥離し、粘着剤層Bとスライドガラス(S9112、松浪硝子工業社製)を貼り合せる。該粘着テープとガラスの積層体の、粘着剤層A側の離型フィルムを剥離し、3mm×3mm、3mm厚、表面粗さ<0.1μmの単結晶シリコンウエハチップを粘着テープの粘着剤層Aに載せ、ステージ温度20℃、ヘッド温度20℃、ボンディング圧力3Nでボンディングする。次いで、高圧水銀UV照射機を用いて、405nmの紫外線を粘着テープの粘着剤層B側から粘着剤層Aに向けて照射し、粘着剤層Aの基材とは反対側の表面における照射量が3000mJ/cmとなるように照射する。その後、240℃、10分間加熱処理を行う。加熱処理後、シリコンウエハチップを室温下放冷し、ボンドテスター(4000PXY、ノードソン・アドバンスド・テクノロジー社製、万能型)を用いて、25℃50%RH下で、シリコンウエハチップの側面全体へチップの側面に対して垂直方向の力を加え、シリコンウエハチップを動かした時の最大荷重を測定し、これをダイシェア強度とする。 Peel off the release film on the adhesive layer B side of the adhesive tape whose both sides are protected by a release film cut into 3 cm x 4 cm, and attach the adhesive layer B and slide glass (S9111, manufactured by Matsunami Glass Industry Co., Ltd.). .. The release film on the adhesive layer A side of the laminated body of the adhesive tape and the glass is peeled off, and a single crystal silicon wafer chip having a thickness of 3 mm × 3 mm and a thickness of <0.1 μm is applied to the adhesive layer of the adhesive tape. It is placed on A and bonded at a stage temperature of 20 ° C., a head temperature of 20 ° C., and a bonding pressure of 3N. Next, using a high-pressure mercury UV irradiator, ultraviolet rays of 405 nm are irradiated from the pressure-sensitive adhesive layer B side of the pressure-sensitive adhesive tape toward the pressure-sensitive adhesive layer A, and the irradiation amount on the surface of the pressure-sensitive adhesive layer A on the side opposite to the base material. Irradiate so that the value is 3000 mJ / cm 2 . Then, heat treatment is performed at 240 ° C. for 10 minutes. After the heat treatment, the silicon wafer chip is allowed to cool at room temperature, and a bond tester (4000PXY, manufactured by Nordson Advanced Technology Co., Ltd., universal type) is used to cover the entire side surface of the silicon wafer chip at 25 ° C. and 50% RH. A force in the direction perpendicular to the side surface is applied, and the maximum load when the silicon wafer chip is moved is measured, and this is defined as the die shear strength.
本発明の粘着テープは、前記粘着剤層Aをシリコンウエハへ貼り付け、前記粘着剤層B側の面から前記粘着剤層Aへ3000mJ/cmの紫外線を照射し、200℃で1時間加熱処理した後のシリコンウエハに対する180°ピール強度が0.1N/inch以上0.3N/inch以下である。
粘着テープが上記範囲の180°ピール強度であることで、充分な粘着力で被着体を保護できるとともに使用後の剥離を容易にすることができる。また、半導体チップと粘着テープ間の充分な密着性が得られることから、バンプの変形を抑制することが出来る。被着体との粘着力を高めて粘着テープをより剥離しにくくする観点から、上記180°ピール強度は、0.11N/inch以上であることが好ましく、0.13N/inch以上であることがより好ましく、0.15N/inch以上であることが更に好ましい。また、使用後の剥離をより容易にし、糊残りを抑える観点から、上記180°ピール強度は、0.25N/inch以下であることがより好ましく、0.2N/inch以下であることが更に好ましい。上記180°ピール強度は、粘着剤層の種類、添加するフィラー、無機充填剤、微粒子成分またはウレタン化合物、シリコーンまたはフッ素化合物等の離型性成分をもつ添加剤等の含有量によって調節することができる。
なお、上記180°ピール強度はより具体的には以下の方法で測定することができる。
In the adhesive tape of the present invention, the adhesive layer A is attached to a silicon wafer, the adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 from the surface on the adhesive layer B side, and heated at 200 ° C. for 1 hour. The 180 ° peel strength with respect to the processed silicon wafer is 0.1 N / inch or more and 0.3 N / inch or less.
When the adhesive tape has a peel strength of 180 ° in the above range, the adherend can be protected with sufficient adhesive strength and peeling after use can be facilitated. Further, since sufficient adhesion between the semiconductor chip and the adhesive tape can be obtained, deformation of the bump can be suppressed. From the viewpoint of increasing the adhesive strength with the adherend and making the adhesive tape more difficult to peel off, the 180 ° peel strength is preferably 0.11 N / inch or more, and preferably 0.13 N / inch or more. More preferably, it is 0.15 N / inch or more. Further, from the viewpoint of facilitating peeling after use and suppressing adhesive residue, the 180 ° peel strength is more preferably 0.25 N / inch or less, and further preferably 0.2 N / inch or less. .. The 180 ° peel strength can be adjusted by adjusting the content of the pressure-sensitive adhesive layer, the filler to be added, the inorganic filler, the fine particle component or the urethane compound, the additive having a releasable component such as silicone or the fluorine compound, and the like. it can.
More specifically, the 180 ° peel strength can be measured by the following method.
粘着テープの粘着剤層A側の離型フィルムを剥離し、8インチ、厚さ0.75mm、表面粗さ<0.1μmの単結晶シリコンウエハを粘着テープの粘着剤層Aに載せ、シリコンウエハ上を2kgのゴムローラーで一往復させることにより貼り合わせる。貼り合せ後20分間常温で静置した後、粘着剤層B側の離型フィルムを剥離し、次いで、高圧水銀UV照射機を用いて、405nmの紫外線を粘着テープの粘着剤層B側から粘着剤層Aに向けて照射し、粘着剤層Aの基材とは反対側の表面における照射量が3000mJ/cmとなるように照射する。その後、200℃、1時間加熱処理を行う。加熱処理後の粘着テープについてJIS Z0237に準じて、剥離速度300mm/分で180°方向の引張試験を行い、シリコンウエハに対する180°ピール強度を測定する。 The release film on the adhesive layer A side of the adhesive tape is peeled off, and a single crystal silicon wafer of 8 inches, thickness 0.75 mm, and surface roughness <0.1 μm is placed on the adhesive layer A of the adhesive tape, and the silicon wafer is placed. The top is bonded by reciprocating once with a 2 kg rubber roller. After the bonding, the film is allowed to stand at room temperature for 20 minutes, the release film on the adhesive layer B side is peeled off, and then ultraviolet rays of 405 nm are adhered from the adhesive layer B side of the adhesive tape using a high-pressure mercury UV irradiator. Irradiation is performed toward the agent layer A so that the irradiation amount on the surface of the adhesive layer A opposite to the base material is 3000 mJ / cm 2 . Then, heat treatment is performed at 200 ° C. for 1 hour. The adhesive tape after the heat treatment is subjected to a tensile test in the 180 ° direction at a peeling speed of 300 mm / min according to JIS Z0237, and the 180 ° peel strength with respect to the silicon wafer is measured.
本発明の粘着テープは、上記粘着剤層Bをガラス板に貼り付け、上記粘着剤層Aに3000mJ/cmの紫外線を照射後にSAICAS測定によって測定された上記粘着剤層Aの表層部から10μmの部分における水平荷重強度が0.06N/mm以上である。
SAICAS法とは、Surface And Interfacial Cutting Anaylsis System法と呼ばれる、材料を表層部から鋭利な切刃で低速で切削する評価法である。SAICAS法を用いることによって、粘着剤層の表面の切削時に切刃に加わる水平力と垂直力を測定することができる。
粘着剤層Aの水平荷重強度が上記範囲であることで、粘着剤層の強度が高くなり、被着体からの剥離時の糊が千切れにくくなることから、被着体への糊残りを抑制することが出来る。粘着剤層の強度を高め糊残りを抑える観点から、上記水平荷重強度は0.07N/mm以上であることが好ましく、0.075N/mm以上であることがより好ましく、0.08N/mm以上であることが更に好ましい。上記水平荷重強度の上限は特に限定されないが、粘着剤層が脆くなることを抑える観点から0.2N/mm以下であることが好ましい。上記水平荷重強度は、粘着剤の種類、添加するフィラー、無機充填剤、微粒子成分またはウレタン化合物、離型性成分を持つ添加剤等の含有量によって調節することができる。
なお、上記水平荷重強度は、具体的には以下のような方法で測定を行うことができる。
In the adhesive tape of the present invention, the pressure-sensitive adhesive layer B is attached to a glass plate, the pressure-sensitive adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 , and then 10 μm from the surface layer portion of the pressure-sensitive adhesive layer A measured by SAICAS measurement. The horizontal load strength in the portion is 0.06 N / mm or more.
The SAICAS method is an evaluation method for cutting a material from a surface layer portion at a low speed with a sharp cutting edge, which is called a Surface And Interfacial Cutting Analsis System method. By using the SAICAS method, it is possible to measure the horizontal force and the normal force applied to the cutting edge when cutting the surface of the pressure-sensitive adhesive layer.
When the horizontal load strength of the pressure-sensitive adhesive layer A is within the above range, the strength of the pressure-sensitive adhesive layer is increased, and the adhesive is less likely to be torn when peeled from the adherend. It can be suppressed. From the viewpoint of increasing the strength of the pressure-sensitive adhesive layer and suppressing adhesive residue, the horizontal load strength is preferably 0.07 N / mm or more, more preferably 0.075 N / mm or more, and 0.08 N / mm or more. Is more preferable. The upper limit of the horizontal load strength is not particularly limited, but is preferably 0.2 N / mm or less from the viewpoint of suppressing the pressure-sensitive adhesive layer from becoming brittle. The horizontal load strength can be adjusted by adjusting the content of the pressure-sensitive adhesive, the filler to be added, the inorganic filler, the fine particle component or the urethane compound, the additive having a releasable component, and the like.
Specifically, the horizontal load strength can be measured by the following method.
3cm×4cmに切った両面が離型フィルムで保護された粘着テープの粘着剤層B側の離型フィルムを剥離し、粘着剤層Bとスライドガラス(S9112、松浪硝子工業社製)を貼り合せて測定用サンプルを得る。貼り合せは粘着テープの粘着剤層A側の面上に2kgローラーを1往復させることで行う。次いで、得られたサンプルの粘着剤層A側の離型フィルムを剥離し、高圧水銀UV照射機を用いて、粘着剤層A側から405nmの紫外光を粘着剤層Aの基材とは反対側の表面における照度が3000mJ/cmとなるように照射する。その後、表面・界面物性解析装置(SAICAS DN-20、ダイプラ・ウィンテス社製)を用いて、25℃50%RH、紫外光カットの条件下で粘着テープの粘着剤層Aの水平力と垂直力を測定する。切り刃には単結晶ダイアモンド製の幅1mm、すくい角40°、逃げ角10°の刃を用い、切削条件は定速度モードで水平方向5μm/秒、垂直方向0.5μm/秒とする。水平荷重が0.002N以上となった点を切り刃が粘着剤層A表面に接触した点とし、そこから垂直方向に10μmの深さの範囲で水平荷重強度を測定する。 The release film on the adhesive layer B side of the adhesive tape whose both sides are protected by a release film cut into 3 cm x 4 cm is peeled off, and the adhesive layer B and the slide glass (S9111, manufactured by Matsunami Glass Industry Co., Ltd.) are bonded together. To obtain a sample for measurement. The bonding is performed by reciprocating a 2 kg roller once on the surface of the adhesive tape on the adhesive layer A side. Next, the release film on the pressure-sensitive adhesive layer A side of the obtained sample was peeled off, and an ultraviolet light of 405 nm from the pressure-sensitive adhesive layer A side was emitted from the pressure-sensitive adhesive layer A side using a high-pressure mercury UV irradiator to oppose the base material of the pressure-sensitive adhesive layer A. Irradiate so that the illuminance on the surface on the side is 3000 mJ / cm 2 . After that, using a surface / interface physical property analyzer (SAICAS DN-20, manufactured by Daipla Wintes), the horizontal force and normal force of the adhesive layer A of the adhesive tape under the conditions of 25 ° C. 50% RH and ultraviolet light cut. To measure. A single crystal diamond blade having a width of 1 mm, a rake angle of 40 °, and a clearance angle of 10 ° is used as the cutting blade, and the cutting conditions are 5 μm / sec in the horizontal direction and 0.5 μm / sec in the vertical direction in the constant speed mode. The point where the horizontal load is 0.002 N or more is defined as the point where the cutting edge comes into contact with the surface of the pressure-sensitive adhesive layer A, and the horizontal load strength is measured within a depth range of 10 μm in the vertical direction from there.
