WO2010040270A1 - 具有纵向和横向减波功能的新型阴极结构铝电解槽 - Google Patents

具有纵向和横向减波功能的新型阴极结构铝电解槽 Download PDF

Info

Publication number
WO2010040270A1
WO2010040270A1 PCT/CN2009/000457 CN2009000457W WO2010040270A1 WO 2010040270 A1 WO2010040270 A1 WO 2010040270A1 CN 2009000457 W CN2009000457 W CN 2009000457W WO 2010040270 A1 WO2010040270 A1 WO 2010040270A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
carbon block
longitudinal
convex structure
cathode carbon
Prior art date
Application number
PCT/CN2009/000457
Other languages
English (en)
French (fr)
Inventor
冯乃祥
Original Assignee
沈阳北冶冶金科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳北冶冶金科技有限公司 filed Critical 沈阳北冶冶金科技有限公司
Priority to US12/991,870 priority Critical patent/US20110056826A1/en
Publication of WO2010040270A1 publication Critical patent/WO2010040270A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the invention belongs to the field of aluminum electrolysis technology, and particularly relates to a novel cathode structure aluminum electrolysis tank having longitudinal and lateral wave-reducing functions.
  • industrial pure aluminum is mainly produced by the method of cryolite-alumina molten salt electrolysis.
  • Its special equipment is an electrolytic cell lined with carbon material.
  • the steel casing and the carbon lining of the electrolytic cell are made of refractory material and heat insulating brick.
  • the carbonaceous lining of the electrolytic cell is generally made of carbon bricks (or blocks).
  • the carbon bricks (or blocks) are made of anthracite or graphite materials with good resistance to sodium and electrolyte corrosion, or both. mixture.
  • the carbon paste made of the above carbon material is used for tamping at the joint between them.
  • a steel rod is placed at the bottom of the carbon block at the bottom of the electrolytic cell and extends beyond the tank of the electrolytic cell, which is often referred to as the cathode steel rod of the electrolytic cell.
  • a carbon anode made of petroleum coke is suspended above the electrolytic cell, and an anode guide rod made of metal is placed on the anode of the electrolytic cell, through which the current can be introduced, in the carbon cathode and the electrolytic cell.
  • Between the carbonaceous anodes is a cryolite-alumina electrolyte melt and a molten metal aluminum solution having a temperature of 940 to 970 °C.
  • the metal aluminum liquid and the electrolyte melt are mutually insoluble, and the density of aluminum is greater than the density of the electrolyte melt, so that aluminum is in contact with the carbon cathode below the electrolyte melt.
  • the aluminum-containing ions are discharged on the cathode, and three electrons are obtained from the cathode to form aluminum metal.
  • This cathodic reaction is carried out on the surface of the metal aluminum liquid in the electrolytic cell.
  • the distance between the cathode surface of the cell and the bottom surface of the carbon anode is called the pole pitch of the cell.
  • the electrode has a pole pitch of 4 to 5 cm.
  • the pole pitch is a very important process and technical parameter in the usual industrial aluminum electrolytic production.
  • the too high or too low pole pitch affects the aluminum electrolysis production because: too low pole pitch will increase the dissolution from the cathode surface. Secondary reaction of metal aluminum into the electrolyte melt with the anode gas to reduce current efficiency;
  • Too high a pole pitch will increase the cell voltage of the electrolytic cell and increase the DC power consumption of aluminum electrolysis production.
  • the DC power consumption can be expressed by the following formula:
  • V is the average cell voltage (volts) of the cell
  • CE is the current efficiency of the cell (%)
  • the cell voltage of the electrolytic cell is reduced by 0.1 volt, which can reduce the DC power consumption of the electrolytic cell by about 320 kWh/ton of aluminum.
  • the DC power consumption can be reduced by about 150 kWh/ton of aluminum. It can be seen that reducing the cell voltage is of great significance to the production of aluminum electrolysis without affecting the current efficiency of the cell. If the cell voltage can be reduced and the current efficiency of the cell can be increased, it is more meaningful to reduce the DC power consumption of aluminum electrolysis.
  • the pole pitch of the electrolytic cell is an important process and technical parameter for determining the voltage of the cell.
  • the hole voltage is reduced by about 35 mV for every 1 mm of the pole pitch.
  • (1) It can reduce the DC power consumption of aluminum electrolysis by more than 100 kWh per ton of aluminum without reducing the current efficiency of the cell. It can be seen that reducing the pole pitch without affecting the current efficiency is of great significance for the electrical energy consumption of aluminum electrolysis production.
  • the industrial aluminum electrolytic cell has a pole pitch of 4.0 to 5.0 cm, and the size thereof is that a cold steel fiber with a hook of cpl of about 5 mm is vertically inserted into the electrolyte melt of the electrolytic cell and vertically hooked on the palm bottom surface of the anode.
  • the pole distance measured by this method is not the true of the electrolytic cell.
  • the pole distance is because the metal aluminum surface in the electrolytic cell is fluctuated by the action of the electromagnetic field in the electrolytic cell and the anode gas escaping from the anode.
  • the peak height of the cathode aluminum surface of the electrolytic cell is about 2.0 cm. If the electrolytic cell does not have fluctuations in the aluminum liquid, the electrolytic cell can be electrolytically produced at a pole pitch of 2.0 to 3.0 cm. In this way, the cell voltage can be lowered by 0.7 to 1.0 volts, thereby achieving the goal of saving the cell by 2000 to 3000 kWh/ton of aluminum.
  • Feng Naixiang invented a cathode carbon block having a surface of a cathode carbon block along the longitudinal direction of the carbon block, that is, a series of current directions, and a cathode carbon block having a protruding wall.
  • An amorphous cathode carbon block structure aluminum electrolytic cell. This kind of electrolyzer has been tested on the large electrolysis cell of Chongqing Tiantai Aluminum Industry. The cell voltage of the test cell has been reduced from the original 4.1 volts to 3.8 volts, and the obvious power saving effect has been achieved.
  • the cathode structure of the electrolytic cell has the function of reducing the fluctuation of the aluminum liquid from the longitudinal direction of the electrolytic cell, that is, perpendicular to the series current, but cannot reduce the fluctuation of the aluminum liquid from the lateral direction of the electrolytic cell. .
  • the difference between the convex wall of the cathode carbon block and the cathode carbon block matrix is large, and the protrusion is easy to break here. The broken protrusion easily affects the operation of the electrolytic cell and reduces electrolysis. Slot life.
  • the present invention provides a novel cathode structure aluminum electrolytic cell having longitudinal and lateral wave reducing functions.
  • the novel cathode structure aluminum electrolytic cell with vertical and horizontal wave-reducing functions of the invention comprises an electrolytic cell tank shell, an insulating material, a bottom refractory brick and an insulating brick, a cathode carbon block, a side carbon brick, a carbon tamping paste, a refractory concrete and Cathode steel bar.
  • the top surface of the cathode carbon block has more than one convex structure, and each convex structure is integrated with the cathode carbon block, and the convex structures are arranged in the axial direction of the parallel cathode carbon block, the axial direction of the vertical cathode carbon block or Mixed arrangement of the two, which is perpendicular to the axis of the cathode carbon block
  • the convex structure of the direction is a lateral convex structure
  • the convex structure parallel to the axial direction of the cathode carbon block is a longitudinal convex structure.
  • the raised structure cathode carbon block is made of the same material as the conventional electrolytic cell cathode carbon block, and is made of anthracite, artificial graphite or a mixture of non-bituminous coal and artificial graphite, or a graphitized or semi-graphitized cathode carbon block.
  • the convex structure has a trapezoidal or rectangular trapezoidal cross section, wherein when the cross section is a rectangular trapezoidal mixture, the rectangle is above the trapezoid.
  • the cross-sectional width of the convex structure on the cathode carbon block is set according to the width of the cathode carbon block base.
  • the width of the cathode carbon block base is 400 mm
  • the upper width of the cross-section of the lateral convex structure is 150 to 250 mm
  • the lower portion is The width is 200 ⁇ 300mm
  • the longitudinal convex structure is divided into a single row arrangement and a double row arrangement.
  • the upper width of the longitudinal convex structure cross section is 150 ⁇ 250mm, and the lower width is 200 ⁇ 300mm ; when the double rows are arranged, The upper portion of the longitudinal convex structure has a width of 80 to 120 mm ; the height of the longitudinal convex structure has a height of 80 to 160 mm, and in the case where the width of the cathode carbon block substrate is increased, the cross-sectional size of the convex structure is proportionally increased.
  • the respective lateral convex structures on the adjacent two cathode carbon blocks are mutually staggered, and the length of the lateral convex structure is the same as the width of the cathode carbon block base or Less than the carbon block substrate width of 40 ⁇ 60mm; the minimum distance between adjacent lateral convex structures on the same cathode carbon block is 300 ⁇ 500mm; the middle position of the cathode carbon block closest to the aluminum outlet is two lateral convex structures The gap between them.
  • the convex structures on the cathode carbon block are all longitudinally convex structures, the axes of the respective longitudinal convex structures are parallel to the axial direction of the cathode carbon block base, and the length thereof is arranged not less than two longitudinal convexities per cathode carbon block.
  • the structure is arranged, and the distance between the bottom of the longitudinal convex structure at both ends and the two ends of the cathode carbon block is 30 ⁇ 50 mm; the longitudinal convex structure is located on both sides of the center of the cathode carbon block base, between the two longitudinal protruding structures in the middle
  • the gap is opposite to the aluminum outlet, and the minimum distance between adjacent longitudinal convex structures on the same cathode carbon block is 100 to 200 mm.
  • the lateral convex structure is highly uniform with the longitudinal convex structure, and the distance between the lateral convex structure and the longitudinal convex structure is 30 to 100 mm ;
  • the convex structure in the middle position of the block base is a lateral convex structure.
  • the minimum distance between the lateral convex structure located near the aluminum outlet and the outer side surface of the cathode carbon block is 30 ⁇ 300mm;
  • the outer side of the cathode carbon block base is the side of the cathode carbon block facing the aluminum lining lining.
