WO2021104166A1 - 氧铝联产电解用的电极结构 - Google Patents

氧铝联产电解用的电极结构 Download PDF

Info

Publication number
WO2021104166A1
WO2021104166A1 PCT/CN2020/130415 CN2020130415W WO2021104166A1 WO 2021104166 A1 WO2021104166 A1 WO 2021104166A1 CN 2020130415 W CN2020130415 W CN 2020130415W WO 2021104166 A1 WO2021104166 A1 WO 2021104166A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
carbon
conductive base
aluminum
tib
Prior art date
Application number
PCT/CN2020/130415
Other languages
English (en)
French (fr)
Inventor
杨建红
Original Assignee
青岛睿曦绿业新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛睿曦绿业新材料科技有限公司 filed Critical 青岛睿曦绿业新材料科技有限公司
Publication of WO2021104166A1 publication Critical patent/WO2021104166A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the present invention belongs to a wettable electrode structure for co-production of oxygen and aluminum or carbon-free aluminum electrolysis, and particularly relates to a so-called “inert” or “wettable” electrode structure.
  • the current Hall-Herout aluminum electrolysis cell uses consumable carbon anodes, which not only consumes a large amount of high-quality petroleum coke as the main carbon material, but also emits a large amount of greenhouse gas CO 2 , strong greenhouse gas fluorocarbons (CF 4 , C 2 F 6 ) , SO 2 , and in the current aluminum electrolysis process, the pre-baked anode carbon block needs to be replaced frequently and frequently, which leads to unstable electrolysis production, and increases labor intensity, the personal risk of workers facing high-temperature melt, and the risk of fluoride.
  • non-carbon anodes or inert anodes to achieve a new process of co-production of oxygen and primary aluminum electrolysis can solve the above-mentioned emission and pollution problems, and can improve production efficiency, reduce floor space, and reduce production costs. It has become the international aluminum industry and materials industry. The focus of attention and research hotspots.
  • the use of non-carbon anodes in the electrolysis process of oxy-aluminum co-production has the following advantages: (1) The electrode is almost not consumed during the electrolysis process, and the material consumption is less than one percent of the carbon anode. No additional carbon processing plant and carbon anode assembly are required.
  • the electrode is not consumed, the pole distance is stable, easy to control, the anode replacement frequency is reduced by more than ten times, labor intensity and occupational risks It is greatly reduced; (3) A higher current per unit volume can be used to increase the capacity of the electrolyzer; (4) The anode product is oxygen, which avoids environmental pollution, and oxygen can also be used as a by-product.
  • the traditional horizontal arrangement of electrodes can no longer be used, but the vertical arrangement of electrodes must be adopted, so as to well maintain thermal balance, reduce cell voltage, and reduce energy consumption.
  • the vertical installation method of the wettable cathode plays an important role in the realization of carbon-free aluminum electrolysis technology.
  • the object of the present invention is to provide a method for installing, preventing and eliminating expansion of a vertical wettable cathode block or an inverted hollow cup cathode used in the electrolysis of co-production of aluminum oxide to improve the service life of the existing technology.
  • Oxygen-aluminum co-production or non-carbon anode aluminum electrolysis cell consists of an electrolytic cell furnace, a cathode conductive base, an aluminum pool, and a high-temperature molten salt.
  • the vertical non-carbon anode and the vertical cathode are arranged in parallel and opposite, and the anode and the cathode can be continuously spaced to the required capacity. until.
  • the high-temperature molten salt is NaF-KF-CaF 2 -MgF 2 -LiF-AlF 3 -Al 2 O 3 melt at 750-950°C.
  • the electrode structure for the electrolysis of co-production of aluminum and oxygen includes an anode group, a cathode group, and a cathode conductive base.
  • the anode group and the cathode group are arranged perpendicularly and parallel to each other.
  • the cathode is in the shape of a plate, block or rectangular parallelepiped deep cup installed in the electrolysis At the bottom of the slot, the cathode is on the conductive base.
  • the cathode support base is arranged in a groove or groove on the cathode conductive base, and a filler is arranged between the cathode support base and the cathode conductive base, and the material of the cathode support base is TiB One of 2 -based materials, graphite-based materials, carbon materials, graphite-based materials with TiB 2 -based coatings on the surface, or carbon materials.
  • the cathode conductive base material is one of graphite-based materials, carbon materials or TiB 2 -C composite materials; the cathode conductive base is provided with grooves or grooves to support the vertical cathode, and the cathode base has conductivity, which will come from the anode
  • the current transmitted to the cathode through the electrolyte is then transmitted to the current collector iron rod or steel rod or alloy rod inside or below it to the cathode bus bar.
  • the cathode is made of TiB 2 -C composite material.
  • the cathode is plate-shaped or block-shaped, it is an integrated structure. Its shape is chamfered or the long side is straight, and the two sides are arcs.
  • the cathode is made of TiB 2 -C composite material.
  • the cathode is a cuboid deep cup shape, the periphery is chamfered or the long side is straight, and the two sides are arcs. When installed, it is connected to the battery and inserted into the deep cup. Inside, then the battery core is inserted into the groove or slot of the cathode conductive base.
  • the battery core is one of TiB 2 -based materials, graphite-based materials, carbon materials, graphite-based materials with TiB 2 -based coatings on the surface, or carbon materials, and a filler is arranged between the battery core and the deep-cup cathode material .