上記粘着剤層Aを構成する粘着剤成分は、上記ダイシェア強度、180°ピール強度及び水平荷重強度の範囲を満たしていれば特に限定されないが、これらの範囲を満たしやすいことから、分子内にラジカル重合性の不飽和結合を有する粘着剤成分であることが好ましい。上記粘着剤層Aを構成する粘着剤成分は、分子内にラジカル重合性の不飽和結合を有する(メタ)アクリル酸アルキルエステル系の重合性ポリマーを含むことがより好ましい。
上記重合性ポリマーは、例えば、分子内に官能基を持った(メタ)アクリル系ポリマー(以下、官能基含有(メタ)アクリル系ポリマーという)をあらかじめ合成し、分子内に上記の官能基と反応する官能基とラジカル重合性の不飽和結合とを有する化合物(以下、官能基含有不飽和化合物という)とを反応させることにより得ることができる。
The pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A is not particularly limited as long as it satisfies the ranges of the die shear strength, the 180 ° peel strength and the horizontal load strength, but since it is easy to satisfy these ranges, radicals are introduced in the molecule. It is preferably a pressure-sensitive adhesive component having a polymerizable unsaturated bond. It is more preferable that the pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A contains a (meth) acrylic acid alkyl ester-based polymerizable polymer having a radically polymerizable unsaturated bond in the molecule.
For the polymerizable polymer, for example, a (meth) acrylic polymer having a functional group in the molecule (hereinafter, referred to as a functional group-containing (meth) acrylic polymer) is synthesized in advance and reacts with the functional group in the molecule. It can be obtained by reacting a functional group to be subjected to a compound having a radically polymerizable unsaturated bond (hereinafter referred to as a functional group-containing unsaturated compound).
上記官能基含有(メタ)アクリル系ポリマーは、アルキル基の炭素数が通常2~18の範囲にあるアクリル酸アルキルエステル及び/又はメタクリル酸アルキルエステルと、官能基含有モノマーと、更に必要に応じてこれらと共重合可能な他の改質用モノマーとを常法により共重合させることにより得られる。上記官能基含有(メタ)アクリル系ポリマーの重量平均分子量は通常20万~200万程度である。
なお、本明細書において重量平均分子量は通常、GPC法によって決定することができ、例えば、カラム温度40℃において溶出液としてTHF、カラムとしてWaters社製 HSPgel HR MB-M 6.0×150mmを用いて、ポリスチレン標準により決定することができる。
The functional group-containing (meth) acrylic polymer includes an acrylic acid alkyl ester and / or a methacrylate alkyl ester in which the number of carbon atoms of the alkyl group is usually in the range of 2 to 18, a functional group-containing monomer, and if necessary. It is obtained by copolymerizing these with another copolymerizable monomer for modification by a conventional method. The weight average molecular weight of the functional group-containing (meth) acrylic polymer is usually about 200,000 to 2,000,000.
In the present specification, the weight average molecular weight can be usually determined by the GPC method. For example, THF is used as an eluate at a column temperature of 40 ° C., and Waters HSPgel HR MB-M 6.0 × 150 mm is used as a column. It can be determined by the polystyrene standard.
上記官能基含有モノマーとしては、例えば、カルボキシル基含有モノマーや、ヒドロキシ基含有モノマーや、エポキシ基含有モノマーや、イソシアネート基含有モノマーや、アミノ基含有モノマー等が挙げられる。上記カルボキシ基含有モノマーとしては、アクリル酸、メタクリル酸等が挙げられる。上記ヒドロキシ基含有モノマーとしては、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル等が挙げられる。上記エポキシ基含有モノマーとしては、アクリル酸グリシジル、メタクリル酸グリシジル等が挙げられる。上記イソシアネート基含有モノマーとしては、アクリル酸イソシアネートエチル、メタクリル酸イソシアネートエチル等が挙げられる。上記アミノ基含有モノマーとしては、アクリル酸アミノエチル、メタクリル酸アミノエチル等が挙げられる。 Examples of the functional group-containing monomer include a carboxyl group-containing monomer, a hydroxy group-containing monomer, an epoxy group-containing monomer, an isocyanate group-containing monomer, and an amino group-containing monomer. Examples of the carboxy group-containing monomer include acrylic acid and methacrylic acid. Examples of the hydroxy group-containing monomer include hydroxyethyl acrylate and hydroxyethyl methacrylate. Examples of the epoxy group-containing monomer include glycidyl acrylate and glycidyl methacrylate. Examples of the isocyanate group-containing monomer include ethyl isocyanate, ethyl methacrylate, and the like. Examples of the amino group-containing monomer include aminoethyl acrylate and aminoethyl methacrylate.
上記共重合可能な他の改質用モノマーとしては、例えば、酢酸ビニル、アクリロニトリル、スチレン等の一般の(メタ)アクリル系ポリマーに用いられている各種のモノマーが挙げられる。 Examples of the other copolymerizable monomer for modification include various monomers used in general (meth) acrylic polymers such as vinyl acetate, acrylonitrile, and styrene.
上記官能基含有(メタ)アクリル系ポリマーに反応させる官能基含有不飽和化合物としては、上記官能基含有(メタ)アクリル系ポリマーの官能基に応じて上述した官能基含有モノマーと同様のものを使用できる。例えば、上記官能基含有(メタ)アクリル系ポリマーの官能基がカルボキシル基の場合はエポキシ基含有モノマーやイソシアネート基含有モノマーが用いられる。同官能基がヒドロキシ基の場合はイソシアネート基含有モノマーが用いられる。同官能基がエポキシ基の場合はカルボキシル基含有モノマーやアクリルアミド等のアミド基含有モノマーが用いられる。同官能基がアミノ基の場合はエポキシ基含有モノマーが用いられる。 As the functional group-containing unsaturated compound to be reacted with the functional group-containing (meth) acrylic polymer, the same one as the above-mentioned functional group-containing monomer is used depending on the functional group of the functional group-containing (meth) acrylic polymer. it can. For example, when the functional group of the functional group-containing (meth) acrylic polymer is a carboxyl group, an epoxy group-containing monomer or an isocyanate group-containing monomer is used. When the functional group is a hydroxy group, an isocyanate group-containing monomer is used. When the functional group is an epoxy group, a carboxyl group-containing monomer or an amide group-containing monomer such as acrylamide is used. When the functional group is an amino group, an epoxy group-containing monomer is used.
上記粘着剤層Aを構成する粘着剤成分は、水酸基価と酸価をそれぞれXmgKOH/mg、YmgKOH/mgとしたときに、X+Y≧10であることが好ましい。
上記粘着剤成分の水酸基価と酸価が上記関係式を満たすことで粘着剤成分の凝集力が高まり、粘着剤層Aがより破断しにくくなることから、熱と荷重がかかった場合であっても粘着テープを剥離し難くすることができる。また、上記関係式を満たすことで、上記水平荷重及びダイシェア強度を満たしやすくすることもできる。粘着テープを更に剥離し難くする観点、並びに上記水平荷重及びダイシェア強度の制御の観点から、上記X+Yは30以上であることがより好ましく、50以上であることが更に好ましい。上記X+Yの上限は特に限定されないが、粘着剤層の極性が高くなることで生じる接着亢進による糊残りを抑制する観点から70以下であることが好ましく、65以下であることがより好ましい。なお、上記水酸基価及び酸価は、例えば、上記官能基含有モノマーの量によって調節することができる。
The pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A preferably has X + Y ≧ 10 when the hydroxyl value and the acid value are X mgKOH / mg and YmgKOH / mg, respectively.
When the hydroxyl value and acid value of the pressure-sensitive adhesive component satisfy the above relational expression, the cohesive force of the pressure-sensitive adhesive component is increased, and the pressure-sensitive adhesive layer A is more difficult to break. Therefore, even when heat and a load are applied. Can also make it difficult to peel off the adhesive tape. Further, by satisfying the above relational expression, it is possible to easily satisfy the above horizontal load and die shear strength. From the viewpoint of making the adhesive tape more difficult to peel off and controlling the horizontal load and die shear strength, the X + Y is more preferably 30 or more, and further preferably 50 or more. The upper limit of X + Y is not particularly limited, but is preferably 70 or less, and more preferably 65 or less, from the viewpoint of suppressing adhesive residue due to increased adhesion caused by an increase in the polarity of the pressure-sensitive adhesive layer. The hydroxyl value and acid value can be adjusted, for example, by the amount of the functional group-containing monomer.
上記粘着剤層Aを構成する粘着剤成分は、ラジカル重合性の不飽和結合の量が0.2meq/g以上2meq/g以下であることが好ましい。
粘着剤成分のラジカル重合性の不飽和結合の量が上記範囲であることで、上記ダイシェア強度、180°ピール強度及び水平荷重強度の範囲を満たしやすくすることができる。上記ダイシェア強度、180°ピール強度及び水平荷重強度の範囲をより満たしやすくする観点から上記ラジカル重合性の不飽和結合の量は、0.3meq/g以上であることがより好ましく、0.5meq/g以上であることが更に好ましく、1.5meq/g以下であることが好ましく、1meq/g以下であることが更に好ましい。上記ラジカル重合性の不飽和結合の量は、例えば、上記官能基含有不飽和化合物の量によって調節することができる。
The pressure-sensitive adhesive component constituting the pressure-sensitive adhesive layer A preferably has a radically polymerizable unsaturated bond amount of 0.2 meq / g or more and 2 meq / g or less.
When the amount of the radically polymerizable unsaturated bond of the pressure-sensitive adhesive component is within the above range, it is possible to easily satisfy the above ranges of die shear strength, 180 ° peel strength and horizontal load strength. The amount of the radically polymerizable unsaturated bond is more preferably 0.3 meq / g or more, more preferably 0.5 meq / g, from the viewpoint of making it easier to satisfy the ranges of the die shear strength, the 180 ° peel strength and the horizontal load strength. It is more preferably g or more, preferably 1.5 meq / g or less, and even more preferably 1 meq / g or less. The amount of the radically polymerizable unsaturated bond can be adjusted, for example, by the amount of the functional group-containing unsaturated compound.
上記粘着剤成分の水酸基価、酸価は、JIS K0070に準じて粘着剤成分の溶液の滴定試験を行うことで測定できる。不飽和結合量については、JIS K0070によって算出されるヨウ素価の値から、ヨウ素の原子量126.9を除すことで、meq/gの形で算出することが出来る。 The hydroxyl value and acid value of the pressure-sensitive adhesive component can be measured by performing a titration test of a solution of the pressure-sensitive adhesive component according to JIS K0070. The unsaturated bond amount can be calculated in the form of meq / g by subtracting the atomic weight of iodine 126.9 from the value of iodine value calculated by JIS K0070.
上記粘着剤層Aは、重合開始剤を含有することが好ましい。
上記粘着剤層Aに上記重合性ポリマーと重合開始剤を用い、上記粘着剤層Aを硬化させることで、上記ダイシェア強度、180°ピール強度及び水平荷重強度の範囲を満たしやすくすることができる。上記重合開始剤としては、光重合開始剤、熱重合開始剤等が挙げられる。なかでも、硬化を容易に行うことができ、被着体へのダメージも小さいことから光重合開始剤が好ましい。
The pressure-sensitive adhesive layer A preferably contains a polymerization initiator.
By using the polymerizable polymer and the polymerization initiator in the pressure-sensitive adhesive layer A and curing the pressure-sensitive adhesive layer A, it is possible to easily satisfy the ranges of the die shear strength, the 180 ° peel strength and the horizontal load strength. Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator. Of these, a photopolymerization initiator is preferable because it can be easily cured and damage to the adherend is small.
上記光重合開始剤は、例えば、200~410nmの波長の紫外線を照射することにより活性化されるものが挙げられる。このような光重合開始剤としては、例えば、アセトフェノン誘導体化合物や、ベンゾインエーテル系化合物、ケタール誘導体化合物、フォスフィンオキシド誘導体化合物、ビス(η5-シクロペンタジエニル)チタノセン誘導体化合物、ベンゾフェノン、ミヒラーケトン、クロロチオキサントン、トデシルチオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシメチルフェニルプロパン等が挙げられる。上記アセトフェノン誘導体化合物としては、メトキシアセトフェノン等が挙げられる。上記ベンゾインエーテル系化合物としては、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。上記ケタール誘導体化合物としては、ベンジルジメチルケタール、アセトフェノンジエチルケタール等が挙げられる。これらの光重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of the photopolymerization initiator include those that are activated by irradiating with ultraviolet rays having a wavelength of 200 to 410 nm. Examples of such photopolymerization initiators include acetophenone derivative compounds, benzophenone ether compounds, ketal derivative compounds, phosphine oxide derivative compounds, bis (η5-cyclopentadienyl) titanosen derivative compounds, benzophenone, Michler ketone, and chloro. Examples thereof include thioxanthone, todecylthioxanthone, dimethylthioxanthone, diethylthioxanthone, α-hydroxycyclohexylphenylketone, 2-hydroxymethylphenylpropane and the like. Examples of the acetophenone derivative compound include methoxyacetophenone and the like. Examples of the benzoin ether compound include benzoin propyl ether and benzoin isobutyl ether. Examples of the ketal derivative compound include benzyldimethyl ketal and acetophenone diethyl ketal. These photopolymerization initiators may be used alone or in combination of two or more.
