WO2019128826A1 - 一种稀土金属熔盐电解槽 - Google Patents

一种稀土金属熔盐电解槽 Download PDF

Info

Publication number
WO2019128826A1
WO2019128826A1 PCT/CN2018/122243 CN2018122243W WO2019128826A1 WO 2019128826 A1 WO2019128826 A1 WO 2019128826A1 CN 2018122243 W CN2018122243 W CN 2018122243W WO 2019128826 A1 WO2019128826 A1 WO 2019128826A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
layer
molten salt
earth metal
lining
Prior art date
Application number
PCT/CN2018/122243
Other languages
English (en)
French (fr)
Inventor
吕晓军
韩泽勋
张恒星
王维维
韦茗仁
孙启东
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711474369.6A external-priority patent/CN108004568B/zh
Priority claimed from CN201711474382.1A external-priority patent/CN108193235B/zh
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2019128826A1 publication Critical patent/WO2019128826A1/zh
Priority to ZA2020/04577A priority Critical patent/ZA202004577B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the invention relates to a rare earth metal molten salt electrolysis tank, belonging to the technical field of rare earth molten salt electrolysis equipment.
  • the existing rare earth electrolysis mainly uses rare earth oxide as raw material and fluoride as electrolyte to melt rare earth electrolysis process.
  • the electrolytic cell type is an upper plug-in anode and cathode structure, the anode and cathode cylinders are placed in parallel in the electrolyte, and the tungsten crucible is placed below. Used to receive metal.
  • the existing rare earth electrolysis cell is mostly of open-type design, and its heat preservation property is poor. A large amount of heat is lost to the air through radiation and convection, thereby increasing the ambient temperature, worsening the working environment of the worker, and also making the electrolytic cell The heat balance is unstable, and the heat balance has to be maintained by increasing the cell voltage. At the same time, the voltage of the cell is too high.
  • the oxide When the oxide is insufficient, the rare earth fluoride is seriously decomposed, and the fluorine-containing harmful gas is directly discharged from the upper part of the tank.
  • the environment has brought great hidden dangers to the health of workers.
  • the polar distance of the existing rare earth metal electrolysis cell cannot be adjusted.
  • the pole pitch As the rare earth electrolysis progresses, the pole pitch is also larger and larger, the cell voltage is generally 10-12V, a large amount of electric energy is wasted, and the production efficiency is low, and the process parameters are The fluctuation is large, and the current intensity of the trough type is 3000-7000A, which seriously hinders the development of large-scale and energy-saving of the rare earth electrolysis cell. Therefore, the development of large-scale energy-saving and environmentally friendly rare earth molten salt electrolyzers is the key to realizing the development of rare earth electrolysis industry and its technology.
  • Chinese invention patent CN103614747A discloses a large-scale combined rare-earth molten salt electrolyzer system, which realizes a compact tank structure and reasonable wiring structure, but its anode and cathode are plug-in anodes and anodes, the pole pitch cannot be changed, and the rare earth electrolysis tank is not reduced.
  • the voltage, and the design of the anode and cathode structure is not conducive to the operation of the electrolysis process and the enlargement of the electrolytic rare earth.
  • Chinese invention patent CN105441987A discloses a rare earth molten salt electrolysis cell for producing a rare earth metal and an alloy by a liquid cathode.
  • the structure is a cathode and an anode vertically inserted into the electrolyte, and the liquid metal of the electrolytic cell is used as a cathode, although the invention is advantageous for the enlargement of the electrolytic cell.
  • the liquid metal acts as a cathode, which tends to cause secondary oxidation of the metal, and the liquid metal is always in the reaction zone, so that the bottom of the electrolytic cell is easily corroded, and at the same time, the operation of the electrolytic cell is extremely difficult.
  • the liquid metal acts as a cathode, increasing the area of the cathode and lowering the cathode current density, resulting in a decrease in current efficiency.
  • the present invention provides a rare earth metal molten salt electrolysis cell to optimize the structure of the electrolytic cell, maintain the stability of the thermal equilibrium of the electrolytic cell, reduce heat loss, and save electrical energy.
  • a rare earth metal molten salt electrolysis cell comprises a tank body, wherein the tank body is provided with a lining structure, the lining structure comprises a bottom lining disposed at the bottom of the tank body and a side lining disposed on the side of the tank body, the characteristics thereof
  • the bottom lining comprises a ceramic fiber layer, a bottom refractory brick layer, a barrier layer and a graphite layer arranged in order from bottom to top; the bottom lining and the side lining are connected to form a power supply reaction.
  • a cavity; a top surface and an inner side surface of the side liner are covered with a protective layer, and the protective layer extends into the cavity to a top surface of the graphite layer.
  • a rare earth metal molten salt electrolysis cell comprises a tank body, and a lining structure is provided in the tank body, the lining structure comprises a bottom lining and a side lining, and the bottom lining comprises stacking from bottom to top.
  • the side liner is disposed around the bottom liner, the side liner extends upwardly above the graphite layer, the bottom liner and the side liner Combining and enclosing a cavity for performing a power supply reaction;
  • the top and inner faces of the side liner are covered with a protective layer, and the protective layer extends into the cavity to the top surface of the graphite layer.
  • the protective layer is made of a material having good thermal conductivity.
  • a local low temperature can be formed on the side of the electrolytic cell to promote the formation of the electrolytic cell furnace, to protect the lining structure, and to form a stable thermal field.
  • the protective layer has a thickness of 50-300 mm, typically 100-250 mm, and further 150-200 mm.
  • the protective layer has a Z-shaped cross section.
  • the protective layer extends down the inner wall of the lining structure to the top surface of the graphite layer.
  • the protective layer is mainly made of a silicon carbide material.
  • the silicon carbide ceramic material has good high temperature resistance and corrosion resistance, and has good oxidation resistance, has certain electrical insulation, is relatively inexpensive, and has good thermal conductivity, and can form a protective layer for the side lining. At the same time, a local low temperature region is formed at the side portion to promote the formation of the electrolytic furnace furnace lining, thereby more effectively protecting the side lining, and is advantageous for maintaining the thermal balance of the electrolytic cell. In addition, the use of silicon carbide materials can meet the insulation requirements.
  • the side liner comprises an anti-seepage casting layer, a side refractory brick layer and a side outer casing which are sequentially arranged from the inside to the outside.
  • the side refractory brick layers are primarily constructed of refractory bricks.
  • the side outer casing is mainly made of steel sheet.
  • the anti-seepage casting layer is connected to an outer end of the anti-seepage layer, and the side refractory brick layer is connected to an outer end of the bottom refractory brick layer.
  • the bottom anti-seepage layer and the side anti-seepage casting layer are connected to form a unitary structure to effectively prevent leakage;
  • the bottom refractory brick layer and the side refractory brick layer are connected to form a unitary structure, forming a “storage pool” around the cavity. Body" to prevent heat loss.
  • the outer end of the protective layer abuts the side outer casing, and the inner end of the protective layer rests on the top surface of the graphite layer.
  • the side outer casing has a thickness of 5-20 mm
  • the side refractory brick layer has a thickness of 50-300 mm
  • the anti-seepage casting material has a thickness of 50-300 mm.
  • the ceramic fiber layer has a thickness of 10 to 100 mm
  • the bottom refractory brick layer has a thickness of 50 to 300 mm
  • the barrier layer has a thickness of 50 to 300 mm
  • the graphite layer has a thickness of 100 to 500 mm.
  • the side liner is disposed on the top surface of the barrier layer.
  • the barrier layer consists essentially of dry impervious material.
  • dry anti-seepage material is beneficial to increase the life of the electrolysis cell and reduce electrolyte consumption.
  • the aluminosilicate in the dry anti-seepage material can react with the electrolyte to form a glassy hard anti-seepage layer to prevent the electrolyte from continuing to leak and corrode the lower insulation.
  • the dry anti-seepage material has a certain compressibility, can alleviate the thermal expansion of the surrounding structure, and can better meet the rare earth electrolysis production conditions (the electrolysis cell temperature range is 950-1500 ° C), and also A certain insulation effect.