  • the filler is woven or pressed by one or a combination of graphite fiber, carbon fiber, carbon cloth, carbon paper, SiC fiber, and TiB 2 fiber.
  • the filler is used as a buffer layer to adjust the verticality and prevent Thermal expansion at high temperatures squeezes the cathode material itself or the cathode substrate to maintain the stability of the vertical cathode.
  • an insulating layer is also provided between the aluminum liquid level and the cathode conductive base to further stabilize the cathode and maintain its verticality.
  • the insulating layer material is casted with amorphous high alumina material, or alumina ceramics, SiC ceramics , Si 3 N 4 ceramics, BN-TiB 2 composite ceramics or their composites.
  • a coating is coated on the surface of the cathode conductive base, and the coating is one of high alumina cement, TiB 2 -based coating, SiC coating, Si 3 N 4 coating, or a combination of two or more of them. coating.
  • the purpose is to reduce the penetration of Na and K in the electrolyte to the cathode conductive base causing sodium and potassium to expand.
  • a cathode steel rod current collector is also provided under the cathode conductive base.
  • Figure 1 is a schematic diagram of the arrangement of vertical anodes and vertical cathodes
  • Figure 2 is a block or plate (a), deep cup (b) TiB 2 -based cathode material;
  • Example 3 is a schematic diagram of the shape and installation of the vertical cathode of the non-electric core in Example 1;
  • FIG. 4 is a schematic diagram of the shape and installation of the vertical cathode of the battery cell in the second embodiment
  • Figure 5 is a schematic diagram of the shape and installation of the vertical cathode of the non-electric core in the third embodiment
  • Fig. 6 is a schematic diagram of the vertical cathode plate without a battery and its installation in embodiment 4;
  • Figure 7 is a schematic diagram of the shape and installation of two vertical cathodes without a battery in the fifth embodiment
  • One of the shape and installation method of the vertical cathode a shape and installation method of a vertical cathode without a battery, as shown in Figure 3.
  • the anode group and the cathode group are arranged vertically and parallel to each other.
  • the cathode is a plate-shaped or block-shaped integrated structure.
  • the cathode is directly inserted into the groove or groove on the cathode conductive base during installation. Insulation is also provided between the aluminum liquid level and the cathode conductive base.
  • the layering is coated with a coating on the surface of the cathode conductive base, and a cathode steel rod current collector is arranged under the extremely conductive base.
  • One of the shape and installation method of the vertical cathode a shape and installation method of a vertical cathode with a battery cell, as shown in Figure 4.
  • the anode group and the cathode group are arranged vertically and parallel to each other.
  • the cathode is a cuboid deep cup shape. When installed, it is connected to the battery core and inserted into the deep cup, and then the battery core is inserted into the cathode conductive base groove or slot, the battery core and the deep cup A filler is arranged between the shaped cathode materials, an insulating layer is also arranged between the aluminum liquid level and the cathode conductive base, and a cathode steel rod current collector is arranged under the extremely conductive base.
  • FIG. 5 Another shape and installation method of the vertical cathode without a battery is shown in Figure 5.
  • a filler is used to cover the cathode, and the cathode plate is pushed into the long slit reserved on the cathode base by extrusion, and the cathode is kept vertical.
  • the filler is woven from carbon fiber or a Layers or layers of carbon cloth or carbon paper are made into bags.
  • an insulating bead is used for supporting and positioning, and the insulating bead is prefabricated by one of high alumina ceramics, high alumina amorphous material casting, SiC ceramics, and Si 3 N 4 ceramics.
  • a coating is applied on the surface of the cathode base (base) to reduce the penetration of sodium and potassium into the base (base).
  • the coating can be SiC, high alumina cement, Si 3 N 4 , One of TiB 2 -C composite coatings.
  • FIG. 6 Another shape and installation method of the vertical cathode without a battery is shown in Figure 6.
  • a filler is used to cover the cathode, and the cathode plate is pushed into the long slit reserved on the cathode conductive base by squeezing, and the cathode is kept vertical.
  • the filler is woven by carbon fiber or used One or several layers of carbon cloth or carbon paper are made into bags.
  • a coating is applied on the surface of the cathode base (base) to reduce the penetration of sodium and potassium into the base (base).
  • the coating can be SiC, high alumina cement, Si 3 N 4 , One of TiB 2 -C composite coatings.
  • One of the shape and installation method of the vertical cathode a shape and installation method of a two-section vertical cathode without a battery, as shown in Figure 7.
  • a filler is used to hold the cathode, and the cathode plate is pushed into the long slit reserved on the cathode support base by extrusion, and the cathode is kept vertical.
  • the filler is woven by carbon fiber or used One or several layers of carbon cloth or carbon paper are made into bags.
  • the cathode support base can be TiB 2 -C composite material, graphite-based material, carbon material, graphite-based material coated with TiB 2 -C coating on the surface, or carbon material.
  • the cathode support base is then pushed into the pit reserved for the cathode conductive base.
  • a coating is applied on the surface of the cathode base (base) to reduce the penetration of sodium and potassium into the base (base).
  • the coating can be SiC, high alumina cement, Si 3 N 4 , One of TiB 2 -C composite coatings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