上記熱重合開始剤としては、熱により分解し、重合硬化を開始する活性ラジカルを発生するものが挙げられる。具体的には、例えば、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエール、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド等が挙げられる。
これらの熱重合開始剤のうち市販されているものとしては特に限定されないが、例えば、パーブチルD、パーブチルH、パーブチルP、パーペンタH(以上いずれも日油社製)等が好適である。これら熱重合開始剤は、単独で用いられてもよく、2種以上が併用されてもよい。
Examples of the thermal polymerization initiator include those that generate active radicals that are decomposed by heat to initiate polymerization curing. Specifically, for example, dicumyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoale, t-butylhydroperoxide, benzoyl peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, etc. Examples thereof include paramentan hydroperoxide and di-t-butyl peroxide.
Of these thermal polymerization initiators, those commercially available are not particularly limited, but for example, perbutyl D, perbutyl H, perbutyl P, perpenta H (all of which are manufactured by NOF CORPORATION) and the like are suitable. These thermal polymerization initiators may be used alone or in combination of two or more.
上記粘着剤層Aは、ラジカル重合性の多官能オリゴマー又はモノマーを含有していてもよい。
上記粘着剤層Aがラジカル重合性の多官能オリゴマー又はモノマーを含有することにより、紫外線硬化性が向上する。上記多官能オリゴマー又はモノマーは、重量平均分子量が1万以下であるものが好ましく、より好ましくは紫外線の照射による粘着剤層の三次元網状化が効率よくなされるように、その重量平均分子量が5000以下でかつ分子内のラジカル重合性の不飽和結合の数が2~20個のものである。
The pressure-sensitive adhesive layer A may contain a radically polymerizable polyfunctional oligomer or monomer.
When the pressure-sensitive adhesive layer A contains a radically polymerizable polyfunctional oligomer or monomer, the ultraviolet curability is improved. The polyfunctional oligomer or monomer preferably has a weight average molecular weight of 10,000 or less, and more preferably has a weight average molecular weight of 5000 so that the pressure-sensitive adhesive layer can be efficiently reticulated by irradiation with ultraviolet rays. The number of radically polymerizable unsaturated bonds in the molecule is 2 to 20 below.
上記多官能オリゴマー又はモノマーは、例えば、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート又は上記同様のメタクリレート類等が挙げられる。その他、1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、市販のオリゴエステルアクリレート、上記同様のメタクリレート類等が挙げられる。これらの多官能オリゴマー又はモノマーは、単独で用いられてもよく、2種以上が併用されてもよい。 The polyfunctional oligomer or monomer is, for example, trimethylolpropane triacrylate, tetramethylolmethanetetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate or the same methacrylate as above. Kind and the like. Other examples include 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, commercially available oligoester acrylate, and the same methacrylates as described above. These polyfunctional oligomers or monomers may be used alone or in combination of two or more.
上記粘着剤層Aは、架橋剤を含有することが好ましい。
上記粘着剤層Aが架橋剤を含有することで、上記粘着剤成分の凝集力を向上させることができる。上記架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤等が挙げられる。なかでも、剥離性能をより向上させることができることからイソシアネート系架橋剤が好ましい。
The pressure-sensitive adhesive layer A preferably contains a cross-linking agent.
When the pressure-sensitive adhesive layer A contains a cross-linking agent, the cohesive force of the pressure-sensitive adhesive component can be improved. Examples of the above-mentioned cross-linking agent include isocyanate-based cross-linking agents and epoxy-based cross-linking agents. Of these, isocyanate-based cross-linking agents are preferable because they can further improve the peeling performance.
上記架橋剤の含有量は特に限定されないが粘着剤成分100重量部に対して好ましい下限が0.01重量部、より好ましい下限が0.1重量部、好ましい上限が10重量部、より好ましい上限が5重量部である。上記架橋剤の含有量が上記範囲であることで、粘着剤成分を適度に架橋して、高い粘着力を維持しながらも粘着剤成分の凝集力をより高めることができる。 The content of the cross-linking agent is not particularly limited, but the preferable lower limit is 0.01 parts by weight, the more preferable lower limit is 0.1 parts by weight, the preferable upper limit is 10 parts by weight, and the more preferable upper limit is 100 parts by weight. 5 parts by weight. When the content of the cross-linking agent is in the above range, the pressure-sensitive adhesive component can be appropriately cross-linked to further enhance the cohesive force of the pressure-sensitive adhesive component while maintaining high adhesive strength.
上記粘着剤層Aは、離型性成分を含有することが好ましく、離型性成分として上記粘着剤成分と架橋可能な官能基を有するシリコーン又はフッ素化合物(以下、単にシリコーン又はフッ素化合物ともいう)を含有することがより好ましい。
上記粘着剤層Aがシリコーン又はフッ素化合物を含有することで、粘着剤層Aと被着体との界面にシリコーン又はフッ素化合物がブリードアウトするため、処理終了後に粘着テープを容易かつ糊残りなく剥離することができる。また、上記シリコーン又はフッ素化合物が上記粘着剤成分と架橋可能な官能基を有することで、シリコーン又はフッ素化合物が粘着剤成分と化学反応して又は架橋剤等を介して粘着剤成分中に取り込まれることから、被着体にシリコーン又はフッ素化合物が付着することによる汚染が抑制される。
上記シリコーン又はフッ素化合物における架橋可能な官能価は、例えば2~6価、好ましくは2~4価、より好ましくは2価である。
上記粘着剤成分と架橋可能な官能基は粘着剤成分に含まれる官能基によって適宜決定されるが、例えば、粘着剤成分が(メタ)アクリル酸アルキルエステル系の重合性ポリマーを含有する場合には、(メタ)アクリル基と架橋可能な官能基を選択する。上記(メタ)アクリル基と架橋可能な官能基は、不飽和二重結合を有する官能基であり、具体的には例えば、ビニル基、(メタ)アクリル基、アリル基、マレイミド基等を含有するシリコーン又はフッ素化合物を選択する。上記粘着剤成分と架橋可能な官能基としては、上記(メタ)アクリル基と架橋可能な官能基のほかにも、例えば、水酸基、カルボキシル基、エポキシ基等が挙げられる。なかでも、上記粘着剤層Aが硬化型である場合、硬化反応と同時にシリコーン又はフッ素化合物が粘着剤成分と化学反応して粘着剤成分中に取り込まれることから、不飽和二重結合を有する官能基であることが好ましい。
上記シリコーン又はフッ素化合物としては、例えば、シリコーンジアクリレート、フルオロアクリレート等が挙げられる。
The pressure-sensitive adhesive layer A preferably contains a releasable component, and is a silicone or fluorine compound having a functional group crosslinkable with the pressure-sensitive adhesive component as the releasable component (hereinafter, also simply referred to as silicone or fluorine compound). Is more preferable to contain.
When the pressure-sensitive adhesive layer A contains a silicone or a fluorine compound, the silicone or the fluorine compound bleeds out at the interface between the pressure-sensitive adhesive layer A and the adherend, so that the adhesive tape can be easily peeled off without adhesive residue after the treatment is completed. can do. Further, since the silicone or the fluorine compound has a functional group capable of cross-linking with the pressure-sensitive adhesive component, the silicone or the fluorine compound chemically reacts with the pressure-sensitive adhesive component or is incorporated into the pressure-sensitive adhesive component via a cross-linking agent or the like. Therefore, the contamination caused by the adhesion of the silicone or the fluorine compound to the adherend is suppressed.
The crosslinkable functional value of the silicone or fluorine compound is, for example, 2 to 6 valent, preferably 2 to 4 valent, and more preferably divalent.
The functional group crosslinkable with the pressure-sensitive adhesive component is appropriately determined by the functional group contained in the pressure-sensitive adhesive component. For example, when the pressure-sensitive adhesive component contains a (meth) acrylic acid alkyl ester-based polymerizable polymer. , (Meta) Select an acrylic group and a crosslinkable functional group. The functional group crosslinkable with the (meth) acrylic group is a functional group having an unsaturated double bond, and specifically contains, for example, a vinyl group, a (meth) acrylic group, an allyl group, a maleimide group and the like. Select silicone or fluorine compounds. Examples of the functional group that can be crosslinked with the pressure-sensitive adhesive component include a hydroxyl group, a carboxyl group, an epoxy group, and the like, in addition to the functional group that can be crosslinked with the (meth) acrylic group. Among them, when the pressure-sensitive adhesive layer A is a curable type, silicone or a fluorine compound chemically reacts with the pressure-sensitive adhesive component at the same time as the curing reaction and is incorporated into the pressure-sensitive adhesive component. Therefore, a functional having an unsaturated double bond. It is preferably a group.
Examples of the silicone or fluorine compound include silicone diacrylate and fluoroacrylate.
上記粘着剤層A中における上記シリコーン又はフッ素化合物の含有量は、好ましい下限が2重量%、より好ましい下限が5重量%、更に好ましい下限が10重量%、好ましい上限が40重量%、より好ましい上限が35重量%、更に好ましい上限が30重量%である。
上記シリコーン又はフッ素化合物の含有量が上記範囲であることで、被着体をより糊残りなく剥離することができる。
The content of the silicone or fluorine compound in the pressure-sensitive adhesive layer A has a preferable lower limit of 2% by weight, a more preferable lower limit of 5% by weight, a further preferable lower limit of 10% by weight, a preferable upper limit of 40% by weight, and a more preferable upper limit. Is 35% by weight, and a more preferable upper limit is 30% by weight.
When the content of the silicone or fluorine compound is in the above range, the adherend can be peeled off with less adhesive residue.
上記粘着剤層Aは、上記粘着剤成分と架橋可能な官能基を有するウレタン化合物(以下、単にウレタン化合物ともいう)を含有することが好ましい。
上記粘着剤層Aがウレタン化合物を含有することで、粘着テープの柔軟性が向上し、得られる粘着テープを千切れにくくすることができる。また、ウレタン化合物が上記粘着剤成分と架橋可能な官能基を有することで、ウレタン化合物が粘着剤成分と化学反応して又は架橋剤等を介して粘着剤成分中に取り込まれることから、被着体にウレタン化合物が付着することによる汚染が抑制される。上記粘着剤成分と架橋可能な官能基としては、上記粘着剤成分と架橋可能な官能基を有するシリコーン又はフッ素化合物と同様のものが挙げられる。上記ウレタン化合物としては、例えば、ウレタンアクリレートが挙げられる。
The pressure-sensitive adhesive layer A preferably contains a urethane compound (hereinafter, also simply referred to as a urethane compound) having a functional group crosslinkable with the pressure-sensitive adhesive component.
When the pressure-sensitive adhesive layer A contains a urethane compound, the flexibility of the pressure-sensitive adhesive tape is improved, and the obtained pressure-sensitive adhesive tape can be made difficult to tear. Further, since the urethane compound has a functional group capable of cross-linking with the pressure-sensitive adhesive component, the urethane compound chemically reacts with the pressure-sensitive adhesive component or is incorporated into the pressure-sensitive adhesive component via a cross-linking agent or the like. Contamination caused by the adhesion of urethane compounds to the body is suppressed. Examples of the functional group crosslinkable with the pressure-sensitive adhesive component include those similar to silicone or fluorine compounds having a functional group crosslinkable with the pressure-sensitive adhesive component. Examples of the urethane compound include urethane acrylate.
上記粘着剤層A中における上記ウレタン化合物の含有量は、好ましい上限が20重量%、より好ましい上限が15重量%、更に好ましい上限が10重量%である。上記ウレタン化合物の含有量が上記範囲であることで、より耐熱性と糊残り抑制性能に優れた粘着テープとすることができる。上記ウレタン化合物の含有量の下限は特に限定されないが、粘着テープをより千切れにくくして糊残りを抑える観点から1重量%であることが好ましい。 The content of the urethane compound in the pressure-sensitive adhesive layer A has a preferable upper limit of 20% by weight, a more preferable upper limit of 15% by weight, and a further preferable upper limit of 10% by weight. When the content of the urethane compound is within the above range, an adhesive tape having more excellent heat resistance and adhesive residue suppressing performance can be obtained. The lower limit of the content of the urethane compound is not particularly limited, but it is preferably 1% by weight from the viewpoint of making the adhesive tape more difficult to tear and suppressing adhesive residue.
上記粘着剤層Aは、ヒュームドシリカ等の無機フィラー、可塑剤、樹脂、界面活性剤、ワックス、微粒子充填剤等の公知の添加剤を含有してもよい。上記添加剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The pressure-sensitive adhesive layer A may contain an inorganic filler such as fumed silica, a plasticizer, a resin, a surfactant, a wax, a fine particle filler, and other known additives. The above additives may be used alone or in combination of two or more.
