WO2021104167A1 - 一种大容量氧铝联产电解槽用悬挂式耐火保温组件 - Google Patents

一种大容量氧铝联产电解槽用悬挂式耐火保温组件 Download PDF

Info

Publication number
WO2021104167A1
WO2021104167A1 PCT/CN2020/130418 CN2020130418W WO2021104167A1 WO 2021104167 A1 WO2021104167 A1 WO 2021104167A1 CN 2020130418 W CN2020130418 W CN 2020130418W WO 2021104167 A1 WO2021104167 A1 WO 2021104167A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
layer
insulation
metal rod
aluminum
Prior art date
Application number
PCT/CN2020/130418
Other languages
English (en)
French (fr)
Inventor
杨建红
Original Assignee
青岛睿曦绿业新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛睿曦绿业新材料科技有限公司 filed Critical 青岛睿曦绿业新材料科技有限公司
Publication of WO2021104167A1 publication Critical patent/WO2021104167A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the invention belongs to the technical field of aluminum smelting, and relates to a suspended refractory insulation assembly for a large-capacity aluminum oxide co-production electrolytic cell.
  • the current Hall-Herout aluminum electrolysis cell uses consumable carbon anodes, which not only consumes a large amount of high-quality petroleum coke as the main carbon material, but also emits a large amount of greenhouse gas CO 2 and strong greenhouse gas fluorocarbons (CF 4 , C 2 F 6 ) , SO 2 , and in the current aluminum electrolysis process, it is necessary to constantly replace the pre-baked anode carbon block, which leads to unstable electrolysis production, and increases labor intensity, the personal risk of workers facing high-temperature melt, and the unorganized emission of fluoride ;
  • the production process of pre-baked carbon anodes will also emit carcinogenic aromatic compounds (PAH), SO 2 , dust, these are one of the main sources of PM2.5; in addition, the use of carbon anodes is also the current aluminum electrolysis process
  • PAH carcinogenic aromatic compounds
  • SO 2 SO 2
  • dust are one of the main sources of PM2.5
  • the use of carbon anodes is also the current aluminum electrolysis process
  • non-carbon anodes or inert anodes to achieve a new process of co-production of oxygen and primary aluminum electrolysis can solve the above-mentioned emission and pollution problems, and can improve production efficiency, reduce floor space, and reduce production costs. It has become the international aluminum industry and materials industry. The focus of attention and research hotspots.
  • the use of non-carbon anodes in the electrolysis process of oxy-aluminum co-production has the following advantages: (1) The electrode is almost not consumed during the electrolysis process, and the material consumption is less than one percent of the carbon anode. No additional carbon processing plant and carbon anode assembly are required.
  • the electrode is not consumed, the pole distance is stable, easy to control, the anode replacement frequency is reduced by more than ten times, labor intensity and occupational risks It is greatly reduced; (3) A higher current per unit volume can be used to increase the capacity of the electrolyzer; (4) The anode product is oxygen, which avoids environmental pollution, and oxygen can also be used as a by-product.
  • the theoretical decomposition voltage of the latter is 1V larger than that of the former. Therefore, the use of a non-carbon inert anode must use a more insulated electrolytic cell structure, and a vertical electrolytic cell is required.
  • the inert anode aluminum electrolysis cell with vertical electrode arrangement can increase the electrode area exponentially, thereby reducing the volume of the electrolysis cell, increasing the yield, reducing heat dissipation, and making up for the shortcomings that the theoretical decomposition voltage of the inert anode is higher than that of the carbon anode.
  • the present invention provides a refractory insulation component that is freely combined, easy to lift, and convenient to move, and the connection between the insulation material and the metal will not cause the refractory insulation material to break due to the thermal expansion or oxidation of the metal.
  • non-carbon aluminum anode electrolyzers maintain heat balance with the same or less heat input as carbon anode electrolyzers, and the key is to reduce heat dissipation.
  • a well-insulated electrolytic cell structure In order to reduce heat dissipation, a well-insulated electrolytic cell structure must be used. Unlike carbon anode electrolyzers, no crusts are formed on the surface of the electrolyte. Therefore, the upper part of the electrolytic cell needs to be well insulated, and there should be no exposed space, so a suspended type is required. Refractory insulation components.
  • the present invention is aimed at a large-capacity non-carbon anode vertical electrolytic cell, and proposes a refractory insulation assembly that can be freely combined, easily lifted and moved, and is hung on the upper part of the electrolytic cell for sealing the electrolytic cell, sealing the space, and sealing the electrode assembly.