氧铝联产电解或无碳铝电解可润湿性阴极材料的组装,特别涉及用于所谓"惰性"或"可润湿"的氧铝联产电解用的电极结构。氧铝联产或非碳阳极铝电解槽由电解槽炉膛、阴极导电底座(7)、铝水池、高温熔盐构成,垂直非碳阳极(1)与垂直阴极(2)间隔排列,阳极(1)与阴极(2)可以持续间隔排列至所需容量为止。高温熔盐是750-950℃下,NaF-KF-CaF 2-MgF 2-LiF-AlF 3-Al 2O 3熔体。阴极(2)由TiB 2基材料构成,电芯(3)是TiB 2基、碳基或石墨基材料。阴极(2)垂直安放在阴极导电底座(7)上。阴极导电底座(7)表面采用TiB 2-C涂层、高氧化铝无定形材料浇注、SiC/Si 3N 4涂层等保护,以减少Na、K的渗透与导电底座(7)碳形成嵌层化合物造成膨胀,使基座破裂,影响阴极(2)板块的稳定和寿命。

Description

氧铝联产电解用的电极结构 技术领域
本发明属于氧铝联产电解或无碳铝电解可润湿性电极结构,特别涉及用于所谓“惰性”或“可润湿”的电极结构。
背景技术
现行Hall-Herout铝电解槽采用消耗性碳素阳极,不仅消耗大量以优质石油焦为主体的炭素材料,排放大量温室效应气体CO 2、强温室气体碳氟化合物(CF 4、C 2F 6)、SO 2,而且在现行铝电解过程中,需要不断地频次较高地更换预焙阳极碳块,导致电解生产不稳定,并增加了劳动强度、工人面对高温熔体的人身风险和氟化物的无组织排放;预焙碳阳极生产过程中也会排放致癌性的芳香族化合物(PAH)、SO 2、粉尘,这些都是PM2.5的主要来源之一;此外,采用碳素阳极也是现行铝电解工艺的高能耗、高成本等问题的主要原因。
采用非碳阳极或称惰性阳极实现氧气与原铝联产电解新工艺,可以解决上述排放与污染问题,并可提高生产效率、减少占地面积、降低生产成本,而成为国际铝业界和材料界的关注焦点和研究热点。非碳阳极使用在氧铝联产电解过程中有以下优点:(1)电解过程中电极几乎不消耗,材料消耗量不到碳阳极的百分之一,无需附属的炭素加工厂和碳阳极组装厂,降低了生产成本,消除了由炭素阳极生产与使用带来的环境影响与污染;(2)电极不消耗,极距稳定,易于控制,阳极更换频率减少十倍以上,劳动强度和职业风险大为降低;(3)可以采用更高的单位体积电流,使电解槽产能增加;(4)阳极产品为氧气,避免了环境污染,氧气还可以作为副产品。
欲实现非碳阳极的这一系列优点,不能再采用传统的电极水平排布方式,而必须采用电极垂直排布方式,这样才能很好地维持热平衡、降低槽电压、降低能耗。如此,可润湿阴极的垂直安装方法在实现无碳铝电解技术中起到重要的作用。
专利US 2017/0283968 Al描述了垂直阴极的安装连接方法,但未考虑热膨胀、钠钾渗透造成的膨胀,膨胀将严重影响垂直阴极的稳定性与寿命,另外该专利没有说明阴极支撑块中缝如何处理。
发明内容
本发明目的针对已有技术存在的不足,提供了氧铝联产电解用垂直可润湿阴极块或倒置空心杯状阴极的安装、防止和消除膨胀的方法,以提高其使用寿命。
氧铝联产或非碳阳极铝电解槽由电解槽炉膛、阴极导电底座、铝水池、高温熔盐构成,垂直非碳阳极与垂直阴极平行相对排列,阳极与阴极可以持续间隔排列至所需容量为止。
高温熔盐是750-950℃下,NaF-KF-CaF 2-MgF 2-LiF-AlF 3-Al 2O 3熔体。
氧铝联产电解用的电极结构,包括阳极组、阴极组、阴极导电底座,所述阳极组与阴极组垂直平行相对排列,所述阴极呈板状、块状或长方体深杯状安装在电解槽槽底阴极导电底座上。
进一步地,还包括阴极支撑基座,所述阴极支撑基座设于阴极导电底座上的沟或槽内,且阴极支撑基座和阴极导电底座间设有填充物,阴极支撑基座材料是TiB 2基材料、石墨基材料、碳材料、表面有TiB 2基涂层的石墨基材料或碳材料中的一种。
所述阴极导电底座材料是石墨基材料、碳材料或TiB 2-C复合材料中的一种;所述阴极导电底座上设有沟或槽,支撑垂直阴极,阴极底座具备导电性,将来自阳极经由电解质传至阴极的电流,再传导至其内部或下部的集流体铁棒或钢棒或合金棒传至阴极母线。
所述阴极由TiB 2-C复合材料构成,所述阴极为板状或块状时,为一体化的结构,其形状周边为倒角或长边为直边,两侧为圆弧,安装时直接插入阴极导电底座上的沟或槽,或先镶嵌在阴极支撑基座上再插入阴极导电底座上的沟槽;且阴极与阴极支撑基座间设有填充物;所述填充物为石墨纤维、碳纤维、碳布、碳纸、SiC纤维、TiB 2纤维中的一种或几种组合编织或压制而成。
