WO2021107014A1 - 高耐摩耗性ゼオライト成形体及びその製造方法 - Google Patents

高耐摩耗性ゼオライト成形体及びその製造方法 Download PDF

Info

Publication number
WO2021107014A1
WO2021107014A1 PCT/JP2020/044028 JP2020044028W WO2021107014A1 WO 2021107014 A1 WO2021107014 A1 WO 2021107014A1 JP 2020044028 W JP2020044028 W JP 2020044028W WO 2021107014 A1 WO2021107014 A1 WO 2021107014A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
zeolite
less
water
Prior art date
Application number
PCT/JP2020/044028
Other languages
English (en)
French (fr)
Inventor
悠輝 大庭
敬助 徳永
清水 要樹
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to EP20894902.4A priority Critical patent/EP4067307A1/en
Priority to US17/780,518 priority patent/US20220411276A1/en
Priority to CN202080082561.4A priority patent/CN114761357A/zh
Publication of WO2021107014A1 publication Critical patent/WO2021107014A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a highly wear-resistant zeolite molded product and a method for producing the same, and more specifically, to a highly wear-resistant zeolite molded product having excellent high wear resistance and high fluidity and a method for producing the same.
  • the highly wear-resistant zeolite molded product of the present invention is useful for applications such as adsorption separators and catalysts.
  • VOC emission regulations which are considered to be one of the causative substances of floating particulate matter and photochemical oxidants, have begun, and attention is focused on VOC emission countermeasure technologies.
  • Zeolites are attracting attention as VOC adsorbents. Since the skeleton is made of heat-resistant silicon dioxide, it is easy to absorb and desorb VOCs at high temperatures, has high safety, and has a high specific surface area.
  • VOC adsorbents Since the skeleton is made of heat-resistant silicon dioxide, it is easy to absorb and desorb VOCs at high temperatures, has high safety, and has a high specific surface area.
  • adsorbing VOCs in factories fixed bed or fluidized bed adsorption towers are used, but the adsorbent is pulverized when filling or desorbing them, causing equipment troubles and pressure loss.
  • the adsorbent is required to have high wear resistance because of the cause, the invention of a zeolite molded body having high wear resistance that is practical has not been reached.
  • the fluidity of the agent is important at the time of filling and collecting the material in the adsorption tower of the fixed bed and the fluidized bed, and also at the time of adsorption and regeneration in the case of the fluidized bed. If the fluidity of the agent is low, it takes time to fill and recover, but the invention of a zeolite molded product having high fluidity that is practical has not been reached.
  • Patent Document 1 discloses a method of mixing, kneading, and molding A-type or X-type zeolite as a zeolite, kaolin clay or halloysite as a binder, and CMC (carboxymethyl cellulose) as a thickener or a water-retaining agent. ..
  • Patent Document 2 discloses a method of using a plurality of types of low-silica X-type zeolite as a zeolite and kaolin-based clay, sepiolite-based clay, attapulsite-based clay, and bentonite-based clay as a binder.
  • Patent Document 3 discloses a method of mixing, kneading, and molding a 3A-type zeolite as a zeolite, kaolin clay as a binder, and condensed phosphate as an inorganic dispersant.
  • the present invention provides a highly wear-resistant zeolite molded product having higher wear resistance and high fluidity than a conventional zeolite molded product, and a method for producing the same.
  • the present inventors have found a production method using two types of binders, clay and silica sol, when producing a zeolite molded product, and the abrasion resistance of the molded product. We have found that it is important to control the loose bulk density of the zeolite molded product and the sphericity of the zeolite molded product in order to improve the above, and have completed the present invention.
  • zeolite With respect to 100 parts by weight of zeolite, 35 parts by weight or more and 70 parts by weight or less of clay, 5 parts by weight or more and 40 parts by weight or less of silica sol, and 0.5 parts by weight or more and 10 parts by weight or less of water-soluble sodium salt are contained. Moreover, the abrasion resistance is 90% or more, the rest angle is 40 ° or less, the loose bulk density of the surface of the zeolite molded body is 0.5 kg / L or more, and the sphericity of the zeolite molded body is 1 or more and 3 or less.
  • a highly wear-resistant zeolite molded product having a water adsorption amount of 10 (g / 100 g) or less under the conditions of Si / Al 2 of 10 or more and 100,000 or less, 25 ° C., and a relative pressure of 0.5.
  • the zeolite contains at least one of a beta-type zeolite, a Y-type zeolite, an L-type zeolite, a ferrierite-type zeolite, a mordenite-type zeolite, and a ZSM-5-type zeolite.
  • High wear resistant zeolite molded body wherein the zeolite contains at least one of a beta-type zeolite, a Y-type zeolite, an L-type zeolite, a ferrierite-type zeolite, a mordenite-type zeolite, and a ZSM-5-type zeolite.
  • the zeolite contains at least one of a beta-type zeolite, a Y-type zeolite, an L-type zeolite, a ferrierite-type zeolite, a mordenite-type zeolite, and a ZSM-5-type zeolite.
  • the highly wear-resistant zeolite molded product of the present invention has high wear resistance and fluidity, it can be particularly useful in adsorption separation applications including heat regeneration processes and catalytic reaction applications.
  • the highly wear-resistant zeolite molded product of the present invention contains 35 parts by weight or more and 70 parts by weight or less of clay, 5 parts by weight or more and 40 parts by weight or less of silica sol, and 0.5 parts by weight of water-soluble sodium salt with respect to 100 parts by weight of zeolite. It includes more than 10 parts by weight and less than 10 parts by weight.
  • the amount of clay contained in the highly wear-resistant zeolite molded body is 35 parts by weight or more and 70 parts by weight or less with respect to 100 parts by weight (anhydrous equivalent) of zeolite. If it is less than 35 parts by weight, the wear resistance is low, and if it is more than 70 parts by weight, no improvement in wear resistance is observed. Since the wear resistance becomes higher, it is preferably 40 parts by weight or more and 60 parts by weight or less, and more preferably 45 parts by weight or more and 55 parts by weight or less.
  • the particle size of the clay is not particularly limited, but the average particle size is preferably 0.5 ⁇ m or more and 30 ⁇ m or less. Examples of the clay include sepiolite clay, attapargit clay, parigoliskite clay, bentonite clay and the like.
  • the amount of silica sol contained in the highly wear-resistant zeolite molded product is 5 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight (anhydrous equivalent) of zeolite. If it is less than 5 parts by weight, the wear resistance is not effective, and as the amount of silica sol added is increased, the wear resistance is also improved, but if it exceeds 40 parts by weight, the extrusion moldability is remarkably deteriorated. In order to maintain both wear resistance and extrusion moldability at a high level, it is preferably 10 parts by weight or more and 30 parts by weight or less, and more preferably 15 parts by weight or more and 25 parts by weight or less.
  • the particle size of the silica sol is not particularly limited, but the average particle size is preferably 5 nm or more and 30 nm or less.
  • the amount of water-soluble sodium salt contained in the highly wear-resistant zeolite molded product is 0.5 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight (anhydrous equivalent) of zeolite. If it is less than 0.5 parts by weight, the effect is not sufficient, and if it is more than 10 parts by weight, the effect does not change. In order not to increase the amount of sodium derived from the water-soluble sodium salt, it is preferably 0.5 parts by weight or more and 8 parts by weight or less, and more preferably 0.5 parts by weight or more and 6 parts by weight or less.
  • the water-soluble sodium salt include sodium inorganic acid and sodium organic acid.