  • the laterally protruding structure and the longitudinal convex structure of the mixed arrangement are divided into an intermittent arrangement and a continuous arrangement.
  • the arrangement is intermittent, the distance between the lateral convex structure and the longitudinal convex structure is 30 to 100 m, and when continuously arranged, the lateral convexity
  • the structure and the longitudinal raised structure are joined together.
  • the longitudinal convex structure is divided into a single row arrangement and a double row arrangement, and the longitudinal convex structure and the lateral convex structure on each cathode carbon block are arranged in a single row.
  • the staggered arrangement the minimum distance between a set of raised structures is 30 ⁇ 100mm.
  • the laterally protruding structure and the longitudinal convex structure of the mixed arrangement are divided into an intermittent arrangement and a continuous arrangement. When the arrangement is intermittent, the distance between the lateral convex structure and the longitudinal convex structure is 30 to 100 mm, and when continuously arranged, the lateral convexity The structure and the longitudinal raised structure are joined together.
  • the cathode carbon block located near the aluminum outlet ensures easy operation of the aluminum outlet.
  • the method for manufacturing the convex structure cathode carbon block is: using the current material for preparing the cathode carbon block, and forming the desired material by vibration molding The shaped green material is then calcined; or the rectangular body blank is first formed by vibration molding, and then calcined, and then mechanically processed to obtain a desired shape.
  • the novel cathode structure aluminum electrolytic cell structure with longitudinal and transverse wave-reducing functions of the invention has the following structure: the side in the cell casing of the electrolytic cell is a side carbon brick, and the bottom of the cell in the electrolytic cell has a convex surface of not less than 8 surfaces.
  • the cathode carbon block of the structure is composed, and a gap of 20 to 40 mm is left between the adjacent cathode carbon blocks, and the carbon crucible is solidified therebetween; under the side carbon bricks, the bottom refractory bricks and the heat insulating bricks are fireproofed.
  • the concrete is tamped, and the carbon brick is solidified between the side carbon brick and the cathode carbon block; the cathode steel rod is connected under the cathode carbon block, and both ends of the cathode steel rod protrude beyond the tank shell. Used as a cathode for the electrolytic cell.
  • the novel cathode structure aluminum electrolytic cell having the longitudinal and transverse wave-reducing functions of the present invention uses a cathode carbon block having a convex structure on the bottom of the groove bottom, the carbon block of the lower non-convex structure of the cathode carbon block
  • the width of the base body is larger than the width of the convex structure above, and the carbon tamping paste is only entangled between the bases of the non-protruding structure of the cathode carbon block, so that a cathode carbon having a convex surface on the upper surface appears at the bottom of the electrolytic cell
  • the side carbon bricks are made of anthracite, artificial graphite, anthracite and artificial graphite, or carbonized silicon.
  • a sedimentation tank is arranged between two adjacent cathode carbon blocks, and the sedimentation tank is arranged in the following manner: two on the upper surface of the cathode carbon block substrate An angular groove is arranged on one side, and the opposite two angular grooves on the adjacent two cathode carbon blocks together with the top surface of the carbon tamping paste form a concave sedimentation groove, and in the electrolytic production, the precipitation groove is filled with cryolite and The precipitate composed of alumina prevents the aluminum liquid from melting the cathode steel rod.
  • the depth of the angular groove relative to the upper surface of the cathode carbon block base is 20 to 50 mm, the width is 20 to 50 mm, and the length is consistent with the length of the cathode carbon block; 20 ⁇ 50mm, width is 80 ⁇ 140mm.
  • the structure of the novel cathode structure aluminum electrolytic cell with longitudinal and transverse wave-reducing functions of the present invention is similar to that of the current industrial aluminum electrolytic cell, except that the shape and structure of the cathode carbon block at the bottom of the electrolytic cell are completely different from the current electrolytic cell.
  • the new cathode structure aluminum electrolytic cell with longitudinal and lateral wave-reducing functions has a better thermal insulation design than the current electrolytic cell.
  • the method for producing metal aluminum by using the novel cathode structure aluminum electrolytic cell with longitudinal and transverse wave-reducing functions of the present invention is as follows:
  • the calcination method of the flame roasting or the first calcination of the aluminum liquid is carried out to carry out the roasting of the novel cathode structure aluminum electrolysis cell having the longitudinal and transverse wave-reducing functions of the present invention, and at the end of the roasting, the electrolysis cell is started according to the current electrolysis cell start-up method.
  • the level of the aluminum liquid in the electrolysis cell is calculated from the upper surface of the convex structure, and its height is 10 to 50 mm after the aluminum is discharged.
  • the cell has a pole pitch of 25 to 40 mm and a cell voltage of 3.3 to 3.9 volts.
  • the alumina electrolyte precipitation tank on the carbon paste between the cathode carbon block matrix is filled with a precipitate mainly composed of cryolite and alumina, and the precipitate is melted and sealed at the electrolysis temperature.
  • the crack between the carbon tamping paste prevents the aluminum liquid from melting the cathode steel rod, causing the electrolytic cell to break.
  • the present invention provides all the other processes and technical conditions of the novel cathode structure aluminum electrolysis cell with longitudinal and transverse wave-reducing functions, which are the same as the current aluminum-electrolytic cell of the cathode structure. These technical conditions are
  • the electrolyte level is 15 to 25 cm
  • the electrolyte molecular ratio is 2.0-2.8
  • the alumina concentration is 1.5 to 5%
  • the electrolyte temperature is 935 to 975 °C.
  • the electrolytic reaction occurring on the cathode of the electrolytic cell is:
  • the novel cathode structure aluminum electrolysis cell with longitudinal and transverse wave-reducing functions of the invention can slow down the flow rate of the cathode aluminum liquid in the electrolytic cell and reduce the longitudinal and lateral fluctuation height of the aluminum liquid, thereby improving the metal aluminum liquid of the aluminum electrolytic cell.
  • the trapezoidal or trapezoidal rectangular mixture of the raised structure can be arranged in such a way as to ensure sufficient strength of the raised structure.
  • the invention has a good application prospect.
  • FIG. 1 is a schematic view of a novel cathode structure aluminum electrolytic cell having longitudinal and lateral wave-reducing functions according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view of the B-B surface of FIG.
  • FIG. 3 is a schematic view of a novel cathode structure aluminum electrolytic cell having longitudinal and lateral wave-reducing functions according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic view of the B-B surface of FIG.
  • FIG. 5 is a schematic view of a novel cathode structure aluminum electrolytic cell having longitudinal and lateral wave-reducing functions according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic view of the B-B surface of FIG.
  • FIG. 7 is a schematic view of a novel cathode structure aluminum electrolytic cell having longitudinal and lateral wave-reducing functions according to Embodiment 4 of the present invention
  • Figure 8 is a BB plane view of Figure 7;
  • FIG. 9 is a schematic view of a novel cathode structure aluminum electrolytic cell having longitudinal and lateral wave-reducing functions according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic view of the B-B surface of FIG.
  • Figure 11 is a schematic cross-sectional view showing a trapezoidal lateral convex structure in an embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a lateral convex structure of a trapezoidal rectangular hybrid body according to an embodiment of the present invention
  • FIG. 13 is a schematic cross-sectional view showing a trapezoidal longitudinal protrusion structure arranged in a single row in an embodiment of the present invention
  • FIG. 14 is a schematic cross-sectional view showing a longitudinal projection structure of a trapezoidal rectangular mixture in a single row according to an embodiment of the present invention
  • FIG. 15 is a cross-sectional view showing a trapezoidal longitudinal projection structure of a double row arrangement in an embodiment of the present invention
  • Figure 16 is a schematic cross-sectional view showing a longitudinally convex structure of a trapezoidal rectangular mixture arranged in a double row according to an embodiment of the present invention
  • Fig. 1 an electrolytic cell housing, 2, an insulating material, 3. a bottom refractory brick and an insulating brick, 4. a cathode carbon Block, 5, side carbon bricks, 6, carbon tamping paste, 7, refractory concrete, 8, cathode steel rod.
  • FIG. 1 and Fig. 2 A new cathode structure aluminum electrolytic cell with longitudinal and lateral wave-reducing functions is shown in Fig. 1 and Fig. 2, the outer surface of the aluminum electrolytic cell is a steel electrolytic cell housing 1; the insulating material of the electrolytic cell housing 1 2 is an asbestos board, and the bottom refractory brick and the heat insulating brick 3 are laid on the asbestos board at the bottom of the heat insulating material 2; on the bottom refractory brick and the heat insulating brick 3, the cathode carbon block 4 and the cathode steel rod having the convex structure on the upper surface are provided. 8.
  • the side in the electrolytic cell is a side carbon brick 5, and the cathode bottom lining in the electrolytic cell is composed of not less than 8 cathode carbon blocks 4 having a convex structure with a cathode steel rod 8 at the bottom, each of which The cathode carbon block 4 is placed horizontally in the electrolytic cell, that is, the length direction of the cathode carbon block 4 is perpendicular to the longitudinal direction of the electrolytic cell, and a gap of 20 to 40 mm is left between the adjacent cathode carbon blocks 4, and the carbon paste is used therebetween. 6 tamping.
  • the bottom refractory material and the heat insulating material 3 are tamped with refractory concrete 7 and solidified between the side carbon bricks 5 and the cathode carbon block 4 by carbon tamping.
  • the convex structure on each cathode carbon block in the convex aluminum cathode electrolytic cell is a lateral convex structure, and the distance between adjacent lateral convex structures on the same cathode carbon block is 300 ⁇ 500 mm; two adjacent cathode carbons
  • the lateral raised structures on the blocks are staggered.