所述阴极由TiB 2-C复合材料构成,所述阴极为长方体深杯状时,周边为倒角或长边为直边,两侧为圆弧,安装时与电芯连接,倒插入深杯内部,然后电芯再插入阴极导电底座沟或槽中。
所述电芯是TiB 2基材料、石墨基材料、碳材料、表面有TiB 2基涂层的石墨基材料或碳材料中的一种,电芯与深杯状阴极材料之间设有填充物。
所述填充物为石墨纤维、碳纤维、碳布、碳纸、SiC纤维、TiB 2纤维中的一种或几种组合编织或压制而成,填充物作为缓冲层,以便调正垂直度,同时防止在高温下的热膨胀挤坏阴极材料本身或阴极基底,以维持垂直阴极的稳定性。
进一步地,铝液水平面和阴极导电底座之间还设有绝缘压条,来进一步稳定阴极和保持其垂直度,所述绝缘压条材料采用无定形高氧化铝材料浇注,或采用氧化铝陶瓷、SiC陶瓷、Si 3N 4陶瓷、BN-TiB 2复合陶瓷中的一种或其复合物制成。
进一步地,在阴极导电底座表面涂覆有涂层,所述涂层为高氧化铝水泥、TiB 2基涂层、SiC涂层、Si 3N 4涂层中的一种或其两种以上复合涂层。目的是减少电解质中Na、K对阴极导电底座的渗透造成钠、钾膨胀。
进一步地,阴极导电底座下方还设有阴极钢棒集流体。
附图说明
图1为垂直阳极与垂直阴极排列示意图;
图2为块状或板状(a),深杯状(b)TiB 2基阴极材料;
图3为实施例1无电芯垂直阴极形状及安装示意图;
图4为实施例2有电芯垂直阴极形状及安装示意图;
图5为实施例3无电芯垂直阴极形状及安装示意图;
图6为实施例4无电芯垂直阴极板及安装示意图;
图7为实施例5无电芯两节垂直阴极形状及安装示意图;
附图标记说明:1-惰性阳极,2-可润湿性惰性阴极,3-电芯,4-填充物,5-绝缘压条,6-涂层,7-阴极导电底座,8-阴极钢棒集流体,9-阴极支撑基座。
具体实施方式
以下通过说明书附图和具体的实施例对本发明的技术方案作进一步说明。
实施例1
垂直阴极的形状及安装方法之一:一种无电芯垂直阴极的形状及安装方法,如图3所示。
阳极组与阴极组垂直平行相对排列,所述阴极为板状或块状一体化结构,安装时阴极直接插入阴极导电底座上的沟或槽,铝液水平面和阴极导电底座之间还设有绝缘压条,在阴极导电底座表面涂覆有涂层,极导电底座下方设有阴极钢棒集流体。
实施例2
垂直阴极的形状及安装方法之一:一种有电芯垂直阴极的形状与安装方法,如图4所示。
阳极组与阴极组垂直平行相对排列,所述阴极为长方体深杯状,安装时与电芯连接,倒插入深杯内部,然后电芯再插入阴极导电底座沟或槽中,电芯与深杯状阴极材料之间设有填充物,铝液水平面和阴极导电底座之间还设有绝缘压条,极导电底座下方设有阴极钢棒集流体。实施例3
垂直阴极的形状及安装方法之一:另一种无电芯垂直阴极的形状与安装方法,如图5所示。为防止热膨胀和固定垂直阴极,采用填充物套住阴极,采用挤压方式将阴极板推入阴极底座上预留的长条缝中,并保持阴极垂直,填充物由碳纤维编织而成或采用一层或数层碳布或碳纸制成袋状。为支撑阴极板材,采用绝缘压条支撑定位,绝缘压条由高氧化铝陶瓷、高氧化铝无定形材料浇注、SiC陶瓷、Si 3N 4陶瓷中的一种预制而成。为防止钠、钾膨胀,在阴极底(基)座上表面涂布涂层,以减少钠、钾对底(基)座的渗透,涂层可以是SiC、高氧化铝水泥、Si 3N 4、TiB 2-C复合涂层中的一种。
实施例4
垂直阴极的形状及安装方法之一:另一种无电芯垂直阴极的形状与安装方法,如图6所示。为防止热膨胀和固定垂直阴极,采用填充物套住阴极,采用挤压方式将阴极板推入阴极 导电底座上预留的长条缝中,并保持阴极垂直,填充物由碳纤维编织而成或采用一层或数层碳布或碳纸制成袋状。为防止钠、钾膨胀,在阴极底(基)座上表面涂布涂层,以减少钠、钾对底(基)座的渗透,涂层可以是SiC、高氧化铝水泥、Si 3N 4、TiB 2-C复合涂层中的一种。
实施例5
垂直阴极的形状及安装方法之一:一种两节无电芯垂直阴极的形状与安装方法,如图7所示。为防止热膨胀和固定垂直阴极,采用填充物住阴极,采用挤压方式将阴极板推入阴极支撑基座上预留的长条缝中,并保持阴极垂直,填充物由碳纤维编织而成或采用一层或数层碳布或碳纸制成袋状。阴极支撑基座由可以是TiB 2-C复合材料、石墨基材料、碳材料、表面涂有TiB 2-C涂层的石墨基材料或碳材料。阴极支撑基座再推入阴极导电底座预留的坑中。为防止钠、钾膨胀,在阴极底(基)座上表面涂布涂层,以减少钠、钾对底(基)座的渗透,涂层可以是SiC、高氧化铝水泥、Si 3N 4、TiB 2-C复合涂层中的一种。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