  • the inorganic acid sodium may be a water-soluble sodium salt, and examples thereof include sodium phosphate, sodium silicate, and sodium aluminate. Of these, sodium phosphate is preferred. Examples of sodium phosphate include sodium primary phosphate, sodium secondary phosphate, sodium trisodium phosphate, sodium pyrophosphate, sodium acidic pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium hexametaphosphate, and the like. Will be done.
  • the sodium organic acid may be a water-soluble sodium salt, and examples thereof include general organic carboxylic acids, amino carbonates, ether carboxylic acids, and vinyl-type high molecular weight sodium salts.
  • general organic carboxylic acids include sodium citrate, sodium gluconate, sodium oxalate, sodium tartrate, and the like
  • amino carbonates include sodium ethylenediamine tetraacetate, sodium diethylenetriaminopentaacetate, and the like.
  • the ether carboxylate for example, sodium carboxymethyl tartronate, sodium carboxymethyl oxysuccinate and the like are exemplified
  • the vinyl type high molecular weight sodium salt for example, sodium polyacrylate and both acrylate / maleic acid are used. Examples include sodium salts of polymers.
  • the highly wear-resistant zeolite molded product of the present invention has a wear-resistant strength of 90% or more. If the wear resistance is less than 90%, it is likely to be pulverized and cause pressure loss or the like.
  • the wear resistance strength is measured according to the activated carbon test method of JIS-K-1474 (see ⁇ Abrasion resistance test> in Examples).
  • the abrasion resistance is preferably 92% or more, more preferably 95% or more, and particularly preferably 96.5% or more.
  • the highly wear-resistant zeolite molded product of the present invention has an angle of repose of 40 ° or less. If the angle of repose exceeds 40 °, the fluidity is poor and it may take time to fill and recover the agent.
  • the angle of repose is measured according to the ⁇ Measurement of the angle of repose> of the embodiment.
  • the angle of repose is preferably 38 ° or less, more preferably 36 ° or less, and particularly preferably 32 ° or less.
  • the loose bulk density of the zeolite molded body is 0.5 kg / L or more.
  • the loose bulk density is less than 0.5 kg / L, the abrasion resistance strength is remarkably lowered, and there is a possibility that pressure loss due to pulverization or the like is likely to occur.
  • the measurement of the loose bulk density is performed according to the ⁇ Measurement of loose bulk density> of the example.
  • the highly wear-resistant zeolite molded product of the present invention has a sphericity of 1 or more and 3 or less.
  • the sphericity exceeds 3, the abrasion resistance and fluidity are remarkably lowered, and there is a possibility that pressure loss due to pulverization or the like is likely to occur.
  • the sphericity is measured according to the ⁇ Measurement of sphericity> of the embodiment.
  • the zeolite contained in the highly wear-resistant zeolite molded body is a zeolite having a Si / Al 2 content of 10 or more and 100,000 or less, a water adsorption amount of 10 (g / 100 g) or less under the conditions of 25 ° C. and a relative pressure of 0.5. And includes one or more of these.
  • Si / Al 2 is less than 10, the wear strength decreases when the amount of water adsorbed exceeds 10 (g / 100 g) under the conditions of 25 ° C. and a relative pressure of 0.5.
  • Si / Al 2 is preferably 50 or more and 10000 or less, and more preferably 80 or more and 2000 or less.
  • Examples of the type of zeolite include beta-type zeolite, Y-type zeolite, L-type zeolite, ferrierite-type zeolite, mordenite-type zeolite, and ZSM-5-type zeolite.
  • Y-type zeolite and ZSM-5-type zeolite are exemplified. Is preferable.
  • the production method of the present invention for 100 parts by weight of zeolite, 35 parts by weight or more and 70 parts by weight or less of clay and silica sol are used. 5 parts by weight or more and 40 parts by weight or less, 0.5 parts by weight or more and 10 parts by weight or less of water-soluble sodium salt, 4 parts by weight or more and 20 parts by weight or less of molding aid, 120 parts by weight or more and 180 parts by weight or less of water.
  • Clay is contained in the kneaded product used in the production method of the present invention.
  • the clay include sepiolite clay, attapargit clay, parigoliskite clay, bentonite clay and the like.
  • the amount of clay is 35 parts by weight or more and 70 parts by weight or less with respect to 100 parts by weight (anhydrous equivalent) of zeolite. If it is less than 35 parts by weight, the wear resistance is low, and if it is more than 70 parts by weight, no improvement in wear resistance is observed. Since the wear resistance becomes higher, it is preferably 40 parts by weight or more and 60 parts by weight or less, and more preferably 45 parts by weight or more and 55 parts by weight or less.
  • the particle size of the clay is not particularly limited, but the average particle size is preferably 0.5 ⁇ m or more and 30 ⁇ m or less.
  • Silica sol is contained in the kneaded product used in the production method of the present invention.
  • the amount of silica sol is 5 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight (anhydrous equivalent) of zeolite. If it is less than 5 parts by weight, the wear resistance is not effective, and as the amount of silica sol added is increased, the wear resistance is also improved, but if it exceeds 40 parts by weight, the extrusion moldability is remarkably deteriorated. In order to maintain both wear resistance and extrusion moldability at a high level, it is preferably 10 parts by weight or more and 30 parts by weight or less, and more preferably 15 parts by weight or more and 25 parts by weight or less.
  • the particle size of the silica sol is not particularly limited, but the average particle size is preferably 5 nm or more and 30 nm or less.
  • the pH is not particularly limited, but is preferably 7.0 or more and 10.0 or less.
  • the kneaded product used in the production method of the present invention contains a water-soluble sodium salt.
  • the water-soluble sodium salt include sodium inorganic acid and sodium organic acid.
  • the water-soluble sodium salt preferably contains at least one of inorganic sodium acid and organic sodium acid.
  • the amount of the water-soluble sodium salt is 0.5 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight (anhydrous equivalent) of zeolite. If it is less than 0.5 parts by weight, the effect is not sufficient, and if it is more than 10 parts by weight, the effect does not change.
  • it is preferably 0.5 parts by weight or more and 8 parts by weight or less, and more preferably 0.5 parts by weight or more and 6 parts by weight or less.
  • the inorganic acid sodium may be a water-soluble sodium salt, and examples thereof include sodium phosphate, sodium silicate, and sodium aluminate.
  • sodium phosphate can be preferably used because it is easy to handle.
  • sodium phosphate for example, sodium primary phosphate, sodium secondary phosphate, sodium tertiary phosphate, sodium pyrophosphate, sodium acidic pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium hexametaphosphate and the like are used. it can.
  • the sodium organic acid may be a water-soluble sodium salt, and examples thereof include general organic carboxylic acids, amino carbonates, ether carboxylic acids, and vinyl-type high molecular weight sodium salts.
  • general organic carboxylic acid for example, sodium citrate, sodium gluconate, sodium oxalate, sodium tartrate and the like can be used
  • amino carbonate for example, ethylenediamine tetraacetate sodium salt, diethylenetriaminopentaacetate sodium and the like can be used.
  • ether carboxylate for example, sodium carboxymethyl tartronate, sodium carboxymethyl oxysuccinate and the like can be used
  • vinyl type high molecular weight sodium salt for example, sodium polyacrylate and both acrylate / maleic acid can be used.
  • Sodium salt of the polymer can be used.
  • the kneaded product used in the production method of the present invention contains a molding aid.
  • the molding aid include those that improve moldability, and examples thereof include cellulose, alcohol, lignin, starch, and guar gum. Of these, cellulose and alcohol are preferable because they are easy to handle. Examples of cellulose include crystalline cellulose, hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose (CMC) and the like. Examples of the alcohol include polyvinyl alcohol and ethylene glycol.