  • the cross-section of the lateral convex structure of the cathode carbon block 4 is as shown in FIG. 11, the transverse convex structure has a trapezoidal cross section, the upper surface portion has a width of 150 to 250 mm, and the lower portion and the carbon block base portion have a width of 200 to 300 mm, and the length is The cathode carbon block has the same width.
  • the method for preparing the cathode carbon block of the convex structure is as follows: using the current material for preparing the cathode carbon block, forming a green material of a desired shape by vibration molding, and then firing it; or first forming a rectangular parallelepiped by vibration molding. The billet, after calcination, is machined to the desired shape.
  • the novel cathode structure aluminum electrolysis cell having the longitudinal and transverse wave-reducing functions is subjected to roasting by flame roasting or first flame aluminum liquid roasting to carry out roasting of the novel cathode structure aluminum electrolysis cell with longitudinal and transverse wave-reducing functions of the present invention.
  • the electrolysis cell is started up in accordance with the current electrolysis cell start-up method.
  • the level of the aluminum liquid in the electrolysis cell is calculated from the upper surface of the convex structure, and its height is 10 to 50 mm after the aluminum is discharged, and the pole pitch of the electrolytic cell in the normal production is 25 ⁇ 40mm, the slot voltage is 3.3 ⁇ 3.9 volts.
  • the aluminum oxide electrolyte precipitation tank on the carbon paste is filled with a portion of powdered alumina and powdered cryolite. At the electrolysis temperature, the cryolite melts and closes the groove. Cracks and cracks in the base paste prevent the aluminum liquid from entering the bottom of the groove from these cracks and cracks, melting the cathode steel rod, causing the electrolytic cell to break.
  • the novel cathode structure aluminum electrolysis cell with longitudinal and lateral wave-reducing functions of the invention has stable liquid level of metal aluminum during operation, low power consumption and significantly improved service life.
  • the new cathode structure aluminum electrolytic cell with longitudinal and transverse wave-reducing functions is shown in Fig. 3 and Fig. 4.
  • the overall structure of the electrolytic cell is the same as that in the first embodiment, except that the convex structure on the cathode carbon block is a lateral convex structure.
  • the longitudinal convex structure is arranged in a mixed manner, and the lateral convex structure and the longitudinal convex structure on each cathode carbon block base are staggered, wherein the horizontal convex structure is one, and the length is the same as the width of the cathode carbon block base;
  • the length of the structure is arranged according to two convex structures arranged in the base of each cathode carbon block.
  • the distance between the bottom of the longitudinal convex structure at both ends and the ends of the cathode carbon block is 30 to 50 mm; wherein the same cathode carbon block
  • the distance between the adjacent lateral convex structure and the longitudinal convex structure is 30 to 100 mm.
  • the cross-section of the lateral convex structure of the cathode carbon block 4 is as shown in FIG. 12, the cross-section of the longitudinal convex structure is as shown in FIG. 14, and the cross-section of the convex structure is a rectangular trapezoidal mixture, and the width of the upper surface of each convex structure is 150 ⁇ 250mm, the connecting portion of the lower portion and the cathode carbon block base has a width of 200 ⁇ 300mm, the height of the convex structure is 80 ⁇ 160mm, and the height of the lower trapezoid is 1/3 or more of the total height of the convex structure.
  • the lateral convex structure located near the aluminum outlet is located at the center of the cathode carbon block, and the minimum distance from the outer side surface of the cathode carbon block is 200 to 300 mm: wherein the cathode carbon block is The outer side is the cathode carbon block Facing the side of the aluminum lining.
  • the carbon slag paste 6 between the cathode carbon block base and the cathode carbon block base has an alumina electrolyte precipitation tank having a depth of 30 to 60 mm, a width of 80 to 120 mm, and a length extending through the cathode carbon block and the cathode carbon block.
  • the sedimentation tank is filled with an alumina electrolyte precipitate during electrolytic production.
  • the working method of the novel cathode structure aluminum electrolytic cell having the longitudinal and transverse wave-reducing functions is the same as that in the first embodiment.
  • the new cathode structure aluminum electrolytic cell with longitudinal and transverse wave-reducing functions is shown in Fig. 5 and Fig. 6.
  • the overall structure of the electrolytic cell is the same as that in the first embodiment, except that the convex structure on the cathode carbon block is a mixed arrangement.
  • the convex structures on the cathode carbon block base are staggered according to the lateral convex structure and the longitudinal convex structure, wherein the lateral convex structures are three, the length is the same as the width of the cathode carbon block base; the longitudinal convex structure length is each
  • the cathode carbon block substrate is arranged in four convex structures, and the distance between the bottom of the longitudinal convex structure at both ends and the ends of the cathode carbon block is 30 ⁇ 50 mm on one cathode carbon block; wherein adjacent bumps on the same cathode carbon block The distance between the structures is 30 to 100 mm.
  • the cross-section of the longitudinal convex structure of the cathode carbon block 4 is as shown in FIG. 13, the cross-section of the lateral convex structure is as shown in FIG. 11, and the cross-section of the convex structure is trapezoidal, and the width of the upper surface of each convex structure is 150 ⁇ 250 mm.
  • the connecting portion of the lower portion and the cathode carbon block base has a width of 200 to 300 mm, and the height of the convex structure is 80 to 160 mm, wherein the upper surface of the lateral convex structure at the center of the cathode carbon block has a width of 150 to 200 mm.
  • the lateral convex structure located near the aluminum outlet is located at the center of the cathode carbon block, and the minimum distance from the outer side surface of the cathode carbon block is 200 to 300 mm: wherein the cathode carbon block is The outer side is the side of the cathode carbon block facing the lining of the aluminum slot.
  • the carbon slag paste 6 between the cathode carbon block base and the cathode carbon block base has an alumina electrolyte precipitation tank having a depth of 30 to 60 mm, a width of 80 to 120 mm, and a length extending through the cathode carbon block and the cathode carbon block.
  • the sedimentation tank is filled with an alumina electrolyte precipitate during electrolytic production.
  • the working method of the novel cathode structure aluminum electrolytic cell having the longitudinal and transverse wave-reducing functions is the same as that in the first embodiment.
  • the new cathode structure aluminum electrolytic cell with longitudinal and transverse wave-reducing functions is shown in Fig. 7 and Fig. 8.
  • the overall structure of the electrolytic cell is the same as that in the first embodiment, except that the convex structure on the cathode carbon block is a longitudinal convex structure.
  • the longitudinal convex structure is located in the middle of the top surface of the cathode carbon block base.
  • There are two longitudinal convex structures, and the longitudinal convex structure at both ends has a distance of 30 ⁇ 50mm between the two ends of the cathode carbon block, and the distance between adjacent longitudinal convex structures on the same cathode carbon block is 100 ⁇ 200mm.
  • the longitudinal convex structure of the cathode carbon block 4 is as shown in FIG. 14 , and the cross section is a trapezoidal rectangular mixture, and the width of the upper surface portion is 150 ⁇ 250mm, the connecting portion of the lower part and the carbon block base is 200 ⁇ 300mm, the height of the convex structure is 80 ⁇ 160mm, and the height of the lower trapezoid is 1/3 or more of the total height of the convex structure.
  • the longitudinal convex structures are located on both sides of the center of the cathode carbon block base, and the gap between the two longitudinal convex structures faces the aluminum port.
  • the carbon slag paste 6 between the cathode carbon block base and the cathode carbon block base has an alumina electrolyte precipitation tank having a depth of 30 to 60 mm, a width of 80 to 120 mm, and a length extending through the cathode carbon block and the cathode carbon block. The seam between.
  • the sedimentation tank is filled with an alumina electrolyte precipitate during electrolytic production.
  • the working method of the novel cathode structure aluminum electrolytic cell having the longitudinal and transverse wave-reducing functions is the same as that in the first embodiment.
  • the novel cathode structure aluminum electrolytic cell with longitudinal and transverse wave-reducing functions is shown in Fig. 9 and Fig. 10.
  • the overall structure of the electrolytic cell is the same as that in the first embodiment, except that the convex structure on the cathode carbon block is a mixed arrangement, wherein The lateral convex structure is one, the length is the same as the width of the cathode carbon block base; the longitudinal convex structure length is arranged according to the four convex structures of each cathode carbon block base, arranged in two rows, each two juxtaposed longitudinal convex
  • the structure is a group, and a total of two sets of longitudinal convex structures, each set of longitudinal convex structures and one lateral convex structure are staggered.
  • each cathode carbon block There are 5 convex structures on the base of each cathode carbon block, and the longitudinal convex structure at both ends has a distance of 30 ⁇ 50 mm between the two ends of the cathode carbon block, and the lateral convex structure and each set of longitudinal convex structures The distance is 30 ⁇ 100mm.
  • the raised structure at the intermediate position of the cathode carbon block is a laterally convex structure.
  • the minimum distance between the lateral convex structure at the aluminum outlet end and the outer side surface of the cathode carbon block base is 200 to 300 mm; wherein the outer side surface of the cathode carbon block substrate is the side surface of the cathode carbon block facing the aluminum outlet groove lining.
  • the longitudinal convex structure of the cathode carbon block is as shown in FIG. 16, and the lateral convex structure is as shown in FIG. 12, the cross section is a trapezoidal rectangular mixture, and the upper surface portion of the longitudinal convex structure has a width of 80 to 120 mm, and the horizontal convex structure is horizontal.
  • the upper surface of the cross-section has a width of 150 to 200 mm, the height of the longitudinal convex structure and the lateral convex structure is 80 to 160 mm, the distance between each set of longitudinal convex structures is 30 to 100 mm, and the height of the lower trapezoid is the total height of the convex structure. More than 1/3.
  • the working method of the novel cathode structure aluminum electrolytic cell having the longitudinal and transverse wave-reducing functions is the same as that in the first embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