  • the bottom refractory brick layer is mainly laid from refractory bricks.
  • the top of the graphite layer is provided with a collecting tank for collecting rare earth, and preferably, the collecting groove has a circular or square cross section. Further, a top surface of the graphite layer is covered with a flow guiding layer, and the guiding layer is inclined toward a direction of the collecting groove. Preferably, the inclination is 2-10°.
  • the surface of the graphite layer is arranged to facilitate the precipitation of the metal into the collecting tank.
  • the second is to effectively prevent the corrosion of the graphite layer, and at the same time improve the purity of the product and prolong the life of the electrolytic cell.
  • the flow guiding layer is mainly composed of tungsten or molybdenum to ensure that the current guiding layer is resistant to both high temperature and good compatibility with the rare earth molten metal.
  • an anode and a cathode are further included, and the anode extends into the electrolyte in the cavity, the bottom surface of the anode is an arc surface that is recessed upward, and the cathode is disposed at a central axis of the circular arc surface, the cathode and the circle
  • the corresponding portion of the arc surface is a cylindrical surface, the central axis of the cylindrical surface coincides with the central axis of the circular arc surface, and the distance between the cathode bottom surface and the bottom surface of the tank body is greater than zero.
  • the anode is suspended within the cavity.
  • the distance between the circular arc surface and the cylindrical surface is 30-200 mm, and the value can be reasonably designed and adjusted according to needs.
  • the relative positions of the cathode and the anode can also be appropriately adjusted, so that the pole distance is maintained at A certain value.
  • the cathode is cylindrical.
  • the distance between the cathode and the top surface of the bottom liner is 10 to 150 mm, preferably 20 to 50 mm.
  • the number of the anode and the cathode is the same and a plurality, and each anode and cathode are in one-to-one correspondence.
  • the cathode is made of tungsten. In order to adapt to the environment where the electrolysis temperature of the rare earth electrolysis process is high and the electrolyte is corrosive. In some embodiments of the invention, the cathode current density is 1-10 A/cm 2 and the anode current density is 0.4-2 A/cm 2 .
  • the anode is mainly made of a carbon material.
  • the anode is mainly made of a carbon material, and the material composition may be the same as that of a conventional rare earth electrolytic cell anode carbon block.
  • the protection layer is provided on the one hand to resist corrosion, oxidation and protect the lining structure, on the other hand, it can promote the formation of the electrolytic furnace furnace gang, protect the electrolytic tank, and is favorable for forming a balanced and stable temperature field, and ensuring The electrolysis reaction proceeds stably.
  • the lining structure of the rare earth metal molten salt electrolysis cell of the invention uses silicon carbide ceramic material with superior oxidation resistance and corrosion resistance, and the lining structure is optimized, and the current rare earth electrolysis cell is solved by using the carbon block as the side protection material and causing the side portion.
  • the problem of severe oxidative corrosion, in addition, the good thermal conductivity of silicon carbide can make the temperature of the side of the electrolytic cell relatively low, which is conducive to the formation of the furnace, thus forming double protection for the electrolytic cell and prolonging the service life of the electrolytic cell.
  • the lining insulation design of the electrolytic cell is reasonable, which is beneficial to the stability of the heat balance of the electrolytic solution, and effectively reduces the heat loss caused by radiation and convection of the electrolytic cell, thereby saving electric energy.
  • the invention adopts the sub-cavity horizontal insertion cathode mode in the field of subversion rare earth electrolysis, so that the electrolysis heating zone is transformed from the traditional upper middle part to the bottom of the electrolysis tank, which greatly reduces electrolyte fluctuation and electrolytic energy consumption, and is beneficial to the improvement of electric energy efficiency. .
  • the anode and the cathode of the rare earth metal molten salt electrolysis cell of the invention are arranged up and down, which satisfies the requirements of low anode current density and high cathode current density required in the rare earth molten salt electrolysis process, and is favorable for obtaining high current efficiency.
  • the cathode of the cylindrical structure has a certain space in the lower part and is matched with the anode of the upper circular structure, which is favorable for the precipitation of the metal at the cathode.
  • the anode-anode pole pitch of the rare earth metal molten salt electrolysis cell of the invention can be adjusted according to the electrolysis process conditions of different stages, the voltage and temperature control of the electrolysis cell are better realized, and the anode and anode structures of the electrolysis cell are optimized. Improve current efficiency and reduce energy loss.
  • the rare earth metal molten salt electrolysis cell of the invention can be used for the melt electrowinning of rare earth, including a metal such as lanthanum, cerium, lanthanum, cerium or a mixed metal of two or more.
  • the selection and layout of the lining structure of the rare earth metal molten salt electrolysis cell of the invention are reasonable, and the heat balance performance of the electrolytic cell is good, which can effectively reduce heat loss and improve electric energy efficiency.
  • the use of the high thermal conductivity Z-type silicon carbide protective layer on the side of the rare earth metal molten salt electrolysis cell of the present invention makes it easier to form the leg of the furnace with a good configuration, and forms a double layer protection for the side liner, thereby Effectively protect the side insulation material of the electrolytic cell.
  • the rare earth metal molten salt electrolysis cell cathode of the invention is under the cathode, and the pole pitch between the anode and the cathode can be adjusted according to the electrolysis process, which can improve the utilization ratio of the anode and reduce the tank voltage.
  • the rare earth metal molten salt electrolysis cell of the invention has a flow guiding layer on the graphite layer, so that the liquid metal can flow into the collector more easily, and at the same time avoid corrosion of the graphite layer, prolong the service life of the electrolytic cell, and at the same time make the electrolytic cell Metal products are isolated from carbon sources to improve the purity of rare earth metal products.
  • the rare earth metal molten salt electrolysis cell of the invention adopts a round surface shape and a cathode cylindrical shape, so that the current density cathode and the high anode are more obvious, and the electrolytic reaction region is effectively increased.
  • the rare earth metal molten salt electrolysis cell of the present invention has a gap between the cathode and the bottom liner to avoid direct contact between the cathode and the bottom liner, so that the life of the electrolytic cell is longer.
  • the rare earth metal molten salt electrolysis cell of the invention has good airtightness, and is favorable for gas collecting treatment of gas generated by electrolysis to realize green production.
  • the rare earth metal molten salt electrolysis cell of the invention has low voltage, so that the energy consumption of the electrolytic cell is low, and energy saving of the rare earth electrolysis production is realized.
  • the current efficiency of the rare earth metal molten salt electrolysis cell of the invention can reach 95% (the current efficiency of the conventional rare earth electrolysis cell is only 75%-85%).
  • Figure 1 is a front view showing the structure of a rare earth metal molten salt electrolysis cell of the present invention
  • Figure 2 is a side view of a rare earth metal molten salt electrolysis cell of the present invention
  • Figure 3 is a front view showing a lining and a cathode structure of a rare earth metal molten salt electrolytic cell
  • Figure 4 is a side view of a lining and a cathode structure of a rare earth metal molten salt electrolytic cell of the present invention
  • a rare earth electrolysis cell includes a trough upper structure, a trough shell 30, a bottom lining, a side lining, a cathode structure, and an anode structure, wherein the upper structure of the trough is lifted by an anode and lowered.
  • the utility model is composed of a material machine 26, a truss beam 23, a sealing system and the like.
  • the anode lifting structure comprises a lifting motor 21, a transmission guiding rod 18, a lifting rod 22, a protective sleeve 20, a bus bar 19, a clamp 24, and a hooking hook 25; the sealing system
  • the end seal cover 31, the side seal cover 33, the corner seal cover 32, the horizontal cover plate 27, the smoke pipe 28, the air collection cover 29, the end seal cover 31, the side seal cover 33, and the corner seal cover 32 are included.