  1. 氧铝联产电解用的电极结构,其特征在于,包括阳极组、阴极组、阴极导电底座,所述阳极组与阴极组垂直平行相对排列,所述阴极呈板状、块状或长方体深杯状安装在电解槽槽底阴极导电底座上;所述阴极由TiB 2-C复合材料构成;
    当所述阴极为板状或块状时,为一体化的结构,其形状周边为倒角或长边为直边,两侧为圆弧,安装时直接插入阴极导电底座上的沟或槽,或先镶嵌在阴极支撑基座上再插入阴极导电底座上的沟槽;且阴极与阴极支撑基座间设有填充物;所述填充物为碳纤维、碳布、碳纸、SiC纤维、TiB 2纤维中的一种或几种组合编织或压制而成;
    当所述阴极为长方体深杯状时,周边为倒角或长边为直边,两侧为圆弧,安装时与电芯连接,倒插入深杯内部,然后电芯再插入阴极导电底座沟或槽中;所述电芯是TiB 2基材料、碳材料、表面有TiB 2基涂层的碳材料中的一种,电芯与深杯状阴极材料之间设有填充物,所述填充物为碳纤维、碳布、碳纸、SiC纤维、TiB 2纤维中的一种或几种组合编织或压制而成。
  2. 如权利要求1所述的氧铝联产电解用的电极结构,其特征在于,还包括阴极支撑基座,所述阴极支撑基座设于阴极导电底座上的沟或槽内,且阴极支撑基座和阴极导电底座间设有填充物,阴极支撑基座材料是TiB 2基材料、碳材料、表面有TiB 2基涂层的碳材料中的一种。
  3. 如权利要求1所述的氧铝联产电解用的电极结构,其特征在于,所述阴极导电底座材料是碳材料或TiB 2-C复合材料中的一种;所述阴极导电底座上设有沟或槽,支撑垂直阴极,阴极底座具备导电性。
  4. 如权利要求2所述的氧铝联产电解用的电极结构,其特征在于,所述填充物为碳纤维、碳布、碳纸、SiC纤维、TiB 2纤维中的一种或几种组合编织或压制而成。
  5. 如权利要求1所述的氧铝联产电解用的电极结构,其特征在于,铝液水平面和阴极导电底座之间还设有绝缘压条,所述绝缘压条材料采用无定形高氧化铝材料浇注,或采用氧化铝陶瓷、SiC陶瓷、Si 3N 4陶瓷、BN-TiB 2复合陶瓷中的一种或其复合物制成。
  6. 如权利要求1所述的氧铝联产电解用的电极结构,其特征在于,在阴极导电底座表面涂覆有涂层,所述涂层为高氧化铝水泥、TiB 2基涂层、SiC涂层、Si 3N 4涂层中的一种或其两种以上复合涂层。
  7. 如权利要求1所述的氧铝联产电解用的电极结构,其特征在于,阴极导电底座下方还设有阴极钢棒集流体。
PCT/CN2020/130415 2019-11-27 2020-11-20 氧铝联产电解用的电极结构 WO2021104166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911182059.6 2019-11-27
CN201911182059.6A CN110760887B (zh) 2019-11-27 2019-11-27 氧铝联产电解用的电极结构