具有纵向和横向减波功能的新型阴极结构铝电解槽
技术领域
本发明属于铝电解技术领域,特别涉一种具有纵向和横向减波功能的新型阴极结构铝电 解槽。
背景技术
目前, 工业上的纯铝主要是用冰晶石一氧化铝熔盐电解的方法生产的。 其专用设备为内 衬有炭质材料的电解槽。 此电解槽的钢制外壳与炭质内衬之间为耐火材料和保温砖。 电解槽 的炭质内衬一般由炭砖 (或块) 砌筑而成, 炭砖 (或块) 的材质为具有较好的抗钠和电解质 腐蚀性能的无烟煤或石墨质材料, 或两者的混合物。 在它们之间的连接处用上述炭素材料制 成的炭糊进行捣固。 在电解槽底部炭块的底部安置有钢棒, 并伸出电解槽的槽壳之外, 此钢 棒常称为电解槽的阴极钢棒。 在电解槽的上方悬挂有用石油焦制成的炭质阳极, 电解槽的阳 极之上安置有金属制成的阳极导杆, 通过此阳极导杆可以将电流导入, 在炭质阴极和电解槽 的炭质阳极之间为温度在 940〜970°C的冰晶石一氧化铝电解质熔体和熔融的金属铝液。 此金 属铝液和电解质熔体是互不相溶的, 且铝的密度大于电解质熔体的密度, 因此铝在电解质熔 体的下面与炭阴极接触。 当直流电流从电解槽的炭质阳极导入, 从炭质阴极导出时, 由于电 解质熔体是离子导电体, 便使溶解有氧化铝的冰晶石熔体在两极发生电化学反应。 此反应的 结果是含氧离子在阳极上放电所生成的氧与炭阳极上的炭反应, 其电解产物以 C02的形式从 阳极表面逸出。 含铝的离子在阴极上放电, 从阴极上获得 3个电子, 生成金属铝。 此阴极反 应是在电解槽中的金属铝液表面进行的。 电解槽阴极表面与炭阳极底面之间的距离称为电解 槽的极距。 通常在工业铝电解槽中, 电解槽的极距为 4〜5cm。 极距在通常的工业铝电解生产 中是一个非常重要的工艺和技术参数, 太高或太低的极距都对铝电解生产影响, 这是因为: 太低的极距会增加从阴极表面溶解到电解质熔体中的金属铝与阳极气体的二次反应, 使 电流效率降低;
太高的极距会增加电解槽的槽电压, 使铝电解生产的直流电耗增加。
作为铝电解生产来说, 希望电解槽有最高的电流效率和最低的电能消耗, 铝电解生产中, 其直流电耗可以用如下公式来表示:
W (度电 /吨铝) =2980 XV /CE ( 1 )
式中: V 为电解槽的平均槽电压 (伏), CE为电解槽的电流效率 (%)
从上式可以看出, 为了降低铝电解生产的电能消耗, 可以通过提高电解槽的电流效率和 降低电解槽的平均槽电压来实现。 电解槽的槽电压降低 0.1伏, 可使电解槽的直流电耗降低 320度电 /吨铝左右。 而电解槽 的电流效率每提高 1 %, 可使直流电耗降低 150度电 /吨铝左右。 可见, 在不影响电解槽电流 效率的情况下, 降低槽电压对铝电解生产的意义极其的重大。 如果既能降低槽电压, 又能提 高电解槽的电流效率, 那么对降低铝电解生产直流电耗的意义更大。
电解槽的极距是决定槽电压大小的重要工艺和技术参数, 就目前的工业电解槽而言, 其 极距每降低 lmm, 约使槽电压降低 35mV左右, 从 (1 ) 式可以看出, 在不降低电解槽电流 效率的情况下, 它可以使铝电解生产的直流电耗每吨铝降低 100多度电。 由此可见, 在不影 响电流效率的情况下, 降低极距, 对铝电解生产的电能消耗意义重大。 通常工业铝电解槽的 极距在 4.0〜5.0cm, 其大小是用一个带勾的 cpl5mm左右的冷钢纤竖直伸入电解槽的电解质熔 体中并垂直地勾在阳极底掌面上约一分钟左右后, 从电解槽中提出, 利用铝与电解质的分界 面, 观测出铝液面与阳极底掌面之间的距离, 因此用这种方法测出的极距并非是电解槽的真 正极距, 这是因为电解槽内的金属铝液面受电解槽内电磁场力和阳极气体从阳极逸出时, 对 金属铝液面作用产生波动。 有文献报导, 电解槽阴极铝液面波峰高度约在 2.0cm左右。 假如 电解槽没有铝液波动, 那么电解槽可在 2.0〜3.0cm的极距下进行电解生产。 这样, 可使槽电 压降低 0.7〜1.0伏, 从而达到使电解槽节电 2000〜3000度电 /吨铝的目标。
基于这种理论, 冯乃祥发明了一种其阴极炭块表面沿炭块的纵向方向, 即系列电流方向 相一致的方向, 具有突起墙体的阴极炭块, 及其由这种阴极炭块所砌成的一种异型阴极炭块 结构铝电解槽。 这种电解槽已在重庆天泰铝业大型电解槽上进行试验, 试验电解槽的槽电压 由原来的 4.1伏降低到 3.8伏, 取得了明显的节电效果。但试验结果也发现: (1 )这种电解槽 的阴极结构具有能消减来自电解槽纵向方向, 即与系列电流相垂直方向铝液波动的功能, 但 不能消减来自电解槽横向方向铝液的波动。 (2 ) 阴极炭块表面凸起的墙体与阴极炭块基体相 结合的地方应力差较大, 凸起容易在此处断裂, 断裂的突起容易给电解槽的操作带来影响, 并降低电解槽寿命。
发明内容
针对上述的异型阴极炭块结构铝电解槽的不足和所存在的问题, 本发明提供一种具有纵 向和横向减波功能的新型阴极结构铝电解槽。
本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽包括电解槽槽壳、保温材料、 底部耐火砖和保温砖、 阴极炭块、 侧部碳砖、 炭素捣固糊、 耐火混凝土和阴极钢棒。 其中阴 极炭块的顶面带有一个以上凸起结构, 每个凸起结构与阴极炭块连成一体, 各凸起结构的排 列方式为平行阴极炭块轴向、 垂直阴极炭块轴向或者两者混合排列, 其中垂直于阴极炭块轴 向的凸起结构为横向凸起结构, 平行于阴极炭块轴向的凸起结构为纵向凸起结构。
凸起结构阴极炭块的材质与传统的电解槽阴极炭块相同, 由无烟煤、 人造石墨碎或者无 烟煤和人造石墨碎的混和料制成, 或者是石墨化或半石墨化的阴极炭块。
凸起结构横截面为梯形或矩形梯形混合体, 其中横截面为矩形梯形混合体时, 矩形在梯 形的上面。
阴极炭块上的凸起结构的横截面宽度根据阴极炭块基体的宽度设置, 在阴极炭块基体的 宽度为 400mm 的情况下, 横向凸起结构横截面的上部宽度为 150〜250mm, 下部的宽度为 200〜300mm; 纵向凸起结构分为单行排列和双行排列, 单行排列时, 纵向凸起结构横截面的 上部宽度为 150〜250mm, 下部的宽度为 200〜300mm; 双行排列时, 纵向凸起结构横截面的 上部宽度为 80〜120mm; 纵向凸起结构横截面的高度为 80〜160mm, 在阴极炭块基体宽度增 加的情况下, 凸起结构的横截面尺寸按比例增加。
当阴极炭块上的凸起结构全部为横向凸起结构时, 相邻的两个阴极炭块上的各个横向凸 起结构相互交错, 横向凸起结构的长度与阴极炭块基体的宽度相同或小于炭块基体宽度 40〜60mm; 同一阴极炭块上相邻横向凸起结构之间的最小距离为 300〜500mm; 最靠近出铝口 的阴极炭块上中间位置为两个横向凸起结构之间的空隙。
当阴极炭块上的凸起结构全部为纵向凸起结构时, 各个纵向凸起结构的轴线与阴极炭块 基体的轴向平行, 其长度按每个阴极炭块排列不少于两个纵向凸起结构设置, 且位于两端的 纵向凸起结构底部与阴极炭块两端的距离为 30〜50mm; 纵向凸起结构位于阴极炭块基体中心 的两侧, 中间的两个纵向凸起结构之间的空隙正对出铝口, 同一阴极炭块上相邻的纵向凸起 结构之间的最小距离为 100〜200mm。
当阴极炭块上的凸起结构的排列方式为混合排列时, 横向凸起结构与纵向凸起结构高度 一致, 横向凸起结构与纵向凸起结构之间的距离为 30〜100mm; 位于阴极炭块基体中间位置 的凸起结构为横向凸起结构, 在与出铝口最靠近的阴极炭块上, 位于出铝口附近的横向凸起 结构与阴极炭块基体外侧面的最小距离为 30〜300mm; 阴极炭块基体的外侧面为该阴极炭块 面向出铝口槽内衬的侧面。 其中混合排列的横向凸起结构和纵向凸起结构分为间断设置和连 续设置, 间断设置时, 横向凸起结构和纵向凸起结构之间的距离为 30〜100m, 连续设置时, 横向凸起结构和纵向凸起结构连接在一起。