  • the horizontal cover plate 27 and the gas collecting cover 29 are combined to form a unitary cover for improving the heat preservation capacity of the electrolytic cell;
  • the bottom inner liner comprises a ceramic fiber layer 14 which is sequentially arranged from bottom to top, a bottom refractory brick layer 13, and an anti-seepage layer.
  • the graphite layer 11, the flow guiding layer 10, the graphite layer 11 is provided with a collecting groove 15, the side lining from the outside to the inside is a side outer casing 5, a side refractory brick layer 8, an anti-seepage casting layer 9,
  • the top surface and the inner side surface of the side liner are covered with a protective layer 7, and the protective layer 7 is directed into the cavity Graphite surface layer extending to 11;
  • primary structure of the cathode is a cathode 6;
  • the anode structure comprises an anode 4, an anode fixing shaft 2, the guide rod 1.
  • the current of the rare earth electrolysis cell is 20 kA; the anode current density is 0.75 A; and the cell voltage is 4.7 V.
  • anode carbon block In the anode structure, two anode carbon blocks are connected under the anode steel claws 2 to form an anode 4, and the two anode carbon blocks 4 are left at an appropriate distance according to the rare earth electrolysis process.
  • the anode carbon block has 14 lateral alignments and 2 longitudinal alignments.
  • the anode structure is connected to the bus bar, and the bus bar 19 is driven by the anode lifting mechanism to drive the anode up and down to adjust the pole pitch.
  • the cathode 6 has a cylindrical shape whose length is determined according to the size of the rare earth electrolytic cell, and an anti-corrosion jacket 17 is attached to the outlet of the cathode 6.
  • the cathode 6 has a diameter of 70 mm and is mainly made of metallic tungsten.
  • the lower surface of the anode 4 has a semicircular shape whose center is at the same point as the center of the cathode 6.
  • the semicircle has a diameter of 300 mm.
  • a collecting groove 15 is disposed on the upper portion of the graphite layer 11 for receiving rare earth metal, and the guiding layer 10 has a certain inclination to facilitate metal flowing into the collecting groove 15.
  • the conductivity of the flow guiding layer 10 is 3°.
  • the bottom material structure ceramic fiber layer 14 has a thickness of 50 mm
  • the bottom refractory layer 13 has a thickness of 195 mm
  • the barrier layer 12 has a thickness of 185 mm
  • the graphite layer 11 has a thickness of 395 mm.
  • the side outer casing 5 has a thickness of 10 mm
  • the side refractory bricks 8 have a thickness of 130 mm
  • the anti-seepage casting material 9 has a thickness of 118 mm
  • the "Z"-shaped cross-section silicon carbide protective layer 7 has a thickness of 200 mm.
  • the electrolyte liquid level is 380 mm, and the electrolyte includes 85% of rare earth fluoride and 15% of lithium fluoride, and the rare earth oxide accounts for 3% of the rare earth fluoride and lithium fluoride.
  • the trough shell is made for the electrolysis cell, and then the electrolysis cell is built.
  • the masonry starts from the bottom, and the ceramic fiber layer is laid at the bottom, and the carbon fiber paste is used on the upper part of the ceramic fiber layer.
  • the bottom refractory bricks are laid out to form a bottom refractory brick layer, and then the dry refractory material is laid on the bottom refractory brick.
  • the graphite layer uses a carbon paste to build the graphite bricks.
  • the refractory bricks on the side of the electrolytic cell are built up, followed by silicon carbide and steel sheets (as side shells). ).
  • the other equipment required for the installation of the electrolytic cell including the anode hoist, the blanking device, the sealing cover, and then the baking of the electrolytic cell, and the use of a plurality of arcing machines to heat the electrolyte into a molten state, the current
  • the flow flows from the guide rod to the steel jaws, to the anode carbon block, to the electrolyte, to the cathode, and then out of the aluminum busbar to form a current loop.
  • the metal is deposited on the cathode and then flows into the collecting tank through the diversion layer having a slope.
  • the rare earth metal is taken out by siphoning, thereby obtaining a rare earth metal product.
  • Applicant software ANSYS 16.0 rare earth metals above a molten salt electrolyzer electric Coupling simulation, parts by mass, the electrolyte is composed LiF15 parts, NdF 3 85 parts, Nd 2 O 3 3 parts of a composition, based on cell
  • the overall structural design and production process conditions, the boundary conditions of the electric and thermal fields are as follows.
  • Electrolytic cell convection location Large side of the cell - air Electrolyzer side side facet - air Convection coefficient /W/m 2 ⁇ k 3.84 2.59
  • Electrolytic cell convection position Electrolyzer upper surface - air Electrolyzer bottom surface - air Convection coefficient /W/m 2 ⁇ k 14.52 2.44 Electrolytic cell convection location Anode steel claw - air Anode carbon block - air Convection coefficient /W/m 2 ⁇ k 21.69 17.56 Electrolytic cell convection location Electrolyte-air Electrolyte - large side of the electrolytic cell Convection coefficient /W/m 2 ⁇ k 48.89 500 Electrolytic cell convection position Electrolyte - side surface of electrolytic cell Electrolyte-drainage layer Convection coefficient /W/m 2 ⁇ k 200 300
  • Electrolytic cell convection location Large side of the electrolytic cell Electrolyzer side facet Emissivity 0.8 0.8 Electrolytic cell convection position Upper surface of the cell Electrolyzer bottom surface Emissivity 0.8 0.7 Electrolytic cell convection location Anode steel claw gas Anode carbon block Emissivity 0.85 0.85 Electrolytic cell convection location Electrolyte Emissivity 0.8
  • the mathematical model of 20kA rare earth molten salt electrolyzer is established, and then the above physical property parameters are input to the model, then the above boundary conditions are set and meshed. Finally, the calculation and post-processing are performed to obtain the electrothermal field simulation results. .
  • the voltage difference is mainly concentrated in the anode portion and the electrolyte portion of the electrolytic cell, wherein the electrolyte portion voltage difference is the largest.
  • the voltage difference at the side of the rare earth electrolytic cell is zero, which is consistent with the insulating material on the side of the electrolytic cell.
  • the potential distribution between the anode and the cathode is uniform, which is favorable for the uniform consumption of the anode and the reduction reaction of the rare earth oxide.
  • the maximum potential is 4.5997V
  • the minimum value is 0V
  • the potential difference is 4.5997V, indicating that the ohmic voltage drop of the rare earth electrolytic cell is 4.5997V.
  • the decomposition pressure drop is 1.69V
  • the anode-anode busbar connection pressure drop is 0.3V, totaling 1.99V, so the total pressure drop of the 20kA rare earth electrolysis cell is 6.5897V.
  • the energy saving is about 1636.9kw ⁇ h per day, and the energy saving effect is remarkable.
  • the thermal field is mainly based on the temperature distribution in the electrolyzer.
  • the reasonable temperature distribution of the thermal field is beneficial to the formation of the trough, protecting the lining structure of the electrolyzer and making the electrolyzer Longer service life.
  • the electrolyte solidification temperature is 1020 °C
  • the boundary line between the melt and solid of the rare earth electrolysis cell is the solidification isotherm.
  • the solidification isotherm can be calculated by multiple thermal field iterations. It can be seen from Fig.
  • the maximum temperature of the electrolytic cell is 1101.6 ° C
  • the high temperature region is distributed at the molten electrolyte
  • the minimum temperature is 42.3 ° C
  • the low temperature region is distributed on the side surface and the bottom surface of the electrolytic cell.
  • the boundary line of the red area is the solidification isotherm (the shape structure of the furnace can be determined therefrom), and the isotherm of the side is not close to the anode carbon block and has a certain distance, and does not affect the up and down movement of the anode carbon block, and the isotherm at the bottom is distributed.
  • the erosion of the graphite carbon block by the electrolyte is effectively avoided. Therefore, it is known that the shape of the furnace is reasonable, and the rare earth metal molten salt electrolytic bath has good heat preservation performance and heat balance performance.
  • the above embodiments are to be understood as being merely illustrative of the present invention and are not intended to limit the scope of the present invention, while the above-described embodiments are only one embodiment, and the present invention is based on the demand of different production quantities.
  • the current intensity of the rare earth electrolytic cell can also be designed to be a large-sized electrolytic cell such as 60-120 kA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种稀土金属熔盐电解槽,包括槽体,槽体内设有内衬结构,所述内衬结构包括底部内衬和侧部内衬,所述底部内衬包括由下至上依次堆叠的陶瓷纤维层、底部耐火砖层、防渗层和石墨层;所述侧部内衬围绕底部内衬设置,侧部内衬向上延伸至石墨层上方,所述底部内衬和侧部内衬组合并围成一供电解反应进行的空腔;所述侧部内衬顶面及内侧面上覆盖有保护层。该稀土金属熔盐电解槽内衬结构选材和布局合理,电解槽的热平衡性能好,可有效的减少热损失,提升电能效率。