  • the present invention is realized through the following schemes:
  • a suspended refractory insulation component for a large-capacity aluminum electrolytic cell comprising a metal rod, a hose, an insulation layer and a refractory layer, and the metal rod and the aluminum electrolytic cell are separated by a refractory layer;
  • the metal rod is wrapped with a hose, and the metal rod and the hose are filled with an anti-expansion and anti-oxidation buffer powder mixture; the hose is wrapped with an insulation layer, and a refractory layer is arranged under the insulation layer, and the insulation layer and the refractory layer are sealed;
  • the metal rod, the insulation layer and the refractory layer are fixedly connected.
  • the refractory layer is made of shaped or amorphous refractory material
  • the metal rod passes through the insulation layer and is fitted with the insulation layer, and the insulation layer is fitted with the refractory layer;
  • the metal rod passes through the insulation layer and extends to the refractory layer, and the amorphous refractory material is cast and fixed.
  • the metal rod is L-shaped, inverted T-shaped, inverted F-shaped, herringbone, ring-shaped or mesh-shaped to enhance the force;
  • the surface of the metal rod is threaded or striped to increase the friction and support the weight of the refractory insulation components
  • Metal rods are pure iron rods, carbon steel, stainless steel, heat-resistant stainless steel or iron-chromium-aluminum;
  • the upper part of the metal rod is in the shape of a hook, circle or thread, which is convenient for grasping and lifting; or it is connected with other devices by welding; or a quick connection device or fixture is used to facilitate automatic and quick connection with robots and robots.
  • the pure iron rod, carbon steel, stainless steel, heat-resistant stainless steel or iron chromium aluminum needs to undergo surface aluminizing or boronizing treatment to improve its oxidation resistance.
  • the expansion preventing oxidation buffer powder mixture SiO 2, Al 2 O 3, B 2 O 3, KAlF 4, NaAlF 4, NaF or KF in two or several, cured at a high temperature site during use, i.e., to prevent Swelling also increases friction.
  • the hose is woven by one or two of glass fiber, alumina fiber, aluminum silicate fiber, and SiC fiber, or is wound by using one of metal aluminum foil and tin foil.
  • the thermal insulation material is one or several layers, the side layer and the bottom layer facing or close to the high-temperature electrolyte are made of high-aluminum non-silicon alumina refractory, and the central layer and the upper layer are made of low thermal conductivity thermal insulation material .
  • the refractory layer adopts shaped or amorphous refractory material, and its installation method is as follows:
  • the combined type is adopted. First, install the metal hanging rod, the anti-expansion and anti-oxidation buffer powder mixture and the metal hose in place, and then combine the rest of the refractory insulation material block and the refractory material block in place, and use the coating to encapsulate;
  • the unshaped refractory insulation material For the unshaped refractory insulation material, first fix the metal rod hanging rod, the anti-expansion and anti-oxidation buffer powder mixture and the metal hose in place, and then the unshaped material is poured.
  • the refractory insulation assembly of the present invention is hung on the upper part of the electrolytic cell for sealing the electrolytic cell, sealing the space interval, spacing the electrode assembly, positioning the electrode, and supporting the material in the middle, while preventing the exposure of the electrolytic cell and heat loss, and is used for fire resistance.
  • a hose is arranged between the metal rod and the thermal insulation material.
  • the tube is filled with anti-expansion and anti-oxidation buffer powder mixture, so that the thermal expansion or oxidation of the metal will be buffered by the hose, which will not cause the fire-resistant insulation material to break.
  • Figure 1 is a schematic diagram of the structure of the suspended refractory insulation assembly in embodiment 1;
  • Figure 2 is a schematic structural view of the suspended refractory and thermal insulation assembly in embodiment 2;
  • Fig. 3 is a schematic structural diagram of a suspended refractory insulation assembly in embodiment 3;
  • FIG. 1 it is a suspension assembly of shaped refractory material; it includes a metal rod 1, a hose 2, an insulation layer 3 and a refractory layer 4.
  • the metal rod 1 and the aluminum electrolytic cell are separated by a refractory layer 4;
  • the metal rod is wrapped with a hose 2, and the metal rod 1 and the hose 2 are filled with an anti-expansion and anti-oxidation buffer powder mixture; the hose 2 is wrapped with an insulation layer 3, and the lower part of the insulation layer is provided with a refractory layer 4, an insulation layer 3 and The refractory layer 4 is sealed; the metal rod 1 passes through the thermal insulation layer 3 and is fitted with the thermal insulation layer 3, and the thermal insulation layer 3 is fitted with the refractory layer 4;