当阴极炭块上的凸起结构的排列方式为混合排列时, 纵向凸起结构分为单行排列和双行 排列, 单行排列时, 每个阴极炭块上的纵向凸起结构和横向凸起结构交错排列; 双行排列时, 每个阴极炭块上的每两个并列的纵向凸起结构为一组, 每组纵向凸起结构和每个横向凸起结 构交错排列, 一组凸起结构之间的最小距离为 30〜100mm。 其中混合排列的横向凸起结构和 纵向凸起结构分为间断设置和连续设置, 间断设置时, 横向凸起结构和纵向凸起结构之间的 距离为 30〜100mm, 连续设置时, 横向凸起结构和纵向凸起结构连接在一起。
位于出铝口附近的阴极炭块设置可保证出铝口操作方便。
本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽结构中, 凸起结构阴极炭块 的制作方法为: 采用现行的制作阴极炭块的材料, 用振动成型的方法制作成所需形状的生坯 料, 然后经焙烧制得; 或者先用振动成型的方法制作长方体坯料, 再进行焙烧后, 用机械加 工制成所需形状。
本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽结构为: 电解槽槽壳内的侧 部为侧部碳砖, 电解槽内的槽底阴极由不少于 8个表面具有凸起结构的阴极炭块构成, 相邻 阴极炭块的之间留有 20〜40mm的缝隙, 其间用炭素捣固糊捣固; 侧部碳砖之下, 底部耐火砖 和保温砖之上用耐火混凝土捣固, 在侧部碳砖与阴极炭块之间用炭素捣固糊捣固; 在阴极炭 块的下面连接阴极钢棒, 此阴极钢棒的两端伸出电解槽槽壳之外, 用作电解槽的阴极。
由于本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽在其槽底内衬上采用了 其表面具有凸起结构的阴极炭块, 此阴极炭块下部非凸起结构的炭块基体的宽度大于上面凸 起结构的宽度, 且炭素捣固糊只捣固在阴极炭块的非凸起结构的基体之间, 因此在电解槽的 底部出现了由上表面具有凸起的阴极炭块的凸起结构所形成的一排排凸起结构, 这些凸起结 构是电解槽阴极炭块的组成部分。
本发明中侧部碳砖材质为无烟煤、 人造石墨碎、 无烟煤与人造石墨碎的混和料或者炭化 硅材料。
本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽中, 在相邻的两个阴极炭块 之间设置沉淀槽, 沉淀槽设置的方式为: 在阴极炭块基体上表面的两个侧边设置角形沟槽, 相邻的两个阴极炭块上相对的两个角形沟槽与炭素捣固糊的顶面共同形成凹形沉淀槽, 在电 解生产中沉淀槽内填充由冰晶石和氧化铝组成的沉淀物防止铝液熔化阴极钢棒, 角形沟槽相 对于阴极炭块基体的上表面深度为 20〜50mm, 宽度为 20〜50mm, 长度与阴极炭块长度一致; 沉淀槽深度为 20〜50mm, 宽度为 80〜140mm。
本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽的结构同现行工业铝电解槽 相似, 所不同的是在电解槽底部阴极炭块的形状与结构上与现行电解槽截然不同, 除此之外, 具有纵向和横向减波功能的新型阴极结构铝电解槽其侧部和底部较比现行的电解槽具有更好 的保温设计。 采用本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽生产金属铝的方法如 下:
1、 提供具有纵向和横向减波功能的新型阴极结构铝电解槽;
2、 用火焰焙烧或先火焰后铝液焙烧的焙烧方法实施对本发明的具有纵向和横向减波功 能的新型阴极结构铝电解槽焙烧, 焙烧终了时按与现行的电解槽启动方法启动电解槽。
3、 在电解槽启动后的正常生产技术管理中, 电解槽中的铝液水平从凸起结构的上表面 算起,其高度在出铝后为 10〜50mm。正常的生产中电解槽的极距为 25〜40mm,槽电压为 3.3〜3.9 伏。
4、 在电解过程中, 阴极炭块基体之间炭素捣固糊上面的氧化铝电解质沉淀槽中, 充满 主要由冰晶石和氧化铝组成的沉淀物, 此沉淀物在电解温度下熔化封闭烧结后的炭素捣固糊 之间的裂缝, 可以防止铝液熔化阴极钢棒, 导致电解槽破损。 除次以外, 在正常生产中, 本 发明提供的具有纵向和横向减波功能的新型阴极结构铝电解槽所有的其它工艺和技术条件与 现行的阴极结构的铝电解槽均相同, 这些技术条件是: 电解质水平 15〜25cm, 电解质分子比 2.0-2.8, 氧化铝浓度 1.5〜5%, 电解质温度 935〜975°C。
在上述的工艺技术条件下, 在电解槽阴极上所发生的电解反应为:
Al3+(络合的 )+3e=Al。
采用本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽可以减缓电解槽内阴极 铝液的流动速度和降低铝液纵向的和横向的波动高度, 达到提高铝电解槽的金属铝液面的稳 定性, 减少铝的溶解损失, 提高电流效率和减少极距, 降低槽电压和铝电解生产电能消耗, 以及能提高凸起的墙体与基体之间相连接处的强度, 减少其破损, 提高其使用寿命的目的。 凸起结构的梯形或梯形矩形混合体的设置方式可以保证凸起结构有足够的强度。 本发明具有 良好的应用前景。
附图说明
图 1为本发明实施例 1的具有纵向和横向减波功能的新型阴极结构铝电解槽示意图; 图 2为图 1的 B-B面示意图;
图 3为本发明实施例 2的具有纵向和横向减波功能的新型阴极结构铝电解槽示意图; 图 4为图 3的 B-B面示意图;
图 5为本发明实施例 3的具有纵向和横向减波功能的新型阴极结构铝电解槽示意图; 图 6为图 5的 B-B面示意图;
图 7为本发明实施例 4的具有纵向和横向减波功能的新型阴极结构铝电解槽示意图; 图 8为图 7的 B-B面示意图;
图 9为本发明实施例 5的具有纵向和横向减波功能的新型阴极结构铝电解槽示意图; 图 10为图 9的 B-B面示意图;
图 11为本发明实施例中梯形横向凸起结构横截面示意图;
图 12为本发明实施例中梯形矩形混合体横向凸起结构横截面示意图;
图 13为本发明实施例中单行排列梯形纵向凸起结构横截面示意图;
图 14为本发明实施例中单行排列梯形矩形混合体纵向凸起结构横截面示意图; 图 15为本发明实施例中双行排列梯形纵向凸起结构横截面示意图;
图 16为本发明实施例中双行排列梯形矩形混合体纵向凸起结构横截面示意图; 图中 1、 电解槽槽壳, 2、 保温材料, 3、 底部耐火砖和保温砖, 4、 阴极炭块, 5、 侧部 碳砖, 6、 炭素捣固糊, 7、 耐火混凝土, 8、 阴极钢棒。
具体实 式
实施例 1
采用的具有纵向和横向减波功能的新型阴极结构铝电解槽如图 1和图 2所示, 该铝电解 槽的外面是一个钢制的电解槽槽壳 1 ; 电解槽槽壳 1 的保温材料 2为石棉板, 在保温材料 2 的底部石棉板之上铺设底部耐火砖和保温砖 3 ; 在底部耐火砖和保温砖 3之上为上表面具有 凸起结构的阴极炭块 4和阴极钢棒 8。
电解槽内的侧部为侧部碳砖 5, 电解槽内的槽底阴极内衬由不少于 8个底部安装有阴极 钢棒 8的带有凸起结构的阴极炭块 4构成, 每个阴极炭块 4横放在电解槽中, 即阴极炭块 4 的长度方向与电解槽的长度方向垂直,相邻阴极炭块 4的之间留有 20〜40mm的缝隙,其间用 炭素捣固糊 6捣固。侧部碳砖 5之下,底部耐火材料和保温材料 3之上用耐火混凝土 7捣固, 在侧部碳砖 5与阴极炭块 4之间用炭素捣固糊 6捣固。 在阴极炭块 4的下面有槽, 用于安装 阴极钢棒 8, 阴极钢棒 8的两端伸出电解槽槽壳 1之外, 用作电解槽的阴极。
凸起结构阴极铝电解槽中每个阴极炭块上的凸起结构为横向凸起结构, 同一阴极炭块上 相邻横向凸起结构之间的距离为 300〜500mm; 相邻两个阴极炭块上的横向凸起结构交错设 置。