Description

一种稀土金属熔盐电解槽 技术领域
本发明涉及一种稀土金属熔盐电解槽,属于稀土熔盐电解设备技术领域。
背景技术
现有稀土电解主要以稀土氧化物为原料、氟化物为电解质的熔盐稀土电解过程,其电解槽型为上插式阴阳极结构,阴阳极柱面平行的放置在电解质中,下方放置钨坩埚用于接收金属。这种现有稀土电解槽多为敞口型设计,其保温性较差,大量的热量通过辐射和对流散失到空气中,从而使周围温度升高,恶化了工人的工作环境,也使得电解槽的热平衡不稳定,不得不通过提高槽电压的方式来维持热平衡,同时电解槽的电压过高,在氧化物不足时,稀土氟化物分解严重,产生含氟有害气体直接从槽体上部排出,污染了环境,同时给工人的健康带来了极大的隐患。另外,现有的稀土金属电解槽极距无法调整,随着稀土电解的进行,极距也越来越大,槽电压一般为10-12V,浪费了大量的电能,且生产效率低下,工艺参数波动大,槽型电流强度的大小为3000-7000A,严重的阻碍了稀土电解槽的大型化、节能化的发展。因此,开发大型节能环保的稀土熔盐电解槽是实现稀土电解工业及其技术发展的关键。
中国发明专利CN103614747A公开了一种大型组合式稀土熔盐电解槽系统,实现了槽体结构紧凑、布线结构合理,但其阴阳极为上插式阴阳极,极距不能改变,并没有降低稀土电解槽电压,而且阴阳极结构的设计不利于电解工艺的操作和电解稀土的大型化。
中国发明专利CN105441987A公开了一种液态阴极生产稀土金属及合金的稀土熔盐电解槽,结构为阴阳极平行垂直插入电解质中,电解槽的液态金属作为阴极,虽然该发明有利于电解槽的大型化,但是液态金属作为阴极,容易使金属二次氧化,且液态金属一直处于反应区,使电解槽底部容易被腐蚀,同时给电解槽的开车运行带来了极大困难。另外,液态金属作为阴极,增大了阴极的面积,使阴极电流密度下降,导致电流效率降低。
发明内容
针对现有技术的不足,本发明提供一种稀土金属熔盐电解槽,以优化电解槽结构,维持电解槽热平衡的稳定,减少热量损失,节约电能。
为了解决上述技术问题,本发明的技术方案如下:
一种稀土金属熔盐电解槽,包括槽体,槽体内设有内衬结构,所述内衬结构包括设置于槽体底部的底部内衬和设置于槽体内侧面的侧部内衬,其特征在于,所述底部内衬包括由下至上依次设置的陶瓷纤维层、底部耐火砖层、防渗层和石墨层;所述底部内衬和侧部内衬连接后 围成一供电解反应进行的空腔;所述侧部内衬顶面及内侧面上覆盖有保护层,所述保护层向所述空腔内延伸至石墨层顶面。
进一步地,一种稀土金属熔盐电解槽,包括槽体,槽体内设有内衬结构,所述内衬结构包括底部内衬和侧部内衬,所述底部内衬包括由下至上依次堆叠的陶瓷纤维层、底部耐火砖层、防渗层和石墨层;所述侧部内衬围绕底部内衬设置,侧部内衬向上延伸至石墨层上方,所述底部内衬和侧部内衬组合并围成一供电解反应进行的空腔;所述侧部内衬顶面及内侧面上覆盖有保护层,所述保护层向所述空腔内延伸至石墨层顶面。
优选地,所述保护层由导热性能良好的材料制成。如此,可在电解槽侧部形成局部低温,促使电解槽炉帮的形成,保护内衬结构,并形成稳定的热场。
优选地,所述保护层的厚度为50-300mm,一般为100-250mm,进一步为150-200mm。
进一步地,所述保护层的横截面呈Z型。
进一步地,所述保护层沿内衬结构的内壁向下延伸至石墨层顶面。
进一步地,所述保护层主要由碳化硅材料制成。
碳化硅陶瓷材料具有良好的耐高温、抗腐蚀性能,同时抗氧化能力也非常好,具有一定的电绝缘性,且价格相对便宜,还具有良好的导热性能,可对侧部内衬形成防护的同时,在侧部形成局部低温区域,促进电解槽炉帮的形成,从而更有效地保护侧部内衬,有利于维持电解槽热平衡。另外,碳化硅材料的使用,可满足绝缘要求。
进一步地,所述侧部内衬包括由内至外依次分布的防渗浇筑层、侧部耐火砖层和侧部外壳。优选地,侧部耐火砖层主要由耐火砖砌筑而成。优选地,所述侧部外壳主要由钢板制成。
进一步地,所述防渗浇筑层与防渗层的外侧端连接,所述侧部耐火砖层与底部耐火砖层的外侧端连接。如此,底部的防渗层和侧部的防渗浇筑层连接形成一整体结构,有效防止渗漏;底部耐火砖层和侧部耐火砖层连接形成一整体结构,在空腔周围形成“保温池体”,防止热量散失。
进一步地,所述保护层的外侧端与侧部外壳抵接,保护层的内侧端搁置于石墨层顶面。
进一步地,所述侧部外壳厚度为5-20mm,侧部耐火砖层厚度为50-300mm,防渗浇筑料厚度为50-300mm。
进一步地,所述陶瓷纤维层的厚度为10-100mm,底部耐火砖层的厚度为50-300mm,防渗层的厚度为50-300mm,石墨层的厚度为100-500mm。
优选地,所述侧部内衬设置于防渗层顶面上。
优选地,所述防渗层主要由干式防渗料组成。干式防渗料的使用有利于提高电解槽寿命,降低电解质消耗。一方面,当电解质渗漏到与干式防渗料接触时,干式防渗料中铝硅酸盐可以 与电解质反应生成一层玻璃态的坚硬防渗层,防止电解质继续渗漏腐蚀下部保温材料;另一方面,干式防渗料有一定的可压缩性,可缓解周围结构的热膨胀,可较好地满足稀土电解生产条件(电解槽温度使用范围为950-1500℃),同时还有一定的保温作用。
进一步地,所述底部耐火砖层主要由耐火砖铺设而成。
进一步地,所述石墨层的顶部开设有用于收集稀土的收集槽,优选地,收集槽的横截面为圆形或方形。进一步地,所述石墨层的顶面铺设有导流层,所述导流层向收集槽所在方向倾斜。优选地,倾斜度为2-10°。
石墨层表面导流层的设置,一是便于析出的金属流入收集槽中,二是有效的防止了石墨层的腐蚀,同时提高了产品的纯度,有利于延长电解槽寿命。
进一步地,所述导流层主要由钨或钼构成,以保证导流层既耐高温,又具有与稀土熔融金属良好的相容性。
进一步地,还包括阳极和阴极,所述阳极伸入空腔中的电解质内,所述阳极的底面为向上凹陷的圆弧面,所述阴极设置于圆弧面的中心轴线处,阴极与圆弧面相对应的部分为圆柱面,该圆柱面的中心轴线与圆弧面的中心轴线重合,阴极底面与槽体内底面的距离大于0。