  • the amount of the molding aid is 4 parts by weight or more and 20 parts by weight or less, preferably 8 parts by weight or more and 16 parts by weight or less with respect to 100 parts by weight (anhydrous equivalent) of zeolite. If it is less than 4 parts by weight, the wear resistance is lowered, and if it exceeds 20 parts by weight, the moldability is remarkably lowered.
  • the amount of water contained in the kneaded product used in the production method of the present invention is 120 parts by weight or more and 180 parts by weight or less, and 140 parts by weight or more and 160 parts by weight with respect to 100 parts by weight (anhydrous equivalent) of zeolite.
  • the following is preferable. Molding may be difficult if it is less than 120 parts by weight or more than 180 parts by weight.
  • the zeolite contained in the kneaded product used in the production method of the present invention has a water adsorption amount of 10 (g / 100 g) under the conditions of Si / Al 2 of 10 or more and 100,000 or less, 25 ° C., and a relative pressure of 0.5. It is necessary to contain one or more of the following zeolites.
  • Si / Al 2 is less than 10, under the conditions of 25 ° C. and relative pressure of 0.5, when the amount of moisture adsorbed exceeds 10 (g / 100 g), it becomes easier to adsorb moisture in the atmosphere and the wear strength increases. descend.
  • Si / Al 2 is preferably 50 or more and 10000 or less, and more preferably 80 or more and 2000 or less.
  • Examples of the type of zeolite include beta-type zeolite, Y-type zeolite, L-type zeolite, ferrierite-type zeolite, mordenite-type zeolite, and ZSM-5-type zeolite.
  • Y-type zeolite and ZSM-5-type zeolite are exemplified. Is preferable.
  • the kneaded product used in the production method of the present invention contains 35 parts by weight or more and 70 parts by weight or less of clay, 5 parts by weight or more and 40 parts by weight or less of silica sol, and 0. It is obtained by mixing 5 parts by weight or more and 10 parts by weight or less, a molding aid of 4 parts by weight or more and 20 parts by weight or less, and water of 120 parts by weight or more and 180 parts by weight or less and then kneading.
  • the method of mixing and kneading is not particularly limited, and for example, a mix marler of a roll type kneader, a Henschel mixer of a blade stirring type, a batch type or a continuous type kneader can be used.
  • the production method of the present invention is to mold the kneaded product obtained by performing as described above at a rotation speed of 300 rpm or more. More specifically, the obtained kneaded product is formed into a columnar shape and then molded by a molding machine at a rotation speed of 300 rpm or more.
  • the rotation speed is preferably 450 rpm or more, more preferably 600 rpm or more.
  • Examples of the method for forming the obtained kneaded product into a columnar shape include rolling granulation, stirring granulation, extrusion molding, spray granulation and the like, and extrusion molding is preferable.
  • Examples of the molding machine used in the method of molding at a rotation speed of 300 rpm or more include molding machines such as rolling granulation, rolling granulation, stirring granulation, and spray granulation, and molding of rolling granulation. Machine is preferred.
  • the shape of the molded product obtained by the production method of the present invention is not particularly limited, but spherical (including substantially spherical, the same applies hereinafter), columnar, elliptical, bale-shaped, trefoil-shaped, ring-shaped and the like are preferable, and spherical and circular. Columnar is more preferred.
  • the size of the molded product is not particularly limited, but the average particle size is preferably 0.1 ⁇ m or more and 3 mm or less. Pre-drying and the like can be mentioned as a method for improving the yield at the time of molding.
  • pre-drying can be performed by air-drying, vibration-drying, rolling granulation, surface-drying, or a method in which two or more of these methods are combined.
  • the water content after pre-drying may be any water content that can be molded after pre-drying, and is preferably 40% or more and 60% or less.
  • the molded zeolite molded product is dried.
  • the drying method is not particularly limited, and for example, a box-type dryer, a continuous dryer, or the like can be used.
  • the drying temperature can be 50 ° C. or higher and 200 ° C. or lower.
  • the dry atmosphere can be carried out in an air or nitrogen atmosphere under atmospheric pressure.
  • the dried zeolite molding is classified into a desired size. Classification can also be done before drying.
  • the dried zeolite molded product is fired.
  • the firing method is not particularly limited, and for example, it can be performed in an apparatus such as a box-type muffle furnace, a rotary kiln, or a shaft kiln.
  • the firing temperature may be any temperature as long as the fibrous clay is sintered and the strength can be exhibited, and is preferably 400 ° C. or higher and 700 ° C. or lower.
  • the firing atmosphere can be an air or nitrogen atmosphere under atmospheric pressure.
  • the wear resistance strength in the wear resistance test was measured according to JIS-K-1474. That is, the sample was filled by tapping it to the 100 mL marked line of a 200 mL graduated cylinder. The sample weighed with a graduated cylinder was placed in a wear resistance test dish together with 15 steel balls each having a diameter of 12.7 mm and 9.5 mm. It was attached to a sieve shaker and shaken for 30 minutes. Using a sieve and a saucer that are half the size of the sieve with the most samples left, all the samples except the steel balls were put in and attached to the sieve shaker. After shaking for 3 minutes, the mass of the sample remaining on the sieve and the saucer was weighed to the order of 0.1 g, respectively. The wear resistance strength was calculated by the following formula 1.
  • H W / S ⁇ 100... (Equation 1)
  • H abrasion resistance (mass fraction%)
  • W mass of the sample remaining on the sieve (g)
  • S total mass of the sample remaining on the sieve and the saucer (g).
  • the sphericity is measured by photographing the zeolite compact using a digital microscope (VHX-5000, manufactured by KEYENCE), and then measuring the major axis and the minor axis of the zeolite compact.
  • the sphericity (major axis / minor axis) was calculated from the measured major axis and minor axis. This characteristic value was taken as the average value of the measured values of 50 zeolite compacts.
  • Example 1 80 parts by weight (1627 g, water content: 2%) of Y-type zeolite powder (HSZ (registered trademark) -385HUA, manufactured by Tosoh (Si / Al 2 : 100, water adsorption amount: 2 g / 100 g)), MFI-type zeolite 20 parts by weight (413 g, water content: 3%) of powder (HSZ (registered trademark) -891HOA, manufactured by Tosoh (Si / Al 2 : 1500, water adsorption amount: 4 g / 100 g)), attapulsite type clay (minigel MB) , Active Minerals) 50 parts by weight (1253 g, water content: 22%), sodium carboxymethyl cellulose (molding aid, cellogen, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 6 parts by weight (120 g), crystalline cellulose (Theolas) (Registered trademark) RC-591, manufactured by Asahi Kase
  • silica sol (Snowtex C-30, average particle size: 12 nm, pH: 8.7, manufactured by Nissan Chemical Industries, Ltd.) was added and mixed for 5 minutes.
  • the obtained kneaded product was formed into a columnar shape having a diameter of 0.6 mm, and then rolled and sized with a malmerizer (QJ-400, manufactured by Dalton) at a rotation speed of 900 rpm to form a columnar molded body into a spherical shape. .. After drying at 100 ° C. for 12 hours or more and firing at 650 ° C. for 3 hours, the zeolite compact (clay: 50 parts by weight, silica sol: 25 parts by weight, water-soluble sodium salt: 1.5 parts by weight with respect to 100 parts by weight of zeolite).
  • Si / Al 2 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite molded product was 31 °, the loose bulk density was 0.59 kg / L, and the sphericity was 1.3.
  • the wear resistance strength after the wear resistance test was 95.5%.