上記粘着剤層Aが無機フィラー(ヒュームドシリカ等)を含有する場合、水平荷重を上記範囲内に調整しやすくする観点から、その含有量は、粘着剤成分100重量%に対して、好ましくは3重量%以上、より好ましくは12重量%以上であり、好ましくは24重量%以下、より好ましくは18重量%以下である。 When the pressure-sensitive adhesive layer A contains an inorganic filler (fumed silica or the like), the content thereof is preferably 100% by weight of the pressure-sensitive adhesive component from the viewpoint of making it easy to adjust the horizontal load within the above range. It is 3% by weight or more, more preferably 12% by weight or more, preferably 24% by weight or less, and more preferably 18% by weight or less.
上記粘着剤層Aは、3000mJ/cmの紫外線照射後の23℃における引張強度が1.0MPa以上であることが好ましい。
上記粘着剤層Aの紫外線照射後の引張強度が上記範囲であることで、得られる粘着テープをより千切れにくくすることができ、また、糊残りの発生をより抑えることができる。さらには、上記水平荷重を上記範囲に制御できる。粘着テープをより千切れにくくして糊残りを抑える観点から、上記引張強度は1.2MPa以上であることがより好ましく、1.5MPa以上であることが更に好ましい。上記引張強度の上限は特に限定されないが、粘着力の観点から6MPa以下であることが好ましい。
The pressure-sensitive adhesive layer A preferably has a tensile strength of 1.0 MPa or more at 23 ° C. after irradiation with ultraviolet rays of 3000 mJ / cm 2 .
When the tensile strength of the pressure-sensitive adhesive layer A after irradiation with ultraviolet rays is within the above range, the obtained adhesive tape can be made more difficult to tear, and the generation of adhesive residue can be further suppressed. Further, the horizontal load can be controlled within the above range. From the viewpoint of making the adhesive tape more difficult to tear and suppressing adhesive residue, the tensile strength is more preferably 1.2 MPa or more, and even more preferably 1.5 MPa or more. The upper limit of the tensile strength is not particularly limited, but is preferably 6 MPa or less from the viewpoint of adhesive strength.
なお、上記引張強度は、JIS K 7161に準ずる方法により測定することができる。
具体的には例えば、高分子計器社製の打ち抜き刃「引張1号型ダンベル状」等を用いて、上記粘着剤層Aを、長辺が製造時の流れ方向と同一となるように、ダンベル状に打ち抜いて試験片を作製する。得られた試験片を、例えば島津製作所社製「オートグラフAGS-X」等を用いて、引張速度100mm/minで測定し試験片を破断させる。破断点における強度から引張強度を算出する。
The tensile strength can be measured by a method according to JIS K 7161.
Specifically, for example, using a punching blade "tensile No. 1 type dumbbell shape" manufactured by Polymer Instruments Co., Ltd., the adhesive layer A is dumbbelled so that the long side is the same as the flow direction at the time of manufacture. A test piece is prepared by punching into a shape. The obtained test piece is measured at a tensile speed of 100 mm / min using, for example, "Autograph AGS-X" manufactured by Shimadzu Corporation, and the test piece is broken. The tensile strength is calculated from the strength at the breaking point.
上記粘着剤層Aは、3000mJ/cmの紫外線照射後の260℃における引張弾性率が1.0×10Pa以上であることが好ましい。
上記粘着剤層Aの紫外線照射後の引張弾性率が上記範囲であることで、得られる粘着テープの荷重への耐性が高まり、被着体をより損傷し難くすることができ、さらには上記水平荷重及びダイシェア強度を上記範囲内に制御しやすくなる。被着体を更に損傷し難くする観点から、上記引張弾性率は5×10Pa以上であることがより好ましく、1×10Pa以上であることが更に好ましい。上記引張弾性率の上限は特に限定されないが、粘着力の観点から30×10Pa以下であることが好ましい。
The pressure-sensitive adhesive layer A is preferably a tensile modulus at 260 ° C. after ultraviolet irradiation of 3000 mJ / cm 2 is 1.0 × 10 6 Pa or more.
When the tensile elastic modulus of the pressure-sensitive adhesive layer A after irradiation with ultraviolet rays is within the above range, the resistance to the load of the obtained adhesive tape is enhanced, the adherend can be made less likely to be damaged, and further, the above-mentioned horizontal It becomes easier to control the load and die shear strength within the above range. From the viewpoint of making the adherend less likely to be damaged, the tensile elastic modulus is more preferably 5 × 10 6 Pa or more, and further preferably 1 × 10 7 Pa or more. The upper limit of the tensile elastic modulus is not particularly limited, but is preferably 30 × 10 6 Pa or less from the viewpoint of adhesive strength.
なお上記引張弾性率は、以下の方法により測定することができる。
粘着剤層Aの単層サンプルについて、長辺が製造時の流れ方向と同一となるように打抜き刃を用いて打抜くことで、5mm×35mmの試験片を作製する。得られた試験片を液体窒素に浸漬して-50℃まで冷却し、その後、粘弾性スペクトロメーター(例えば、DVA-200、アイティー計測制御社製等)を用いて、定速昇温引張モード、昇温速度10℃/分、周波数10Hzの条件で300℃まで昇温し、貯蔵弾性率を測定する。得られた貯蔵弾性率の結果から260℃における貯蔵弾性率を上記引張弾性率とする。
The tensile elastic modulus can be measured by the following method.
A 5 mm × 35 mm test piece is produced by punching a single-layer sample of the pressure-sensitive adhesive layer A with a punching blade so that the long side is the same as the flow direction at the time of manufacture. The obtained test piece is immersed in liquid nitrogen and cooled to -50 ° C., and then using a viscoelastic spectrometer (for example, DVA-200, manufactured by IT Measurement Control Co., Ltd., etc.), a constant-speed temperature rise tensile mode. The temperature is raised to 300 ° C. under the conditions of a heating rate of 10 ° C./min and a frequency of 10 Hz, and the storage elastic modulus is measured. From the result of the obtained storage elastic modulus, the storage elastic modulus at 260 ° C. is defined as the tensile elastic modulus.
上記粘着剤層Aの厚さは特に限定されないが、下限が1μm、上限が200μmであることが好ましい。上記粘着剤層Aの厚みが上記範囲であると充分な粘着力で被着体を保護することができ、更に剥離時の糊残りを抑制することもできる。上記粘着剤層Aの厚さのより好ましい下限は10μm、より好ましい上限は100μmである。 The thickness of the pressure-sensitive adhesive layer A is not particularly limited, but the lower limit is preferably 1 μm and the upper limit is preferably 200 μm. When the thickness of the pressure-sensitive adhesive layer A is within the above range, the adherend can be protected with sufficient adhesive strength, and adhesive residue during peeling can be suppressed. The more preferable lower limit of the thickness of the pressure-sensitive adhesive layer A is 10 μm, and the more preferable upper limit is 100 μm.
上記粘着剤層Bは、上記粘着剤層Aが上記ダイシェア強度及び180°ピール強度の範囲を満たし得れば、特に限定されず、上記粘着剤層Aと同じであっても異なっていてもよい。また、上記粘着剤層Bは、硬化型であっても非硬化型であってもよい。上記粘着剤層Bを構成する粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、スチレン・ジエンブロック共重合体系粘着剤等が挙げられる。また上記粘着剤成分の構造は特に限定されず、ランダム共重合体でも、ブロック共重合体でも良い。 The pressure-sensitive adhesive layer B is not particularly limited as long as the pressure-sensitive adhesive layer A can satisfy the range of the die-share strength and the 180 ° peel strength, and may be the same as or different from the pressure-sensitive adhesive layer A. .. Further, the pressure-sensitive adhesive layer B may be a curable type or a non-curable type. Examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer B include a rubber-based pressure-sensitive adhesive, an acrylic-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, a polyamide-based pressure-sensitive adhesive, and a urethane-based pressure-sensitive adhesive. Examples thereof include styrene / diene block copolymer adhesives. The structure of the pressure-sensitive adhesive component is not particularly limited, and may be a random copolymer or a block copolymer.
上記粘着剤層Bは、上記粘着剤層Aが上記ダイシェア強度及び180°ピール強度の範囲を満たしやすいことから、405nmの紫外線透過率が1%以上であることが好ましい。上記紫外線透過率は10%以上であることがより好ましく、15%以上であることが更に好ましく、50%以上であることが特に好ましい。上記紫外線透過率がこれらの下限以上であることで、光増感剤を用いずとも、上記粘着剤層Aが紫外線硬化型である場合に上記粘着剤層Aを充分に硬化させることができる。上記紫外線透過率の上限は特に限定されず、高ければ高いほどよく、通常、100%以下である。 The pressure-sensitive adhesive layer B preferably has an ultraviolet transmittance of 1% or more at 405 nm because the pressure-sensitive adhesive layer A easily satisfies the range of the die shear strength and the 180 ° peel strength. The ultraviolet transmittance is more preferably 10% or more, further preferably 15% or more, and particularly preferably 50% or more. When the ultraviolet transmittance is at least these lower limits, the pressure-sensitive adhesive layer A can be sufficiently cured when the pressure-sensitive adhesive layer A is an ultraviolet-curable type without using a photosensitizer. The upper limit of the ultraviolet transmittance is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
上記粘着剤層Bの厚さは特に限定されないが、好ましい下限が5μm、より好ましい下限が10μm、好ましい上限が100μm、より好ましい上限が60μmであることが好ましい。上粘着剤層Bの厚みが上記範囲であると充分な粘着力で支持体等と接着し、被着体を確実に固定することができる。 The thickness of the pressure-sensitive adhesive layer B is not particularly limited, but the preferable lower limit is 5 μm, the more preferable lower limit is 10 μm, the preferable upper limit is 100 μm, and the more preferable upper limit is 60 μm. When the thickness of the upper pressure-sensitive adhesive layer B is within the above range, it can be adhered to the support or the like with sufficient adhesive strength, and the adherend can be reliably fixed.
上記基材フィルムを構成する材料は、上記粘着剤層Aが上記ダイシェア強度及び180°ピール強度の範囲を満たし得れば、特に限定されず、有機材料であっても無機材料であってもよいが、耐熱性を有する材料であることが好ましい。耐熱性の有機材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、超高分子量ポリエチレン、シンジオタクチックポリスチレン、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、液晶ポリマー等が挙げられる。なかでも、耐熱性に優れることからポリエチレンナフタレートが好ましい。また、耐熱性の無機材料としては薄板ガラス等が挙げられる。 The material constituting the base film is not particularly limited as long as the pressure-sensitive adhesive layer A can satisfy the range of the die shear strength and the 180 ° peel strength, and may be an organic material or an inorganic material. However, it is preferable that the material has heat resistance. Examples of heat-resistant organic materials include polyethylene terephthalate, polyethylene naphthalate, polyacetal, polyamide, polycarbonate, polyphenylene ether, polybutylene terephthalate, ultra-high molecular weight polyethylene, syndiotactic polystyrene, polyarylate, polysulfone, and polyether sulfone. Examples thereof include polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, and liquid crystal polymer. Of these, polyethylene naphthalate is preferable because it has excellent heat resistance. Further, examples of the heat-resistant inorganic material include thin glass.
上記基材フィルムは、上記粘着剤層Aが上記ダイシェア強度及び180°ピール強度の範囲を満たしやすいことから、405nmの紫外線透過率が1%以上であることが好ましい。上記紫外線透過率は10%以上であることがより好ましく、15%以上であることが更に好ましく、50%以上であることが特に好ましい。上記紫外線透過率がこれらの下限以上であることで、光増感剤を用いずとも、上記粘着剤層Aが紫外線硬化型である場合に上記粘着剤層Aを充分に硬化させることができる。上記紫外線透過率の上限は特に限定されず、高ければ高いほどよく、通常、100%以下である。 Since the pressure-sensitive adhesive layer A easily satisfies the range of the die shear strength and the 180 ° peel strength, the base film preferably has an ultraviolet transmittance of 1% or more at 405 nm. The ultraviolet transmittance is more preferably 10% or more, further preferably 15% or more, and particularly preferably 50% or more. When the ultraviolet transmittance is at least these lower limits, the pressure-sensitive adhesive layer A can be sufficiently cured when the pressure-sensitive adhesive layer A is an ultraviolet-curable type without using a photosensitizer. The upper limit of the ultraviolet transmittance is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
上記基材フィルムの形状は特に限定されず、例えば、シート状、網目状の構造を有するシート状、孔が開けられたシート状等が挙げられる。また、上記基材は、サンドブラスト処理や表面コロナ処理といった粘着剤との密着力を向上させる処理や、スパッタ膜形成や導電膜蒸着といった導電性を付与する処理等が施された基材であってもよい。 The shape of the base film is not particularly limited, and examples thereof include a sheet shape, a sheet shape having a mesh-like structure, and a sheet shape having holes. Further, the above-mentioned base material is a base material which has been subjected to a treatment for improving the adhesive force with an adhesive such as sandblasting treatment and a surface corona treatment, and a treatment for imparting conductivity such as sputtering film formation and conductive film deposition. May be good.