  • the refractory layer 4 of this design adopts shaped refractory material, the lower part is a high temperature zone and is close to the electrolyte, a shaped refractory material block is used, and the upper part adopts a shaped insulating material block.
  • the metal rod is fitted with the insulating layer 3 through an inverted T shape, and the lower end of the T shape is round.
  • the arc shape, the fitting gap is sealed by the anti-expansion and anti-oxidation buffer powder mixture; the shaped refractory material and the thermal insulation layer 3 are fitted and fixed in a convex-concave manner, which can be used as a suspension part on the upper part of a large-capacity non-carbon anode aluminum electrolytic cell.
  • the metal rod is a pure iron rod with a threaded surface, and the upper part of the metal rod is a hook, circle or thread shape, which is convenient to grasp and extract; the pure iron rod needs to undergo surface aluminizing or boronizing treatment.
  • the anti-expansion and anti-oxidation buffer powder mixture is a mixture of SiO 2 and Al 2 O 3 , which solidifies on-site during high-temperature use, which prevents expansion and increases friction.
  • the hose is braided with glass fiber.
  • it is a suspension assembly of amorphous refractory material; it includes a metal rod 1, a hose 2, an insulation layer 3 and a refractory layer 4.
  • the metal rod 1 and the aluminum electrolytic cell are separated by a refractory layer 4;
  • the metal rod is wrapped with a hose 2, and the metal rod 1 and the hose 2 are filled with an anti-expansion and anti-oxidation buffer powder mixture; the hose 2 is wrapped with an insulation layer 3, and the lower part of the insulation layer is provided with a refractory layer 4, an insulation layer 3 and The refractory layer 4 is sealed; the metal rod 1 passes through the insulation layer 3 and extends to the refractory layer 4, and the amorphous refractory material is cast and fixed.
  • the refractory layer 4 of this design adopts amorphous refractory material: first fix the metal rod and the anti-expansion and anti-oxidation buffer material in place, and then use the amorphous refractory material to cast.
  • the anti-expansion and anti-oxidation buffer material is cured and sealed under the high temperature of the electrolysis process.
  • the metal rod is connected to the upper connecting piece by welding.
  • the suspension is suitable for the upper part of the large-capacity non-carbon anode aluminum electrolytic cell, which plays a role of refractory and heat preservation and reduces heat loss.
  • the metal rod is made of carbon steel; the surface is striped, and the carbon steel needs to undergo surface aluminizing or boronizing treatment.
  • the anti-expansion and anti-oxidation buffer powder mixture is a mixture of SiO 2 , B 2 O 3 , and KAlF 4 .
  • the hose is braided by both alumina fiber and SiC fiber.
  • metal rod 1 hose 2, insulation layer 3 and refractory layer 4.
  • the metal rod 1 and the aluminum electrolytic cell are separated by refractory layer 4;
  • the metal rod is wrapped with a hose 2, and the metal rod 1 and the hose 2 are filled with an anti-expansion and anti-oxidation buffer powder mixture; the hose 2 is wrapped with an insulation layer 3, and the lower part of the insulation layer is provided with a refractory layer 4, an insulation layer 3 and The refractory layer 4 is sealed; the metal rod 1 passes through the insulation layer 3 and extends to the refractory layer 4, and the amorphous refractory material is cast and fixed.
  • the refractory layer 4 of this design adopts amorphous refractory material: first fix the metal rod and the anti-expansion and anti-oxidation buffer material in place, and then use the amorphous refractory material to cast.
  • the anti-expansion and anti-oxidation buffer material is cured and sealed under the high temperature of the electrolysis process.
  • Font-shaped metal bar, the metal bar is connected to the upper connector by a quick-connect fixture.
  • the suspension is suitable for the upper part of a large-capacity non-carbon anode aluminum electrolytic cell to play a role in fire resistance and heat preservation and reduce heat loss.
  • the metal rod is made of stainless steel, the surface of the metal rod is threaded, and the stainless steel needs to undergo surface aluminizing or boronizing treatment.
  • the anti-expansion and anti-oxidation buffer powder mixture is a mixture of Al 2 O 3 , B 2 O 3 , NaAlF 4 , and NaF.
  • the hose is formed by winding metal aluminum foil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种大容量氧铝联产电解槽用悬挂式耐火保温组件,属于铝冶炼技术领域。该组件包括金属棒,软管,保温层和耐火层,金属棒与铝电解槽之间通过耐火层隔离;金属棒外包裹有软管,且金属棒与软管间填充有防膨胀防氧化缓冲粉末混合物;软管外包裹有保温层,保温层下部设置耐火层,保温层和耐火层之间密封;金属棒、保温层和耐火层之间固定连接。针对大容量非碳阳极竖式电解槽,提出了一种可以自由组合、易于升降、方便移动的耐火保温组件,而且很好地解决了耐火保温材料与金属的连接会因为金属热膨胀或氧化造成耐火保温材料破裂的问题。