阴极炭块 4的横向凸起结构横截面如图 11所示, 横向凸起结构横截面为梯形, 上表面部 分宽度为 150〜250mm, 下部与炭块基体连接部分宽度为 200〜300mm, 长度与阴极炭块基体 宽度相同。
其中在与出铝口最靠近的阴极炭块上, 出铝口正对两个横向凸起结构之间的空隙。 凸起结构阴极炭块的制作方法为: 采用现行的制作阴极炭块的材料, 用振动成型的方法 制作成所需形状的生坯料, 然后经焙烧制得; 或者先用振动成型的方法制作长方体坯料, 再 进行焙烧后, 用机械加工的制成所需形状。
采用该具有纵向和横向减波功能的新型阴极结构铝电解槽, 用火焰焙烧或先火焰后铝液 焙烧的焙烧方法实施对本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽焙烧, 焙 烧终了时按与现行的电解槽启动方法启动电解槽。
在电解槽启动后的正常生产技术管理中, 电解槽中的铝液水平从凸起结构的上表面算 起,其高度在出铝后为 10〜50mm,正常的生产中电解槽的极距为 25〜40mm,槽电压为 3.3〜3.9 伏。
铝电解槽的底表面两个阴极炭块基体之间炭素捣固糊上面的氧化铝电解质沉淀槽中, 填 充部分粉状氧化铝和粉状冰晶石, 在电解温度下, 冰晶石熔化而封闭槽底糊中的裂纹和裂缝, 防止铝液从这些裂纹和裂缝中进入槽底, 熔化阴极钢棒, 导致电解槽破损。 除上述所指出的 两点外, 在正常生产中, 本发明提供的具有纵向和横向减波功能的新型阴极结构铝电解槽所 有的其它工艺和技术条件与现行的阴极结构的铝电解槽均相同, 这些技术条件是: 电解质水 平 15〜25cm, 电解质分子比 2.0〜2.8, 氧化铝浓度 1.5〜5%, 电解质温度 935〜975 °C。
通过测试, 本发明的具有纵向和横向减波功能的新型阴极结构铝电解槽在工作时金属铝 液面稳定, 电能消耗低, 使用寿命明显提高。
实施例 2
采用的具有纵向和横向减波功能的新型阴极结构铝电解槽如图 3和图 4所示, 电解槽整 体结构同实施例 1, 不同点在于阴极炭块上的凸起结构为横向凸起结构和纵向凸起结构混合 排列, 每个阴极炭块基体上的横向凸起结构和纵向凸起结构交错排列, 其中横向凸起结构为 1个, 长度与阴极炭块基体的宽度相同; 纵向凸起结构长度按每个阴极炭块基体排列 2个凸 起结构设置, 在一个阴极炭块上, 位于两端的纵向凸起结构底部与阴极炭块两端的距离为 30〜50mm;其中同一阴极炭块上相邻横向凸起结构和纵向凸起结构之间的距离为 30〜100mm。
阴极炭块 4的横向凸起结构横截面如图 12所示, 纵向凸起结构横截面如图 14所示, 凸 起结构横截面为矩形梯形混合体, 每个凸起结构的上表面宽度为 150〜250mm, 其下部与阴极 炭块基体相连接部分的宽度为 200〜300mm, 凸起结构的高度为 80〜160mm, 下部梯形的高度 为凸起结构总高度的 1/3以上。
在与出铝口最靠近的阴极炭块上, 位于出铝口附近的横向凸起结构位于阴极炭块中心, 与阴极炭块基体外侧面的最小距离为 200〜300mm: 其中阴极炭块基体的外侧面为该阴极炭块 面向出铝口槽内衬的侧面。
阴极炭块基体与阴极炭块基体之间的炭素捣固糊 6上面有一个氧化铝电解质的沉淀槽, 沉淀槽深为 30〜60mm, 宽 80〜120mm, 长度贯通于阴极炭块与阴极炭块之间的接缝。 沉淀槽 沟在电解生产过程中被氧化铝电解质沉淀填充。
采用该具有纵向和横向减波功能的新型阴极结构铝电解槽工作方法同实施例 1。
实施例 3
采用的具有纵向和横向减波功能的新型阴极结构铝电解槽如图 5和图 6所示, 电解槽整 体结构同实施例 1, 不同点在于阴极炭块上的凸起结构为混合排列, 每个阴极炭块基体上的 凸起结构按横向凸起结构和纵向凸起结构交错排列, 其中横向凸起结构为 3个, 长度与阴极 炭块基体的宽度相同; 纵向凸起结构长度按每个阴极炭块基体排列 4个凸起结构设置, 在一 个阴极炭块上, 且位于两端的纵向凸起结构底部与阴极炭块两端的距离为 30〜50mm; 其中同 一阴极炭块上相邻凸起结构之间的距离为 30〜100mm。
阴极炭块 4的纵向凸起结构横截面如图 13所示, 横向凸起结构横截面如图 11所示, 凸 起结构横截面为梯形, 每个凸起结构的上表面宽度为 150〜250mm, 其下部与阴极炭块基体相 连接部分的宽度为 200〜300mm, 凸起结构的高度为 80〜160mm, 其中位于阴极炭块中心位置 的横向凸起结构的上表面宽度为 150〜200mm。
在与出铝口最靠近的阴极炭块上, 位于出铝口附近的横向凸起结构位于阴极炭块中心, 与阴极炭块基体外侧面的最小距离为 200〜300mm: 其中阴极炭块基体的外侧面为该阴极炭块 面向出铝口槽内衬的侧面。
阴极炭块基体与阴极炭块基体之间的炭素捣固糊 6上面有一个氧化铝电解质的沉淀槽, 沉淀槽深为 30〜60mm, 宽 80〜120mm, 长度贯通于阴极炭块与阴极炭块之间的接缝。 沉淀槽 沟在电解生产过程中被氧化铝电解质沉淀填充。
采用该具有纵向和横向减波功能的新型阴极结构铝电解槽工作方法同实施例 1。
实施例 4
采用的具有纵向和横向减波功能的新型阴极结构铝电解槽如图 7和图 8所示, 电解槽整 体结构同实施例 1, 不同点在于阴极炭块上的凸起结构为纵向凸起结构, 且纵向凸起结构位 于阴极炭块基体的顶面正中。 每个纵向凸起结构为 2个, 位于两端的纵向凸起结构与阴极炭 块两端之间有 30〜50mm 的距离, 同一阴极炭块上相邻纵向凸起结构之间的距离为 100〜200mm。
阴极炭块 4的纵向凸起结构如图 14所示, 横截面为梯形矩形混合体, 上表面部分宽度为 150〜250mm, 下部与炭块基体连接部分宽度为 200〜300mm, 凸起结构的高度为 80〜160mm, 下部梯形的高度为凸起结构总高度的 1/3以上。
纵向凸起结构位于阴极炭块基体中心的两侧,两个纵向凸起结构之间的空隙正对出铝口。 阴极炭块基体与阴极炭块基体之间的炭素捣固糊 6上面有一个氧化铝电解质的沉淀槽, 沉淀槽深为 30〜60mm, 宽 80〜120mm, 长度贯通于阴极炭块与阴极炭块之间的接缝。 沉淀槽 沟在电解生产过程中被氧化铝电解质沉淀填充。
采用该具有纵向和横向减波功能的新型阴极结构铝电解槽工作方法同实施例 1。
实施例 5
采用的具有纵向和横向减波功能的新型阴极结构铝电解槽如图 9和图 10所示,电解槽整 体结构同实施例 1, 不同点在于阴极炭块上的凸起结构为混合排列, 其中横向凸起结构为 1 个, 长度与阴极炭块基体的宽度相同; 纵向凸起结构长度按每个阴极炭块基体排列 4个凸起 结构设置, 按双行排列, 每两个并列的纵向凸起结构为一组, 共两组纵向凸起结构, 每组纵 向凸起结构与 1个横向凸起结构交错排列。
每个阴极炭块基体上的凸起结构为 5个, 位于两端的纵向凸起结构与阴极炭块两端之间 有 30〜50mm的距离, 横向凸起结构与每组纵向凸起结构之间的距离为 30〜100mm。
位于阴极炭块中间位置的凸起结构为横向凸起结构。 位于出铝口端的横向凸起结构与阴 极炭块基体外侧面的最小距离为 200〜300mm; 其中阴极炭块基体的外侧面为该阴极炭块面向 出铝口槽内衬的侧面。
阴极炭块的纵向凸起结构如图 16所示, 横向凸起结构如图 12所示, 横截面为梯形矩形 混合体, 纵向凸起结构上表面部分宽度为 80〜120mm, 横向凸起结构横截面上表面宽度为 150〜200mm, 纵向凸起结构和横向凸起结构的高度为 80〜160mm, 每组纵向凸起结构之间的 距离为 30〜100mm, 下部梯形的高度为凸起结构总高度的 1/3以上。
采用该具有纵向和横向减波功能的新型阴极结构铝电解槽工作方法同实施例 1。