上記基材フィルムの厚さは特に限定されないが、好ましい下限は5μm、好ましい上限は100μmである。上記基材フィルムの厚さがこの範囲内であると、適度なコシがあって、取り扱い性に優れる粘着テープとすることができる。上記基材フィルムの厚さのより好ましい下限は10μm、より好ましい上限は50μmである。 The thickness of the base film is not particularly limited, but the preferable lower limit is 5 μm and the preferable upper limit is 100 μm. When the thickness of the base film is within this range, the adhesive tape has an appropriate elasticity and is excellent in handleability. The more preferable lower limit of the thickness of the base film is 10 μm, and the more preferable upper limit is 50 μm.
本発明の粘着テープは上記基材フィルムと上記粘着剤層Aとの間、又は上記基材フィルムと上記粘着剤層Bとの間にアンカー層を有していてもよい。
上記基材フィルムと上記粘着剤層との間にアンカー層を有すると、上記粘着剤層にシリコーン又はフッ素化合物が含まれる場合に、シリコーン又はフッ素化合物が基材フィルム側にブリードアウトして粘着剤層が基材フィルムから剥離してしまうことを抑止できる。
The adhesive tape of the present invention may have an anchor layer between the base film and the pressure-sensitive adhesive layer A, or between the base film and the pressure-sensitive adhesive layer B.
When an anchor layer is provided between the base film and the pressure-sensitive adhesive layer, when the pressure-sensitive adhesive layer contains a silicone or a fluorine compound, the silicone or the fluorine compound bleeds out to the base film side and the pressure-sensitive adhesive is provided. It is possible to prevent the layer from peeling off from the base film.
上記アンカー層としては、例えば、アクリル系粘着剤、ウレタン系粘着剤等が挙げられる。なかでも、アンカー性能に優れることからアクリル系粘着剤が好ましい。 Examples of the anchor layer include an acrylic pressure-sensitive adhesive and a urethane-based pressure-sensitive adhesive. Of these, an acrylic adhesive is preferable because it has excellent anchoring performance.
上記アンカー層は、必要に応じて、無機充填剤、熱安定剤、酸化防止剤、帯電防止剤、可塑剤、樹脂、界面活性剤、ワックス等の公知の添加剤を含有してもよい。これらの添加剤は単独で用いられてもよく、複数を組み合わせて用いてもよい。 The anchor layer may contain known additives such as an inorganic filler, a heat stabilizer, an antioxidant, an antistatic agent, a plasticizer, a resin, a surfactant, and a wax, if necessary. These additives may be used alone or in combination of two or more.
上記アンカー層の厚みは特に限定されないが、好ましい下限は1μm、好ましい上限は30μmである。上記アンカー層の厚みがこの範囲内であると、上記アンカー層側の粘着剤層と基材フィルムとのアンカー力をより向上させることができる。上記アンカー層側の粘着剤層と基材フィルムとのアンカー力を更に向上させる観点から、上記アンカー層の厚みのより好ましい下限は3μm、より好ましい上限は10μmである。 The thickness of the anchor layer is not particularly limited, but a preferable lower limit is 1 μm and a preferable upper limit is 30 μm. When the thickness of the anchor layer is within this range, the anchor force between the pressure-sensitive adhesive layer on the anchor layer side and the base film can be further improved. From the viewpoint of further improving the anchoring force between the adhesive layer on the anchor layer side and the base film, the more preferable lower limit of the thickness of the anchor layer is 3 μm, and the more preferable upper limit is 10 μm.
本発明の粘着テープは、上記粘着剤層Aが上記ダイシェア強度及び180°ピール強度の範囲を満たしやすいことから、405nmの紫外線透過率が1%以上であることが好ましい。上記紫外線透過率は10%以上であることがより好ましく、15%以上であることが更に好ましい。上記紫外線透過率がこれらの下限以上であることで、光増感剤を用いずとも、上記粘着剤層Aが紫外線硬化型である場合に上記粘着剤層Aを充分に硬化させることができる。上記紫外線透過率の上限は特に限定されず、高ければ高いほどよく、通常、100%以下である。
なお、紫外線透過率は分光光度計(U-3900、日立製作所社製、又はその同等品)を用いて、測定することができる。
The adhesive tape of the present invention preferably has an ultraviolet transmittance of 1% or more at 405 nm because the adhesive layer A easily satisfies the range of the die shear strength and the 180 ° peel strength. The ultraviolet transmittance is more preferably 10% or more, and further preferably 15% or more. When the ultraviolet transmittance is at least these lower limits, the pressure-sensitive adhesive layer A can be sufficiently cured when the pressure-sensitive adhesive layer A is an ultraviolet-curable type without using a photosensitizer. The upper limit of the ultraviolet transmittance is not particularly limited, and the higher the upper limit, the better, usually 100% or less.
The ultraviolet transmittance can be measured using a spectrophotometer (U-3900, manufactured by Hitachi, Ltd., or an equivalent product thereof).
本発明の粘着テープを製造する方法は特に限定されず、従来公知の方法を用いることができる。例えば、離型処理を施したフィルム上に粘着剤成分、シリコーン又はフッ素化合物、ウレタン化合物等を含有する溶液を塗工、乾燥させて粘着剤層Aを形成し、別の離型処理を施したフィルム上に同様の方法で粘着剤層Bを形成した後、基材フィルムの両面に粘着剤層Aと粘着剤層Bをそれぞれ貼り合わせることで製造することができる。 The method for producing the adhesive tape of the present invention is not particularly limited, and conventionally known methods can be used. For example, a solution containing a pressure-sensitive adhesive component, a silicone or a fluorine compound, a urethane compound, or the like was applied onto a film that had undergone a mold release treatment and dried to form a pressure-sensitive adhesive layer A, which was then subjected to another mold release treatment. After forming the pressure-sensitive adhesive layer B on the film by the same method, the pressure-sensitive adhesive layer A and the pressure-sensitive adhesive layer B can be bonded to both sides of the base film.
本発明の粘着テープの用途は特に限定されないが、高温と荷重を伴う製造工程を有する、電子基板や半導体チップ、表示材用パネル部品等の電子部品の製造における保護テープとして特に好適に用いることができる。
このような電子部品を製造するために用いられる本発明の粘着テープもまた、本発明の1つである。特に、本発明の粘着テープは、280℃で短時間(例えば90秒以下、典型的には1~20秒)加熱される熱圧着ボンディング工程等を含む電子部品の製造に好適に用いることができる。
本発明の粘着テープを用いることのできる半導体デバイスの製造方法として、より具体的には例えば、本発明の粘着テープを介して支持体上にウエハを固定する工程及び該ウエハ上に半導体チップを熱圧着ボンディングにより積層する工程を有する半導体デバイスの製造方法が挙げられる。このような半導体デバイスの製造方法もまた、本発明の1つである。
The application of the adhesive tape of the present invention is not particularly limited, but it can be particularly preferably used as a protective tape in the manufacture of electronic parts such as electronic substrates, semiconductor chips, and panel parts for display materials, which have a manufacturing process involving high temperature and load. it can.
The adhesive tape of the present invention used for manufacturing such electronic components is also one of the present inventions. In particular, the adhesive tape of the present invention can be suitably used for manufacturing electronic components including a thermocompression bonding step of heating at 280 ° C. for a short time (for example, 90 seconds or less, typically 1 to 20 seconds). ..
As a method for manufacturing a semiconductor device that can use the adhesive tape of the present invention, more specifically, for example, a step of fixing a wafer on a support via the adhesive tape of the present invention and heating a semiconductor chip on the wafer. Examples thereof include a method for manufacturing a semiconductor device having a step of laminating by crimp bonding. A method for manufacturing such a semiconductor device is also one of the present inventions.
上記ウエハを固定する工程において、本発明の粘着テープを介して支持体上にウエハを固定する方法は特に限定されないが、上記粘着剤層Aとシリコンウエハ等のウエハとを貼り合わせ、もう一方の上記粘着剤層Bとガラス等の支持体とを貼り合わせる方法が好ましい。 In the step of fixing the wafer, the method of fixing the wafer on the support via the adhesive tape of the present invention is not particularly limited, but the adhesive layer A and the wafer such as a silicon wafer are bonded to each other and the other A method of bonding the pressure-sensitive adhesive layer B and a support such as glass is preferable.
上記半導体チップを熱圧着ボンディングにより積層する工程において、熱圧着ボンディングは繰り返し行われてもよく、280℃で短時間(例えば90秒以下、典型的には1~20秒)加熱される熱圧着ボンディング等を繰り返して半導体チップを多数積層してもよい。 In the step of laminating the semiconductor chips by thermocompression bonding, the thermocompression bonding may be repeated, and the thermocompression bonding is heated at 280 ° C. for a short time (for example, 90 seconds or less, typically 1 to 20 seconds). A large number of semiconductor chips may be laminated by repeating the above steps.
本発明の半導体デバイスの製造方法においては、上記ウエハを固定する工程の後に他の工程を行ってから上記半導体チップを熱圧着ボンディングにより積層する工程を行ってもよい。上記他の工程としては、例えば、ウエハをバックグラインドにより薄化する工程、ウエハレベルのモールド工程等が挙げられる。本発明の半導体デバイスの製造方法においては、更に、上記半導体チップを熱圧着ボンディングにより積層する工程の後、上記支持体若しくは上記ウエハ又はその両方から粘着テープを剥離する工程を行ってもよい。 In the method for manufacturing a semiconductor device of the present invention, the step of fixing the wafer may be followed by another step, and then the step of laminating the semiconductor chips by thermocompression bonding. Examples of the other steps include a step of thinning the wafer by back grinding, a wafer level molding step, and the like. In the method for manufacturing a semiconductor device of the present invention, a step of laminating the semiconductor chips by thermocompression bonding and then a step of peeling the adhesive tape from the support, the wafer, or both may be performed.
上記支持体は特に限定されず、例えば、ガラス、ポリイミドフィルム、ガラスエポキシ基板等が挙げられる。 The support is not particularly limited, and examples thereof include glass, a polyimide film, and a glass epoxy substrate.
本発明によれば、高温と荷重を伴う工程に用いられた場合であっても被着体から剥離せず、剥離の際には容易に剥離でき、更に半田バンプの変形も抑制できる粘着テープを提供することができる。また、本発明によれば、該粘着テープを用いた半導体デバイスの製造方法を提供することができる。 According to the present invention, an adhesive tape that does not peel off from the adherend even when used in a process involving high temperature and load, can be easily peeled off at the time of peeling, and can also suppress deformation of solder bumps. Can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing a semiconductor device using the adhesive tape.
熱圧着ボンディングの様子を表した模式図である。It is a schematic diagram which showed the state of thermocompression bonding bonding.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(粘着剤成分Aの合成)
温度計、攪拌機、冷却管を備えた反応器を用意した。この反応器内に、(メタ)アクリル酸アルキルエステルとして2-エチルヘキシルアクリレート94重量部、官能基含有モノマーとしてメタクリル酸ヒドロキシエチル6重量部、ラウリルメルカプタン0.01重量部と、酢酸エチル80重量部を加えた後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤として1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン0.01重量部を添加し、還流下で重合を開始させた。次に、重合開始から1時間後及び2時間後にも、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンを0.01重量部ずつ添加し、更に、重合開始から4時間後にt-ヘキシルパーオキシピバレートを0.05重量部添加して重合反応を継続させた。そして、重合開始から8時間後に、固形分55重量%、重量平均分子量60万の官能基含有(メタ)アクリル系ポリマーの酢酸エチル溶液を得た。
得られた官能基含有(メタ)アクリル系ポリマーを含む酢酸エチル溶液の樹脂固形分100重量部に対して、官能基含有不飽和化合物として2-イソシアナトエチルメタクリレート3.5重量部を加えて反応させて粘着剤成分Aを得た。
(Synthesis of adhesive component A)
A reactor equipped with a thermometer, a stirrer, and a cooling tube was prepared. In this reactor, 94 parts by weight of 2-ethylhexyl acrylate as the (meth) acrylic acid alkyl ester, 6 parts by weight of hydroxyethyl methacrylate as the functional group-containing monomer, 0.01 part by weight of lauryl mercaptan, and 80 parts by weight of ethyl acetate were added. After the addition, the reactor was heated to initiate reflux. Subsequently, 0.01 part by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added as a polymerization initiator into the reactor, and the polymerization was started under reflux. It was. Next, 0.01 parts by weight of 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane was added 1 hour and 2 hours after the start of the polymerization, and further, the polymerization was started. After 4 hours from the above, 0.05 parts by weight of t-hexyl peroxypivalate was added to continue the polymerization reaction. Then, 8 hours after the start of the polymerization, an ethyl acetate solution of a functional group-containing (meth) acrylic polymer having a solid content of 55% by weight and a weight average molecular weight of 600,000 was obtained.
To 100 parts by weight of the resin solid content of the obtained ethyl acetate solution containing a functional group-containing (meth) acrylic polymer, 3.5 parts by weight of 2-isocyanatoethyl methacrylate was added as a functional group-containing unsaturated compound to react. The adhesive component A was obtained.
(粘着剤成分B~Kの合成)
組成を表1に記載の通りとした以外は粘着剤成分Aと同様にして、粘着剤成分B~Kを得た。
(Synthesis of adhesive components B to K)
Adhesive components B to K were obtained in the same manner as the pressure-sensitive adhesive component A except that the compositions were as shown in Table 1.