Description

一种大容量氧铝联产电解槽用悬挂式耐火保温组件 技术领域
本发明属于铝冶炼技术领域,涉及一种大容量氧铝联产电解槽用悬挂式耐火保温组件。
背景技术
现行Hall-Herout铝电解槽采用消耗性碳素阳极,不仅消耗大量以优质石油焦为主体的炭素材料,排放大量温室效应气体CO 2、强温室气体碳氟化合物(CF 4、C 2F 6)、SO 2,而且在现行铝电解过程中,需要不断地更换预焙阳极碳块,导致电解生产不稳定,并增加了劳动强度、工人面对高温熔体的人身风险和氟化物的无组织排放;预焙碳阳极生产过程中也会排放致癌性的芳香族化合物(PAH)、SO 2、粉尘,这些都是PM2.5的主要来源之一;此外,采用碳素阳极也是现行铝电解工艺的高能耗、高成本等问题的主要原因。
采用非碳阳极或称惰性阳极实现氧气与原铝联产电解新工艺,可以解决上述排放与污染问题,并可提高生产效率、减少占地面积、降低生产成本,而成为国际铝业界和材料界的关注焦点和研究热点。非碳阳极使用在氧铝联产电解过程中有以下优点:(1)电解过程中电极几乎不消耗,材料消耗量不到碳阳极的百分之一,无需附属的炭素加工厂和碳阳极组装厂,降低了生产成本,消除了由炭素阳极生产与使用带来的环境影响与污染;(2)电极不消耗,极距稳定,易于控制,阳极更换频率减少十倍以上,劳动强度和职业风险大为降低;(3)可以采用更高的单位体积电流,使电解槽产能增加;(4)阳极产品为氧气,避免了环境污染,氧气还可以作为副产品。
采用非碳阳极使铝电解反应方程式由
Al 2O 3+C=Al+CO 2,E=1.2V
转为
Al 2O 3=Al+O 2,E=2.2V
后者的理论分解电压比前者大1V,因此采用非碳惰性阳极必须使用更保温的电解槽结构,需要采用竖式结构电解槽。采用电极竖式布置的惰性阳极铝电解槽,由于电极面积可以成倍的增加,从而减少电解槽体积、增加产率、减少散热,弥补惰性阳极理论分解电压高于炭阳极的缺点。
正因为需要保温、减少散热,因而在电解槽上部需要各种耐火保温悬挂件,但耐火保温材料与金属的连接会因为金属热膨胀或氧化造成耐火保温材料破裂。
发明内容
针对现有技术存在的问题,本发明提供了一种自由组合、易于升降、方便移动的耐 火保温组件,而且保温材料与金属的连接不会因为金属热膨胀或氧化造成耐火保温材料破裂。
正如前述,非碳铝阳极电解槽在与碳阳极电解槽同样或更少的热输入的情况下维持热平衡,关键要减少散热。为了减少散热,必须采用良好保温的电解槽结构,跟碳阳极电解槽不同的是,电解质表面不形成结壳,因而电解槽上部需要很好的保温,不能有裸露的空间,故需要有悬挂式的耐火保温组件。本发明正是针对大容量非碳阳极竖式电解槽,提出一种可以自由组合、易于升降、方便移动的耐火保温组件,悬挂于电解槽上部,用于电解槽密封、空间间隔密封、电极组件间隔、电极定位、中部下料支撑,同时防止电解槽裸露与热量损失,起到耐火保温的作用。
本发明是通过如下方案实现的:
一种大容量氧铝电解槽用悬挂式耐火保温组件,包括金属棒,软管,保温层和耐火层,金属棒与铝电解槽之间通过耐火层隔离;