进一步地,所述阳极悬置于空腔内。
优选地,圆弧面与圆柱面之间的距离为30-200mm,该值可根据需要进行合理设计调整,电解过程中,也可对阴极和阳极的相对位置进行适当调节,使得极距保持在一定值。
进一步地,所述阴极为圆柱状。
进一步地,所述阴极与底部内衬顶面的距离为10-150mm,优选为20-50mm。
进一步地,所述阳极和阴极的数量相同且为多个,各个阳极和阴极一一对应。
进一步地,阴极由钨制成。以适应稀土电解过程中电解温度高、电解质的腐蚀性强的环境。在本发明的一些实施例中,阴极电流密度为1-10A/cm 2,阳极电流密度0.4-2A/cm 2
进一步地,阳极主要由碳材料制成。可选地,所述阳极主要由碳素材料制成,材质成分可与常规稀土电解槽阳极炭块一样。
进一步地,所述阴极的一端固定于槽体侧壁上,阴极的另一端穿过槽体侧壁并伸出至槽体外。本发明中,保护层的设置一方面可抵抗腐蚀、氧化,保护内衬结构,另一方面,能促使电解槽炉帮的形成,保护电解槽,并有利于形成均衡、稳定的温度场,保证电解反应的稳定进行。本发明的稀土金属熔盐电解槽内衬结构使用抗氧化、抗腐蚀性能优越的碳化硅陶瓷材料,内衬结构得到优化,解决了现行稀土电解槽使用炭块做侧部防护材料而导致侧部氧化腐蚀严重的问题,另外,碳化硅导热性能好,可使电解槽侧部温度相对较低,有利于炉帮的形成,从而对电解槽形成双重保护,延长电解槽使用寿命。该电解槽的内衬保温设计合理,有利于电 解槽热平衡的稳定,有效的减少电解槽因辐射和对流造成的热量损失,节约了电能。
本发明使用了颠覆稀土电解领域的槽下部横插阴极模式,使电解发热区从传统的中上部分转变到了电解槽底部,极大程度的降低了电解质波动和电解能耗,有利电能效率的提升。
进一步地,本发明的稀土金属熔盐电解槽阳极和阴极呈上下排布,满足了稀土熔盐电解过程中所需要的低阳极电流密度和高阴极电流密度的要求,有利于获得高的电流效率;采用圆柱体结构的阴极,下部留有一定的空间,同时与上部圆形结构的阳极相匹配,有利于金属在阴极的析出。另外,该发明的稀土金属熔盐电解槽的阴阳极极距可以根据不同阶段的电解工艺条件进行调整,更好的实现了对电解槽的电压和温度控制,有利于优化电解槽阴、阳极结构,提升电流效率,降低能量损耗。
可选地,本发明的稀土金属熔盐电解槽,可用于稀土的熔融电解提取,包括镧、铈、镨、钕等一种金属或两种及以上混合金属。
与现有技术相比,本发明的有益效果如下:
1.本发明的稀土金属熔盐电解槽内衬结构选材和布局合理,电解槽的热平衡性能好,可有效的减少热损失,提升电能效率。
2.本发明的稀土金属熔盐电解槽侧部高导热率Z型碳化硅保护层的使用,使具有良好构型的炉帮伸腿更加容易形成,对侧部内衬形成双层保护,从而更有效的保护电解槽的侧部保温材料。
3.本发明的稀土金属熔盐电解槽阴极在下,阴阳极之间的极距可以根据电解工艺进行调整,可提高阳极的利用率,降低槽电压。
4.本发明的稀土金属熔盐电解槽其石墨层上设有导流层,使液态金属更容易流入收集器内,同时避免石墨层的腐蚀,可延长电解槽使用寿命,同时使电解槽的金属产品与碳源隔绝,提高稀土金属产品纯度。
5.本发明的稀土金属熔盐电解槽采用圆面形状,阴极圆柱形状,使电流密度阴极高阳极低更加明显,也有效的增加了电解反应区域。
6.本发明的稀土金属熔盐电解槽的阴极与底部内衬之间留有空隙,避免了阴极与底部内衬的直接接触,使电解槽的使用寿命更长。
7.本发明的稀土金属熔盐电解槽密闭性好,有利于对电解产生的气体进行集气处理,实现绿色生产。
8.本发明的稀土金属熔盐电解槽电压低,使电解槽的能耗低,实现稀土电解生产节能。
9.本发明的稀土金属熔盐电解槽电流效率可达95%(传统稀土电解槽的电流效率仅为75%-85%)。
附图说明
图1为本发明的一种稀土金属熔盐电解槽结构主视图;
图2为本发明的一种稀土金属熔盐电解槽侧视图;
图3为本发明的一种稀土金属熔盐电解槽内衬和阴阳极结构主视图;
图4为本发明的一种稀土金属熔盐电解槽内衬和阴阳极结构侧视图;
[根据细则91更正 08.01.2019] 
图5为本发明的一种稀土金属熔盐电解槽的电场仿真结果图;
[根据细则91更正 08.01.2019] 
图6为本发明的一种稀土金属熔盐电解槽的热场仿真结果图;
图中:1-导杆、2-阳极钢爪、3-螺母、4-阳极、5-侧部外壳、6-阴极、7-保护层、8-侧部耐火砖层、9-防渗浇筑层、10-导流层、11-石墨层、12-防渗层、13-底部耐火砖层、14-陶瓷纤维层、15-收集槽、16-电解质、17-防腐夹套、18-传动导杆、19-母线、20-保护套、21-提升电机、22-提升杆、23-桁梁、24-夹具、25-搭钩、26-下料机、27-水平罩板、28-烟管、29-集气罩、30-槽壳、31-端部密封罩、32-角部密封罩、33-侧部密封罩。
具体实施方式
以下将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。为叙述方便,下文中如出现“上”、“下”、“左”、“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用。
如图1至图4所示,一种稀土电解槽,包括槽上部结构、槽壳30、底部内衬、侧部内衬、阴极结构、阳极结构,所述槽上部结构由阳极提升结构、下料机26、桁梁23、密封系统等组成,所述阳极提升结构包括提升电机21、传动导杆18、提升杆22、保护套20、母线19、夹具24、搭钩25;所述密封系统包括端部密封罩31、侧部密封罩33、角部密封罩32、水平罩板27、烟管28、集气罩29,端部密封罩31、侧部密封罩33、角部密封罩32、水平罩板27、集气罩29组合形成一个整体罩,提升电解槽的保温能力;所述底部内衬包括由下到上依次分布的陶瓷纤维层14、底部耐火砖层13、防渗层12、石墨层11、导流层10,石墨层11上开设收集槽15,所述侧部内衬由外至内依次为侧部外壳5、侧部耐火砖层8、防渗浇筑层9,所述侧部内衬顶面及内侧面上覆盖有保护层7,所述保护层7向所述空腔内延伸至石墨层11顶面;所述阴极结构主要为阴极6;所述阳极结构包括阳极4、阳极钢爪2、导杆1。