  • Example 2 The same operation as in Example 1 was carried out to obtain a kneaded product. As a result of measuring the loss on ignition of the obtained kneaded product under the conditions of 650 ° C. for 1 hour, it was 103 parts by weight with respect to 100 parts by weight of zeolite.
  • the obtained kneaded product was formed into a columnar shape having a diameter of 0.6 mm, and then rolled and sized with a malmerizer (QJ-400, manufactured by Dalton) at a rotation speed of 600 rpm to form a columnar molded body into a spherical shape. .. Then, it is dried at 100 ° C. for 12 hours or more and fired at 650 ° C.
  • a malmerizer QJ-400, manufactured by Dalton
  • zeolite compact (clay: 50 parts by weight with respect to 100 parts by weight of zeolite, silica sol: 25 parts by weight, water-soluble sodium salt: 1. 5 parts by weight, Si / Al 2 : 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite molded product was 36 °, the loose bulk density was 0.56 kg / L, and the sphericity was 1.6.
  • the wear resistance strength after the wear resistance test was 92.9%.
  • Example 3 The same operation as in Example 1 was carried out to obtain a kneaded product. As a result of measuring the loss on ignition of the obtained kneaded product under the conditions of 650 ° C. for 1 hour, it was 103 parts by weight with respect to 100 parts by weight of zeolite.
  • the obtained kneaded product was formed into a columnar shape having a diameter of 0.6 mm, and then rolled and sized with a malmerizer (QJ-400, manufactured by Dalton) at a rotation speed of 300 rpm to form a columnar molded body into a spherical shape. .. Then, it is dried at 100 ° C. for 12 hours or more and fired at 650 ° C.
  • a malmerizer QJ-400, manufactured by Dalton
  • zeolite compact (clay: 50 parts by weight with respect to 100 parts by weight of zeolite, silica sol: 25 parts by weight, water-soluble sodium salt: 1. 5 parts by weight, Si / Al 2 : 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite molded product was 38 °, the loose bulk density was 0.52 kg / L, and the sphericity was 2.6.
  • the wear resistance strength after the wear resistance test was 90.8%.
  • Example 4 A mixture was obtained by performing the same operation as in Example 1 except that the kneader was a Henschel mixer. As a result of measuring the loss on ignition of the obtained mixture under the conditions of 650 ° C. for 1 hour, it was 101 parts by weight with respect to 100 parts by weight of zeolite. The obtained mixture was formed into a columnar shape having a diameter of 0.6 mm, and then rolling and sizing was performed with a malmerizer (QJ-400, manufactured by Dalton) at a rotation speed of 900 rpm to form a cylindrical molded body into a spherical shape. Then, it is dried at 100 ° C. for 12 hours or more and fired at 650 ° C.
  • a malmerizer QJ-400, manufactured by Dalton
  • zeolite compact (clay: 50 parts by weight with respect to 100 parts by weight of zeolite, silica sol: 25 parts by weight, water-soluble sodium salt: 1. 5 parts by weight, Si / Al 2 : 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite molded product was 31 °, the loose bulk density was 0.59, and the sphericity was 1.3.
  • the wear resistance strength after the wear resistance test was 92.3%.
  • Example 5 10 parts by weight (653 g) of silica sol, 4 parts by weight (80 g) of sodium carboxymethyl cellulose, 4 parts by weight (80 g) of crystalline cellulose (Seoras (registered trademark) RC-591, manufactured by Asahi Kasei Chemicals), 1350 g of water to be added.
  • the same operation as in Example 1 was carried out to obtain a kneaded product.
  • As a result of measuring the loss on ignition of the obtained kneaded product under the conditions of 650 ° C. for 1 hour it was 95 parts by weight with respect to 100 parts by weight of zeolite.
  • the obtained kneaded product was formed into a columnar shape having a diameter of 0.6 mm, and then rolled and sized with a malmerizer (QJ-400, manufactured by Dalton) at a rotation speed of 900 rpm to form a columnar molded body into a spherical shape. .. Then, it is dried at 100 ° C. for 12 hours or more and fired at 650 ° C. for 3 hours to carry out a zeolite compact (clay: 50 parts by weight with respect to 100 parts by weight of zeolite, silica sol: 10 parts by weight, water-soluble sodium salt: 1.
  • Si / Al 2 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite compact was 28 °, the loose bulk density was 0.65, and the sphericity was 1.4.
  • the wear resistance strength after the wear resistance test was 94.0%.
  • Example 6 The same operation as in Example 1 was carried out to obtain a kneaded product. As a result of measuring the loss on ignition of the obtained kneaded product under the conditions of 650 ° C. for 1 hour, it was 103 parts by weight with respect to 100 parts by weight of zeolite. After molding the obtained kneaded product into a cylinder with a diameter of 0.6 mm, it was pre-dried with a turbo commutator to adjust the water content to 49%, and the number of rotations was adjusted with a malmerizer (QJ-400, manufactured by Dalton). Rolling and sizing was performed at 300 rpm to form a cylindrical molded body into a spherical shape. Then, it is dried at 100 ° C.
  • a malmerizer QJ-400, manufactured by Dalton
  • zeolite compact (clay: 50 parts by weight with respect to 100 parts by weight of zeolite, silica sol: 25 parts by weight, water-soluble sodium salt: 1. 5 parts by weight, Si / Al 2 : 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite molded product was 28 °, the loose bulk density was 0.58 kg / L, and the sphericity was 1.5.
  • the wear resistance strength after the wear resistance test was 94.2%.
  • Comparative Example 1 The same operation as in Example 1 was carried out to obtain a kneaded product. As a result of measuring the loss on ignition of the obtained kneaded product under the conditions of 650 ° C. for 1 hour, it was 103 parts by weight with respect to 100 parts by weight of zeolite.
  • the obtained kneaded product was formed into a columnar shape having a diameter of 0.6 mm, and then rolled and sized with a malmerizer (QJ-400, manufactured by Dalton) at a rotation speed of 100 rpm to form a columnar molded body into a spherical shape. .. Then, it is dried at 100 ° C. for 12 hours or more and fired at 650 ° C.
  • zeolite compact (clay: 50 parts by weight with respect to 100 parts by weight of zeolite, silica sol: 25 parts by weight, water-soluble sodium salt: 1. 5 parts by weight, Si / Al 2 : 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite molded product was 42 °, the loose bulk density was 0.47 kg / L, and the sphericity was 3.1.
  • the wear resistance strength after the wear resistance test was 86.3%.
  • Comparative Example 2 Except for adding 4 parts by weight (80 g) of sodium carboxymethyl cellulose, 4 parts by weight (80 g) of crystalline cellulose (Seoras (registered trademark) RC-591, manufactured by Asahi Kasei Chemicals), and 1740 g of water to be added without adding silica sol. Performed the same operation as in Example 1 to obtain a kneaded product. As a result of measuring the loss on ignition of the obtained kneaded product under the conditions of 650 ° C. for 1 hour, it was 95 parts by weight with respect to 100 parts by weight of zeolite.
  • the obtained kneaded product was formed into a columnar shape having a diameter of 0.6 mm, and then rolled and sized with a malmerizer (QJ-400, manufactured by Dalton) at a rotation speed of 900 rpm to form a columnar molded body into a spherical shape. .. Then, it is dried at 100 ° C. for 12 hours or more and fired at 650 ° C. for 3 hours to carry out a zeolite compact (clay: 50 parts by weight with respect to 100 parts by weight of zeolite, silica sol: 0 parts by weight, water-soluble sodium salt: 1.
  • Si / Al 2 100 of zeolite (385HUA), Si / Al 2 : 1500 of zeolite (891HOA), water adsorption amount of zeolite (385HUA): 2 g / 100 g, water adsorption amount of zeolite (891HOA): 4 g / 100 g) was obtained.
  • the angle of repose of the zeolite molded product was 31 °, the loose bulk density was 0.55 kg / L, and the sphericity was 1.3.
  • the wear resistance strength after the wear resistance test was 84.9%.
  • the highly wear-resistant zeolite molded product of the present invention has excellent wear resistance, it can be used in applications such as adsorption separators and catalysts without causing equipment troubles or pressure loss, and has excellent fluidity. , Can be easily filled and collected when used in a fixed bed or fluidized bed adsorption tower.