金属棒外包裹有软管,且金属棒与软管间填充有防膨胀防氧化缓冲粉末混合物;软管外包裹有保温层,保温层下部设置耐火层,保温层和耐火层之间密封;
金属棒、保温层和耐火层之间固定连接。
所述耐火层采用定形或无定形耐火材料,
当耐火层采用定形耐火材料时,金属棒穿过保温层,与保温层嵌合,保温层与耐火层嵌合;
当耐火层采用无定形耐火材料时,金属棒穿过保温层,并延伸至耐火层,无定形耐火材料浇注固定。
所述金属棒呈L型、倒T型、倒F型、人字型、环型或网状,以增强受力;
金属棒表面呈螺纹或条纹状,以增加摩擦力并支撑耐火保温组件的重量;
金属棒为纯铁棒、碳钢、不锈钢、耐热不锈钢或铁铬铝;
金属棒上部为弯钩、圆圈或螺纹形状,便于抓、提;或者采用焊接与其他装置相连;或者采用快速连接装置或夹具,便于与机器手、机器人自动快速连接。
所述纯铁棒、碳钢、不锈钢、耐热不锈钢或铁铬铝需经过表面渗铝或渗硼处理,提高其抗氧化性能。
所述防膨胀防氧化缓冲粉末混合物为SiO 2、Al 2O 3、B 2O 3、KAlF 4、NaAlF 4、NaF或KF中的两种或数种,在高温使用过程中现场固化,即防止膨胀,也增加磨擦力。
所述软管为玻璃纤维、氧化铝纤维、硅酸铝纤维、SiC纤维中的一种或两种编织而成,或者采用金属铝箔、锡箔中的一种卷绕而成。
所述保温材料为一层或数层,侧部层与底层面对或接近高温电解质的部分采用高铝不含硅的氧化铝耐火材料,中心层及上部层的部分采用低导热系数的保温材料。
所述耐火层采用定形或无定形耐火材料,其安装方式为:
对定形耐火保温材料,采用组合式,先将金属挂杆棒与防膨胀防氧化缓冲粉末混合物以及金属软管安装到位,然后将其余耐火保温材料块和耐火材料块组合到位,并采用涂料封装;
对不定形耐火保温材料,先将金属棒挂杆与防膨胀防氧化缓冲粉末混合物以及金属软管固定到位,然后再进行不定形材料浇注。
本发明的有益效果为
(1)本发明的耐火保温组件,悬挂于电解槽上部,用于电解槽密封、空间间隔密封、电极组件间隔、电极定位、中部下料支撑,同时防止电解槽裸露与热量损失,起到耐火保温的作用;而且可以自由组合、易于升降、方便移动。
(2)传统工艺中,保温材料与金属的连接处会因为,金属的热膨胀或氧化造成保温材料的破裂,更换保温材料费时费力,而本发明将金属棒与保温材料处设置了软管,软管里填充有防膨胀防氧化缓冲粉末混合物,这样金属的热膨胀或氧化就会有软管作为缓冲,不会造成耐火保温材料破裂。
附图说明
图1为实施例1中的悬挂式耐火保温组件的结构示意图;
图2为实施例2中的悬挂式耐火保温组件的结构示意图;
图3为实施例3中的悬挂式耐火保温组件的结构示意图;
附图标记说明:1-金属棒,2-软管,3-保温材料,4-定形或无定形耐火材料。
具体实施方式
下面结合实施例和说明书附图对本发明作进一步的描述,但并非对其保护范围的限制。
实施例1
如图1所示,是一种定形耐火材料的悬挂组件;包括金属棒1,软管2,保温层3和耐火层4,金属棒1与铝电解槽之间通过耐火层4隔离;