Publications (1)

Publication Number Publication Date
WO2021104166A1 true WO2021104166A1 (zh) 2021-06-03

Family

ID=69339819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130415 WO2021104166A1 (zh) 2019-11-27 2020-11-20 氧铝联产电解用的电极结构

Country Status (2)

Country Link
CN (1) CN110760887B (zh)
WO (1) WO2021104166A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760887B (zh) * 2019-11-27 2020-07-31 镇江慧诚新材料科技有限公司 氧铝联产电解用的电极结构
CN111979562B (zh) * 2020-08-18 2023-03-10 天津大学 一种插拔式胶囊阴极及可扩展高效合成h2o2反应器装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018433A1 (en) * 2014-08-01 2016-02-04 Savannah River Nuclear Solutions, Llc Electrochemical cell for recovery of metals from solid metal oxides
CN109312484A (zh) * 2016-03-30 2019-02-05 美铝美国公司 用于垂直电解池的装置和系统
CN109923243A (zh) * 2016-07-26 2019-06-21 Cobex有限责任公司 用于生产铝的阴极组件
CN109943865A (zh) * 2019-04-28 2019-06-28 镇江慧诚新材料科技有限公司 一种氧铝联产电解用阴极材料及其制备方法
CN110760887A (zh) * 2019-11-27 2020-02-07 镇江慧诚新材料科技有限公司 氧铝联产电解用的电极结构

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH441776A (de) * 1966-05-17 1967-08-15 Marincek Borut Verfahren zur Herstellung von Metallen durch Schmelzflusselektrolyse von Oxiden
US4670110A (en) * 1979-07-30 1987-06-02 Metallurgical, Inc. Process for the electrolytic deposition of aluminum using a composite anode
FR2566002B1 (fr) * 1984-06-13 1986-11-21 Pechiney Aluminium Bloc cathodique modulaire et cathode a faible chute de tension pour cuves d'electrolyse hall-heroult
US6419812B1 (en) * 2000-11-27 2002-07-16 Northwest Aluminum Technologies Aluminum low temperature smelting cell metal collection
US7118666B2 (en) * 2001-08-27 2006-10-10 Alcoa Inc. Protecting an inert anode from thermal shock
RU2274680C2 (ru) * 2004-06-22 2006-04-20 Общество с ограниченной ответственностью Научно-технологический центр "Легкие металлы" Способ получения металлов электролизом расплавленных солей
CN1673418A (zh) * 2005-01-07 2005-09-28 北京科技大学 一种低温电解生产铝的方法及其专用的铝电解槽
CN1986898A (zh) * 2006-11-22 2007-06-27 贵州大学 一种惰性电极铝电解槽
CN101498010B (zh) * 2008-02-01 2011-01-12 东北大学设计研究院(有限公司) 一种铝电解槽阴极结构
CN101413136B (zh) * 2008-10-10 2010-09-29 沈阳北冶冶金科技有限公司 具有纵向和横向减波功能的新型阴极结构铝电解槽