(粘着剤成分A~Kの酸価+水酸基価の測定)
JIS K0070に準じて粘着剤成分の溶液の滴定試験を行うことで、粘着剤成分の水酸基価及び酸価を測定し、酸価+水酸基価を算出した。
(Measurement of acid value + hydroxyl value of adhesive components A to K)
By performing a titration test of the solution of the pressure-sensitive adhesive component according to JIS K0070, the hydroxyl value and acid value of the pressure-sensitive adhesive component were measured, and the acid value + hydroxyl value was calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
得られた粘着剤成分Aの酢酸エチル溶液の樹脂固形分100重量部に対して、フィラー3重量部、ウレタン化合物10重量部、離型剤20重量部、光重合開始剤1重量部、架橋剤0.2重量部を混合し、粘着剤層Aを構成する粘着剤の酢酸エチル溶液を得た。
また、得られた粘着剤成分Aの樹脂固形分100重量部に対して、フィラー3重量部、ウレタン化合物20重量部、離型剤10重量部、光重合開始剤1重量部、架橋剤1.0部を混合し、粘着剤層Bを構成する粘着剤の酢酸エチル溶液を得た。
粘着剤層Aを構成する粘着剤の酢酸エチル溶液を表面に離型処理が施されたポリエチレンテレフタレートフィルムの離型処理面上に乾燥皮膜の厚さが100μmとなるようにドクターナイフで塗工し110℃、5分間加熱乾燥させて粘着剤層Aを得た。
一方別の表面に離型処理が施されたポリエチレンテレフタレートフィルムの離型処理面上に、粘着剤層Bを構成する粘着剤の酢酸エチル溶液を乾燥皮膜の厚さが20μmとなるようにドクターナイフで塗工し110℃、5分間加熱乾燥させて粘着剤層Bを得た。
基材として両面にコロナ処理を施した50μmのポリエチレンナフタレート(PEN)フィルムを用意し、PENフィルムの両面に粘着剤層Aと粘着剤層Bをそれぞれ貼り合わせて、粘着テープを得た。なお、フィラー、ウレタン化合物、離型剤、光重合開始剤は以下のものを用いた。
フィラー:レオロシール MT-10、トクヤマ社製
ウレタン化合物:ウレタンアクリレート、UN-5500、根上工業社製
離型剤:シリコーンジアクリレート、EBECRYL 350、ダイセル・オルネクス社製
光重合開始剤:エサキュアワン、日本シイベルヘグナー社製
架橋剤:イソシアネート系架橋剤、コロネートL、日本ウレタン工業社製
(Example 1)
3 parts by weight of filler, 10 parts by weight of urethane compound, 20 parts by weight of mold release agent, 1 part by weight of photopolymerization initiator, and cross-linking agent with respect to 100 parts by weight of the resin solid content of the obtained ethyl acetate solution of the pressure-sensitive adhesive component A. 0.2 parts by weight were mixed to obtain an ethyl acetate solution of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer A.
Further, with respect to 100 parts by weight of the resin solid content of the obtained pressure-sensitive adhesive component A, 3 parts by weight of the filler, 20 parts by weight of the urethane compound, 10 parts by weight of the release agent, 1 part by weight of the photopolymerization initiator, and the cross-linking agent 1. 0 parts were mixed to obtain an ethyl acetate solution of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer B.
The ethyl acetate solution of the adhesive constituting the pressure-sensitive adhesive layer A is applied with a doctor knife on the release-treated surface of the polyethylene terephthalate film whose surface has been released-treated so that the thickness of the dry film is 100 μm. The pressure-sensitive adhesive layer A was obtained by heating and drying at 110 ° C. for 5 minutes.
On the other hand, on the release-treated surface of the polyethylene terephthalate film whose surface has been released-treated, a doctor knife is applied with an ethyl acetate solution of the adhesive constituting the pressure-sensitive adhesive layer B so that the thickness of the dry film is 20 μm. And dried by heating at 110 ° C. for 5 minutes to obtain an adhesive layer B.
A 50 μm polyethylene naphthalate (PEN) film having corona treatment on both sides was prepared as a base material, and an adhesive layer A and an adhesive layer B were bonded to both sides of the PEN film to obtain an adhesive tape. The following fillers, urethane compounds, mold release agents, and photopolymerization initiators were used.
Filler: Leoloseal MT-10, Tokuyama Urethane Compound: Urethane Acrylate, UN-5500, Negami Kogyo's Mold Release Agent: Silicone Diacrylate, EBECRYL 350, Daicel Ornex Photopolymerization Initiator: Esacure One, Nippon Sibel Hegner Cross-linking agent: Isocyanate-based cross-linking agent, Coronate L, manufactured by Nippon Urethane Industry Co., Ltd.
(実施例2~16、比較例1~10)
粘着剤層Aの組成を表2、3の通りとした以外は実施例1と同様にして粘着テープを得た。なお、実施例10、比較例8、9については、離型剤として以下のものを用いた。
離型剤:シリコンアクリレート、RAD2250、エボニック・ジャパン社製
また、実施例16については、離型剤として以下のものを用いた。
離型剤:シリコーン変性アクリルポリマー、8BS-9000、大成ファインケミカル社製
(Examples 2 to 16, Comparative Examples 1 to 10)
An adhesive tape was obtained in the same manner as in Example 1 except that the composition of the pressure-sensitive adhesive layer A was as shown in Tables 2 and 3. In Example 10, Comparative Examples 8 and 9, the following mold release agents were used.
Release agent: Silicon acrylate, RAD2250, manufactured by Evonik Japan Co., Ltd. In addition, in Example 16, the following was used as the release agent.
Release agent: Silicone modified acrylic polymer, 8BS-9000, manufactured by Taisei Fine Chemicals Co., Ltd.
<物性>
実施例及び比較例で得た粘着テープについて、以下の測定を行った。結果を表2、3に示した。
<Physical properties>
The following measurements were performed on the adhesive tapes obtained in Examples and Comparative Examples. The results are shown in Tables 2 and 3.
(ダイシェア強度の測定)
3cm×4cmに切った両面が離型フィルムで保護された粘着テープの粘着剤層B側の離型フィルムを剥離し、粘着剤層Bとスライドガラス(S9112、松浪硝子工業社製)を貼り合せた。該粘着テープとガラスの積層体の、粘着剤層A側の離型フィルムを剥離し、3mm×3mm、3mm厚、表面粗さ<0.1μmの単結晶シリコンウエハチップを粘着テープの粘着剤層Aに載せ、ステージ温度20℃、ヘッド温度20℃、ボンディング圧力3Nでボンディングした。次いで、高圧水銀UV照射機を用いて、405nmの紫外線を粘着テープの粘着剤層B側から粘着剤層Aに向けて照射し、粘着剤層Aの基材とは反対側の表面における照射量が3000mJ/cmとなるように照射した。その後、240℃、10分間加熱処理を行った。加熱処理後、シリコンウエハチップを室温下放冷し、ボンドテスター(4000PXY、ノードソン・アドバンスド・テクノロジー社製万能型)を用いて、25℃50%RH下で、シリコンウエハチップの側面全体へチップの側面に対して垂直方向の力を加え、シリコンウエハチップを動かした時の最大荷重を測定し、これをダイシェア強度とした。
(Measurement of die share strength)
The release film on the adhesive layer B side of the adhesive tape whose both sides are protected by the release film, cut into 3 cm x 4 cm, is peeled off, and the adhesive layer B and the slide glass (S9111, manufactured by Matsunami Glass Industry Co., Ltd.) are bonded together. It was. The release film on the adhesive layer A side of the laminated body of the adhesive tape and the glass is peeled off, and a single crystal silicon wafer chip having a thickness of 3 mm × 3 mm and a thickness of <0.1 μm is applied to the adhesive layer of the adhesive tape. It was placed on A and bonded at a stage temperature of 20 ° C., a head temperature of 20 ° C., and a bonding pressure of 3N. Next, using a high-pressure mercury UV irradiator, ultraviolet rays of 405 nm are irradiated from the pressure-sensitive adhesive layer B side of the pressure-sensitive adhesive tape toward the pressure-sensitive adhesive layer A, and the irradiation amount on the surface of the pressure-sensitive adhesive layer A on the side opposite to the base material. Irradiated so that the value was 3000 mJ / cm 2 . Then, heat treatment was performed at 240 ° C. for 10 minutes. After the heat treatment, the silicon wafer chip is allowed to cool at room temperature, and a bond tester (4000PXY, a universal type manufactured by Nordson Advanced Technology Co., Ltd.) is used to cover the entire side surface of the silicon wafer chip at 25 ° C. and 50% RH. A force in the vertical direction was applied to the silicon wafer chip, and the maximum load when the silicon wafer chip was moved was measured and used as the die shear strength.
(180°ピール強度の測定)
粘着テープの粘着剤層A側の離型フィルムを剥離し、8インチ、厚さ0.75mm、表面粗さ<0.1μmの単結晶シリコンウエハを粘着テープの粘着剤層Aに載せ、シリコンウエハ上を2kgのゴムローラーで一往復させることにより貼り合わせた。貼り合せ後20分間常温で静置した後、粘着剤層B側の離型フィルムを剥離し、次いで、高圧水銀UV照射機を用いて、405nmの紫外線を粘着テープの粘着剤層B側から粘着剤層Aに向けて照射し、粘着剤層Aの基材とは反対側の表面における照射量が3000mJ/cmとなるように照射した。その後、200℃、1時間加熱処理を行った。加熱処理後の粘着テープについてJIS Z0237に準じて、剥離速度300mm/分で180°方向の引張試験を行い、シリコンウエハに対する180°ピール強度を測定した。
(Measurement of 180 ° peel strength)
The release film on the adhesive layer A side of the adhesive tape is peeled off, and a single crystal silicon wafer of 8 inches, thickness 0.75 mm, and surface roughness <0.1 μm is placed on the adhesive layer A of the adhesive tape, and the silicon wafer is placed. The top was bonded by reciprocating once with a 2 kg rubber roller. After the bonding, the film is allowed to stand at room temperature for 20 minutes, the release film on the adhesive layer B side is peeled off, and then ultraviolet rays of 405 nm are adhered from the adhesive layer B side of the adhesive tape using a high-pressure mercury UV irradiator. The film was irradiated toward the agent layer A so that the irradiation amount on the surface of the pressure-sensitive adhesive layer A opposite to the base material was 3000 mJ / cm 2 . Then, heat treatment was performed at 200 ° C. for 1 hour. The adhesive tape after the heat treatment was subjected to a tensile test in the 180 ° direction at a peeling speed of 300 mm / min according to JIS Z0237, and the 180 ° peel strength with respect to the silicon wafer was measured.
(水平荷重強度の測定)
3cm×4cmに切った両面が離型フィルムで保護された粘着テープの粘着剤層B側の離型フィルムを剥離し、粘着剤層Bとスライドガラス(S9112、松浪硝子工業社製)を貼り合せて測定用サンプルを得た。貼り合せは粘着テープの粘着剤層A側の面上に2kgローラーを1往復させることで行った。次いで、得られたサンプルの粘着剤層A側の離型フィルムを剥離し、高圧水銀UV照射機を用いて、粘着剤層A側から405nmの紫外光を粘着剤層Aの基材とは反対側の表面における照度が3000mJ/cmとなるように照射した。その後、表面・界面物性解析装置(SAICAS DN-20、ダイプラ・ウィンテス社製)を用いて、25℃50%RH、紫外光カットの条件下で粘着テープの粘着剤層Aの水平力と垂直力を測定した。切り刃には単結晶ダイアモンド製の幅1mm、すくい角40°、逃げ角10°の刃を用い、切削条件は定速度モードで水平方向5μm/秒、垂直方向0.5μm/秒とした。水平荷重が0.002N以上となった点を切り刃が粘着剤層A表面に接触した点とし、そこから垂直方向に10μmの深さの範囲で水平荷重強度を測定した。
(Measurement of horizontal load strength)
The release film on the adhesive layer B side of the adhesive tape whose both sides are protected by a release film cut into 3 cm x 4 cm is peeled off, and the adhesive layer B and the slide glass (S9111, manufactured by Matsunami Glass Industry Co., Ltd.) are bonded together. A sample for measurement was obtained. The bonding was performed by reciprocating a 2 kg roller once on the surface of the adhesive tape on the adhesive layer A side. Next, the release film on the pressure-sensitive adhesive layer A side of the obtained sample was peeled off, and an ultraviolet light of 405 nm from the pressure-sensitive adhesive layer A side was emitted from the pressure-sensitive adhesive layer A side using a high-pressure mercury UV irradiator to oppose the base material of the pressure-sensitive adhesive layer A. The irradiation was performed so that the illuminance on the side surface was 3000 mJ / cm 2 . After that, using a surface / interface physical property analyzer (SAICAS DN-20, manufactured by Daipla Wintes), the horizontal force and normal force of the adhesive layer A of the adhesive tape under the conditions of 25 ° C. 50% RH and ultraviolet light cut. Was measured. A single crystal diamond blade having a width of 1 mm, a rake angle of 40 °, and a clearance angle of 10 ° was used as the cutting blade, and the cutting conditions were 5 μm / sec in the horizontal direction and 0.5 μm / sec in the vertical direction in the constant speed mode. The point where the horizontal load was 0.002 N or more was defined as the point where the cutting edge came into contact with the surface of the pressure-sensitive adhesive layer A, and the horizontal load strength was measured within a depth range of 10 μm in the vertical direction from there.