金属棒外包裹有软管2,且金属棒1与软管2间填充有防膨胀防氧化缓冲粉末混合物;软管2外包裹有保温层3,保温层下部设置耐火层4,保温层3和耐火层4之间密封;金属棒1穿过保温层3,与保温层3嵌合,保温层3与耐火层4嵌合;
本设计耐火层4采用定形耐火材料,下部为高温区并接近电解质,采用定形耐火材 料块,上部采用定形保温材料块,金属棒通过倒T形与保温层3进行嵌合,T形下端为圆弧状,嵌合缝隙采用防膨胀防氧化缓冲粉末混合物密封;定形耐火材料与保温层3采用凸凹配合的方式进行嵌合固定,可以作为大容量非碳阳极铝电解槽上部的悬挂件。
本实施例中金属棒为纯铁棒,表面呈螺纹状,金属棒上部为弯钩、圆圈或螺纹形状,便于抓、提;纯铁棒需经过表面渗铝或渗硼处理。
所述防膨胀防氧化缓冲粉末混合物为SiO 2和Al 2O 3的混合物,在高温使用过程中现场固化,即防止膨胀,也增加磨擦力。
所述软管为玻璃纤维编织而成。
实施例2
如图2所示,是一种无定形耐火材料的悬挂组件;包括金属棒1,软管2,保温层3和耐火层4,金属棒1与铝电解槽之间通过耐火层4隔离;
金属棒外包裹有软管2,且金属棒1与软管2间填充有防膨胀防氧化缓冲粉末混合物;软管2外包裹有保温层3,保温层下部设置耐火层4,保温层3和耐火层4之间密封;金属棒1穿过保温层3,并延伸至耐火层4,无定形耐火材料浇注固定。
本设计耐火层4采用无定形耐火材料:先将金属棒与防膨胀防氧化缓冲材料固定到位,然后再采用不定形耐火材料浇注,防膨胀防氧化缓冲材料在电解过程高温下固化密封包覆L型金属棒,金属棒采用焊接与上部连接件相连。
该悬挂件适用于大容量非碳阳极铝电解槽上部起到耐火保温作用,减少热量损失。
本实施例中金属棒为碳钢材质;表面呈条纹状,碳钢需经过表面渗铝或渗硼处理。
所述防膨胀防氧化缓冲粉末混合物为SiO 2、B 2O 3、KAlF 4三者的混合物。
所述软管为氧化铝纤维和SiC纤维两者编织而成。
实施例3
如图3所示,是一种无定形耐火材料的悬挂组件。
包括金属棒1,软管2,保温层3和耐火层4,金属棒1与铝电解槽之间通过耐火层4隔离;
金属棒外包裹有软管2,且金属棒1与软管2间填充有防膨胀防氧化缓冲粉末混合物;软管2外包裹有保温层3,保温层下部设置耐火层4,保温层3和耐火层4之间密封;金属棒1穿过保温层3,并延伸至耐火层4,无定形耐火材料浇注固定。
本设计耐火层4采用无定形耐火材料:先将金属棒与防膨胀防氧化缓冲材料固定到位,然后再采用不定形耐火材料浇注,防膨胀防氧化缓冲材料在电解过程高温下固化密封包覆人字型金属棒,金属棒采用快速连接卡具与上部连接件相连。该悬挂件适用于大 容量非碳阳极铝电解槽上部起到耐火保温作用,减少热量损失。
本实施例中金属棒为不锈钢材质,金属棒表面呈螺纹状,不锈钢需经过表面渗铝或渗硼处理。
所述防膨胀防氧化缓冲粉末混合物为Al 2O 3、B 2O 3、NaAlF 4、NaF四者的混合物。
所述软管采用金属铝箔卷绕而成。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (5)