Abstract

従来のゼオライト成形体よりも耐摩耗性および流動性に優れた高耐摩耗性、高流動性である高耐摩耗性ゼオライト成形体及びその製造方法を提供する。 ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下含み、かつ、耐摩耗強度が90%で、安息角が40°以下で、ゼオライト成形体の表面の緩み嵩密度が0.5kg/L以上で、ゼオライト成形体の真球度が1以上3以下である高耐摩耗性ゼオライト成形体であり、当該ゼオライトが、Si/Al2が10以上100000以下、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)以下であるゼオライトを一種以上含むことを特徴とする高耐摩耗性ゼオライト成形体成形体、及びその高耐摩耗性ゼオライト成形体の製造方法。

Description

高耐摩耗性ゼオライト成形体及びその製造方法
 本発明は、高耐摩耗性ゼオライト成形体及びその製造方法に関するものであり、より詳細には、高耐摩耗性、高流動性に優れた高耐摩耗性ゼオライト成形体及びその製造方法に関する。本発明の高耐摩耗性ゼオライト成形体は、例えば、吸着分離剤、触媒などの用途に有用である。
 近年、浮立粒子状物質や光化学オキシダントの原因物質の一つとされているVOCの排出規制が始まり、VOC排出の対策技術に注目が集まっている。VOC吸着剤としてはゼオライトが注目されている。熱に強い二酸化ケイ素からなる骨格であるため、高温でのVOCの吸脱着が容易かつ安全性が高く、高比表面積である。一方で、工場などでVOCを吸着する際、固定床または流動床の吸着塔が利用されるが、それらへの充填や吸脱着の際に吸着剤が粉化してしまい、設備トラブルや圧力損失の原因となるため、吸着剤には高い耐摩耗性が要求されているが、実用可能な高い耐摩耗性を有するゼオライト成形体の発明には至っていない。また、固定床、流動床の吸着塔への材の充填や回収の際、流動床の場合には吸着、再生の際にも、剤の流動性が重要になる。剤の流動性が低い場合、充填や回収に時間がかかってしまうが、実用可能な高い流動性を有するゼオライト成形体の発明には至っていない。
 ゼオライト成形体の強度を強くする手段として、いくつかの方法が知られている。例えば、特許文献1には、ゼオライトとしてA型又はX型ゼオライト、バインダーとしてカオリン粘土あるいは加水ハロイサイト、増粘剤または保水剤としてCMC(カルボキシメチルセルロース)を混合、混練、成形する方法が開示されている。
 特許文献2には、ゼオライトとして低シリカX型ゼオライト、バインダーとしてカオリン系粘土、セピオライト系粘土、アタパルジャイト系粘土、ベントナイト系粘土を複数種類使用する方法が開示されている。
 特許文献3には、ゼオライトとして3A型ゼオライト、バインダーとしてカオリン粘土、無機系分散剤として縮合リン酸塩を混合、混練、成形する方法が開示されている。
 いずれの特許文献においても、実用性のある耐摩耗性、流動性を有するゼオライト成形体の発明には至っておらず、より高い耐摩耗性、流動性を有するゼオライト成形体の発明が望まれている。
日本国特開平10-87322号公報 日本国特開平11-314913号公報 日本国特開2001-226167号公報
 本発明は、従来のゼオライト成形体よりも高耐摩耗性、高流動性に優れた高耐摩耗性ゼオライト成形体及びその製造方法を提供するものである。
 本発明者らは、上記課題を解決するために鋭意検討した結果、ゼオライト成形体を製造する際にバインダーとして粘土およびシリカゾルの二種類を使用する製造方法を見出し、かつその成形体の耐摩耗強度を向上させるためにゼオライト成形体の緩み嵩密度とゼオライト成形体の真球度を制御することが重要であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の[1]乃至[4]に存する。
 [1] ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下含み、かつ、耐摩耗強度が90%以上で、安息角が40°以下で、ゼオライト成形体の表面の緩み嵩密度が0.5kg/L以上で、ゼオライト成形体の真球度が1以上3以下である高耐摩耗性ゼオライト成形体であり、当該ゼオライトが、Si/Alが10以上100000以下、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)以下であるゼオライトを一種以上含むことを特徴とする高耐摩耗性ゼオライト成形体。
 [2] 当該ゼオライトが、ベータ型ゼオライト、Y型ゼオライト、L型ゼオライト、フェリエライト型ゼオライト、モルデナイト型ゼオライト、ZSM-5型ゼオライトの少なくとも一種を含むことを特徴とする上記[1]に記載の高耐摩耗性ゼオライト成形体。
 [3] ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下、成形助剤を4重量部以上20重量部以下、水を120重量部以上180重量部以下、を混合した後に混練して混練物を得て、この混練物を回転数300rpm以上で成形した後に乾燥して得られたゼオライト成形体を400℃以上700℃以下で焼成するものであり、当該ゼオライトが、Si/Alが10以上100000以下で、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)以下であるゼオライトを一種以上含むことを特徴とする[1]又は[2]に記載の高耐摩耗性ゼオライト成形体の製造方法。
 [4] 当該ゼオライトが、ベータ型ゼオライト、Y型ゼオライト、L型ゼオライト、フェリエライト型ゼオライト、モルデナイト型ゼオライト、ZSM-5型ゼオライトの少なくとも一種を含むことを特徴とする[3]に記載の高耐摩耗性ゼオライト成形体の製造方法。
 本発明の高耐摩耗性ゼオライト成形体は、耐摩耗性、流動性が高いため、特に、加熱再生プロセスを含む吸着分離用途、触媒反応用途で有用に使用することができる。
 以下、本発明について詳細に説明する。
 本発明の高耐摩耗性ゼオライト成形体は、ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下含むものである。
 高耐摩耗性ゼオライト成形体に含まれる粘土の量は、ゼオライト100重量部(無水換算)に対して35重量部以上70重量部以下である。35重量部未満の場合は耐摩耗性が低くなり、70重量部より多くした場合でも、耐摩耗性の向上は認められない。耐摩耗性がより高くなるため、40重量部以上60重量部以下が好ましく、45重量部以上55重量部以下がさらに好ましい。粘土の粒径は特に制限されないが、好ましくは平均粒径として0.5μm以上30μm以下である。粘土としては、例えば、セピオライト粘土、アタパルジャイト粘土、パリゴルスカイト粘土、ベントナイト粘土などがあげられる。
 高耐摩耗性ゼオライト成形体に含まれるシリカゾルの量はゼオライト100重量部(無水換算)に対して5重量部以上40重量部以下である。5重量部未満の場合、耐摩耗性には効果がなく、シリカゾルの添加量を増加させるにつれて、耐摩耗性も向上していくが、40重量部を超える場合、押し出し成形性が著しく悪化する。耐摩耗性と押し出し成形性をいずれも高い水準で保持するためには10重量部以上30重量部以下が好ましく、15重量部以上25重量部以下がさらに好ましい。シリカゾルの粒径は特に制限されないが、好ましくは平均粒径として5nm以上30nm以下である。
 高耐摩耗性ゼオライト成形体に含まれる水溶性ナトリウム塩の量は、ゼオライト100重量部(無水換算)に対して0.5重量部以上10重量部以下である。0.5重量部未満ではその効果が十分でなく、10重量部より多くしてもその効果は変化しない。水溶性ナトリウム塩に由来するナトリウムの量を増やさないため、0.5重量部以上8重量部以下が好ましく、0.5重量部以上6重量部以下がさらに好ましい。水溶性ナトリウム塩としては、例えば、無機酸ナトリウム、有機酸ナトリウムなどが例示される。
 無機酸ナトリウムとしては水溶性のナトリウム塩であればよく、例えば、リン酸ナトリウム、ケイ酸ナトリウム、アルミン酸ナトリウムなどが例示される。これらのうち、リン酸ナトリウムが好ましい。リン酸ナトリウムとしては、例えば、第一リン酸ナトリウム、第二リン酸ナトリウム、第三リン酸ナトリウム、ピロリン酸ナトリウム、酸性ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘキサメタリン酸ナトリウムなどが例示される。
 有機酸ナトリウムとしては水溶性のナトリウム塩であればよく、例えば、一般有機カルボン酸、アミノカーボネート、エーテルカルボン酸塩、ビニル型高分子ナトリウム塩などが例示される。一般有機カルボン酸としては、例えば、クエン酸ナトリウム、グルコン酸ナトリウム、シュウ酸ナトリウム、酒石酸ナトリウムなどが例示され、アミノカーボネートとしては、例えば、エチレンジアミン四酢酸ナトリウム塩、ジエチレントリアミノ五酢酸ナトリウムなどが例示され、エーテルカルボン酸塩としては、例えば、カルボキシメチルタルトロン酸ナトリウム、カルボキシメチルオキシコハク酸ナトリウムなどが例示され、ビニル型高分子ナトリウム塩としては、例えば、ポリアクリル酸ナトリウム、アクリル酸/マレイン酸共重合体のナトリウム塩などが例示される。
 本発明の高耐摩耗性ゼオライト成形体は、耐摩耗強度が90%以上である。耐摩耗強度が90%未満の場合は、粉化しやすく圧力損失などを引き起こしやすくなるおそれがある。ここに、耐摩耗強度の測定は、JIS-K-1474の活性炭試験法に準じて行うものである(実施例の<耐摩耗性試験>を参照)。耐摩耗強度は、92%以上が好ましく、95%以上がさらに好ましく、96.5%以上が特に好ましい。
 本発明の高耐摩耗性ゼオライト成形体は、安息角が40°以下である。安息角が40°を超える場合は、流動性が悪く、剤の充填回収に時間がかかってしまうおそれがある。ここに、安息角の測定は実施例の<安息角の測定>に準じて行うものである。安息角は38°以下が好ましく、36°以下がさらに好ましく、32°以下が特に好ましい。
 本発明の高耐摩耗性ゼオライト成形体は、ゼオライト成形体の緩み嵩密度が0.5kg/L以上である。緩み嵩密度が0.5kg/L未満である場合は耐摩耗強度が著しく低下し、粉化に伴う圧力損失などを引き起こしやすくなるおそれがある。ここに、緩み嵩密度の測定は実施例の<緩み嵩密度の測定>に準じて行うものである。