Claims

权利要求
1、 一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 包括电解槽槽壳、 电解槽 内衬、 耐火材料、 阴极炭块、 内衬碳砖、 炭素捣固糊、 耐火混凝土和阴极碳棒, 其特征在于: 阴极炭块的顶面带有一个以上凸起结构, 每个凸起结构与阴极炭块连成一体, 各凸起结构的 排列方式为平行阴极炭块轴向、 垂直阴极炭块轴向或者两者混合排列, 其中垂直于阴极炭块 轴向的凸起结构为横向凸起结构, 平行于阴极炭块轴向的凸起结构为纵向凸起结构。
2、 根据权利要求 1 所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特 征在于所述的凸起结构横截面为梯形或矩形梯形混合体, 其中横截面为矩形梯形混合体时, 矩形在梯形的上面。
3、 根据权利要求 1 所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特 征在于所述的阴极炭块上的凸起结构的横截面宽度根据阴极炭块基体的宽度设置, 在阴极炭 块基体的宽度为 400mm的情况下, 横向凸起结构横截面的上部宽度为 150〜250mm, 下部的 宽度为 200〜300mm; 纵向凸起结构分为单行排列和双行排列, 单行排列时, 纵向凸起结构横 截面的上部宽度为 150〜250mm, 下部的宽度为 200〜300mm; 双行排列时, 纵向凸起结构横 截面的上部宽度为 80〜120mm; 纵向凸起结构横截面的高度为 80〜160mm, 在阴极炭块基体 宽度增加的情况下, 凸起结构的横截面尺寸按比例增加。
4、根据权利要求 1所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特征 在于当阴极炭块上的凸起结构全部为横向凸起结构时, 相邻的两个阴极炭块上的各个横向凸 起结构相互交错, 横向凸起结构的长度与阴极炭块基体的宽度相同或小于炭块基体宽度 40〜60mm; 同一阴极炭块上相邻横向凸起结构之间的最小距离为 300〜500mm; 最靠近出铝口 的阴极炭块上中间位置为两个横向凸起结构之间的空隙。
5、根据权利要求 1所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特征 在于当阴极炭块上的凸起结构全部为纵向凸起结构时, 各个纵向凸起结构的轴线与阴极炭块 基体的轴向平行, 其长度按每个阴极炭块排列不少于两个纵向凸起结构设置, 且位于两端的 纵向凸起结构底部与阴极炭块两端的距离为 30〜50mm; 纵向凸起结构位于阴极炭块基体中心 的两侧, 中间的两个纵向凸起结构之间的空隙正对出铝口, 同一阴极炭块上相邻的纵向凸起 结构之间的最小距离为 100〜200mm。
6、 根据权利要求 1所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特征 在于当阴极炭块上的凸起结构的排列方式为混合排列时, 横向凸起结构与纵向凸起结构高度 一致, 横向凸起结构与纵向凸起结构之间的距离为 30〜100mm; 位于阴极炭块基体中间位置 的凸起结构为横向凸起结构, 在与出铝口最靠近的阴极炭块上, 位于出铝口附近的横向凸起 结构与阴极炭块基体外侧面的最小距离为 200〜300mm; 阴极炭块基体的外侧面为该阴极炭块 面向出铝口槽内衬的侧面; 其中混合排列的横向凸起结构和纵向凸起结构分为间断设置和连 续设置, 间断设置时, 横向凸起结构和纵向凸起结构之间的距离为 30〜100mm, 连续设置时, 横向凸起结构和纵向凸起结构连接在一起。
7、根据权利要求 1所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特征 在于当阴极炭块上的凸起结构的排列方式为混合排列时, 纵向凸起结构分为单行排列和双行 排列, 单行排列时, 每个阴极炭块上的纵向凸起结构和横向凸起结构交错排列; 双行排列时, 每个阴极炭块上的凸起结构为四个纵向凸起结构和一个横向凸起结构, 每个阴极炭块上的两 个并列的纵向凸起结构为一组, 每两组纵向凸起结构和位于阴极炭块正中的横向凸起结构交 错排列, 一组凸起结构之间的最小距离为 30〜100mm; 其中混合排列的横向凸起结构和纵向 凸起结构分为间断设置和连续设置, 间断设置时, 横向凸起结构和纵向凸起结构之间的距离 为 30〜100mm, 连续设置时, 横向凸起结构和纵向凸起结构连接在一起。
8、 根据权利要求 1 所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特 征在于所述的电解槽槽壳内的侧部为侧部碳砖, 电解槽内的槽底阴极由不少于 8个具有凸起 结构的阴极炭块构成, 相邻阴极炭块的之间留有 20〜40mm的缝隙, 其间用炭素捣固糊捣固, 侧部的内衬碳砖之下, 底部耐火砖和保温砖之上用耐火混凝土捣固, 在侧部碳砖与阴极炭块 之间用炭素捣固糊捣固; 在阴极炭块的下面连接阴极钢棒, 此阴极钢棒的两端伸出电解槽槽 壳之外, 用作电解槽的阴极; 在相邻的两个阴极炭块之间设置沉淀槽, 沉淀槽设置的方式为: 在阴极炭块基体上表面的两个侧边设置角形沟槽, 相邻的两个阴极炭块上相对的两个角形沟 槽与炭素捣固糊的顶面共同形成凹形沉淀槽, 在电解生产中沉淀槽内填充由冰晶石和氧化铝 组成的沉淀物防止铝液熔化阴极钢棒, 角形沟槽相对于阴极炭块基体的上表面深度为 20〜50mm, 宽度为 20〜50mm, 长度与阴极炭块长度一致; 沉淀槽深度为 20〜50mm, 宽度为 80〜140mm。
9、 根据权利要求 1 所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特 征在于所述的具有纵向和横向减波功能的新型阴极结构铝电解槽在正常生产时, 电解槽中所 有阴极表面的凸起结构都要浸没于铝液中, 铝液的上面为电解质熔体, 铝液面的高度要高于 凸起的上表面在出铝后为 10〜50mm; 电解槽的工作电压在 3.3〜3.9伏。
10、 根据权利要求 1所述一种具有纵向和横向减波功能的新型阴极结构铝电解槽, 其特 征在于所述的具有纵向和横向减波功能的新型阴极结构铝电解槽的制作方法为: 采用现行的 制作阴极炭块的材料, 用振动成型的方法制作成所需形状的生坯料, 然后经焙烧制得; 或者 先用振动成型的方法制作长方体坯料, 再进行焙烧后, 用机械加工制成所需形状。
PCT/CN2009/000457 2008-10-10 2009-04-28 具有纵向和横向减波功能的新型阴极结构铝电解槽 WO2010040270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/991,870 US20110056826A1 (en) 2008-10-10 2009-04-28 Aluminum electrolytic cell with new type of cathode structure for shortening vertical fluctuations and horizontal fluctuations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810228017.7 2008-10-10
CN2008102280177A CN101413136B (zh) 2008-10-10 2008-10-10 具有纵向和横向减波功能的新型阴极结构铝电解槽