  1. 一种大容量氧铝电解槽用悬挂式耐火保温组件,其特征在于,包括金属棒,软管,保温层和耐火层,金属棒与铝电解槽之间通过耐火层隔离;
    金属棒外包裹有软管,且金属棒与软管间填充有防膨胀防氧化缓冲粉末混合物;软管外包裹有保温层,保温层下部设置耐火层,保温层和耐火层之间密封;
    金属棒、保温层和耐火层之间固定连接;
    所述防膨胀防氧化缓冲粉末混合物为SiO 2、Al 2O 3、B 2O 3、KAlF 4、NaAlF 4、NaF或KF中的两种或数种;
    所述耐火层采用定形或无定形耐火材料;
    当耐火层采用定形耐火材料时,金属棒穿过保温层,与保温层嵌合,保温层与耐火层嵌合;
    当耐火层采用无定形耐火材料时,金属棒穿过保温层,并延伸至耐火层,无定形耐火材料浇注固定。
  2. 如权利要求1所述的大容量氧铝电解槽用悬挂式耐火保温组件,其特征在于,所述金属棒呈L型、倒T型、倒F型、人字型、环型或网状;
    金属棒表面呈螺纹或条纹状;
    金属棒为纯铁棒、碳钢、不锈钢、耐热不锈钢或铁铬铝;
    金属棒上部为弯钩、圆圈或螺纹形状;或者采用焊接与其他装置相连;或者采用快速连接装置或夹具,便于与机器手、机器人自动快速连接。
  3. 如权利要求2所述的大容量氧铝电解槽用悬挂式耐火保温组件,其特征在于,所述纯铁棒、碳钢、不锈钢、耐热不锈钢或铁铬铝需经过表面渗铝或渗硼处理。
  4. 如权利要求1所述的大容量氧铝电解槽用悬挂式耐火保温组件,其特征在于,所述软管为玻璃纤维、氧化铝纤维、硅酸铝纤维、SiC纤维中的一种或两种编织而成,或者采用金属铝箔、锡箔中的一种卷绕而成。
  5. 如权利要求1所述的大容量氧铝电解槽用悬挂式耐火保温组件,其特征在于,所述保温材料为一层或数层,侧部层与底层面对或接近高温电解质的部分采用高铝不含硅的氧化铝耐火材料,中心层及上部层的部分采用低导热系数的保温材料。
PCT/CN2020/130418 2019-11-27 2020-11-20 一种大容量氧铝联产电解槽用悬挂式耐火保温组件 WO2021104167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911182052.4A CN110760885B (zh) 2019-11-27 2019-11-27 一种大容量氧铝联产电解槽用悬挂式耐火保温组件
CN201911182052.4 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021104167A1 true WO2021104167A1 (zh) 2021-06-03