SI2459775T1 (sl) * 2009-07-28 2019-03-29 Alcoa Usa Corp. Sestavek za izdelavo močljive katode v aluminijevi talini
CN101709485B (zh) * 2009-12-18 2012-07-04 中国铝业股份有限公司 一种采用惰性阳极生产原铝的铝电解槽
CN201560244U (zh) * 2009-12-18 2010-08-25 中国铝业股份有限公司 一种回收惰性阳极铝电解槽氧气的装置
CN101935852A (zh) * 2010-09-30 2011-01-05 中南大学 一种惰性电极低温铝电解槽
CN202039133U (zh) * 2011-03-30 2011-11-16 湖南晟通科技集团有限公司 一种铝电解槽阴极钢棒
CN102851694A (zh) * 2011-06-30 2013-01-02 苏州天华有色金属制品有限公司 一种熔盐电解用电解槽
CN202272963U (zh) * 2011-09-09 2012-06-13 中泽技鑫环保科技(上海)有限公司 一种阴极底座
CN203639586U (zh) * 2013-12-10 2014-06-11 中南大学 一种湿法冶金用复合阳极
CN104681854A (zh) * 2015-02-26 2015-06-03 广东烛光新能源科技有限公司 锂硫电池裸电芯、成品电芯及其制备方法
CN205062206U (zh) * 2015-08-31 2016-03-02 重庆巨科环保有限公司 重金属隔膜电解回收装置
CN205077158U (zh) * 2015-09-09 2016-03-09 重庆旗能电铝有限公司 预焙阳极铝电解槽
CN205170988U (zh) * 2015-10-28 2016-04-20 兰州资源环境职业技术学院 铝电解石墨坩埚实验装置
US10415147B2 (en) * 2016-03-25 2019-09-17 Elysis Limited Partnership Electrode configurations for electrolytic cells and related methods
CN106435644A (zh) * 2016-12-05 2017-02-22 中南大学 一种铝电解槽用捣固糊及其使用方法
US10122020B2 (en) * 2017-03-06 2018-11-06 Nanotek Instruments, Inc. Aluminum secondary battery cathode having oriented graphene
CN206632138U (zh) * 2017-04-13 2017-11-14 北方国际合作股份有限公司 阳极板平整台
CN106978613A (zh) * 2017-05-18 2017-07-25 赣州晨光稀土新材料股份有限公司 一种稀土金属含氟熔融体系下进行电极反应的复合阴极
US11201318B2 (en) * 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
CN110391387B (zh) * 2018-04-23 2022-04-19 宁德新能源科技有限公司 电池
CN109023426A (zh) * 2018-07-30 2018-12-18 甘肃东兴铝业有限公司 一种铝电解槽全石墨化阴极内衬结构及其制备方法
CN110029363B (zh) * 2019-04-22 2020-05-19 贵州铝城铝业原材料研究发展有限公司 一种分体式独立炭碗、超长填充块结构连续预焙阳极炭块
CN110079831B (zh) * 2019-04-28 2020-09-25 镇江慧诚新材料科技有限公司 一种氧铝联产电解用非碳阳极金属导杆的保护方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018433A1 (en) * 2014-08-01 2016-02-04 Savannah River Nuclear Solutions, Llc Electrochemical cell for recovery of metals from solid metal oxides
CN109312484A (zh) * 2016-03-30 2019-02-05 美铝美国公司 用于垂直电解池的装置和系统
CN109923243A (zh) * 2016-07-26 2019-06-21 Cobex有限责任公司 用于生产铝的阴极组件
CN109943865A (zh) * 2019-04-28 2019-06-28 镇江慧诚新材料科技有限公司 一种氧铝联产电解用阴极材料及其制备方法
CN110760887A (zh) * 2019-11-27 2020-02-07 镇江慧诚新材料科技有限公司 氧铝联产电解用的电极结构