 本発明の高耐摩耗性ゼオライト成形体は、真球度が1以上3以下である。真球度が3を超える場合は耐摩耗強度および流動性が著しく低下し、粉化に伴う圧力損失などを引き起こしやすくなるおそれがある。ここに、真球度の測定は実施例の<真球度の測定>に準じて行うものである。
 高耐摩耗性ゼオライト成形体に含まれるゼオライトは、Si/Alが10以上100000以下で、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)以下であるゼオライトであり、これを一種以上含むものである。Si/Alが10未満の場合、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)を超える場合には、摩耗強度が低下する。Si/Alは、50以上10000以下が好ましく、80以上2000以下がさらに好ましい。ゼオライトの種類としては、例えば、ベータ型ゼオライト、Y型ゼオライト、L型ゼオライト、フェリエライト型ゼオライト、モルデナイト型ゼオライト、ZSM-5型ゼオライトなどが例示されるが、Y型ゼオライト、ZSM-5型ゼオライトが好ましい。
 本発明の高耐摩耗性ゼオライト成形体の製造方法(以下、「本発明の製造方法」ともいう。)は、ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下、成形助剤を4重量部以上20重量部以下、水を120重量部以上180重量部以下、を混合した後に混練して混練物を得て、この混練物を回転数300rpm以上で成形した後に乾燥して得られたゼオライト成形体を400℃以上700℃以下で焼成することを特徴とするものである。
 本発明の製造方法で使用される混練物に含まれるのは粘土である。粘土としては、例えば、セピオライト粘土、アタパルジャイト粘土、パリゴルスカイト粘土、ベントナイト粘土などが例示される。粘土の量としては、ゼオライト100重量部(無水換算)に対して35重量部以上70重量部以下である。35重量部未満の場合は耐摩耗性が低くなり、70重量部より多くした場合でも、耐摩耗性の向上は認められない。耐摩耗性がより高くなるため、40重量部以上60重量部以下が好ましく、45重量部以上55重量部以下がさらに好ましい。粘土の粒径は特に制限されないが、好ましくは平均粒径として0.5μm以上30μm以下である。
 本発明の製造方法で使用される混練物に含まれるのはシリカゾルである。シリカゾルの量としてはゼオライト100重量部(無水換算)に対して5重量部以上40重量部以下である。5重量部未満の場合、耐摩耗性には効果がなく、シリカゾルの添加量を増加させるにつれて、耐摩耗性も向上していくが、40重量部を超える場合、押し出し成形性が著しく悪化する。耐摩耗性と押し出し成形性をいずれも高い水準で保持するためには10重量部以上30重量部以下が好ましく、15重量部以上25重量部以下がさらに好ましい。シリカゾルの粒径は特に制限されないが、好ましくは平均粒径として5nm以上30nm以下である。また、pHは特に制限はされないが、好ましくは7.0以上10.0以下である。
 本発明の製造方法で使用される混練物に含まれるのは水溶性ナトリウム塩である。水溶性ナトリウム塩としては、例えば、無機酸ナトリウム、有機酸ナトリウムなどが例示される。水溶性ナトリウム塩としては、無機酸ナトリウム又は有機酸ナトリウムの少なくとも1種を含むことが好ましい。理由は定かではないが、水溶性ナトリウム塩を使用することで耐摩耗性は著しく高くなる。水溶性ナトリウム塩の量としては、ゼオライト100重量部(無水換算)に対して、0.5重量部以上10重量部以下である。0.5重量部未満ではその効果が十分でなく、10重量部より多くしてもその効果は変化しない。水溶性ナトリウム塩に由来するナトリウムの量を増やさないため、0.5重量部以上8重量部以下が好ましく、0.5重量部以上6重量部以下がさらに好ましい。
 無機酸ナトリウムとしては水溶性のナトリウム塩であればよく、例えば、リン酸ナトリウム、ケイ酸ナトリウム、アルミン酸ナトリウムなどが例示される。これらのうち、取り扱いが容易のため、リン酸ナトリウムが好ましく使用できる。リン酸ナトリウムとしては、例えば、第一リン酸ナトリウム、第二リン酸ナトリウム、第三リン酸ナトリウム、ピロリン酸ナトリウム、酸性ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘキサメタリン酸ナトリウムなどが使用できる。
 有機酸ナトリウムとしては水溶性のナトリウム塩であればよく、例えば、一般有機カルボン酸、アミノカーボネート、エーテルカルボン酸塩、ビニル型高分子ナトリウム塩などが例示される。一般有機カルボン酸としては、例えば、クエン酸ナトリウム、グルコン酸ナトリウム、シュウ酸ナトリウム、酒石酸ナトリウムなどが使用でき、アミノカーボネートとしては、例えば、エチレンジアミン四酢酸ナトリウム塩、ジエチレントリアミノ五酢酸ナトリウムなどが使用でき、エーテルカルボン酸塩としては、例えば、カルボキシメチルタルトロン酸ナトリウム、カルボキシメチルオキシコハク酸ナトリウムなどが使用でき、ビニル型高分子ナトリウム塩としては、例えば、ポリアクリル酸ナトリウム、アクリル酸/マレイン酸共重合体のナトリウム塩などが使用できる。
 本発明の製造方法で使用される混練物に含まれるのは成形助剤である。成形助剤としては、成形性を改善するものであり、例えば、セルロース、アルコール、リグニン、スターチ、グァーガムなどが例示される。これらのうち、取り扱いが容易であるため、セルロース、アルコールが好ましい。セルロースとしては、例えば、結晶性セルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム(CMC)などが例示される。アルコールとしては、例えば、ポリビニルアルコール、エチレングリコールなどが例示される。成形助剤の量としては、ゼオライト100重量部(無水換算)に対して、4重量部以上20重量部以下であり、好ましくは8重量部以上16重量部以下である。4重量部未満の場合は耐摩耗性が低下し、20重量部を超える場合は成形性が著しく低下する。
 本発明の製造方法で使用される混練物に含まれる水の量としては、ゼオライト100重量部(無水換算)に対して、120重量部以上180重量部以下であり、140重量部以上160重量部以下が好ましい。120重量部未満の場合も、180重量部より多い場合も成形が困難になる場合がある。
 本発明の製造方法で使用される混練物に含まれるゼオライトは、Si/Alが10以上100000以下で、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)以下であるゼオライトを一種以上含む必要がある。Si/Alが10未満の場合、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)を超える場合には、大気中の水分を吸着しやすくなり摩耗強度が低下する。Si/Alは、50以上10000以下が好ましく、80以上2000以下がさらに好ましい。ゼオライトの種類としては、例えば、ベータ型ゼオライト、Y型ゼオライト、L型ゼオライト、フェリエライト型ゼオライト、モルデナイト型ゼオライト、ZSM-5型ゼオライトなどが例示されるが、Y型ゼオライト、ZSM-5型ゼオライトが好ましい。
 本発明の製造方法で使用される混練物は、ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下、成形助剤を4重量部以上20重量部以下、水を120重量部以上180重量部以下、を混合した後に混練することで得られるものである。混合して混練する方法としては特に制限はなく、例えば、ロール式混練機のミックスマーラー、羽根撹拌式であるヘンシェルミキサー、バッチ式又は連続式のニーダーなどが使用できる。
 本発明の製造方法は、上に記載した通りに行って得られた混練物を回転数300rpm以上で成形するものである。より詳細には、得られた混練物を円柱状に成形した後、成形機で回転数300rpm以上で成形するものである。回転数が300rpm未満の場合は、真球度が高くなり、耐摩耗強度が低くなる傾向である。回転数は、450rpm以上が好ましく、600rpm以上がさらに好ましい。
 得られた混練物を円柱状に成形する方法としては、例えば、転動造粒、撹拌造粒、押出し成形、噴霧造粒等があげられ、押し出し成形が好ましい。
 回転数300rpm以上で成形する方法で使用される成形機としては、例えば、転動造粒、転動整粒、撹拌造粒、噴霧造粒等の成形機があげられ、転動整粒の成形機が好ましい。
 本発明の製造方法で得られる成形体の形状は特に制限ないが、球状(略球状を含む、以下同じ)、円柱状、楕円状、俵型、三つ葉型、リング状などが好ましく、球状、円柱状がさらに好ましい。成形体の大きさは特に制限ないが、平均粒子径として0.1μm以上3mm以下が好ましい。成形時の収率の向上の方法としては予備乾燥等が挙げられる。例えば、風乾、振動乾燥、転動造粒、表面乾燥、これらの方法を2種以上組み合わせた方法等により予備乾燥することができる。予備乾燥後の水分含有量は予備乾燥後に成形が可能な水分含有量であればよく、40%以上60%以下が好ましい。
 成形されたゼオライト成形体は乾燥される。乾燥方法は特に制限なく、例えば、箱型乾燥機、連続式乾燥機などが使用できる。乾燥温度は50℃以上200℃以下で行うことができる。乾燥雰囲気は大気圧下で空気又は窒素雰囲気で行うことができる。乾燥されたゼオライト成形体は、所望の大きさに分級される。分級は乾燥の前に行うこともできる。
 乾燥されたゼオライト成形体は焼成される。焼成方法は特に制限なく、例えば、箱型マッフル炉、ロータリーキルン、シャフトキルンなどの装置で行うことができる。焼成温度は繊維状粘土が焼結されて強度が発現できる温度であればよく、400℃以上700℃以下が好ましい。焼成雰囲気は大気圧下で空気又は窒素雰囲気で行うことができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
 <水分吸着量の測定>
 水分吸着量は、スプリングバランス型の吸着装置を使用して、温度25℃にて測定した。
 <耐摩耗性試験>