其中,所述稀土电解槽的电流大小为20kA;所述阳极电流密度为0.75A;所述电解槽电压为4.7V。
所述阳极结构中,阳极钢爪2下方连接两个阳极炭块,构成阳极4,两个阳极炭块4间根据稀土电解工艺留有适当的距离。优选地,阳极炭块的横向排列个数为14个,纵向排列个数为2个。
阳极结构连接在母线上,并由阳极提升机构带动母线19,驱动阳极上下运动,进而调整极距。所述阴极6为圆柱体形状,其长度根据稀土电解槽大小来定,在阴极6的出口处安装有防腐 夹套17。优选地,阴极6的直径为70mm,主要由金属钨制成。
所述阳极4的下表面方为半圆形状,其圆心与阴极6圆心在同一点上。优选地,半圆直径为300mm。
所述石墨层11上部放有收集槽15用于接受稀土金属,所述的导流层10有一定的倾斜度,便于金属流入收集槽15中。优选地,导流层10的倾斜度为3°。
所述底部材料结构陶瓷纤维层14厚度为50mm,底部耐火层13厚度为195mm,防渗层12厚度为185mm,石墨层11厚度为395mm。
所述侧部外壳5厚度为10mm,侧部耐火砖8厚度为130mm,防渗浇筑料9厚度为118mm,“Z”型截面的碳化硅保护层7厚度为200mm。
本实施方式中,所述电解质液面高度为380mm,按质量组成计,电解质包括氟化稀土85%、氟化锂15%,氧化稀土占氟化稀土和氟化锂的3%。
参见图1-4,首先根据稀土电解槽结构为电解槽制作槽壳,然后进行电解槽的砌筑,砌筑先从底部开始,在最底部铺设陶瓷纤维层,陶瓷纤维层上部使用炭素糊料将底部耐火砖块垒砌,形成底部耐火砖层,再在底部耐火砖上铺干式防渗料。然后是石墨层和电解槽侧部的构筑,石墨层使用炭素糊料将石墨砖垒砌,和底部耐火砖一样将电解槽侧部耐火砖垒砌,然后是碳化硅和钢板(作为侧部外壳)。电解槽砌筑完成后开始安装电解槽所需的其他设备,包括阳极提升机、下料设备、密封罩,然后对电解槽进行焙烧,使用多台打弧机将其电解质加热成熔融状态,电流流向从导杆到钢爪、到阳极炭块、到电解质、到阴极,然后从铝母线流出,形成电流环路。金属在阴极上析出,然后经过具有斜坡的导流层流入收集槽中,当稀土金属电解进行一段时间后通过虹吸的方式将稀土金属取出,从而得出稀土金属产品。
申请人以ANSYS 16.0软件对上述稀土金属熔盐电解槽进行了电热场耦合仿真试验,按质量份计,所用电解质由LiF15份、NdF 385份、Nd 2O 3 3份组成,根据对电解槽整体的结构设计和生产工艺条件,其电场和热场的边界条件如下所示。
(1)电场边界条件:
①电流大小20000A,施加在阳极钢爪导杆处上表面;
②将阴极钨棒的出电端设置为电压的零势面。
(2)热场边界条件:
①对流系数的设置及位置如表1所示
表1 20kA稀土金属熔盐电解槽对流系数设置
电解槽对流位置 电解槽侧部大面-空气 电解槽侧部小面-空气
对流系数/W/m 2·k 3.84 2.59
电解槽对流位置 电解槽上表面-空气 电解槽底面-空气
对流系数/W/m 2·k 14.52 2.44
电解槽对流位置 阳极钢爪-空气 阳极炭块-空气
对流系数/W/m 2·k 21.69 17.56
电解槽对流位置 电解质-空气 电解质-电解槽侧部大面
对流系数/W/m 2·k 48.89 500
电解槽对流位置 电解质-电解槽侧部小面 电解质-导流层
对流系数/W/m 2·k 200 300
②辐射系数的设置及位置如表2所示
表2 20kA稀土金属熔盐电解槽对流系数设置
电解槽对流位置 电解槽侧部大面 电解槽侧部小面
辐射系数 0.8 0.8
电解槽对流位置 电解槽上表面 电解槽底面
辐射系数 0.8 0.7
电解槽对流位置 阳极钢爪气 阳极炭块
辐射系数 0.85 0.85
电解槽对流位置 电解质  
辐射系数 0.8  
仿真结果:
首先,建立20kA稀土熔盐电解槽数学模型,然后将以上的各材料物性参数与模型对应输入,之后设置上述的边界条件和进行网格划分,最后求解计算和进行后处理得出电热场仿真结果。
(1)电场仿真结果
如图5所示,可以看出,电压差主要集中在电解槽的阳极部分和电解质部分,其中电解质部分电压差最大。稀土电解槽的侧部电压差为零,这与电解槽侧部为绝缘材料相符合。另外,阴、阳极之间电势分布均匀,有利于阳极的均匀消耗和稀土氧化物还原反应的进行。从图中还可以看出电势的最大值为4.5997V,最小值为0V,电势差为4.5997V,说明稀土电解槽的欧姆压降为4.5997V。对于稀土电解槽正常工作时,其分解压降为1.69V、阴阳极母线连接压降0.3V,共计1.99V,所以20kA稀土电解槽的总压降为6.5897V。与现有稀土电解槽槽电压10V相比,每天大约节能1636.9kw·h,节能效果显著。
(2)热场仿真结果
在稀土金属熔盐电解槽正常生产中,其热场的好坏主要看电解槽内的温度分布,合理的温度 分布的热场有利于槽帮形成,保护电解槽内衬结构,使电解槽的使用寿命更长。对于设计的20kA稀土电解槽其电解质凝固温度为1020℃,稀土电解槽的熔体与固体的交界线为凝固等温线,凝固等温线可以通过多次的热场迭代进行计算。从图6可以看出电解槽的最高温度为1101.6℃,其高温区分布在熔融的电解质处,最小温度为42.3℃,其低温区分布在电解槽的侧部表面和底部表面。红色区域的边界线为凝固等温线(可由此确定炉帮形状结构),侧部的等温线未靠近阳极炭块且有一定的距离,不影响阳极炭块的上下移动,底部的等温线分布在石墨炭块上,有效的避免了电解质对石墨炭块的侵蚀。因此,可知炉帮形状结构合理,该稀土金属熔盐电解槽的保温性能和热平衡性能好。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,同时上述实施例只是一种实施案例,根据不同生产量的需求,本发明稀土电解槽的电流强度也可以设计成60-120kA等大型化电解槽。