(引張強度の測定)
上記の方法で粘着剤層Aのみからなる測定用サンプルを作製した。次いで、高分子計器社製の打ち抜き刃「引張1号型ダンベル状」を用いて、上記粘着剤層Aを、長辺が製造時の流れ方向と同一となるようにダンベル状に打ち抜いて試験片を作製した。得られた試験片を、島津製作所社製「オートグラフAGS-X」を用いて、引張速度100mm/minで測定し試験片を破断させた。破断した際の強度から引張強度を算出した。
(Measurement of tensile strength)
A measurement sample consisting of only the pressure-sensitive adhesive layer A was prepared by the above method. Next, using a punching blade "Tensile No. 1 type dumbbell shape" manufactured by Polymer Instruments Co., Ltd., the adhesive layer A is punched into a dumbbell shape so that the long side is the same as the flow direction at the time of manufacture. Was produced. The obtained test piece was measured at a tensile speed of 100 mm / min using "Autograph AGS-X" manufactured by Shimadzu Corporation, and the test piece was broken. The tensile strength was calculated from the strength at the time of breaking.
(引張弾性率の測定)
上記の方法で粘着剤層Aのみを作製し、得られた粘着剤層Aについて、高圧水銀紫外線照射機を用いて、405nmの紫外線を照度が3000mJ/cmとなるよう照射して、紫外線硬化後の粘着剤層Aの単層サンプルを得た。次いで、長辺が製造時の流れ方向と同一となるように打抜き刃を用いて打抜くことで、5mm×35mmの試験片を作製した。得られた試験片を液体窒素に浸漬して-50℃まで冷却し、その後、粘弾性スペクトロメーター(DVA-200、アイティー計測制御社製)を用いて、定速昇温引張モード、昇温速度10℃/分、周波数10Hzの条件で300℃まで昇温し、貯蔵弾性率を測定した。このときの260℃における貯蔵弾性率(E’)の値を測定した。
(Measurement of tensile modulus)
Only the pressure-sensitive adhesive layer A is prepared by the above method, and the obtained pressure-sensitive adhesive layer A is irradiated with ultraviolet rays of 405 nm using a high-pressure mercury ultraviolet irradiation machine so that the illuminance becomes 3000 mJ / cm 2, and the ultraviolet rays are cured. A single layer sample of the later pressure-sensitive adhesive layer A was obtained. Next, a test piece of 5 mm × 35 mm was produced by punching with a punching blade so that the long side was the same as the flow direction at the time of manufacturing. The obtained test piece is immersed in liquid nitrogen and cooled to -50 ° C., and then, using a viscoelastic spectrometer (DVA-200, manufactured by IT Measurement Control Co., Ltd.), constant speed temperature rise and tension mode, temperature rise. The temperature was raised to 300 ° C. under the conditions of a speed of 10 ° C./min and a frequency of 10 Hz, and the storage elastic modulus was measured. The value of the storage elastic modulus (E') at 260 ° C. at this time was measured.
(紫外線透過率の測定)
分光光度計(U-3900、日立製作所社製)を用いて、粘着テープの紫外線透過率を測定した。より具体的には、800~200nmの領域でスキャンスピード300nm/min、スリット間隔4nmで測定し、405nmにおける透過率を測定した。
(Measurement of UV transmittance)
The ultraviolet transmittance of the adhesive tape was measured using a spectrophotometer (U-3900, manufactured by Hitachi, Ltd.). More specifically, the measurement was performed in a region of 800 to 200 nm at a scan speed of 300 nm / min and a slit interval of 4 nm, and the transmittance at 405 nm was measured.
<評価>
実施例及び比較例で得た粘着テープについて、以下の方法により評価を行った。結果を表2、3に示した。
<Evaluation>
The adhesive tapes obtained in Examples and Comparative Examples were evaluated by the following methods. The results are shown in Tables 2 and 3.
(積層工程の評価)
直径20cmの円形に切断した粘着テープの粘着剤A層側を、直径20cm、50μm厚、表面粗さ<0.1μmのシリコンウエハに貼り付けた。次いで、粘着テープの粘着剤B層側を、直径20cm、厚さ0.6mmのガラスウエハ(Tempax、SCHOTT社製)に貼りつけた。貼付後、フィルターにより365nm以下の波長をカットした状態で、ガラスウエハ面側から405nmの波長の紫外光を粘着剤層Aへの照射量が3000mJ/cmとなるように照射し、粘着剤層A、Bを架橋、硬化させた。得られたシリコンウエハ/粘着テープ/ガラスウエハの積層体を200℃に設定されたオーブンにてガラス面を下にして1時間静置し、加熱処理をした。加熱処理後常温に戻ったサンプルに、フリップチップボンダー(FC6000、芝浦メカトロニクス社製)を用い、50μm厚のウエハを積層した。具体的には80℃に設定されたSUSステージ上に、シリコンウエハ面が上になるように吸着させ、9.8mm×9.8mm、50μm厚、表面粗さ<0.1μmで、25μm厚の接合フィルム付の単結晶シリコン薄ウエハチップを、ヘッドサイズ10mm×10mmのセラミックツールを用い積層した。積層時のヘッドの温度は310℃とし、圧力は300N、積層時間は90秒とした。
上記積層工程を行った際に、上記薄ウエハチップを8段積層出来た場合を「◎」、1段積層出来たが2段目以降でシリコンウエハと粘着テープの間で剥離が発生した場合を「○」、1段も積層出来なかった場合を「×」として、積層工程を評価した。
(Evaluation of laminating process)
The adhesive layer A side of the adhesive tape cut into a circle with a diameter of 20 cm was attached to a silicon wafer having a diameter of 20 cm, a thickness of 50 μm, and a surface roughness <0.1 μm. Next, the adhesive B layer side of the adhesive tape was attached to a glass wafer (Tempax, manufactured by SCHOTT) having a diameter of 20 cm and a thickness of 0.6 mm. After sticking, with the wavelength of 365 nm or less cut by a filter, ultraviolet light having a wavelength of 405 nm is irradiated from the glass wafer surface side so that the irradiation amount of the pressure-sensitive adhesive layer A is 3000 mJ / cm 2. A and B were crosslinked and cured. The obtained silicon wafer / adhesive tape / glass wafer laminate was allowed to stand for 1 hour in an oven set at 200 ° C. with the glass side facing down, and heat-treated. A 50 μm-thick wafer was laminated on the sample that had returned to room temperature after the heat treatment using a flip chip bonder (FC6000, manufactured by Shibaura Mechatronics Co., Ltd.). Specifically, it is adsorbed on a SUS stage set at 80 ° C. so that the silicon wafer surface faces up, and has a thickness of 9.8 mm × 9.8 mm, a thickness of 50 μm, a surface roughness <0.1 μm, and a thickness of 25 μm. Single crystal silicon thin wafer chips with a bonding film were laminated using a ceramic tool with a head size of 10 mm × 10 mm. The temperature of the head during stacking was 310 ° C., the pressure was 300 N, and the stacking time was 90 seconds.
When the laminating process is performed, the case where the thin wafer chips can be laminated in eight stages is indicated by "◎", and the case where the first stage can be laminated but peeling occurs between the silicon wafer and the adhesive tape in the second and subsequent stages. The laminating process was evaluated with "◯" and "x" when even one step could not be laminated.
(剥離性の評価)
粘着テープの粘着剤層A側の面を、バンプ付ウエハ(バンプ径φ=20μm、バンプ間距離30μm、バンプ高さ45μm)に貼り付けて積層体を得た。次いで、粘着テープの粘着剤層B側を、直径20cm、厚さ0.6mmのガラスウエハ(Tempax、SCHOTT社製)に貼りつけた。貼付後、フィルターにより365nm以下の波長をカットした状態で、ガラスウエハ面側から405nmの波長の紫外光を粘着剤層Aへの照射量が3000mJ/cmとなるように照射し、粘着剤層Aを架橋、硬化させた。得られたシリコンウエハ/粘着テープ/ガラスウエハの積層体を200℃に設定されたオーブンにてガラス面を下にして1時間静置し、加熱処理をした。積層体の放冷後、粘着テープをウエハから剥離した。剥離後のウエハを光学顕微鏡にて観察し、500μm四方の範囲に存在するバンプのうち糊残りしているバンプが5%以下であった場合を「◎」、5%より多く20%以下であった場合を「〇」、20%より多く50%以下であった場合「△」、50%より多かった場合を「×」として剥離性を評価した。
(Evaluation of peelability)
The surface of the adhesive tape on the adhesive layer A side was attached to a wafer with bumps (bump diameter φ = 20 μm, bump distance 30 μm, bump height 45 μm) to obtain a laminate. Next, the adhesive layer B side of the adhesive tape was attached to a glass wafer (Tempax, manufactured by SCHOTT) having a diameter of 20 cm and a thickness of 0.6 mm. After sticking, with the wavelength of 365 nm or less cut by a filter, ultraviolet light having a wavelength of 405 nm is irradiated from the glass wafer surface side so that the irradiation amount of the pressure-sensitive adhesive layer A is 3000 mJ / cm 2. A was crosslinked and cured. The obtained silicon wafer / adhesive tape / glass wafer laminate was allowed to stand for 1 hour in an oven set at 200 ° C. with the glass side facing down, and heat-treated. After allowing the laminate to cool, the adhesive tape was peeled off from the wafer. The wafer after peeling was observed with an optical microscope, and when the number of bumps remaining in the adhesive was 5% or less among the bumps existing in the range of 500 μm square, it was “◎”, which was more than 5% and 20% or less. The peelability was evaluated as "◯" when the value was "◯", "Δ" when the percentage was more than 20% and 50% or less, and "x" when the percentage was more than 50%.
(バンプの変形性の評価)
粘着テープの粘着剤層A側の面を、バンプ付ウエハ(バンプ径φ=20μm、バンプ間距離30μm、バンプ高さ45μm)に貼り付けて積層体を得た。次いで、粘着テープの粘着剤層B側を、直径20cm、厚さ0.6mmのガラスウエハ(Tempax、SCHOTT社製)に貼りつけた。貼付後、フィルターにより365nm以下の波長をカットした状態で、ガラスウエハ面側から405nmの波長の紫外光を粘着剤層Aへの照射量が3000mJ/cmとなるように照射し、粘着剤層Aを架橋、硬化させた。得られたシリコンウエハ/粘着テープ/ガラスウエハの積層体を200℃に設定されたオーブンにてガラス面を下にして1時間静置し、加熱処理をした。加熱処理後の積層体のサンプルのバンプ付ウエハ上に、上記積層工程の評価と同様の手法、条件にて薄ウエハチップを1段積層した。積層後粘着テープを剥離し、剥離後のバンプ付ウエハを走査型電子顕微鏡にて観察した。この際、500μm四方の範囲に存在するバンプのうち初期状態と比較して形状が変化しているバンプが5%以下であった場合を「◎」、5%より多く20%以下であった場合を「〇」、20%より多く50%以下であった場合「△」、50%より多かった場合を「×」として剥離性を評価した。
(Evaluation of bump deformability)
The surface of the adhesive tape on the adhesive layer A side was attached to a wafer with bumps (bump diameter φ = 20 μm, bump distance 30 μm, bump height 45 μm) to obtain a laminate. Next, the adhesive layer B side of the adhesive tape was attached to a glass wafer (Tempax, manufactured by SCHOTT) having a diameter of 20 cm and a thickness of 0.6 mm. After sticking, with the wavelength of 365 nm or less cut by a filter, ultraviolet light having a wavelength of 405 nm is irradiated from the glass wafer surface side so that the irradiation amount of the pressure-sensitive adhesive layer A is 3000 mJ / cm 2. A was crosslinked and cured. The obtained silicon wafer / adhesive tape / glass wafer laminate was allowed to stand for 1 hour in an oven set at 200 ° C. with the glass side facing down, and heat-treated. A thin wafer chip was laminated in one stage on the bumped wafer of the sample of the laminate after the heat treatment under the same method and conditions as in the evaluation of the above lamination process. After laminating, the adhesive tape was peeled off, and the peeled wafer with bumps was observed with a scanning electron microscope. At this time, among the bumps existing in the range of 500 μm square, the case where the bump whose shape has changed compared to the initial state is 5% or less is “◎”, and the case where it is more than 5% and 20% or less. Was evaluated as “◯”, when it was more than 20% and 50% or less, it was evaluated as “Δ”, and when it was more than 50%, it was evaluated as “x”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
本発明によれば、高温と荷重を伴う工程に用いられた場合であっても被着体から剥離せず、剥離の際には容易に剥離でき、更に半田バンプの変形も抑制できる粘着テープを提供することができる。また、本発明によれば、該粘着テープを用いた半導体デバイスの製造方法を提供することができる。 According to the present invention, an adhesive tape that does not peel off from the adherend even when used in a process involving high temperature and load, can be easily peeled off at the time of peeling, and can also suppress deformation of solder bumps. Can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing a semiconductor device using the adhesive tape.