 耐摩耗性試験における耐摩耗強度の測定は、JIS-K-1474に準じて行った。すなわち、試料を200mLのメスシリンダーの100mLの標線まで軽くたたいて充填した。メスシリンダーではかりとった試料を直径12.7mmおよび9.5mmの鋼球それぞれ15個とともに耐摩耗性試験用皿に入れた。ふるい振とう機に取り付け、30分間振とうした。最も試料が残ったふるいの半分の目の大きさのふるいおよび受け皿を用い、鋼球を除いた試料を全部入れ、ふるい振とう機に取り付けた。3分間振とうした後、ふるい上および受け皿に残った試料の質量をそれぞれ0.1gの桁まではかりとった。耐摩耗強度は次の式1によって算出した。
  H=W/S×100  …(式1)
 ここで、H:耐摩耗強度(質量分率%)、W:ふるい上に残った試料の質量(g)、S:ふるい上及び受け皿に残った試料の質量の合計(g)とした。
 <安息角の測定>
 安息角の測定は、パウダーテスター(ホソカワミクロン製)を使用して測定した。
 <緩み嵩密度の測定>
 0.1%の精度で秤量した約100gの試料を圧密せずに乾いた250mLメスシリンダー(最小目盛単位:2mL)に静かに入れた。必要ならば粉体層の上面を圧密せずに注意深くならし、緩み嵩体積を最小目盛単位まで読み取り、読み取った緩み嵩体積から緩み嵩密度(kg/L)を計算した。
 <真球度の測定>
 真球度の測定はデジタルマイクロスコープ(VHX-5000、キーエンス製)を用いてゼオライト成形体を撮影したのち、ゼオライト成形体の長径と短径を測定する。測定した長径と短径から真球度(長径/短径)を計算した。この特性値は50個のゼオライト成形体の測定値の平均値とした。
 実施例1
 Y型ゼオライト粉末(HSZ(登録商標)-385HUA、東ソー製(Si/Al:100、水分吸着量:2g/100g))を80重量部(1627g、水分含有量:2%)、MFI型ゼオライト粉末(HSZ(登録商標)-891HOA、東ソー製(Si/Al:1500、水分吸着量:4g/100g))を20重量部(413g、水分含有量:3%)、アタパルジャイト型粘土(ミニゲルMB、アクティブミネラルズ製)を50重量部(1253g、水分含有量:22%)、カルボキシメチルセルロースナトリウム(成形助剤、セロゲン、第一工業製薬製)を6重量部(120g)、結晶性セルロース(セオラス(登録商標)RC-591、旭化成ケミカルズ製)を6重量部(120g)量り取り、ミックスマーラー(新東工業製)で5分間混合した。シリカゾル(スノーテックスC-30、平均粒径:12nm、pH:8.7、日産化学製)1639gを添加し、5分間混合した。水1000gにリン酸二水素ナトリウム(NaHPO、燐化学工業製)を1.5重量部(30g)溶解した水を添加し、5分間混合した。その後、更に960gの水を添加して、80分間撹拌混練し、混練物を得た。得られた混練物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して103重量部であった。得られた混練物を直径0.6mmの円柱状に成形した後、マルメライザー(QJ-400、ダルトン製)で回転数900rpmで転動整粒を行い、円柱状の成形体を球状に成形した。100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:25重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は31°、緩み嵩密度は0.59kg/L、真球度は1.3であった。
 耐摩耗性試験を行った後の耐摩耗強度は95.5%であった。
 実施例2
 実施例1と同様の操作を行い、混練物を得た。得られた混練物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して103重量部であった。得られた混練物を直径0.6mmの円柱状に成形した後、マルメライザー(QJ-400、ダルトン製)で回転数600rpmで転動整粒を行い、円柱状の成形体を球状に成形した。その後、100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:25重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は36°、緩み嵩密度は0.56kg/L、真球度は1.6であった。
 耐摩耗性試験を行った後の耐摩耗強度は92.9%であった。
 実施例3
 実施例1と同様の操作を行い、混練物を得た。得られた混練物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して103重量部であった。得られた混練物を直径0.6mmの円柱状に成形した後、マルメライザー(QJ-400、ダルトン製)で回転数300rpmで転動整粒を行い、円柱状の成形体を球状に成形した。その後、100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:25重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は38°、緩み嵩密度は0.52kg/L、真球度は2.6であった。
 耐摩耗性試験を行った後の耐摩耗強度は90.8%であった。
 実施例4
 混練器をヘンシェルミキサーにした以外は、実施例1と同様の操作を行い、混合物を得た。得られた混合物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して101重量部であった。得られた混合物を直径0.6mmの円柱状に成形した後、マルメライザー(QJ-400、ダルトン製)で回転数900rpmで転動整粒を行い、円柱状の成形体を球状に成形した。その後、100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:25重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は31°、緩み嵩密度は0.59、真球度は1.3であった。
 耐摩耗性試験を行った後の耐摩耗強度は92.3%であった。
 実施例5
 シリカゾルを10重量部(653g)、カルボキシメチルセルロースナトリウムを4重量部(80g)、結晶性セルロース(セオラス(登録商標)RC-591、旭化成ケミカルズ製)を4重量部(80g)、添加する水を1350gとした以外は、実施例1と同様の操作を行い、混練物を得た。得られた混練物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して95重量部であった。得られた混練物を直径0.6mmの円柱状に成形した後、マルメライザー(QJ-400、ダルトン製)で回転数900rpmで転動整粒を行い、円柱状の成形体を球状に成形した。その後、100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:10重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は28°、緩み嵩密度は0.65、真球度は1.4であった。
 耐摩耗性試験を行った後の耐摩耗強度は94.0%であった。
 実施例6
 実施例1と同様の操作を行い、混練物を得た。得られた混練物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して103重量部であった。得られた混練物を直径0.6mmの円柱状に成形した後、ターボコミニューターにて予備乾燥を行い、水分含有量49%に調整し、マルメライザー(QJ-400、ダルトン製)で回転数300rpmで転動整粒を行い、円柱状の成形体を球状に成形した。その後、100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:25重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は28°、緩み嵩密度は0.58kg/L、真球度は1.5であった。
 耐摩耗性試験を行った後の耐摩耗強度は94.2%であった。
 比較例1
 実施例1と同様の操作を行い、混練物を得た。得られた混練物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して103重量部であった。得られた混練物を直径0.6mmの円柱状に成形した後、マルメライザー(QJ-400、ダルトン製)で回転数100rpmで転動整粒を行い、円柱状の成形体を球状に成形した。その後、100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:25重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は42°、緩み嵩密度は0.47kg/L、真球度は3.1であった。
 耐摩耗性試験を行った後の耐摩耗強度は86.3%であった。
 比較例2
 シリカゾルを添加しないで、カルボキシメチルセルロースナトリウムを4重量部(80g)、結晶性セルロース(セオラス(登録商標)RC-591、旭化成ケミカルズ製)を4重量部(80g)、添加する水を1740gとした以外は、実施例1と同様の操作を行い、混練物を得た。得られた混練物を650℃、1時間の条件で強熱減量を測定した結果、ゼオライト100重量部に対して95重量部であった。得られた混練物を直径0.6mmの円柱状に成形した後、マルメライザー(QJ-400、ダルトン製)で回転数900rpmで転動整粒を行い、円柱状の成形体を球状に成形した。その後、100℃で12時間以上乾燥して、650℃、3時間の焼成を行い、ゼオライト成形体(ゼオライト100重量部に対する粘土:50重量部,シリカゾル:0重量部,水溶性ナトリウム塩:1.5重量部、ゼオライト(385HUA)のSi/Al:100、ゼオライト(891HOA)のSi/Al:1500、ゼオライト(385HUA)の水分吸着量:2g/100g、ゼオライト(891HOA)の水分吸着量:4g/100g)を得た。ゼオライト成形体の安息角は31°、緩み嵩密度は0.55kg/L、真球度は1.3であった。
 耐摩耗性試験を行った後の耐摩耗強度は84.9%であった。
 なお、2019年11月28日に出願された日本特許出願2019-214978号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 本発明の高耐摩耗性ゼオライト成形体は、耐摩耗性に優れるため、吸着分離剤、触媒などの用途において、設備トラブルや圧力損失などを引き起こすことなく使用することができ、流動性に優れるため、固定床や流動床の吸着塔での利用の際に充填、回収等が容易に行うことができる。