Also Published As

Publication number Publication date
CN110760887A (zh) 2020-02-07
CN110760887B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
US9551078B2 (en) Electrolytic cell for producing primary aluminum by using inert anode
WO2021104166A1 (zh) 氧铝联产电解用的电极结构
US8206560B2 (en) Aluminum electrolytic cells having heterotypic structured cathode carbon blocks
CN108193235B (zh) 一种稀土电解槽电极结构及稀土电解槽
WO2010040270A1 (zh) 具有纵向和横向减波功能的新型阴极结构铝电解槽
CN105256337B (zh) 一种新型稀土电解槽
WO2019128826A1 (zh) 一种稀土金属熔盐电解槽
CN108004568A (zh) 一种稀土电解槽内衬结构及稀土电解槽
CN204080126U (zh) 设置有保温挡料装置的铝电解槽
WO2021104167A1 (zh) 一种大容量氧铝联产电解槽用悬挂式耐火保温组件
CN101892497A (zh) 用于铝电解的阳极
CN105624736B (zh) 一种新型电极结构的稀土熔盐电解槽
RU2008137353A (ru) Электролизер полякова для производства алюминия
CN110747492B (zh) 一种氧铝联产电解槽竖式阴极倾斜现场检测与现场调整的方法
CN104562092A (zh) 一种多阳极金属锂电解槽
CN108350587B (zh) 用于生产铝的阴极底
CN113737225A (zh) 一种内衬结构及采用该内衬结构的稀土金属熔盐电解槽
CN109898098B (zh) 一种铝电解槽预焙阳极保温结构
CN117802537A (zh) 一种楔形惰性阳极及铝电解槽
CN201793768U (zh) 一种铝电解阳极结构
RU2582421C1 (ru) Укрытие электролизера для производства алюминия
CN115896871A (zh) 一种氧铝联产电解槽竖式阴极筑炉现场安装调整定位的方法
CN207176086U (zh) 一种高效节能稀土金属电解槽
CN101838821A (zh) 铝电解槽新型内衬
CN113881968A (zh) 一种铝电解槽炉底外部保温与节能降耗的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893461

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20893461

Country of ref document: EP

Kind code of ref document: A1