Publications (1)

Publication Number Publication Date
WO2010040270A1 true WO2010040270A1 (zh) 2010-04-15

Family

ID=40593866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000457 WO2010040270A1 (zh) 2008-10-10 2009-04-28 具有纵向和横向减波功能的新型阴极结构铝电解槽

Country Status (3)

Country Link
US (1) US20110056826A1 (zh)
CN (1) CN101413136B (zh)
WO (1) WO2010040270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534671A (zh) * 2012-03-08 2012-07-04 广西百色银海铝业有限责任公司 一种交叉配置异形阴极结构铝电解槽

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413136B (zh) * 2008-10-10 2010-09-29 沈阳北冶冶金科技有限公司 具有纵向和横向减波功能的新型阴极结构铝电解槽
CN101899679B (zh) * 2009-05-25 2013-11-20 贵阳铝镁设计研究院有限公司 一种铝电解槽的组合型阴极
CN101701344B (zh) * 2009-11-12 2011-08-31 沈阳北冶冶金科技有限公司 一种降低电解槽中铝液流速、减缓阴极磨损的方法
CN101724863B (zh) * 2009-12-30 2012-07-04 冯乃祥 一种能减缓阴极凸起磨蚀的铝电解槽
CN102115895B (zh) * 2009-12-31 2013-02-27 贵阳铝镁设计研究院有限公司 一种铝电解槽的阴极配置方法
CN102121117B (zh) * 2010-01-07 2015-04-08 贵阳铝镁设计研究院有限公司 铝电解槽阴极凸台结构
US8261492B2 (en) * 2010-04-20 2012-09-11 King Abdulaziz City for Science and Technology (KACST) Vibration resistant civil structure block for buildings
DE102011076302A1 (de) 2011-05-23 2013-01-03 Sgl Carbon Se Elektrolysezelle und Kathode mit unregelmäßiger Oberflächenprofilierung
DE102011086044A1 (de) * 2011-11-09 2013-05-16 Sgl Carbon Se Kathodenblock mit gewölbter und/oder gerundeter Oberfläche
DE102011086040A1 (de) * 2011-11-09 2013-05-16 Sgl Carbon Se Elektrolysezelle, insbesondere zur Herstellung von Aluminium, mit einer wannenförmigen Kathode
CN102965691B (zh) * 2012-12-18 2016-06-01 广西强强碳素股份有限公司 铝电解用燕尾式组合异型阴极
WO2017143697A1 (zh) * 2016-02-25 2017-08-31 沈阳北冶冶金科技有限公司 铝工业固体废料回收/石油焦高温脱硫装置及其使用方法
CN110760887B (zh) * 2019-11-27 2020-07-31 镇江慧诚新材料科技有限公司 氧铝联产电解用的电极结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683559A (en) * 1994-09-08 1997-11-04 Moltech Invent S.A. Cell for aluminium electrowinning employing a cathode cell bottom made of carbon blocks which have parallel channels therein
CN1392291A (zh) * 2001-06-18 2003-01-22 冯乃祥 一种铝电解槽阴极碳块及其制作方法
CN101054691A (zh) * 2007-03-02 2007-10-17 冯乃祥 一种异形阴极碳块结构铝电解槽
CN101260545A (zh) * 2008-04-23 2008-09-10 云南涌鑫金属加工有限公司 一种节能型铝电解槽
CN101413136A (zh) * 2008-10-10 2009-04-22 冯乃祥 具有纵向和横向减波功能的新型阴极结构铝电解槽

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203971A (en) * 1987-09-16 1993-04-20 Moltech Invent S.A. Composite cell bottom for aluminum electrowinning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683559A (en) * 1994-09-08 1997-11-04 Moltech Invent S.A. Cell for aluminium electrowinning employing a cathode cell bottom made of carbon blocks which have parallel channels therein
CN1392291A (zh) * 2001-06-18 2003-01-22 冯乃祥 一种铝电解槽阴极碳块及其制作方法
CN101054691A (zh) * 2007-03-02 2007-10-17 冯乃祥 一种异形阴极碳块结构铝电解槽
CN101260545A (zh) * 2008-04-23 2008-09-10 云南涌鑫金属加工有限公司 一种节能型铝电解槽
CN101413136A (zh) * 2008-10-10 2009-04-22 冯乃祥 具有纵向和横向减波功能的新型阴极结构铝电解槽

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534671A (zh) * 2012-03-08 2012-07-04 广西百色银海铝业有限责任公司 一种交叉配置异形阴极结构铝电解槽

Also Published As

Publication number Publication date
US20110056826A1 (en) 2011-03-10
CN101413136A (zh) 2009-04-22
CN101413136B (zh) 2010-09-29

Similar Documents

Publication Publication Date Title
WO2010040270A1 (zh) 具有纵向和横向减波功能的新型阴极结构铝电解槽
WO2008106849A1 (fr) Cellule électrolytique de production d'aluminium comportant une cathode de blocs de carbone de structure hétérotypique
RU2403324C2 (ru) Катоды для алюминиевых электролизеров с пазом неплоской конфигурации
US7384521B2 (en) Method for reducing cell voltage and increasing cell stability by in-situ formation of slots in a Soderberg anode
CN105543896A (zh) 一种预焙铝电解槽阳极组结构
CN201049966Y (zh) 一种异形结构铝电解槽的阴极碳块
CN101503809A (zh) 一种具有倒角开槽阴极的新型节能铝电解槽
CN112522741A (zh) 一种封闭式稀土氯化物体系电解槽
CN201305634Y (zh) 一种具有纵向和横向减波功能的新型阴极结构铝电解槽
CN205556801U (zh) 一种预焙铝电解槽阳极组结构
CN105543894A (zh) 一种预焙铝电解槽无残极产生的阳极炭块结构
CN213680931U (zh) 一种封闭式稀土氯化物体系电解槽
CN201358306Y (zh) 一种具有倒角开槽阴极的新型节能铝电解槽
CN103403227A (zh) 具有可变的凹槽深度的表面异形阴极块的阴极布置
CN205556802U (zh) 一种预焙铝电解槽无残极产生的阳极炭块结构
CN115074781B (zh) 一种底部阴极稀土电解槽
CN215440710U (zh) 一种铝电解全石墨化阳极
Tabereaux Production of Primary Aluminum by Electrolysis
CN113279017A (zh) 一种铝电解全石墨化阳极及其制备方法
CN117802537A (zh) 一种楔形惰性阳极及铝电解槽
CA2854928A1 (en) Cathode block having a domed and/or rounded surface
CN101838821A (zh) 铝电解槽新型内衬
CN102268695A (zh) 一种板式阴极集流方式铝电解槽
RO125454A2 (ro) Procedeu şi electrolit pentru fabricarea aluminiului

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09818734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12991870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(19 EPC (EPO FORM 1205A DATED 10-08-2011 )

122 Ep: pct application non-entry in european phase

Ref document number: 09818734

Country of ref document: EP

Kind code of ref document: A1