Claims (4)

  1. ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下含み、かつ、耐摩耗強度が90%以上で、安息角が40°以下で、ゼオライト成形体の表面の緩み嵩密度が0.5kg/L以上で、ゼオライト成形体の真球度が1以上3以下である高耐摩耗性ゼオライト成形体であり、当該ゼオライトが、Si/Alが10以上100000以下、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)以下であるゼオライトを一種以上含むことを特徴とする高耐摩耗性ゼオライト成形体。
  2. 当該ゼオライトが、ベータ型ゼオライト、Y型ゼオライト、L型ゼオライト、フェリエライト型ゼオライト、モルデナイト型ゼオライト、ZSM-5型ゼオライトの少なくとも一種を含むことを特徴とする請求項1に記載の高耐摩耗性ゼオライト成形体。
  3. ゼオライト100重量部に対して、粘土を35重量部以上70重量部以下、シリカゾルを5重量部以上40重量部以下、水溶性ナトリウム塩を0.5重量部以上10重量部以下、成形助剤を4重量部以上20重量部以下、水を120重量部以上180重量部以下、を混合した後に混練して混練物を得て、この混練物を回転数300rpm以上で成形した後に乾燥して得られたゼオライト成形体を400℃以上700℃以下で焼成するものであり、当該ゼオライトが、Si/Alが10以上100000以下で、25℃、相対圧0.5の条件で、水分吸着量が10(g/100g)以下であるゼオライトを一種以上含むことを特徴とする請求項1又は請求項2に記載の高耐摩耗性ゼオライト成形体の製造方法。
  4. 当該ゼオライトが、ベータ型ゼオライト、Y型ゼオライト、L型ゼオライト、フェリエライト型ゼオライト、モルデナイト型ゼオライト、ZSM-5型ゼオライトの少なくとも一種を含むことを特徴とする請求項3に記載の高耐摩耗性ゼオライト成形体の製造方法。
PCT/JP2020/044028 2019-11-28 2020-11-26 高耐摩耗性ゼオライト成形体及びその製造方法 WO2021107014A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20894902.4A EP4067307A1 (en) 2019-11-28 2020-11-26 Highly wear-resistant zeolite molded article, and method for manufacturing same
US17/780,518 US20220411276A1 (en) 2019-11-28 2020-11-26 Highly wear-resistant zeolite molded article, and method for manufacturing same
CN202080082561.4A CN114761357A (zh) 2019-11-28 2020-11-26 高耐磨性沸石成型体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-214978 2019-11-28
JP2019214978 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021107014A1 true WO2021107014A1 (ja) 2021-06-03

Family

ID=76128692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044028 WO2021107014A1 (ja) 2019-11-28 2020-11-26 高耐摩耗性ゼオライト成形体及びその製造方法

Country Status (5)

Country Link
US (1) US20220411276A1 (ja)
EP (1) EP4067307A1 (ja)
JP (1) JP2021091597A (ja)
CN (1) CN114761357A (ja)
WO (1) WO2021107014A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149818A (en) * 1981-03-10 1982-09-16 Mizusawa Ind Chem Ltd Granular zeolite with wear resistance and its manufacture
JPH1087322A (ja) 1996-09-13 1998-04-07 Tosoh Corp 高強度低摩耗性ゼオライト粒状物、その製造方法及びそれを用いた吸着分離方法
JPH11314913A (ja) 1998-05-07 1999-11-16 Tosoh Corp 高強度低摩耗性ゼオライト粒状物及びその製造方法
JP2001226167A (ja) 1999-12-07 2001-08-21 Tosoh Corp ゼオライトビーズ成形体、その製造方法及びこれを用いた吸着除去方法
JP2011201723A (ja) * 2010-03-25 2011-10-13 Ngk Insulators Ltd ゼオライト構造体の製造方法
JP2011201722A (ja) * 2010-03-25 2011-10-13 Ngk Insulators Ltd ゼオライト構造体及びその製造方法
JP2017077541A (ja) * 2015-10-21 2017-04-27 東ソー株式会社 二酸化炭素吸着剤
JP2019141845A (ja) * 2013-10-15 2019-08-29 ビーエーエスエフ コーポレーション 優れた耐摩耗性を有するメソポーラスfcc触媒
JP2019214978A (ja) 2018-06-13 2019-12-19 スズキ株式会社 車両

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332757C (zh) * 2004-07-29 2007-08-22 中国石油化工股份有限公司 一种裂化催化剂及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149818A (en) * 1981-03-10 1982-09-16 Mizusawa Ind Chem Ltd Granular zeolite with wear resistance and its manufacture
JPH1087322A (ja) 1996-09-13 1998-04-07 Tosoh Corp 高強度低摩耗性ゼオライト粒状物、その製造方法及びそれを用いた吸着分離方法
JPH11314913A (ja) 1998-05-07 1999-11-16 Tosoh Corp 高強度低摩耗性ゼオライト粒状物及びその製造方法
JP2001226167A (ja) 1999-12-07 2001-08-21 Tosoh Corp ゼオライトビーズ成形体、その製造方法及びこれを用いた吸着除去方法
JP2011201723A (ja) * 2010-03-25 2011-10-13 Ngk Insulators Ltd ゼオライト構造体の製造方法
JP2011201722A (ja) * 2010-03-25 2011-10-13 Ngk Insulators Ltd ゼオライト構造体及びその製造方法
JP2019141845A (ja) * 2013-10-15 2019-08-29 ビーエーエスエフ コーポレーション 優れた耐摩耗性を有するメソポーラスfcc触媒
JP2017077541A (ja) * 2015-10-21 2017-04-27 東ソー株式会社 二酸化炭素吸着剤
JP2019214978A (ja) 2018-06-13 2019-12-19 スズキ株式会社 車両

Also Published As

Publication number Publication date
CN114761357A (zh) 2022-07-15
US20220411276A1 (en) 2022-12-29
EP4067307A1 (en) 2022-10-05
JP2021091597A (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
US9067192B2 (en) Pollutant emission control sorbents and methods of manufacture and use
KR0146503B1 (ko) 다기능 입상 복합 분자체 조성물의 제조방법
US8906823B2 (en) Pollutant emission control sorbents and methods of manufacture and use
JP4244808B2 (ja) モレキュラーシーブ吸着剤ブレンドの製造方法
US20050272594A1 (en) Lithium exchanged zeolite X adsorbent blends
EA028588B1 (ru) Сферические агломераты на основе цеолитов, способ их получения и их применение в процессах адсорбции или в катализе
JP6062916B2 (ja) コンクリートにおいて燃料排ガス水銀を封鎖する組成物および方法
JP2009106942A (ja) 重合体マトリックスの中に取り込まれた多孔質機能的固体を含んでなる吸着材
JP2005515876A6 (ja) モレキュラーシーブ吸着剤ブレンドの製造方法
RU2745299C1 (ru) Высококачественные композитные адсорбенты с компонентом типа "ядро в оболочке" для систем vsa/vpsa/psa
JP6153204B2 (ja) 造粒物及びその製造方法
JP3799678B2 (ja) 高強度低摩耗性ゼオライト粒状物、その製造方法及びそれを用いた吸着分離方法
CN1434789A (zh) 高孔隙率颗粒状陶瓷材料
JPH0620544B2 (ja) ガス精製用吸着剤及び精製方法
WO2001034295A1 (en) Sorbent, method of making the sorbent, and method of using the sorbent in fixed bed applications
WO2021107014A1 (ja) 高耐摩耗性ゼオライト成形体及びその製造方法
JP2006522730A (ja) ガス流から二酸化炭素を吸着するための合成ゼオライト
JP7272114B2 (ja) 高耐摩耗性ゼオライト成形体及びその製造方法
JP6977546B2 (ja) 耐熱水性ゼオライト成形体の製造方法
JPH11314913A (ja) 高強度低摩耗性ゼオライト粒状物及びその製造方法
KR0124983B1 (ko) 입상 복합 분자체 조성물의 제조방법
JPH119989A (ja) セラミック吸着体およびその製造法
WO2017146137A1 (ja) 銀担持ゼオライト成形体
WO2020256006A1 (ja) 高強度ゼオライト成形体及びその製造方法
JPS6227322A (ja) ゼオライト成型体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020894902

Country of ref document: EP

Effective date: 20220628