1 粘着テープ
2 ウエハ
3 半導体チップ
4 半田バンプ
1 Adhesive tape 2 Wafer 3 Semiconductor chip 4 Solder bump

Claims (9)

  1. 粘着剤層Aと基材フィルムと粘着剤層Bとがこの順番に積層された粘着テープであって、
    前記粘着剤層Aをシリコンウエハチップへ貼り付け、前記粘着剤層Bをガラス板に貼り付け、粘着テープの前記粘着剤層B側の面から前記粘着剤層Aへ3000mJ/cmの紫外線を照射し、240℃で10分間加熱処理した後のシリコンウエハチップに対するダイシェア強度が3N/9mm以上であり、
    前記粘着剤層Aをシリコンウエハへ貼り付け、前記粘着剤層B側の面から前記粘着剤層Aへ3000mJ/cmの紫外線を照射し、200℃で1時間加熱処理した後のシリコンウエハに対する180°ピール強度が0.10N/inch以上0.30N/inch以下であり、
    前記粘着剤層Bをガラス板に貼り付け、前記粘着剤層Aに3000mJ/cmの紫外線を照射後にSAICAS測定によって測定された前記粘着剤層Aの表層部から10μmの部分における水平荷重強度が0.06N/mm以上である、粘着テープ。
    An adhesive tape in which the pressure-sensitive adhesive layer A, the base film, and the pressure-sensitive adhesive layer B are laminated in this order.
    The pressure-sensitive adhesive layer A is attached to a silicon wafer chip, the pressure-sensitive adhesive layer B is attached to a glass plate, and ultraviolet rays of 3000 mJ / cm 2 are applied to the pressure-sensitive adhesive layer A from the surface of the pressure-sensitive adhesive tape on the side of the pressure-sensitive adhesive layer B. The die shear strength for the silicon wafer chip after irradiation and heat treatment at 240 ° C. for 10 minutes is 3N / 9 mm 2 or more.
    The pressure-sensitive adhesive layer A is attached to a silicon wafer, the pressure-sensitive adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 from the surface on the pressure-sensitive adhesive layer B side, and the silicon wafer is heat-treated at 200 ° C. for 1 hour. The 180 ° peel strength is 0.10 N / inch or more and 0.30 N / inch or less.
    After the pressure-sensitive adhesive layer B is attached to a glass plate and the pressure-sensitive adhesive layer A is irradiated with ultraviolet rays of 3000 mJ / cm 2 , the horizontal load strength at a portion 10 μm from the surface layer portion of the pressure-sensitive adhesive layer A measured by SAICAS measurement is Adhesive tape that is 0.06 N / mm or more.
  2. 前記粘着剤層Aは、3000mJ/cmの紫外線照射後の23℃における引張強度が1.0MPa以上である、請求項1記載の粘着テープ。 The adhesive tape according to claim 1, wherein the pressure-sensitive adhesive layer A has a tensile strength of 1.0 MPa or more at 23 ° C. after irradiation with ultraviolet rays of 3000 mJ / cm 2 .
  3. 前記粘着剤層Aは、3000mJ/cmの紫外線照射後の260℃における引張弾性率が1.0×10Pa以上である、請求項1又は2記載の粘着テープ。 The adhesive tape according to claim 1 or 2, wherein the pressure-sensitive adhesive layer A has a tensile elastic modulus of 1.0 × 10 6 Pa or more at 260 ° C. after irradiation with ultraviolet rays of 3000 mJ / cm 2 .
  4. 前記粘着剤層Aは、分子内にラジカル重合性の不飽和結合を有する(メタ)アクリル酸アルキルエステル系の重合性ポリマーを含む粘着剤成分を含有し、前記粘着剤成分の水酸基価と酸価をそれぞれXmgKOH/mg、YmgKOH/mgとしたときに、X+Y≧10である、請求項1、2又は3記載の粘着テープ。 The pressure-sensitive adhesive layer A contains a pressure-sensitive adhesive component containing a (meth) acrylic acid alkyl ester-based polymerizable polymer having a radically polymerizable unsaturated bond in the molecule, and has a hydroxyl value and an acid value of the pressure-sensitive adhesive component. The adhesive tape according to claim 1, 2 or 3, wherein X + Y ≧ 10 when each of is XmgKOH / mg and YmgKOH / mg.
  5. 前記粘着剤層Aは、分子内にラジカル重合性の不飽和結合を有する(メタ)アクリル酸アルキルエステル系の重合性ポリマーを含む粘着剤成分を含有し、前記粘着剤成分の水酸基価と酸価をそれぞれXmgKOH/mg、YmgKOH/mgとしたときに、X+Y≦70である、請求項1、2、3又は4記載の粘着テープ。 The pressure-sensitive adhesive layer A contains a pressure-sensitive adhesive component containing a (meth) acrylic acid alkyl ester-based polymerizable polymer having a radically polymerizable unsaturated bond in the molecule, and has a hydroxyl value and an acid value of the pressure-sensitive adhesive component. The adhesive tape according to claim 1, 2, 3 or 4, wherein X + Y ≦ 70, respectively, when XmgKOH / mg and YmgKOH / mg are used.
  6. 前記粘着剤層Aは、前記粘着剤成分と、重合開始剤と、前記粘着剤成分と架橋可能な官能基を有するシリコーン又はフッ素化合物と、さらに前記粘着剤成分と架橋可能な官能基を有するウレタン化合物を含有する、請求項1、2、3、4又は5記載の粘着テープ。 The pressure-sensitive adhesive layer A includes the pressure-sensitive adhesive component, a polymerization initiator, a silicone or fluorine compound having a functional group crosslinkable with the pressure-sensitive adhesive component, and a urethane having a functional group cross-linkable with the pressure-sensitive adhesive component. The adhesive tape according to claim 1, 2, 3, 4 or 5, which contains a compound.
  7. 電子部品を製造するために用いられる、請求項1、2、3、4、5又は6記載の粘着テープ。 The adhesive tape according to claim 1, 2, 3, 4, 5 or 6, which is used for manufacturing an electronic component.
  8. 熱圧着ボンディング工程を有する電子部品の製造に用いられる、請求項7記載の粘着テープ。 The adhesive tape according to claim 7, which is used for manufacturing an electronic component having a thermocompression bonding step.
  9. 請求項1、2、3、4、5、6、7又は8記載の粘着テープを介して支持体上にウエハを固定する工程及び前記ウエハ上に半導体チップを熱圧着ボンディングにより積層する工程を有する、半導体デバイスの製造方法。 A step of fixing a wafer on a support via the adhesive tape according to claim 1, 2, 3, 4, 5, 6, 7 or 8, and a step of laminating a semiconductor chip on the wafer by thermocompression bonding. , Semiconductor device manufacturing method.
PCT/JP2020/012070 2019-04-26 2020-03-18 Adhesive tape WO2020217793A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020530699A JPWO2020217793A1 (en) 2019-04-26 2020-03-18
KR1020217015450A KR20220002240A (en) 2019-04-26 2020-03-18 adhesive tape
CN202080007386.2A CN113272399A (en) 2019-04-26 2020-03-18 Adhesive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086257 2019-04-26
JP2019086257 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020217793A1 true WO2020217793A1 (en) 2020-10-29

Family

ID=72942481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012070 WO2020217793A1 (en) 2019-04-26 2020-03-18 Adhesive tape

Country Status (5)

Country Link
JP (1) JPWO2020217793A1 (en)
KR (1) KR20220002240A (en)
CN (1) CN113272399A (en)
TW (1) TW202106831A (en)
WO (1) WO2020217793A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112427A1 (en) * 2021-12-14 2023-06-22 株式会社レゾナック Method for producing semiconductor device, and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231159A (en) * 2012-04-06 2013-11-14 Sekisui Chem Co Ltd Adhesive composition, adhesive tape, and method for processing wafer
JP2017028166A (en) * 2015-07-24 2017-02-02 積水化学工業株式会社 Semiconductor wafer protection film
JP2018157075A (en) * 2017-03-17 2018-10-04 積水化学工業株式会社 Wafer processing method
JP2018178009A (en) * 2017-04-17 2018-11-15 積水化学工業株式会社 Adhesive composition for semiconductor devices and adhesive tape for semiconductor devices
WO2019221065A1 (en) * 2018-05-18 2019-11-21 積水化学工業株式会社 Adhesive tape and method for manufacturing electronic component

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601956B2 (en) 1991-07-31 1997-04-23 リンテック株式会社 Removable adhesive polymer
JP4404526B2 (en) * 2002-07-11 2010-01-27 積水化学工業株式会社 Adhesive material, single-sided adhesive tape and double-sided adhesive tape
JP2005197630A (en) * 2003-12-09 2005-07-21 Sekisui Chem Co Ltd Method of manufacturing ic chip
CN101019206A (en) * 2004-08-02 2007-08-15 积水化学工业株式会社 IC chip manufacturing method
JP2006228985A (en) * 2005-02-17 2006-08-31 Sekisui Chem Co Ltd Process for producing ic chip
WO2009075196A1 (en) * 2007-12-12 2009-06-18 Sekisui Chemical Co., Ltd. Two-sided adhesive tape for semiconductor processing and tape for semiconductor processing
JP2009146974A (en) * 2007-12-12 2009-07-02 Sekisui Chem Co Ltd Double-sided adhesive tape for semiconductor processing
JP2014172278A (en) * 2013-03-08 2014-09-22 Dic Corp Thermal transfer film, method for manufacturing the same, and method for manufacturing decorative article using the same
JP5718515B1 (en) * 2014-01-23 2015-05-13 古河電気工業株式会社 Adhesive tape for protecting semiconductor wafer surface and method for processing semiconductor wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231159A (en) * 2012-04-06 2013-11-14 Sekisui Chem Co Ltd Adhesive composition, adhesive tape, and method for processing wafer
JP2017028166A (en) * 2015-07-24 2017-02-02 積水化学工業株式会社 Semiconductor wafer protection film
JP2018157075A (en) * 2017-03-17 2018-10-04 積水化学工業株式会社 Wafer processing method
JP2018178009A (en) * 2017-04-17 2018-11-15 積水化学工業株式会社 Adhesive composition for semiconductor devices and adhesive tape for semiconductor devices
WO2019221065A1 (en) * 2018-05-18 2019-11-21 積水化学工業株式会社 Adhesive tape and method for manufacturing electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112427A1 (en) * 2021-12-14 2023-06-22 株式会社レゾナック Method for producing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JPWO2020217793A1 (en) 2020-10-29
TW202106831A (en) 2021-02-16
CN113272399A (en) 2021-08-17
KR20220002240A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP4991348B2 (en) Adhesive sheet
JP5282113B2 (en) Base film and pressure-sensitive adhesive sheet provided with the base film
WO2011077835A1 (en) Adhesive sheet and production method for electronic component
TWI507502B (en) Semiconductor wafer processing adhesive sheet
JP4991350B2 (en) Adhesive sheet
JPWO2020137980A1 (en) Adhesive tape
WO2020217793A1 (en) Adhesive tape
TW202100687A (en) Pressure-sensitive adhesive sheet, method for producing pressure-sensitive adhesive sheet, and method for producing semiconductor device
TW202100688A (en) Adhesive-sheet manufacturing method, semiconductor-device manufacturing method, and adhesive sheet
TW202116953A (en) Method of manufacturing semiconductor device
TW202102632A (en) Adhesive sheet, adhesive-sheet manufacturing method, and semiconductor-device manufacturing method
JP5946708B2 (en) Adhesive tape
JP5016703B2 (en) Method for manufacturing adhesive sheet and electronic component
JP2018115333A (en) Adhesive tape and method for producing semiconductor device
JP2005281419A (en) Adhesive sheet
JP5033440B2 (en) Adhesive sheet
JP2018207011A (en) Semiconductor chip manufacturing method and adhesive tape
JP2014012769A (en) Adhesive compound, adhesive tape, and wafer treatment method
JP2020094199A (en) Adhesive tape
WO2022209118A1 (en) Semiconductor processing adhesive tape, and method for manufacturing semiconductor device
WO2021107137A1 (en) Manufacturing method for semiconductor device and a laminate for semiconductor processing
JP2019031620A (en) Re-peelable adhesive composition
JP2019033214A (en) Manufacturing method of semiconductor device
JP2020186313A (en) Adhesive tape for semiconductor processing
JP2023174520A (en) Temporarily fixing tape, and production method of semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530699

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20793942

Country of ref document: EP

Kind code of ref document: A1