Claims (10)

  1. 一种稀土金属熔盐电解槽,包括槽体,槽体内设有内衬结构,所述内衬结构包括设置于槽体底部的底部内衬和设置于槽体内侧面的侧部内衬,其特征在于,所述底部内衬包括由下至上依次设置的陶瓷纤维层(14)、底部耐火砖层(13)、防渗层(12)和石墨层(11);所述底部内衬和侧部内衬连接后围成一供电解反应进行的空腔;所述侧部内衬顶面及内侧面上覆盖有保护层(7),所述保护层(7)向所述空腔内延伸至石墨层(11)顶面。
  2. 根据权利要求1所述的稀土金属熔盐电解槽,其特征在于,所述保护层(7)的横截面呈Z型。
  3. 根据权利要求1所述的稀土金属熔盐电解槽,其特征在于,所述保护层(7)主要由碳化硅材料制成。
  4. 根据权利要求1所述的稀土金属熔盐电解槽,其特征在于,所述侧部内衬包括由内至外依次分布的防渗浇筑层(9)、侧部耐火砖层(8)和侧部外壳(5)。
  5. 根据权利要求1所述的稀土金属熔盐电解槽,其特征在于,所述防渗浇筑层(9)与防渗层(12)的外侧端连接,所述侧部耐火砖层(8)与底部耐火砖层(13)的外侧端连接。
  6. 根据权利要求1所述的稀土金属熔盐电解槽,其特征在于,所述底部耐火砖层(13)主要由耐火砖铺设而成。
  7. 根据权利要求1所述的稀土金属熔盐电解槽,其特征在于,所述石墨层(11)的顶部开设有用于收集稀土的收集槽(15);所述石墨层(11)的顶面铺设有导流层(10),所述导流层(10)向收集槽(15)所在方向倾斜。
  8. 根据权利要求1-7任一项所述的稀土金属熔盐电解槽,其特征在于,还包括阳极(4)和阴极(6),所述阳极(4)伸入空腔中的电解质内,所述阳极(4)的底面为向上凹陷的圆弧面,所述阴极(6)设置于圆弧面的中心轴线处,阴极与圆弧面相对应的部分为圆柱面,该圆柱面的中心轴线与圆弧面的中心轴线重合,阴极底面与槽体内底面的距离大于0。
  9. 根据权利要求8所述的稀土金属熔盐电解槽,其特征在于,所述阳极(4)和阴极(6)的数量相同且为多个,各个阳极(4)和阴极(6)一一对应。
  10. 根据权利要求9所述的稀土金属熔盐电解槽,其特征在于,所述阴极的一端固定于槽 体侧壁上,阴极的另一端穿过槽体侧壁并伸出至槽体外。
PCT/CN2018/122243 2017-12-29 2018-12-20 一种稀土金属熔盐电解槽 WO2019128826A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/04577A ZA202004577B (en) 2017-12-29 2020-07-23 Rare earth metal molten salt electrolytic cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711474369.6 2017-12-29
CN201711474369.6A CN108004568B (zh) 2017-12-29 2017-12-29 一种稀土电解槽内衬结构及稀土电解槽
CN201711474382.1A CN108193235B (zh) 2017-12-29 2017-12-29 一种稀土电解槽电极结构及稀土电解槽
CN201711474382.1 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128826A1 true WO2019128826A1 (zh) 2019-07-04