Family

ID=69339704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130418 WO2021104167A1 (zh) 2019-11-27 2020-11-20 一种大容量氧铝联产电解槽用悬挂式耐火保温组件

Country Status (2)

Country Link
CN (1) CN110760885B (zh)
WO (1) WO2021104167A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023061463A1 (zh) 2021-10-15 2023-04-20 广东东阳光药业有限公司 新的嘧啶并吡啶化合物、其药物组合物及其用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760885B (zh) * 2019-11-27 2020-07-31 镇江慧诚新材料科技有限公司 一种大容量氧铝联产电解槽用悬挂式耐火保温组件
CN115478303A (zh) * 2021-05-31 2022-12-16 浙江睿曦绿业新材料科技有限公司 一种氧铝联产无碳无固废电解槽

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561958A (en) * 1984-11-30 1985-12-31 Reynolds Metals Company Alumina reduction cell
CN103556182A (zh) * 2013-10-31 2014-02-05 东北大学 铝电解槽阴极炭块底部槽型耐火材料组合结构及制造方法
CN106811600A (zh) * 2017-01-03 2017-06-09 嵩明忠诚建筑材料厂 一种有色金属冶炼用高温耐热管的制造方法
CN206692756U (zh) * 2017-01-24 2017-12-01 贵阳铝镁设计研究院有限公司 一种铝电解槽用复合型阳极覆盖装置
CN110760885A (zh) * 2019-11-27 2020-02-07 镇江慧诚新材料科技有限公司 一种大容量氧铝联产电解槽用悬挂式耐火保温组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2052533U (zh) * 1989-01-14 1990-02-07 东北工学院 一种高温保护复合套管
CN101334165A (zh) * 2008-07-17 2008-12-31 韩亚伟 一种喷煤管及其所用锚固钉的预处理方法
CN103320817A (zh) * 2013-07-09 2013-09-25 中国铝业股份有限公司 一种惰性电极铝电解槽炉膛上方的保温与密封结构的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561958A (en) * 1984-11-30 1985-12-31 Reynolds Metals Company Alumina reduction cell
CN103556182A (zh) * 2013-10-31 2014-02-05 东北大学 铝电解槽阴极炭块底部槽型耐火材料组合结构及制造方法
CN106811600A (zh) * 2017-01-03 2017-06-09 嵩明忠诚建筑材料厂 一种有色金属冶炼用高温耐热管的制造方法
CN206692756U (zh) * 2017-01-24 2017-12-01 贵阳铝镁设计研究院有限公司 一种铝电解槽用复合型阳极覆盖装置
CN110760885A (zh) * 2019-11-27 2020-02-07 镇江慧诚新材料科技有限公司 一种大容量氧铝联产电解槽用悬挂式耐火保温组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023061463A1 (zh) 2021-10-15 2023-04-20 广东东阳光药业有限公司 新的嘧啶并吡啶化合物、其药物组合物及其用途

Also Published As

Publication number Publication date
CN110760885B (zh) 2020-07-31
CN110760885A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2021104167A1 (zh) 一种大容量氧铝联产电解槽用悬挂式耐火保温组件
CA2787207C (en) Electrolytic cell for producing primary aluminum by using inert anode
WO2021104166A1 (zh) 氧铝联产电解用的电极结构
CN108193235B (zh) 一种稀土电解槽电极结构及稀土电解槽
NO143498B (no) Fremgangsmaate for alkylering av aromatiske hydrokarboner
WO2019128826A1 (zh) 一种稀土金属熔盐电解槽
CN108004568B (zh) 一种稀土电解槽内衬结构及稀土电解槽
US4247381A (en) Facility for conducting electrical power to electrodes
JP4856422B2 (ja) 耐久性のある黒鉛体及びその製造方法
CN101037775A (zh) 一种大型预焙铝电解槽内衬结构
CN104562092B (zh) 一种多阳极金属锂电解槽
RU2679224C1 (ru) Термохимически стойкий анод для электролиза алюминия
Beck Production of aluminum with low temperature fluoride melts
CN206420317U (zh) 步进梁式烧结炉
GB992528A (en) Arrangement of current supply to furnaces for production of aluminium by melt electrolysis
CN113737225A (zh) 一种内衬结构及采用该内衬结构的稀土金属熔盐电解槽
RU2582421C1 (ru) Укрытие электролизера для производства алюминия
CN215593210U (zh) 一种无碳铝电解槽电极组件
CN111271974A (zh) 一种移动式碳渣熔炼炉
US2904491A (en) Apparatus for producing refractory metal
CN216550100U (zh) 一种生产玻璃微纤维的玻璃电熔炉
CN212006715U (zh) 一种用于非晶合金带材加工用的隔热坩埚冶炼炉
AU673125B2 (en) Continuous prebaked anode cell
CN207528048U (zh) 一种液体金属合金锅
CN206940941U (zh) 一种vod炉真空盖浇注内衬结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891629

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28-06-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20891629

Country of ref document: EP

Kind code of ref document: A1