Family

ID=67066520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122243 WO2019128826A1 (zh) 2017-12-29 2018-12-20 一种稀土金属熔盐电解槽

Country Status (2)

Country Link
WO (1) WO2019128826A1 (zh)
ZA (1) ZA202004577B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337851A (zh) * 2021-03-31 2021-09-03 包头瑞鑫稀土金属材料股份有限公司 一种大尺寸阴极稀土熔盐电解槽
CN113802150A (zh) * 2021-03-01 2021-12-17 包头瑞鑫稀土金属材料股份有限公司 一种大型稀土熔盐电解槽水冷阳极导电板装置
CN114835497A (zh) * 2022-06-13 2022-08-02 赣州晨光稀土新材料有限公司 一种用于稀土熔盐电解槽的陶瓷材料及其制备方法和应用
CN115074786A (zh) * 2022-07-06 2022-09-20 中国科学院金属研究所 一种稀土电解槽用防渗材料及其制备方法、稀土电解槽
CN115522229A (zh) * 2022-09-13 2022-12-27 宁波复能稀土新材料股份有限公司 一种稀土电解介质智能自控均匀装置
WO2023233196A1 (en) * 2022-06-03 2023-12-07 Vedanta Limited (Aluminium & Power) Lining design of electrolytic cell in an aluminum smelter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290434A (zh) * 2013-04-24 2013-09-11 包头瑞鑫稀土金属材料股份有限公司 一种生产稀土金属及合金的熔盐电解槽
CN203360596U (zh) * 2013-04-24 2013-12-25 包头瑞鑫稀土金属材料股份有限公司 一种生产稀土金属及合金的熔盐电解槽
CN104328458A (zh) * 2014-11-19 2015-02-04 赣州三友稀土新材料有限公司 一种高产节能稀土金属电解炉
CN204779870U (zh) * 2015-07-08 2015-11-18 赣州三友稀土新材料有限公司 一种防漏的稀土金属电解槽装置
CN106283122A (zh) * 2016-10-29 2017-01-04 虔东稀土集团股份有限公司 电解炉
CN108004568A (zh) * 2017-12-29 2018-05-08 中南大学 一种稀土电解槽内衬结构及稀土电解槽
CN108193235A (zh) * 2017-12-29 2018-06-22 中南大学 一种稀土电解槽电极结构及稀土电解槽

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290434A (zh) * 2013-04-24 2013-09-11 包头瑞鑫稀土金属材料股份有限公司 一种生产稀土金属及合金的熔盐电解槽
CN203360596U (zh) * 2013-04-24 2013-12-25 包头瑞鑫稀土金属材料股份有限公司 一种生产稀土金属及合金的熔盐电解槽
CN104328458A (zh) * 2014-11-19 2015-02-04 赣州三友稀土新材料有限公司 一种高产节能稀土金属电解炉
CN204779870U (zh) * 2015-07-08 2015-11-18 赣州三友稀土新材料有限公司 一种防漏的稀土金属电解槽装置
CN106283122A (zh) * 2016-10-29 2017-01-04 虔东稀土集团股份有限公司 电解炉
CN108004568A (zh) * 2017-12-29 2018-05-08 中南大学 一种稀土电解槽内衬结构及稀土电解槽
CN108193235A (zh) * 2017-12-29 2018-06-22 中南大学 一种稀土电解槽电极结构及稀土电解槽

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113802150A (zh) * 2021-03-01 2021-12-17 包头瑞鑫稀土金属材料股份有限公司 一种大型稀土熔盐电解槽水冷阳极导电板装置
CN113337851A (zh) * 2021-03-31 2021-09-03 包头瑞鑫稀土金属材料股份有限公司 一种大尺寸阴极稀土熔盐电解槽
WO2023233196A1 (en) * 2022-06-03 2023-12-07 Vedanta Limited (Aluminium & Power) Lining design of electrolytic cell in an aluminum smelter
CN114835497A (zh) * 2022-06-13 2022-08-02 赣州晨光稀土新材料有限公司 一种用于稀土熔盐电解槽的陶瓷材料及其制备方法和应用
CN114835497B (zh) * 2022-06-13 2022-11-08 赣州晨光稀土新材料有限公司 一种用于稀土熔盐电解槽的陶瓷材料及其制备方法和应用
CN115074786A (zh) * 2022-07-06 2022-09-20 中国科学院金属研究所 一种稀土电解槽用防渗材料及其制备方法、稀土电解槽
CN115074786B (zh) * 2022-07-06 2024-02-20 中国科学院金属研究所 一种稀土电解槽用防渗材料及其制备方法、稀土电解槽
CN115522229A (zh) * 2022-09-13 2022-12-27 宁波复能稀土新材料股份有限公司 一种稀土电解介质智能自控均匀装置
CN115522229B (zh) * 2022-09-13 2024-04-23 宁波复能稀土新材料股份有限公司 一种稀土电解介质智能自控均匀装置

Also Published As

Publication number Publication date
ZA202004577B (en) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2019128826A1 (zh) 一种稀土金属熔盐电解槽
CN108193235B (zh) 一种稀土电解槽电极结构及稀土电解槽
CN108004568B (zh) 一种稀土电解槽内衬结构及稀土电解槽
CN101709485B (zh) 一种采用惰性阳极生产原铝的铝电解槽
CN103757661A (zh) 一种铝电解惰性阳极
CN102534663B (zh) 电解氯化镁生产金属镁的装置
WO2016082726A1 (zh) 一种电解炉
WO2016124034A1 (zh) 电解炉组
CN105256337B (zh) 一种新型稀土电解槽
CN105624728B (zh) 一种金属锂电解槽
Naixiang et al. New cathodes in aluminum reduction cells
CN110484937A (zh) 一种生产稀土及其合金的稀土电解槽
CN205241811U (zh) 一种液态阴极生产稀土金属及合金的稀土熔盐电解槽
CN104514011A (zh) 设置有保温挡料装置的铝电解槽
WO2021104167A1 (zh) 一种大容量氧铝联产电解槽用悬挂式耐火保温组件
CN112522741A (zh) 一种封闭式稀土氯化物体系电解槽
CN103320817A (zh) 一种惰性电极铝电解槽炉膛上方的保温与密封结构的制备方法
CN102925931B (zh) 侧插潜没式下阴极稀土熔盐电解槽
CN106400053A (zh) 基于阴极内衬整体成型的铝电解槽及其整体成型方法
CN213680931U (zh) 一种封闭式稀土氯化物体系电解槽
CN201722432U (zh) 底部阴极导流式稀土电解槽
CN105780053B (zh) 一种以铝作为阴极的铝电解方法
CN210683970U (zh) 一种双石墨槽体稀土电解槽
CN202272968U (zh) 一种铝电解槽内衬结构
CN103993332A (zh) 一种节能铝电解槽及其辅助极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895929

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18895929

Country of ref document: EP

Kind code of ref document: A1